Bioinformatics, 2025, 41(1), btaf006
https://doi.org/10.1093/bioinformatics/btaf006
Advance Access Publication Date: 8 January 2025

Original Paper

OXFORD

Sequence analysis

Nanopore decoding with speed and versatility for

data storage

Kevin D. Volkel ®"*, Paul W. Hook?, Albert Keung?, Winston Timp ®? James M. Tuck*

'Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, United States
2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
3Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, United States

*Corresponding authors: Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive Raleigh, NC, 27606, United States.
E-mails: kvolkel@ncsu.edu (K.D.V.) and jtuck@ncsu.edu (J.M.T).

Associate Editor: Anthony Mathelier
Abstract

Motivation: As nanopore technology reaches ever higher throughput and accuracy, it becomes an increasingly viable candidate for reading out
DNA data storage. Nanopore sequencing offers considerable flexibility by allowing long reads, real-time signal analysis, and the ability to read
both DNA and RNA. We need flexible and efficient designs that match nanopore’s capabilities, but relatively few designs have been explored
and many have significant inefficiency in read density, error rate, or compute time. To address these problems, we designed a new single-read
per-strand decoder that achieves low byte error rates, offers high throughput, scales to long reads, and works well for both DNA and RNA mole-
cules. We achieve these results through a novel soft decoding algorithm that can be effectively parallelized on a GPU. Our faster decoder allows
us to study a wider range of system designs.

Results: \We demonstrate our approach on HEDGES, a state-of-the-art DNA-constrained convolutional code. We implement one hard decoder
that runs serially and two soft decoders that run on GPUs. Our evaluation for each decoder is applied to the same population of nanopore reads
collected from a synthesized library of strands. These same strands are synthesized with a T7 promoter to enable RNA transcription and decod-
ing. Our results show that the hard decoder has a byte error rate over 25%, while the prior state of the art soft decoder can achieve error rates
of 2.25%. However, that design also suffers a low throughput of 183 s/read. Our new Alignment Matrix Trellis soft decoder improves through-
put by 257x with the trade-off of a higher byte error rate of 3.52% compared to the state of the art. Furthermore, we use the faster speed of
our algorithm to explore more design options. We show that read densities of 0.33 bits/base can be achieved, which is 4x larger than prior
MSA-based decoders. We also compare RNA to DNA, and find that RNA has 85% as many error-free reads when compared to DNA.

Availability and implementation: Source code for our soft decoder and data used to generate figures is available publicly in the Github reposi-
tory https://github.com/dna-storage/hedges-soft-decoder (10.5281/zenodo.11454877). All raw FAST5/FASTQ data are available at 10.5281/zen-
0d0.11985454 and 10.5281/zenodo.12014515.

1 Introduction

DNA has emerged as a viable data storage medium in recent
years, with advancements focused on reducing synthesis costs
(Nguyen et al. 2021), improving encoding densities (Choi
et al. 2019), and selectively retrieving information from DNA
libraries (Organick et al. 2018). While many of the early
works assumed high-throughput sequencing technologies, the
sequencing technology landscape has seen major changes due
to the continual advancements in yield and accuracy in nano-
pore sequencing devices and their basecalling algorithms
(Wang et al. 2021, Pages-Gallego and de Ridder 2023). The
ability to reach yields of 100 Gb per flow cell make nanopore
sequencing a competitive option for large-scale molecular
storage systems in addition to portable ones (Yazdi et al.
2017). Furthermore, nanopore sequencing enables long read

system architectures, but few of these options have been
deeply explored.

A current bottleneck for nanopore-based DNA storage sys-
tems is their high cost of decoding. Most studies rely on post
hoc multi sequence alignment (MSA) and clustering analyses
as a critical decoding step to merge information across multi-
ple reads of the same encoded molecule (Organick et al.
2018, Antkowiak et al. 2020). While some works may be
able to write information at a density of 1.33 bits/base (Chen
et al. 2021), read density can be over an order of magnitude
lower (0.079 bits/base) due to reading each base 16.8x times
on average in order to build a consensus read that will cor-
rectly decode (Supplementary Fig. S1). In the context of a
storage system, this implies that the computational infra-
structure supporting the decoding process and the sequencing
material costs will be 16.8%x larger than if each originally

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

sequencing, real-time signal analysis (Loose et al. 2016,
Kovaka et al. 2021), and can directly interrogate other bio-
polymers such as RNA. Hence, nanopore sequencing has the
potential to support a wide range of interesting storage

encoded strand was read once.

Convolutional codes (Chandak et al. 2020, Press et al.
2020) have shown great promise for single-read approaches
that can extract the information payload of a sequence from

Received: 18 June 2024; Revised: 18 December 2024; Editorial Decision: 20 December 2024; Accepted: 7 January 2025

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-5200-5909
https://orcid.org/0000-0003-2083-6027
https://github.com/dna-storage/hedges-soft-decoder
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

a single read. HEDGES (Press et al. 2020) is a convolutional
code that is tolerant of insertions and deletions and has been
designed specifically for single read, but it has only been eval-
uated for illumina-based sequencing platforms, which have
an order of magnitude lower error rate (0.1% in Organick
et al. 2018, Tomek et al. 2019) than to nanopore sequencing.
HEDGES tolerates errors by systematically and serially guess-
ing the location of errors, which can significantly increase
compute time under the higher error rates of nanopore.
Chandak et al. have shown that a soft decoding technique
that directly integrates the base probabilities output by nano-
pore basecallers can substantially lower read costs and byte
error rates. However, the decode throughput is low, 183 s/
read on average based on our benchmarking measurements.

Building on the success of prior convolutional codes and
basecaller integration (Chandak ef al. 2020), we explored two
trellis soft decoders for the HEDGES encoding that can run in
parallel on a GPU which aim to determine the message with the
highest likelihood based on two distinct approaches to calculat-
ing the likelihood based on nanopore machine learning model
outputs and solve for the most likely decoding. First, we inte-
grate Chandak et al.’s trellis with the constrained encoding of
HEDGES and parallelize it to run on a GPU. We use this as our
baseline comparison. Second, we developed a new decoding al-
gorithm that leverages a dynamic programming approach to
compute trellis state probabilities in a way that can efficiently
utilize the GPU’s parallelism and memory architecture.

