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Abstract
Motivation: As nanopore technology reaches ever higher throughput and accuracy, it becomes an increasingly viable candidate for reading out 
DNA data storage. Nanopore sequencing offers considerable flexibility by allowing long reads, real-time signal analysis, and the ability to read 
both DNA and RNA. We need flexible and efficient designs that match nanopore’s capabilities, but relatively few designs have been explored 
and many have significant inefficiency in read density, error rate, or compute time. To address these problems, we designed a new single-read 
per-strand decoder that achieves low byte error rates, offers high throughput, scales to long reads, and works well for both DNA and RNA mole
cules. We achieve these results through a novel soft decoding algorithm that can be effectively parallelized on a GPU. Our faster decoder allows 
us to study a wider range of system designs.
Results: We demonstrate our approach on HEDGES, a state-of-the-art DNA-constrained convolutional code. We implement one hard decoder 
that runs serially and two soft decoders that run on GPUs. Our evaluation for each decoder is applied to the same population of nanopore reads 
collected from a synthesized library of strands. These same strands are synthesized with a T7 promoter to enable RNA transcription and decod
ing. Our results show that the hard decoder has a byte error rate over 25%, while the prior state of the art soft decoder can achieve error rates 
of 2.25%. However, that design also suffers a low throughput of 183 s/read. Our new Alignment Matrix Trellis soft decoder improves through
put by 257× with the trade-off of a higher byte error rate of 3.52% compared to the state of the art. Furthermore, we use the faster speed of 
our algorithm to explore more design options. We show that read densities of 0.33 bits/base can be achieved, which is 4× larger than prior 
MSA-based decoders. We also compare RNA to DNA, and find that RNA has 85% as many error-free reads when compared to DNA.
Availability and implementation: Source code for our soft decoder and data used to generate figures is available publicly in the Github reposi
tory https://github.com/dna-storage/hedges-soft-decoder (10.5281/zenodo.11454877). All raw FAST5/FASTQ data are available at 10.5281/zen
odo.11985454 and 10.5281/zenodo.12014515.

1 Introduction
DNA has emerged as a viable data storage medium in recent 
years, with advancements focused on reducing synthesis costs 
(Nguyen et al. 2021), improving encoding densities (Choi 
et al. 2019), and selectively retrieving information from DNA 
libraries (Organick et al. 2018). While many of the early 
works assumed high-throughput sequencing technologies, the 
sequencing technology landscape has seen major changes due 
to the continual advancements in yield and accuracy in nano
pore sequencing devices and their basecalling algorithms 
(Wang et al. 2021, Pag�es-Gallego and de Ridder 2023). The 
ability to reach yields of 100 Gb per flow cell make nanopore 
sequencing a competitive option for large-scale molecular 
storage systems in addition to portable ones (Yazdi et al. 
2017). Furthermore, nanopore sequencing enables long read 
sequencing, real-time signal analysis (Loose et al. 2016, 
Kovaka et al. 2021), and can directly interrogate other bio
polymers such as RNA. Hence, nanopore sequencing has the 
potential to support a wide range of interesting storage 

system architectures, but few of these options have been 
deeply explored.

A current bottleneck for nanopore-based DNA storage sys
tems is their high cost of decoding. Most studies rely on post 
hoc multi sequence alignment (MSA) and clustering analyses 
as a critical decoding step to merge information across multi
ple reads of the same encoded molecule (Organick et al. 
2018, Antkowiak et al. 2020). While some works may be 
able to write information at a density of 1.33 bits/base (Chen 
et al. 2021), read density can be over an order of magnitude 
lower (0.079 bits/base) due to reading each base 16.8× times 
on average in order to build a consensus read that will cor
rectly decode (Supplementary Fig. S1). In the context of a 
storage system, this implies that the computational infra
structure supporting the decoding process and the sequencing 
material costs will be 16.8× larger than if each originally 
encoded strand was read once.

