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ABSTRACT

This study introduces a novel approach to terrain feature
classification by incorporating spatial point pattern statistics into
deep learning models. Inspired by the concept of location encoding,
which aims to capture location characteristics to enhance GeoAl
decision-making capabilities, we improve the GeoAl model by a
knowledge driven approach to integrate both first-order and
second-order effects of point patterns. This paper investigates how
these spatial contexts impact the accuracy of terrain feature
predictions. The results show that incorporating spatial point
pattern statistics notably enhances model performance by
leveraging different representations of spatial relationships.
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1 INTRODUCTION

Geographic Artificial Intelligence (GeoAl) is an emerging field that
leverages advanced computational techniques to analyze and
interpret spatial data [1, 2]. One building block of the development
of GeoAl research is the process of location encoding, which
transforms geographic coordinates—such as latitude and
longitude—into dense, continuous vector representations. This
transformation enables deep learning models to effectively capture
and utilize complex spatial relationships and patterns. As outline
in this comprehensive review [3], the primary motivation behind
location encoding is the inherent challenge of handling vector data
directly within deep neural networks. The encoding process
facilitates the integration of spatial context into these models,
paving the way for more complex spatial analysis and application
of geographic information.

Location encoding methods can be broadly categorized into two
main techniques: direct learning and contrastive learning. Direct
learning approaches involve training models using location
coordinates as conditional inputs to enhance downstream tasks.
Notable examples include the works of [4] and [5], which utilize
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the spatial context as geographic priors and loss function
components respectively to refine the learning tasks. On the other
hand, the works such as [6] and [7], encode the spatial information
into semantic embeddings, providing more flexibility of
incorporating such information into the deep learning models.
Despite their effectiveness, these methods often fall short in
addressing the complex interactions between locations and their
intrinsic spatial properties.

In contrast, contrastive learning techniques have emerged as a
powerful alternative, focusing on learning discriminative location
embeddings by maximizing the similarity between spatial and
imagery data. Pioneering studies, such as [8], [9], and [10], have
demonstrated the potential of contrastive learning for generating
robust location embeddings. However, these methods generally
require extensive data sources, pretraining processes, and
substantial computational resources. They also tend to emphasize
the alignment between locations and imagery rather than capturing
the detailed characteristics of the location itself.

This paper proposes a novel approach that builds upon the
domain knowledge of spatial point patterns to model locational
information more effectively, which further broadens the scope of
location encoding by not specifically transforming location
information into vector representations. By focusing on the spatial
point pattern effects, rather than each single location that is paired
with its corresponding input image, our approach aims to address
the limitations of existing methods by incorporating intrinsic spatial
properties of locations into the encoding process. This perspective
not only enhances the representation of geographic data but also
offers a new understanding of spatial relationships and interactions
in the context of location encoding. Through this approach, we seek
to contribute to the research of GeoAl domain and advance the
development of effective and resource-efficient location encoding
techniques.

The remainder of the paper is organized as follows. Section 2
describes the GeoAl feature classification workflow and the
methods for measuring first- and second-order spatial effects, as
well as their integration with the GeoAl models. Section 3
introduces the Al-ready terrain feature data collected for the
analysis, along with the experimental design and results. Section 4
concludes our work and discusses future research directions.
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2 METHOD

In this paper, we thoroughly investigated how geolocation
information can help terrain feature recognition under a deep
learning framework. We leverage the deep convolutional neural
network as the major classifier to decide the categories of terrain
features displayed in the given satellite images. The results
produced by this classifier are called visional probabilities.

Since geographical images usually come with corresponding
geolocations information in the metadata, to support mapping and
spatial analysis. To obtain better classification results of terrain
features, we exploited such geolocations information and different
spatial point pattern analysis (SPPA) methods to statistically
produce the different aspects of characteristics of terrain features’
distribution, and further decide the likelihood of a terrain feature in
a certain location. We named the results produced by these SPPA
methods as locational probabilities. An overall framework in figure
1 presents relationships of different building blocks and
heterogeneous data sources and how they are integrated together.
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Figure 1: Overall Framework

2.1 Modeling locational probabilities by the first-
order effect of SPPA

In spatial point pattern analysis, the first-order effect focuses on
understanding the underlying intensity or density of a spatial point
process without considering interactions between points. This
approach assumes that the spatial distribution of points can be
modeled by a varying intensity function, which describes how the
expected number of points per unit area changes across the study
area [11]. Essentially, the first-order effect quantifies the spatial
intensity or density of points across a study area, reflecting how
frequently points occur per unit area. This is often represented
using the intensity function, which varies spatially and can be
estimated from the observation data. The intensity function A(x)
represents the expected number of points per unit area at location
x. For a spatial point process, this function captures the first-order
effect of the point distribution:
A0 Expected number of points in a small area around x