In this work, we perform a systematic comparison between
hard decoding and each soft decoder. First, we use HEDGES
on state-of-the-art nanopore basecallers from Oxford
Nanopore Technologies (ONT) and find that on average the
byte error rate is 25.4% when sequencing 7 uniquely encoded
and synthesized long DNA molecules of 2297 bp. This work
provides the first study that has been done to directly com-
pare soft and hard decoding performance of convolutional
codes for the same population of nanopore reads. We show
that Chandak et al.’s CTC decoding algorithm can signifi-
cantly reduce byte error rate to 2.25% on average. However,
because of the low throughput, we limited our analysis to just
two encoded strands. We evaluated our new algorithm on
this same sample of encodings and show that we provide
comparable error rates (3.52%), but with a speedup of 257x
compared to Chandak et al.’s soft decoder when evaluating
both on GPU implementations. This speedup enables scaling
to our full set of 7 strands to show that the error rate on this
large sample is 2.59%. We then synthesized 10 additional
strands spanning several lengths and encoding densities to
understand the accuracy and density trade-offs. Based on our
data, we project that our decoding can achieve read densities
of 0.33 bits/base, 4 x larger compared to coverage-optimized
MSA approaches by Chen et al. (2021) (Supplementary Fig.
S1). We also demonstrate our decoder’s flexibility by apply-
ing our algorithm to an open-source RNA basecaller, and we
show that it achieves a lower byte error rate than DNA using
the baseline HEDGES decoder with a state-of-the-art basecal-
ler. This supports the feasibility of using RNA decoding as
part of a data storage system.

2 Materials and methods
2.1 Information encoding

We employ the HEDGES code as our baseline in this work
(Press et al. 2020). We chose this encoding due to its ability

Volkel et al.

to avoid repetitive bases, GC balancing constraints, and vari-
able encoding densities. The HEDGES encoder builds a DNA
strand based on the results of a hash algorithm that digests
three pieces of information: history bits, base index, and the
next bit to be encoded (Fig. 1A). The history bits are used in
conjunction with the base index to embed the context of each
encoded bit within the base sequence. The approach of com-
bining history information during encoding places HEDGES
within the class of convolutional codes. Such codes are
decoded by making a series of guesses about what informa-
tion was stored. Thus, the hash and embedded context is
designed to generate distinct DNA sequences that can be dis-
tinguished even in the instances of errors injected by the
channel as guesses are generated.

2.2 Soft decoding algorithms

Soft decoders leverage probabilities associated with each symbol
to decide the most likely message sent given the received symbol
probabilities. Such decoders are widely used and well known to
offer advantages over hard decoding. While most prior work in
DNA storage relies on hard decoding of sequencer generated
basecall data, nanopore sequencing workflows make it possible
to extract detailed per base probabilities. Nanopore basecalling
workflows typically consist of two main steps: using a machine
learning (ML) model to generate scores for assignment of bases
to the electrical signal, and interpreting the scores to produce a
final sequence of bases (Fig. 1B).

One ML model output commonly used for nanopore se-
quencing is the connectionist temporal classification (CTC)
output (Neumann et al. 2022, Pages-Gallego and de Ridder
2023). This output is formed as a matrix with two dimen-
sions. One dimension being interpreted as time, and the other
dimension corresponding to the alphabet that a message is
constructed from. In this work, the alphabet is the four bases
{n, @, ¢, T}. Each element of the matrix represents a log
probability that a symbol of the alphabet or a blank occurs at
a given CTC time step. The blank symbol is a special symbol
in addition to the alphabet symbols that helps with determin-
ing probabilities of messages that have successive repeats of
alphabet symbols. Based on the same CTC data, we consider
two soft decoders that take different approaches to estimat-
ing message probabilities.

A key insight for CTC model outputs is to be able to learn
and tolerate time variation in symbol signals (Graves et al.
2006). This has a natural application in nanopore sequencing
considering dwell time variations that may occur as bases tra-
verse the pore. Because of the time variation and probabilistic
outputs, CTC outputs do not directly convey a single mes-
sage. Instead, CTC-encodings are used to construct align-
ments of messages to the CTC data to calculate probabilities
for the message. Such encodings allow for the representation
of the same base symbol occupying multiple time steps, e.g.
the encoded AAA decodes to a single base message A.
However, to enable repeats in the decoded message, at least
one blank (-) must be included to separate their CTC repeats
from their decoded repeats. For example, the message AA is
only allowed encodings of the form A-A.

The intuition behind both soft decoders in this work is to
determine the message that best synchronizes with the CTC in-
formation by taking into account their different possible CTC-
encodings. The soft decoder of Chandak et al. synchronizes
messages by expanding the trellis complexity to evaluate mes-
sage positions at every CTC time step. On the other hand, our

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

Nanopore decoding with speed and versatility

(L bp, puppees) = (2297,1/6), (2281,1/8), (2285, 1/3),

(2288, 1/2), (1145, 1/6), (569, 1/6)

A {2Bytes 1Byte N Bytes
| index | CRC | Payload
12 bp 50bp e, 50 bp
[Buffer] T7 |Buffer| ‘Encoded Daia |Buffer|Pon Al
19 bp L bp 10 bp
Nanopore B ML Model
Sequencing
Bl
R9.4.1 ‘.
FAST5
2, Nanopore Electrical Signal
% ¥ J!’r‘ﬂ‘ mwh 1l q [l
gu‘“ W) |) M)
z Wi
5] Y

6 789

~{AIGITE

Time \‘\

E 16
CTC Matrix

xt Bit

Probabilities
-ACGT

o

HEDGES
Tree Search

Decoded
LBy J Bytes

I BN—II BN\]