Convolutional codes (Chandak et al. 2020, Press et al. 
2020) have shown great promise for single-read approaches 
that can extract the information payload of a sequence from 
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a single read. HEDGES (Press et al. 2020) is a convolutional 
code that is tolerant of insertions and deletions and has been 
designed specifically for single read, but it has only been eval
uated for illumina-based sequencing platforms, which have 
an order of magnitude lower error rate (0.1% in Organick 
et al. 2018, Tomek et al. 2019) than to nanopore sequencing. 
HEDGES tolerates errors by systematically and serially guess
ing the location of errors, which can significantly increase 
compute time under the higher error rates of nanopore. 
Chandak et al. have shown that a soft decoding technique 
that directly integrates the base probabilities output by nano
pore basecallers can substantially lower read costs and byte 
error rates. However, the decode throughput is low, 183 s/ 
read on average based on our benchmarking measurements.

Building on the success of prior convolutional codes and 
basecaller integration (Chandak et al. 2020), we explored two 
trellis soft decoders for the HEDGES encoding that can run in 
parallel on a GPU which aim to determine the message with the 
highest likelihood based on two distinct approaches to calculat
ing the likelihood based on nanopore machine learning model 
outputs and solve for the most likely decoding. First, we inte
grate Chandak et al.’s trellis with the constrained encoding of 
HEDGES and parallelize it to run on a GPU. We use this as our 
baseline comparison. Second, we developed a new decoding al
gorithm that leverages a dynamic programming approach to 
compute trellis state probabilities in a way that can efficiently 
utilize the GPU’s parallelism and memory architecture.

In this work, we perform a systematic comparison between 
hard decoding and each soft decoder. First, we use HEDGES 
on state-of-the-art nanopore basecallers from Oxford 
Nanopore Technologies (ONT) and find that on average the 
byte error rate is 25.4% when sequencing 7 uniquely encoded 
and synthesized long DNA molecules of 2297 bp. This work 
provides the first study that has been done to directly com
pare soft and hard decoding performance of convolutional 
codes for the same population of nanopore reads. We show 
that Chandak et al.’s CTC decoding algorithm can signifi
cantly reduce byte error rate to 2.25% on average. However, 
because of the low throughput, we limited our analysis to just 
two encoded strands. We evaluated our new algorithm on 
this same sample of encodings and show that we provide 
comparable error rates (3.52%), but with a speedup of 257× 
compared to Chandak et al.’s soft decoder when evaluating 
both on GPU implementations. This speedup enables scaling 
to our full set of 7 strands to show that the error rate on this 
large sample is 2.59%. We then synthesized 10 additional 
strands spanning several lengths and encoding densities to 
understand the accuracy and density trade-offs. Based on our 
data, we project that our decoding can achieve read densities 
of 0.33 bits/base, 4 × larger compared to coverage-optimized 
MSA approaches by Chen et al. (2021) (Supplementary Fig. 
S1). We also demonstrate our decoder’s flexibility by apply
ing our algorithm to an open-source RNA basecaller, and we 
show that it achieves a lower byte error rate than DNA using 
the baseline HEDGES decoder with a state-of-the-art basecal
ler. This supports the feasibility of using RNA decoding as 
part of a data storage system.

2 Materials and methods
2.1 Information encoding
We employ the HEDGES code as our baseline in this work 
(Press et al. 2020). We chose this encoding due to its ability 

to avoid repetitive bases, GC balancing constraints, and vari
able encoding densities. The HEDGES encoder builds a DNA 
strand based on the results of a hash algorithm that digests 
three pieces of information: history bits, base index, and the 
next bit to be encoded (Fig. 1A). The history bits are used in 
conjunction with the base index to embed the context of each 
encoded bit within the base sequence. The approach of com
bining history information during encoding places HEDGES 
within the class of convolutional codes. Such codes are 
decoded by making a series of guesses about what informa
tion was stored. Thus, the hash and embedded context is 
designed to generate distinct DNA sequences that can be dis
tinguished even in the instances of errors injected by the 
channel as guesses are generated.

2.2 Soft decoding algorithms
Soft decoders leverage probabilities associated with each symbol 
to decide the most likely message sent given the received symbol 
probabilities. Such decoders are widely used and well known to 
offer advantages over hard decoding. While most prior work in 
DNA storage relies on hard decoding of sequencer generated 
basecall data, nanopore sequencing workflows make it possible 
to extract detailed per base probabilities. Nanopore basecalling 
workflows typically consist of two main steps: using a machine 
learning (ML) model to generate scores for assignment of bases 
to the electrical signal, and interpreting the scores to produce a 
final sequence of bases (Fig. 1B).