Area of the small region

In practice, the intensity function is often estimated using kernel
density estimation (KDE). If {x;}]-; are the observed point
locations, the estimator of the intensity function A(x) at location x
is given by:
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Where n is the total number of points, h is the bandwidth
parameter, which controls the smoothness of the estimate); K (-) is
a kernel function, typically a Gaussian kernel; || indicates a
Euclidean distance.

When applying the first-order effect to estimate the occurrence
probability of different terrain features, we first model the spatial
intensity function for each feature type. This involves calculating
the density of occurrences for each feature type across the study
area using above mentioned intensity function estimator with all
observed locations in the training dataset. By estimating how
frequently each feature occurs in different locations, we derive
intensity maps (aka., heatmaps) per each terrain feature category
that reflects the probability of encountering each terrain feature at
any given point in the area.

2.2 Modeling locational probabilities by the
second-order effect of SPPA

The second-order effect extends beyond the first-order intensity
function by examining spatial relationships between points,
particularly focusing on interactions and clustering within the
dataset. While the first-order effect considers how the density of
points varies across space, the second-order effect analyzes how the
distribution of one type of point influences or is influenced by the
distribution of another type. This interaction is crucial for
understanding complex spatial structures and dependencies among
different features.

The Local Co-location Quotient (LCLQ) [12] is a powerful tool
for analyzing these second-order effects. It quantifies the degree to
which two types of spatial events occur together more or less
frequently than expected by chance. The LCLQ compares the
observed density of co-occurrence of two features with their
expected density if the features were distributed independently.
Specifically, for each location in the study area, the LCLQ is
calculated as:
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Where LCLQy, .y indicates the LCLQ of a point X; relative to the
category Y. Fy () is a function returns the binary value indicating
whether a point is category Y. w;; defined as a Gaussian kernel for
density estimation, with d;; indicating the distance between point i
and j, h denoting the bandwidth. An LCLQ value greater than 1
indicates that the features co-occur more frequently than expected,
suggesting a positive spatial association, while a value less than 1
indicates less frequent co-occurrence, suggesting a negative
association.
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To estimate terrain feature probabilities using the LCLQ, we
begin by calculating the LCLQ values for each location x; in the
training dataset. For each location, we derive a vector V; =
(Vo, V1, ..., vc)T, where each element v; represents the LCLQ
value corresponding to the j-th terrain feature category, and C is
the total number of terrain categories. To understand the broader
patterns of terrain feature associations across the study area, we
compute the global colocation quotient for each terrain feature
category by averaging the LCLQ values for each category over all
training locations. This results in a global colocation quotient
vector for each terrain feature, representing the typical second-
order spatial patterns for that feature throughout the study area.

For an arbitrary location in the study area where we want to
estimate the probability of different terrain features, we first
calculate its LCLQ vector, like the process used for the training
locations. To estimate the probabilities of each terrain feature at this
location, we compare its LCLQ vector to all global colocation
quotient vectors using cosine similarity. A higher cosine similarity
indicates a closer match between the local terrain feature
associations and the global pattern for a specific feature, suggesting
a higher probability of that feature's occurrence at the location.

2.3 Deep CNN classifier and probabilities fusion

In our approach to estimating terrain feature probabilities, we first
utilize a Deep CNN (DCNN) classifier (e.g., ResNet50) that has
been pretrained on ImageNet and further fine-tuned on our specific
terrain feature dataset. This fine-tuning process adapts the DCNN
model, originally designed for general-purpose image classification
tasks, to identify and predict the probabilities of different terrain
features from satellite imagery. As a baseline, the classifier outputs
a set of predicted probabilities for each feature type, reflecting their
likelihood of occurrence at various locations in the study area. To
further refine these predictions, a trainable fusion layer
implemented as a weighted sum is introduced, which integrates
multiple sources of information. This fusion layer combines the
probabilities derived from the CNN classifier with those estimated
through the abovementioned spatial point pattern analysis methods,
specifically the first-order intensity function and the second-order
LCLQ. By further fine-tuning the fused model and learning the
optimal combination of these different probability sources, the
model effectively synthesizes both the feature-specific insights
from the CNN and the spatial relationships captured by the point
pattern analyses, providing a comprehensive and refined prediction
of terrain features.