Ajiiqeqoud 607

Alignment

Matrix - S = AN

T - T~
XSS XESCI [)

RS Code Stripe

Parity
Strands

Figure 1. Overview of experimental workflow. (A) Encoding parameters and strand design used throughout the course of our experiments. (B) This work

assumes a ML model that transforms nanopore signals to CTC outputs from which the code can be directly decoded (soft decoding), or decoded
following a basecalling process that decodes the ML model output. (C) Diagonally striped RS outer code model assumed to allow for final densities to be
calculated when taking into account the rate of byte-errors emitted from the studied decoders. (D) Outline of HEDGES decoding. Guesses are made on
which bit was encoded which also emits a corresponding base according to the hash. Guesses include all possible error scenarios and are organized

within a tree data structure.

approach considers and compares how well message prefixes
align across all time steps, enabling a time and memory saving
dynamic programming approach. As we will show, the ap-
proach taken to perform this synchronization significantly
impacts the compute and memory complexity.

Leveraging CTC information is just one manner of using
probabilistic information for decoding sequencing reads.
Prior works such as Hamoum and Dupraz (2023) and Lenz
et al. (2021) investigated utilizing error probabilities to im-
prove the accuracy of convolutional decoders. However,
Lenz et al. (2021) only consider a channel where insertions,
deletions, and substitutions occur at a fixed rate. This is
known to be an inaccurate representation for errors observed
from nanopore sequencing due to their dependence on mole-
cule composition as well showing the tendency to occur in
bursts (Hamoum et al. 2021). While Hamoum and Dupraz
(2023) recognizes this nuance and applies it to convolutional
decoders for nanopore reads, their approach to gathering the
probability information requires developing a statistical
model by counting observed error patterns for each k-mer
pattern. This approach could be sensitive to any changes to
synthesis, sequencing technology, as well as changes to infer-
ence models. On the other hand, the approaches in this work
derive probability information directly from the inference
model’s output. This enables such decoders to be directly ap-
plicable to any newly trained model weights or architectures
so long as the CTC output is maintained. Such flexibility is
important as model configurations for nanopore sequencing
is a quickly moving and expanding area of study (Pages-
Gallego and de Ridder 2023).

2.2.1 Beam trellis algorithm

HEDGES was originally described with hard decoding, so we
extend it to support soft decoding. Since it is a convolutional

code, we construct a full trellis to represent its decoding steps.
A trellis for HEDGES must have a width of at least 2! states
for H history bits. Traditionally, each state has two outgoing
edges representing the transition to another history as new
bits are added to a message. The next step is determining
how to score each message with the CTC data while account-
ing its various CTC-encoding alignments.

The approach of Chandak et al. (2020) to incorporating
CTC-encodings into a trellis is to extend the number of states
by a factor of the length of the encoded strand (L) for a total of
21T states (Fig. 2A). Now, each state represents a value of his-
tory at a given message index. In this approach, each state is
updated a number of times equal to the time dimension of the
CTC matrix (T). During the updating process for some state at
trellis-step ¢+ 1 three candidates are considered from the previ-
ous step ¢. Two candidates advance the index of the decoded
strand (Sx, Sy), while the remaining Sy does not (Fig. 2A). The
state Sy is the mechanism by which CTC-encodings that allow
for a symbol to occupy multiple time steps are accounted for in
decoding a fixed length message. Thus, every state carries a
non-blank and blank score portion, which are combined to-
gether when calculating the total score for a transition (Fig. 2B).
With multiple states advancing the decoded strand index differ-
ently, edges representing CTC-encodings that convey the same
message may occur which requires that they are merged so that
an accurate score for a message can be obtained (Fig. 2C).
Given this algorithm’s similarities to so-called Beam search algo-
rithms (Scheidl et al. 2018), we refer to this approach as the
Beam Trellis.

The time complexity of this algorithm is O(L2T2H) be-
cause of the L2H number of states that are evaluated T times.
The additional factor of L arises from the need to compare
incoming messages of length L when evaluating each incom-
ing edge for a state to determine if there are multiple

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

Step t
N

Binary Message

[1[1]1Tolo}-

—>
H 2H],

~

»

»

Encoded Message

Ajigeqoud Ho

—
o

Volkel et al.

Step t+1

|sto Index

“--m
:
- [TIATAE] Q (”,

Q 1/G S [OT1] i+7
ShlftB|t1|n

CTC

- ACGT
A = 0

0]
g 4 L
= < 592
: TIAIC}--

v i . Y i T

v

)
Merge
Sy & Sy,

)

Merge
Sy & Sy

D Step i Step i+1 ... L t+3 #

gzg I3 Rows not
. 0 needed for j+1
2t 21
..... :Zg ;_3 ow
ALALA [© ’ -----
AR) R Pofofopo-fo ot
Calculate alignment for G G| oo jo oo o

added to message of Sy

M2, t+1) = F(MGia2)t M6, Mie » CTCi42),(t41))

Figure 2. Soft decoding algorithms evaluated in this work. (A) The trellis architecture and connections of states used by the Beam Trellis algorithm
(Chandak et al.). (B) Edge scoring mechanism of the Beam Trellis algorithm to account for CTC-encodings of candidate messages. (C) State merging
required by the Beam Trellis algorithm to account for duplicate state messages. (D) Architecture and scoring methodology used by our novel
alignment matrix algorithm. Arrows in the alignment matrix represent data used to calculate newly added rows for both the new blank and

base symbols.

CTC-encodings representing the same message. Likewise,
since each state must store a complete message of length L,
space complexity can be written as O(2"L?). Provided that T
will grow proportionally to L, T factors can be replaced by L
in the complexity expressions. From this, we can see that this
algorithm has poor time and memory scaling as the length of
messages increase.