One ML model output commonly used for nanopore se
quencing is the connectionist temporal classification (CTC) 
output (Neumann et al. 2022, Pag�es-Gallego and de Ridder 
2023). This output is formed as a matrix with two dimen
sions. One dimension being interpreted as time, and the other 
dimension corresponding to the alphabet that a message is 
constructed from. In this work, the alphabet is the four bases 
fA, G, C, Tg. Each element of the matrix represents a log 
probability that a symbol of the alphabet or a blank occurs at 
a given CTC time step. The blank symbol is a special symbol 
in addition to the alphabet symbols that helps with determin
ing probabilities of messages that have successive repeats of 
alphabet symbols. Based on the same CTC data, we consider 
two soft decoders that take different approaches to estimat
ing message probabilities.

A key insight for CTC model outputs is to be able to learn 
and tolerate time variation in symbol signals (Graves et al. 
2006). This has a natural application in nanopore sequencing 
considering dwell time variations that may occur as bases tra
verse the pore. Because of the time variation and probabilistic 
outputs, CTC outputs do not directly convey a single mes
sage. Instead, CTC-encodings are used to construct align
ments of messages to the CTC data to calculate probabilities 
for the message. Such encodings allow for the representation 
of the same base symbol occupying multiple time steps, e.g. 
the encoded AAA decodes to a single base message A. 
However, to enable repeats in the decoded message, at least 
one blank (-) must be included to separate their CTC repeats 
from their decoded repeats. For example, the message AA is 
only allowed encodings of the form A-A.

The intuition behind both soft decoders in this work is to 
determine the message that best synchronizes with the CTC in
formation by taking into account their different possible CTC- 
encodings. The soft decoder of Chandak et al. synchronizes 
messages by expanding the trellis complexity to evaluate mes
sage positions at every CTC time step. On the other hand, our 
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approach considers and compares how well message prefixes 
align across all time steps, enabling a time and memory saving 
dynamic programming approach. As we will show, the ap
proach taken to perform this synchronization significantly 
impacts the compute and memory complexity.

Leveraging CTC information is just one manner of using 
probabilistic information for decoding sequencing reads. 
Prior works such as Hamoum and Dupraz (2023) and Lenz 
et al. (2021) investigated utilizing error probabilities to im
prove the accuracy of convolutional decoders. However, 
Lenz et al. (2021) only consider a channel where insertions, 
deletions, and substitutions occur at a fixed rate. This is 
known to be an inaccurate representation for errors observed 
from nanopore sequencing due to their dependence on mole
cule composition as well showing the tendency to occur in 
bursts (Hamoum et al. 2021). While Hamoum and Dupraz 
(2023) recognizes this nuance and applies it to convolutional 
decoders for nanopore reads, their approach to gathering the 
probability information requires developing a statistical 
model by counting observed error patterns for each k-mer 
pattern. This approach could be sensitive to any changes to 
synthesis, sequencing technology, as well as changes to infer
ence models. On the other hand, the approaches in this work 
derive probability information directly from the inference 
model’s output. This enables such decoders to be directly ap
plicable to any newly trained model weights or architectures 
so long as the CTC output is maintained. Such flexibility is 
important as model configurations for nanopore sequencing 
is a quickly moving and expanding area of study (Pag�es- 
Gallego and de Ridder 2023).

2.2.1 Beam trellis algorithm
HEDGES was originally described with hard decoding, so we 
extend it to support soft decoding. Since it is a convolutional 

code, we construct a full trellis to represent its decoding steps. 
A trellis for HEDGES must have a width of at least 2H states 
for H history bits. Traditionally, each state has two outgoing 
edges representing the transition to another history as new 
bits are added to a message. The next step is determining 
how to score each message with the CTC data while account
ing its various CTC-encoding alignments.