3 EXPERIMENTS AND RESULTS

3.1 Data

The dataset used in this work was created by combining satellite
imagery, corresponding geographic locations, and category
annotations. It is an extension of the GeolmageNet benchmark
dataset for terrain feature recognition [13]. The locational data and
annotations are sourced from the Geographic Names Information
System (GNIS), a comprehensive geographic names database

containing over 2 million records of both natural and man-made
features across the United States, including Alaska, Hawaii, and
other territories. Each GNIS record provides a feature's name,
category, and precise geographic coordinates (latitude and
longitude) indicating the location of the feature. For our study, we
selected a subset of six types of natural features to evaluate our
proposed methods: basins, bays, islands, lakes, ridges, and valleys.

We further downloaded corresponding satellite imagery from
the National Agriculture Imagery Program (NAIP), based on the
location information provided in the GNIS records. NAIP offers
ortho aerial imagery with spatial resolutions up to 0.6 meters and
updates annually. The imagery used in this work was acquired in
January 2023. For each record in our selected subset, we obtained
NAIP imagery for a square area with a 6 km length centered on the
GNIS-specified location. To ensure compatibility with most deep
learning models, the images were further down-sampled to a 6-
meter spatial resolution, resulting in an image size of 1000 x 1000
pixels. The category distribution of this dataset, detailing the
number of samples for each terrain feature type, is presented in
Table 1.

Table 1: Category distribution of the entire dataset

Basin Bay Island Lake Ridge Valley

Number of

1958 5058 12558 47018 12610 3667
records

3.2 Evaluation of model enhancement by SPPA

We conducted a series of experiments to evaluate the effectiveness
of integrating different spatial point pattern statistics into the terrain
feature classification model. We specifically examined the impact
of incorporating first-order (intensity map) and second-order
(LCLQ) spatial effects on the classification accuracy of terrain
features using a DCNN model.

The performance metrics for the various configurations are
summarized in Table 2, measured with classification accuracy. The
configurations tested include the baseline DCNN model, DCNN
models enhanced with first-order spatial effect, second-order
spatial effect, and a combination of both effects.

Table 2: Comparison of model classification accuracy with and
without the integration with spatial point patterns

Configuration Validation Testing
Accuracy Accuracy
DCNN 0.694 0.683
DCNN + Ist-order effect 0.719 0.717
DCNN + 2nd-order effect 0.703 0.690
DCNN + both effects 0.723 0.718

Integrating the first-order spatial effect, which captures the
overall density and distribution of terrain features, resulted in
noticeable performance improvements. Validation accuracy
increased by 2.37%, and test accuracy increased by 3.46%. This
enhancement highlights the benefit of incorporating spatial density



information. When the second-order spatial effect, which models
spatial interactions among features, was incorporated, the
validation accuracy and the test accuracy increased less than 1%
compared with the baseline. While this configuration shows an
improvement over the baseline, it is less effective compared to the
first-order effect. The relatively modest improvement suggests that
spatial interactions, while valuable, may not be as critical as spatial
density for our classification tasks. The integration of both first-
order and second-order spatial effects resulted in the highest
classification accuracy, with a validation accuracy of 0.723 and a
testing accuracy of 0.718. The results reveal that integrating
different spatial point pattern statistics effectively improves model
performance. The first-order effect, which provides information on
feature density, leads to substantial improvements in accuracy over
the baseline model. Although the second-order is less pronounced,
indicating it may play a less crucial role than spatial density in
classification task for this dataset, it still contributes to performance
gains. This integration enhances the model's ability to capture
complex spatial relationships and achieve higher classification
accuracy.

4 CONCLUSION

This study introduces a strategy of integrating spatial point pattern
statistics into terrain feature classification tasks. By employing a
GeoAl model enhanced with both first-order and second-order
spatial effects, we investigated how incorporating different spatial
context impacts the accuracy of terrain feature predictions. The
findings of this study demonstrate the effectiveness of integrating
spatial point pattern statistics into deep learning models for terrain
feature classification. We observed that the second-order effect is
less pronounced in improving the model’s overall prediction
accuracy. We speculate that it might be caused by the inherent
spatial patterns of the dataset or the modeling effectiveness of the
second-order effect. In the future, we will focus on further refining
these point pattern analysis methods, exploring additional spatial
effects, and testing across diverse GeoAl models and datasets (e.g.,
[14]) to validate the method’s generalizability and robustness.
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