2.2.2 Alignment matrix algorithm

Our novel approach to integrating CTC information into a
trellis is to calculate the alignment for each message of the 2
states directly (Fig. 2D). This is done by using the algorithm
of Graves et al. (2006) to calculate the so called forward vari-
ables that represent the total probability of a prefix for a mes-
sage for a certain time step. Conceptually, each forward
variable for a base in a message is stored in a matrix M of di-
mension L X T. Each element of M(i, t) representing the sum
of probabilities of all CTC-encodings of L[0 : i], the prefix of
L up to and including position i for some time #. Thus, when
transitioning from decoder step i to i+1 we can calculate
M(i+1,¢) for all ¢, e.g. row i+ 1 of M. Because this row rep-
resents the probability of each newly constructed message
prefix at each time step, it can be used as a method to score
each transition edge in the trellis. To transform the row of
values into a scalar for comparison, we compute the log sum
of exponentials over the log probabilities of the freshly com-
puted row. Our reasoning for using this value is that it repre-
sents a total probability for a prefix across all times .

In practice, to account for paths to a base that pass through
blank symbols, a row for a blank is included in M previous to
the newly added base as shown in Fig. 2D. Each of these newly
added rows (blank and non-blank) can be completely derived
from the most recent row corresponding to a base in the mes-
sage. Thus, we do not store the entire matrix for every state or
recalculate it every moment that it is needed. Instead we only
store the most recently calculated row, and only perform com-
putations needed to calculate the new row for a newly added
base. In concrete terms, the row related to a base with blanks in-
cluded is calculated as M 2, 1) = log(eCTCr1iv2 (eMivas 4
eMiv1e 4 M), What this calculation represents is a summation
of all probabilities for paths into the new base while accounting
for the probability of the new base at the given time step as de-
termined by the CTC matrix. This calculation based on Fig. 2D
assumes that the base added by a trellis edge is different than
the most recent base (G # T). If this were not the case, the term
eMit is removed from the calculation because at least one blank
character is needed as previously discussed to encode mes-
sage repeats.

The time complexity of our algorithm is O(2LT). We de-
termine this given that the trellis has 2 states and L trellis
evaluation steps. At each evaluation, we must calculate an
alignment across O(T) time steps for each edge incoming to
each state. Assuming the number of edges and the number of
bases added to a message on each transition is fixed for a
given code we assume these factors to be O(1). Thus, the
time complexity of a single trellis propagation step is 2HT,
and the complexity of O(2LT) follows. This complexity is

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

Nanopore decoding with speed and versatility

made possible by the dynamic programming approach taken
to calculating rows for new bases, rather than re-calculating
rows already visited.

Memory complexity follows a similar argument, where we
only store 1 row of a matrix for each state so that alignments
can propagate. Thus, a memory complexity of O(27T) is
achieved for our algorithm. Assuming T is proportional to L,
our algorithm reduces complexity by a factor of L. A detailed
pseudo code description of the Alignment Matrix algo-
rithm can be found in Supplementary Section G.

2.2.3 GPU parallelization

We recognize that to perform all of the necessary calculations
across each trellis approach, significant computational effort
will be required to aligning long messages with their corre-
spondingly long CTC matrix. Provided the abundance of in-
dependent calculations that can be performed across states of
the Beam Trellis algorithm and the rows of the matrix in
the Alignment Matrix algorithm, we leverage GPUs to ac-
celerate each algorithm. In our implementations, we strive to
utilize best practices by considering occupancy, shared mem-
ory resources, and memory access coalescing patterns.
Details of our GPU implementations for both soft decoders
can be found in Supplementary Section A.9.

When benchmarking soft decoder algorithms, they are run
on nodes consisting of a NVIDIA RTX 2060 Super GPU de-
vice, a single AMD EPYC 7302P 16-Core processor, and
128GB DDR4 DRAM. The baseline HEDGES decoder runs
on either Intel Xeon Gold 6226 or 6130 processors that
have 192 GB RAM per node.

2.3 Experiment workflow

2.3.1 Encoding information in molecules

To complete our evaluation of decoders, we encode and syn-
thesize 17 unique DNA template molecules following
Fig. 1A. A primary goal for our analysis is to understand how
information error rates will be influenced by the rate of the
encoding and the length of a molecule passing through a
pore. Thus, our designs cover HEDGES code rates of §, ¢, 1,
and }. Each encoded strand was bookended by signal buffer
sequences of length 50bp to protect information carrying
bases from transient behaviour entering and leaving the
nanopore. On the 3’ end we also include an additional 10
base poly A tail, and on the 5’ end we allocate 19 bp for a T7
promoter to allow for transcription of RNA molecules and
an additional 8 bp for a synthesis buffer. For every design, we
keep these additional 5" and 3’ bases constant. The full length
of the 1 rate strands with additional regions is 2297 bp. For
the rates of £, 1, and 1, we aim to keep strand length relatively
constant with their respective entire lengths being 2281,
2285, and 2288 bp. For the 1 rate, we synthesize 2 additional
length of molecules that are 1145 and 569 bp to study short
length strand impacts on nanopore sequencing. For HEDGES
parameterization, we limit homopolymers to be a maximum
of 3 and fix a GC content of 50% over 12 base pair windows.
Each strand was ordered as DNA gBlocks Gene Fragments
from Integrated DNA Technologies.

Our molecules are derived from several sources of data.
The strands for the 1 HEDGES rate and 2297 bp design are
all derived from the same thumbnail image of the periodic ta-
ble symbol for phosphorous. The §, 1, and 1 HEDGES rates
strands encode the complete 8th, 4th, and 6th amendments
of the Constitution of the United States, respectively. The

1145 and 569bp with § HEDGES rate designs encode the
first 76 characters and characters 28-56 of the 4th amend-
ment respectively. Copies of the raw encoded data and exact
strands synthesized for these experiments are included within
our public code release.