The approach of Chandak et al. (2020) to incorporating 
CTC-encodings into a trellis is to extend the number of states 
by a factor of the length of the encoded strand (L) for a total of 
2HL states (Fig. 2A). Now, each state represents a value of his
tory at a given message index. In this approach, each state is 
updated a number of times equal to the time dimension of the 
CTC matrix (T). During the updating process for some state at 
trellis-step tþ1 three candidates are considered from the previ
ous step t. Two candidates advance the index of the decoded 
strand (SX, SY), while the remaining SW does not (Fig. 2A). The 
state SW is the mechanism by which CTC-encodings that allow 
for a symbol to occupy multiple time steps are accounted for in 
decoding a fixed length message. Thus, every state carries a 
non-blank and blank score portion, which are combined to
gether when calculating the total score for a transition (Fig. 2B). 
With multiple states advancing the decoded strand index differ
ently, edges representing CTC-encodings that convey the same 
message may occur which requires that they are merged so that 
an accurate score for a message can be obtained (Fig. 2C). 
Given this algorithm’s similarities to so-called Beam search algo
rithms (Scheidl et al. 2018), we refer to this approach as the 
Beam Trellis.

The time complexity of this algorithm is OðL2T2HÞ be
cause of the L2H number of states that are evaluated T times. 
The additional factor of L arises from the need to compare 
incoming messages of length L when evaluating each incom
ing edge for a state to determine if there are multiple 

Figure 1. Overview of experimental workflow. (A) Encoding parameters and strand design used throughout the course of our experiments. (B) This work 
assumes a ML model that transforms nanopore signals to CTC outputs from which the code can be directly decoded (soft decoding), or decoded 
following a basecalling process that decodes the ML model output. (C) Diagonally striped RS outer code model assumed to allow for final densities to be 
calculated when taking into account the rate of byte-errors emitted from the studied decoders. (D) Outline of HEDGES decoding. Guesses are made on 
which bit was encoded which also emits a corresponding base according to the hash. Guesses include all possible error scenarios and are organized 
within a tree data structure.
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CTC-encodings representing the same message. Likewise, 
since each state must store a complete message of length L, 
space complexity can be written as Oð2HL2Þ. Provided that T 
will grow proportionally to L, T factors can be replaced by L 
in the complexity expressions. From this, we can see that this 
algorithm has poor time and memory scaling as the length of 
messages increase.

2.2.2 Alignment matrix algorithm
Our novel approach to integrating CTC information into a 
trellis is to calculate the alignment for each message of the 2H 

states directly (Fig. 2D). This is done by using the algorithm 
of Graves et al. (2006) to calculate the so called forward vari
ables that represent the total probability of a prefix for a mes
sage for a certain time step. Conceptually, each forward 
variable for a base in a message is stored in a matrix M of di
mension L × T. Each element of M(i, t) representing the sum 
of probabilities of all CTC-encodings of L½0 : i�, the prefix of 
L up to and including position i for some time t. Thus, when 
transitioning from decoder step i to iþ1 we can calculate 
Mðiþ1; tÞ for all t, e.g. row iþ1 of M. Because this row rep
resents the probability of each newly constructed message 
prefix at each time step, it can be used as a method to score 
each transition edge in the trellis. To transform the row of 
values into a scalar for comparison, we compute the log sum 
of exponentials over the log probabilities of the freshly com
puted row. Our reasoning for using this value is that it repre
sents a total probability for a prefix across all times t.

In practice, to account for paths to a base that pass through 
blank symbols, a row for a blank is included in M previous to 
the newly added base as shown in Fig. 2D. Each of these newly 
added rows (blank and non-blank) can be completely derived 
from the most recent row corresponding to a base in the mes
sage. Thus, we do not store the entire matrix for every state or 
recalculate it every moment that it is needed. Instead we only 
store the most recently calculated row, and only perform com
putations needed to calculate the new row for a newly added 
base. In concrete terms, the row related to a base with blanks in
cluded is calculated as Mðiþ2;tþ1Þ ¼ logðeCTCtþ1;iþ2ðeMiþ2;t þ

eMiþ1;t þ eMi;tÞ. What this calculation represents is a summation 
of all probabilities for paths into the new base while accounting 
for the probability of the new base at the given time step as de
termined by the CTC matrix. This calculation based on Fig. 2D 
assumes that the base added by a trellis edge is different than 
the most recent base (G 6¼ T). If this were not the case, the term 
eMi;t is removed from the calculation because at least one blank 
character is needed as previously discussed to encode mes
sage repeats.