2.3.2 Nanopore sequencing and preprocessing

With our synthesized DNA molecules, we sequence all strands
using ONT nanopores of version R9. 4 . 1. For each sequencing
run, we use the latest available ONT basecalling models at the
time of sequencing as reported in Supplementary Table S1 to
generate FASTQ information. We used this initial FASTQ data
in order to demultiplex individual reads to their original
encoded strand and to eliminate reads that we do not want to
impact measured decode rates from our decoders.
Demultiplexing is done via the encoded index and CRC bytes
within the encoded strand (Fig. 1A). Further details are avail-
able in Extended Methods A.

Using HEDGES to decode basecalls, we attribute each read
to an encoded strand if the decoded index bytes is in agreement
with the CRC byte. While performing read attribution, we elim-
inate short reads and exceedingly long chimeric reads
(Supplementary Fig. S2). Our reason to exclude these reads is to
obtain a clearer understanding of decoder performance on the
characteristic of nanopore signals and not information loss that
may occur from small fragments that result from other molecu-
lar handling and processing steps. We verify that our prepro-
cessing does not bias the quality of reads to significantly higher
qualities, and eliminated reads correlate to outlier low quality
reads that would be considered failed reads by ONT
(Q Score<9). When considering reads of Q Score>9
Supplementary Fig. S5 shows when demultiplexing a 5 strand
sequencing run of £ rate 2297 bp strands the average Q Score of
retained reads varies between 13.37 — 13.57 compared to 13.25
of the entire sequencing run.

To analyze decoding accuracy performance and basecall
error rates while limiting computational overhead, we ran-
domly sample our set of attributed reads to sizes appropriate
for our analysis needs. To ensure high confidence in basecall
error rates and error patterns, we take a subset of 100k reads
for the baseline hard decoder. We analyze decoder perfor-
mance and basecall error patterns for the chosen 100k subset
against the original ONT basecall FASTQ. We also collect
the FASTS data corresponding to this subset so that basecall
information of the CTC model used for soft decoding can be
analyzed (Fig. 1B). We use the latest CTC version of the open
source ONT Bonito basecaller available, and the exact code
version of this model is included in our code release reposi-
tory. For soft decoding, we are only interested in byte error
rate and so we reduce the number of samples. For our novel
soft decoder, we take a 10k subset of reads from the original
100k subset for each strand. In our evaluation of Chandak
et al. (2020)’s CTC decoder we experienced slow through-
puts caused by the complexity of the decoder. Thus, we use a
2k subset sampled randomly from the 10k set.

2.3.3 CTC data orientation and buffer regions

CTC matrices received from the ML model will not only in-
clude data related to the payload but also buffer regions.
Leaving data within the CTC matrix related to buffer regions
can potentially disrupt the soft decoding algorithms by caus-
ing alignments of payload bases to signals that are unrelated.
Furthermore, DNA molecules can be sequenced as their

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

encoded forward versions or their reverse complement. This
is important to consider so that the decoder can generate the
appropriate bases in the trellis. To solve this problem with
only CTC information, we adapt the techniques of Kiirzinger
et al. (2020) to locate and trim buffer region CTC data
(Supplementary Section A.8).

2.3.4 Measuring byte error rate and system density

For all bytes within each strand, we calculate the byte error
rate as the total number of decoding failures observed for
each individual byte. To account for biasing that occurs in
HEDGES decoding where bytes toward the end of a strand
have a higher failure rate (Supplementary Fig. $12), we calcu-
late a mean rate (Pp) for byte errors across all positions and
encoded strands (Supplementary Equation S3).

Because the rate P will be > 0, supplemental error correc-
tion is needed to resolve byte errors following HEDGES
decoding. Reed Solomon (RS) codes have be shown to be
able to overcome errors within the DNA storage channel, es-
pecially errors related to strand less (erasures) by generating
RS codewords with information across encoded sequences
(Grass et al. 2015, Organick et al. 2018, Press et al. 2020).
With inter-strand redundancy, we can resolve residual errors
that remain after HEDGES, an approach that Press et al.
(2020) take as well.

Following Press et al. (2020), we use Py to model the effective
error rate that is observed in an RS codeword with diagonally
striped bytes between strands (Fig. 1C). Using P, we calculate
the probability to decode an RS codeword (Supplementary
Equation S10) and choose a design that can access 1 TB with a
mean time to failure (MTTE) of 10° accesses. With the outer
code design, we calculate a complete density, ¢, in bits per base
following the steps of Supplementary Section A.S.

3 Results

3.1 Hard decoding byte errors

When considering the baseline hard decoder of the HEDGES
code, we want to understand both the rate bytes can be re-
covered and also the computational effort expended for a
given byte error rate. As shown in Fig. 1D, the HEDGES
decoding algorithm forms a tree representing guesses that can
be made on what information was encoded and what errors
may have occurred within the basecalled sequence. Figure 3
shows the relationship of compute time and byte error rate

Volkel et al.

for the two basecallers considered where DNA-CTC is the
CTC output-based model used as the basis of our soft de-
coder algorithms, and DNA-ONT represents ONT produc-
tion basecallers (Supplementary Table S1). Both basecallers
are applied to the same subset of 100k reads for all seven
strands of the 2297 bp ¢ypces = 1 design.

We find that for both basecallers, there are diminishing
returns when allocating more guesses to the algorithm, indi-
cating that it is intractable to reach low byte error rates by
simply increasing compute effort. The lowest mean byte error
rates achieved for the ONT and CTC models were measured
to be 0.254 and 0.308, respectively, when allowing a limit of
6 million guesses. When placing these byte error rates in our
approach to determining overall system density, we find that
hard decoding error rates cannot meet our target MTTF =
10° for systems larger than 1 TB (Supplementary Fig. S13).
The higher byte error rate of decoding the CTC basecaller
also serves as a control to show that the CTC model does not
provide an unfair advantage in the quality of information
produced by the ML model compared to the ONT models.
Corresponding to this higher byte error rate, we find that
CTC basecaller base error rates are 7.6% on average and are
higher than the ONT basecallers base error rates (5.63%,
Supplementary Figs S3 and S4).

3.2 Soft decoding performance analysis

Table 1 reports key metrics when comparing all three decoding
algorithms. Error rates and densities in this table are derived
from a subset of two of the seven 2297 bp ¢pppcrs =+ design
strands. Our analysis demonstrates that for the same encoded
strands, the Beam Trellis algorithm can reduce Py by an or-
der of magnitude compared to hard decoding using 6 million
guesses. We also find that our novel Alignment Matrix al-
gorithm greatly improves Pp on this data set to 3.52%. The
slight increase in byte error rate is a product of the error profile
of byte errors within a strand as shown in Fig. 4. We find that
the byte error rate of the Beam Trellis algorithm remains
relatively constant across the length of the strand, while the
bytes at the end of a strand have higher error rates when
decoded by the Alignment Matrix algorithm. This is caused
by error cascades that are generated by the prefix probability
scoring metric from data dependencies in the matrix we use to
store alignments in Fig. 2D. If a base is chosen such that it neg-
atively impacts the score of successive bases that represent the
correct path through a trellis, then it can become difficult to

T_g Compute Cost of Error Rates

C

S ~§ - DNA-ONT
@ 15 1 L DNA-CTC
> \

2 %

£ 10 - \

= ¢

© N\

C N\

S 54 R

o) AN

qc).’ ““\“_

c 0 T g)

) T T T T T T

Z 020 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Average Byte Error Rate

Figure 3. Average strand decode time versus average byte error rate when using the HEDGES baseline hard decoding algorithm for ONT and CTC

basecalling models.

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

Nanopore decoding with speed and versatility

Table 1. Comparison of decoding metrics for algorithm and molecule combinations.?

Molecule Algorithm Treaq S/read Pg (%) ¢ bits/bp Error-free reads (%)

DNA Alignment matrix 0.713 3.52 0.203 87.15
Beam 183.17 2.25 0.221 84.08
Tree-6M (hard) 12.78 23.44 0.0128 58
Tree-1M (hard) 2.7 29.74 N/A 49.5

RNA Alignment matrix 1.06 12.52 0.106 74.34
Tree-6M (hard) 16.29 23.61 0.0128 56.72
Tree-1M (hard) 3.46 32.62 N/A 43.72

? Treaqg measures just decode time excluding CTC model time. All hard decoders use ONT basecaller models.

Byte Error Rate vs. Position

0.08
—e— DNA-Beam

2 0.06 —a— DNA-Alignment-Matrix |
&
 0.04 -
w
9
@ 0.02 -

0.00 - T T T T T T T T

0 10 20 30 40 50 60 70 80

Byte Position

Figure 4. Byte error rate versus byte position for both soft decoders. Points represent mean error rate across encoded strands (Supplementary Equation
S2), error bars calculated with Supplementary Equation S5 estimate a 95% confidence interval.

Batch Processing Speedup

Baseline Speedup
N
1

L —® | 250 g

(V]

[a]

- 200 5

>

@]

- 150 o

=)

k5t

- 100 ©

o

(V)]

1 1 T 1 1
0 20 40 60 80 100

Strands Processed on GPU in Parallel

Figure 5. Speedups achieved with alignment matrix algorithm when batching multiple reads for GPU computation compared to decoding a single
read (left y-axis) and compared to the decode rate of Beam Trellis algorithm (right y-axis).

build a high enough score to correct wrong path choices when
only a few bases at most are added to messages between com-
parisons (Supplementary Fig. S9). On the other hand, the
Beam Trellis algorithm has the flexibility to adjust states
representing message indexes to best align to the CTC matrix.
While the Beam Trellis algorithm does decrease Pp by
39% compared to the Alignment Matrix algorithm, in
practice the impact on density is quite small (8.8% increase).
Furthermore, the Alignment Matrix algorithm has a 257x
larger throughput when we benchmark on a direct compari-
son of decoding 400 CTC matrices that we extracted from
their respective reads. Our large gains in performance are de-
rived from two factors. First, the computational complexity
of our algorithm is reduced by a factor of L, and given we are
decoding long messages, this can significantly impact the

practical performance of the algorithms. Second, the limited
complexity of our trellis architecture enables batching multi-
ple reads to increase GPU utilization (Fig. 5).

For this strand design, the Alignment Matrix algorithm
launches 3072 threads per read (Supplementary Fig. S9). Given
the total thread occupancy of our GPUs (32555 X 32% X
34% = 34.8k threads), latency can be hid between data de-
pendencies in the matrix by increasing the number of parallel
reads decoding. However, for the Beam Trellis algorithm,
we do not consider batching given that we launch approxi-
mately 552k threads per read which already saturates GPU
thread occupancy (Supplementary Fig. S8).

We also perform an analytic estimation of the total memory
footprint of the two soft decoders (Supplementary Fig. S10).
We found that for the 400 reads used for benchmarking, the

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

amount of memory used for each read on average is 52x lower
when using the Alignment Matrix algorithm (0.032 GB) ver-
sus the Beam Trellis algorithm (1.66 GB).

Using the same two strands, we demonstrate the versatility
of soft decoding CTC data by applying our decoder library
with no changes directly to the CTC outputs of the open
source RODAN RNA basecaller (Neumann et al. 2022).
Table 1 shows that again, CTC soft decoding outperforms
hard decoding even when using ONT production basecallers.
While we do find RNA has about 15% less total error free
reads compared to DNA soft decoding, these results imply
that storage systems that rely on RNA are feasible even under
the conservative single-read assumption.

3.3 Optimizing alignment matrix parameters

Given the computational advancements made by Alignment
Matrix algorithm, it is now possible to evaluate and under-
stand parameter choices for the decoder. The parameters that
we consider are strand length, HEDGES encoding density, and
the reads chosen to provide to the decoder. We choose strand
length to understand how the computational complexity of the
decoder impacts decode time in practice. Also, given the posi-
tional dependence on error rate for bytes, we are interested in
understanding how this profile may change with shorter
strands. When changing the encoding rate, we want to under-
stand the density tradeoff of higher density encodings with the
corresponding byte error rate that must be designed around.
Lastly, we consider if information density can be significantly
influenced by the quality of reads given to the decoder.

Table 2 summarizes decode throughput, Pp, and ¢ for each
design and when we consider reads of all quality in our data
set (Nominal) and when reads are chosen from the set of
reads with Q Scores in the range [15.1,15.4]. Decoding rate
as a function of strand length shows that the rate of informa-
tion decoded outpaces the rate of information lost from a
strand when shortening strands. For example, the 569 bp,1
design has 383 bases of information after removing buffers
and indexing and decodes at 0.0719s read, while the
2297bp,+ design encodes information over 2112bp and
decodes at 0.723s/read. So, while the shorter strand needs
5.5x as many strands to encode the same information, we can
infer that decoding this total amount of information is 1.8x
faster. Comparing Pp for shorter strands shows that when
there are less bytes within a strand the overall byte error
decreases by reducing impacts of cascaded errors

Table 2. Table of timing benchmarking, byte error rate (Pg), and density
for six strand designs that are encoded and synthesized for experimental
evaluation.?

Design Nominal Q score [15.1,15.4]

L(bp), puepges Tread S/read Py (%) ¢ bits/bp Py (%) ¢ bits/bp

2281,1/8 0.645 1.27 0.175 0.92 0.181
2297,1/6 0.723 2,59 0.215 1.12 0.241
1145,1/6 0.209 1.77 0.203 0.93 0.218
569.1/6 0.0719 0.81 0.163 0.29 0.174
2285,1/3 0.761 22.55 0.041 10.17 0.262
2288,1/2 0.82 56.34 n/a 37.18 n/a

* Nominal refers to the case where each strand in each design is
evaluated over a 10k read set derived from the entire space of viable
sequencing reads. Q score refers to analysis done when considering a subset
of 10k reads that all have Q scores in the range of 15.1 and 15.4. Seconds/
read includes both ML model and decoder time, and decoding is done with
a batch size of 50.

Volkel et al.

(Supplementary Fig. S15). However, the overall density (¢) is
largest for the 2297 bp, 1 design because it can amortize over-
head related to indexing and buffer regions more efficiently.
These results indicate that strand length may be tuned to
maximize density or byte throughput.

When comparing changes in ¢yppges, we find that between
any two encoding densities the lower density has a lower Pj.
However, this does not always lead to higher densities. For
example, dpppes =1 has Py =1.27% and ¢pgpges =+ has
Pg =2.59%, but the density for the former is 0.175 bits/bp
while ¢yepcrs :_% can achieve a 0.215 bits/bp with its error
rate. However, Pp becomes too large to build efficient RS
codes for the remaining higher encoding densities of
$rEpces =33 We consider if passing better quality reads
can increase the viability of larger ¢yppges by evaluating 10k
reads in 15 Q-score bins ranging from 10.9 to 15.1. By con-
trolling the Q score, we show that Pp can be reduced greatly
for ¢uepges =3 from 27% for reads in the Q score range
[10.9-11.2] to 10.17% for reads in the range of [15.1 - 15.4]
(Supplementary Fig. S16). This leads to a 6.4x increase in
density for ¢pppges =3 when higher quality reads are given
to the decoder (Table 2).

We combine our findings together in Fig. 6 by tuning
strand length for each code rate when assuming error rates
are for Q scores in the range of [15.1—15.4]. This allows for
projections to be made about the maximum density that can
be achieved with our decoder. In this analysis, we make the
assumption that the measured error rate versus byte position
can be truncated to emulate shorter strand lengths than what
were synthesized. This analysis shows that the largest ¢ =
0.33 bits/bp is reached for ¢ypges =3 and strand length of
950bp. Compared to the highest read density of
Supplementary Fig. S1 (Chen et al. 2021), this projected den-
sity is 4x larger. These curves also indicate that limiting Pp
with shorter strands for larger encoding densities is important
to maximize density, but for ¢pppces =1,4 their Py is low
enough such that longer strands are preferred in order to am-
ortize the overhead of bases associated with indexing or over-
head for functional sites.

4 Conclusion

Most DNA storage systems remain at a scale <1 GB and can
tolerate slow decoding. However, to scale to large capacities
and to advance our understanding of these systems, decoders
must improve their throughput, read density, and support for
varying strand length, molecule type, and encoding density.
Our decoder is versatile and a step in that direction, but not
the final step.

Further improvements in speed and error rate are needed
and highly possible. Porting to more powerful GPUs will de-
liver speedups proportional to their threading capacity since
Alignment Matrix is largely compute-bound and has only
modest memory needs. Soft decoding is a key reason for low
error rates, and we demonstrated Alignment Matrix
works on outputs from both Bonito and RODAN on DNA
and RNA, respectively. This implies that our approach is able
to work independently of a particular model. We expect that
our approach can benefit from advances in basecaller models
as they are released. However, to ensure they remain compat-
ible in the long run, it may be important to adapt to other
common model outputs such as conditional random fields
(Pages-Gallego and de Ridder 2023). Additionally, the

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

Nanopore decoding with speed and versatility

Storage Density Projections

(950,0.33)
0.3 1
o (2297,0.24)
© (450,0.21)
E 0.2 1 (2281,0.18)
s
Fry HEDGES rates
§ 0.1 — 0.125 = 0.333
o — (0,167 — (0,500
0.0 1
I 1 I 1
500 1000 1500 2000

Strand Length (Bases)

Figure 6. Projected densities when optimizing parameters of the alignment matrix algorithm.

learned model could be coupled with the codeword space by
leveraging application-specific training to improve inference
quality of strands specific to the encoding (Wick et al. 2019).

Author contributions

Kevin D. Volkel (Conceptualization [lead], Data curation
[lead], Formal analysis [lead], Methodology [lead], Software
[lead], Validation [lead], Visualization [lead], Writing—origi-
nal draft [lead], Writing—review & editing [lead]), Paul W.
Hook (Data curation [supporting], Methodology [support-
ing], Writing—review & editing [supporting]), Albert]J.
Keung (Conceptualization [supporting], Funding acquisition
[equal], Investigation [equal], Project administration [equal],
Resources [equal], Supervision [equal], Writing—review &
editing [supporting]), Winston Timp (Conceptualization
[supporting], Funding acquisition [equal], Investigation
[equal], Project administration [equal], Resources [equal],
Supervision [equal], Writing—review & editing [support-
ing]), and James M. Tuck (Conceptualization [supporting],
Funding acquisition [equal], Investigation [equal],
Methodology [supporting], Project administration [equal],
Resources [equal], Supervision [lead], Writing—original draft
[supporting], Writing—review & editing [supporting])

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding

This work was funded by the National Science Foundation
[1901324 to J.M.T. and A.K., 2027655 to A.K., J.M.T., and
W.T.].]J.M.T. and AXK. are co-founders of DNAIli Data
Technologies. W.T. has two patents (8 748 091 and 8 394
584) licensed to ONT. W.T. has received travel funds to
speak at symposia organized by ONT.

References

Antkowiak PL, Lietard J, Darestani MZ et al. Low cost DNA data
storage using photolithographic synthesis and advanced informa-
tion reconstruction and error correction. Nat Commun 2020;
11:5345.

Chandak S, Neu], Tatwawadi K et al. Overcoming high nanopore
basecaller error rates for DNA storage via basecaller-decoder inte-
gration and convolutional codes. In: ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 8822-8826.

Chen W, Han M, Zhou J et al. An artificial chromosome for data stor-
age. Natl Sci Rev 2021;8:nwab0238.

Choi Y, Ryu T, Lee AC et al. High information capacity DNA-based
data storage with augmented encoding characters using degenerate
bases. Sci Rep 2019;9:6582-7.

Grass RN, Heckel R, Puddu M et al. Robust chemical preservation of
digital information on DNA in silica with error-correcting codes.
Angew Chem Int Ed Engl 2015;54:2552-5.

Graves A et al. 2006. Connectionist temporal classification: labelling
unsegmented sequence data with recurrent neural networks. In:
Proceedings of the 23rd International Conference on Machine
Learning, ICML °06, pp. 369-376, New York, NY, USA.
Association for Computing Machinery. ISBN 978-1-59593-383-6.

Hamoum B, Dupraz E. Channel model and decoder with memory for
DNA data storage with nanopore sequencing, IEEE Access 2023;
11:52075-87.

Hamoum B, Dupraz E, Conde-Canencia L et al. Channel model with
memory for DNA data storage with nanopore sequencing. In: 2021
11th International Symposium on Topics in Coding (ISTC), New
York, NY: IEEE, Quebec, Canada, 2021, pp. 1-5.

Kovaka S, Fan Y, Ni B et al. Targeted nanopore sequencing by real-time
mapping of raw electrical signal with UNCALLED. Nat Biotechnol
2021;39:431-41.

Kiirzinger L, Winkelbauer D, Li L ez al. CTC-segmentation of large cor-
pora for German end-to-end speech recognition. In: Karpov A,
Potapova R. (eds), Speech and Computer, Lecture Notes in
Computer Science. Gewerbestrasse 11, 6330 Cham, Switzerland:
Cham Springer International Publishing, 2020, 267-8.

Lenz A, Maarouf I, Welter L et al. Concatenated codes for recovery
from multiple reads of DNA sequences. In: 2020 IEEE Information
Theory Workshop (ITW), Riva del Garda, Italy, 2021, pp. 1-5.

Loose M, Malla S, Stout M. Real-time selective sequencing using nano-
pore technology. Nat Methods 2016;13:751-4.

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf006#supplementary-data

10

Neumann D, Reddy ASN, Ben-Hur A. RODAN: a fully convolutional
architecture for basecalling nanopore RNA sequencing data. BMC
Bioinformatics 2022;23:142.

Nguyen BH, Takahashi CN, Gupta G et al. Scaling DNA data storage
with nanoscale electrode wells. Sci Adv 2021;7:eabi6714.

Organick L, Ang SD, Chen Y-] et al. Random access in large-scale DNA
data storage. Nat Biotechnol 2018;36:242-8.

Pages-Gallego M, de Ridder J. Comprehensive benchmark and architec-
tural analysis of deep learning models for nanopore sequencing
basecalling. Genome Biol 2023;24:71.

Press WH, Hawkins JA, Jones SK et al. HEDGES error-correcting code
for DNA storage corrects indels and allows sequence constraints.
Proc Natl Acad Sci USA 2020;117:18489-96.

© The Author(s) 2025. Published by Oxford University Press.

Volkel et al.

Scheidl H, Fiel S, Sablatnig R. Word beam search: a connectionist tem-
poral classification decoding algorithm. In: 2018 16th International
Conference on Frontiers in Handwriting Recognition (ICFHR),
Niagara Falls, USA, 2018, pp. 253-8.

Tomek KJ, Volkel K, Simpson A et al. Driving the scalability of
DNA-based information storage systems. ACS Synth Biol 2019;
8:1241-8.

Wang Y, Zhao Y, Bollas A et al. Nanopore sequencing technology, bio-
informatics and applications. Nat Biotechnol 2021;39:1348-65.
Wick RR, Judd LM, Holt KE. Performance of neural network basecalling
tools for Oxford nanopore sequencing. Genome Biol 2019;20:129.
Yazdi SMHT, Gabrys R, Milenkovic O. Portable and error-free DNA-

based data storage. Sci Rep 2017;7:5011.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2025, 41, 1-10
https://doi.org/10.1093/bioinformatics/btaf006
Original Paper

GZ0z Atenige /g uo 1senb Aq 299G+6//9004810/ L/ | F/[01E/SoleWIOUI0Ig/WOoD dNno-ojwapede//:sdiy wolj papeojumoq

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Conclusion
	Author contributions
	Supplementary data
	Funding
	References