The time complexity of our algorithm is Oð2HLTÞ. We de
termine this given that the trellis has 2H states and L trellis 
evaluation steps. At each evaluation, we must calculate an 
alignment across O(T) time steps for each edge incoming to 
each state. Assuming the number of edges and the number of 
bases added to a message on each transition is fixed for a 
given code we assume these factors to be O(1). Thus, the 
time complexity of a single trellis propagation step is 2HT, 
and the complexity of Oð2HLTÞ follows. This complexity is 

Figure 2. Soft decoding algorithms evaluated in this work. (A) The trellis architecture and connections of states used by the Beam Trellis algorithm 
(Chandak et al.). (B) Edge scoring mechanism of the Beam Trellis algorithm to account for CTC-encodings of candidate messages. (C) State merging 
required by the Beam Trellis algorithm to account for duplicate state messages. (D) Architecture and scoring methodology used by our novel 
alignment matrix algorithm. Arrows in the alignment matrix represent data used to calculate newly added rows for both the new blank and 
base symbols.
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made possible by the dynamic programming approach taken 
to calculating rows for new bases, rather than re-calculating 
rows already visited.

Memory complexity follows a similar argument, where we 
only store 1 row of a matrix for each state so that alignments 
can propagate. Thus, a memory complexity of Oð2HTÞ is 
achieved for our algorithm. Assuming T is proportional to L, 
our algorithm reduces complexity by a factor of L. A detailed 
pseudo code description of the Alignment Matrix algo
rithm can be found in Supplementary Section G.

2.2.3 GPU parallelization
We recognize that to perform all of the necessary calculations 
across each trellis approach, significant computational effort 
will be required to aligning long messages with their corre
spondingly long CTC matrix. Provided the abundance of in
dependent calculations that can be performed across states of 
the Beam Trellis algorithm and the rows of the matrix in 
the Alignment Matrix algorithm, we leverage GPUs to ac
celerate each algorithm. In our implementations, we strive to 
utilize best practices by considering occupancy, shared mem
ory resources, and memory access coalescing patterns. 
Details of our GPU implementations for both soft decoders 
can be found in Supplementary Section A.9.

When benchmarking soft decoder algorithms, they are run 
on nodes consisting of a NVIDIA RTX 2060 Super GPU de
vice, a single AMD EPYC 7302P 16-Core processor, and 
128GB DDR4 DRAM. The baseline HEDGES decoder runs 
on either Intel Xeon Gold 6226 or 6130 processors that 
have 192 GB RAM per node.

2.3 Experiment workflow
2.3.1 Encoding information in molecules
To complete our evaluation of decoders, we encode and syn
thesize 17 unique DNA template molecules following  
Fig. 1A. A primary goal for our analysis is to understand how 
information error rates will be influenced by the rate of the 
encoding and the length of a molecule passing through a 
pore. Thus, our designs cover HEDGES code rates of 1

8 ;
1
6 ;

1
3, 

and 1
2. Each encoded strand was bookended by signal buffer 

sequences of length 50bp to protect information carrying 
bases from transient behaviour entering and leaving the 
nanopore. On the 30 end we also include an additional 10 
base poly A tail, and on the 50 end we allocate 19bp for a T7 
promoter to allow for transcription of RNA molecules and 
an additional 8bp for a synthesis buffer. For every design, we 
keep these additional 50 and 30 bases constant. The full length 
of the 1

6 rate strands with additional regions is 2297bp. For 
the rates of 18 ;

1
3, and 12, we aim to keep strand length relatively 

constant with their respective entire lengths being 2281, 
2285, and 2288bp. For the 16 rate, we synthesize 2 additional 
length of molecules that are 1145 and 569bp to study short 
length strand impacts on nanopore sequencing. For HEDGES 
parameterization, we limit homopolymers to be a maximum 
of 3 and fix a GC content of 50% over 12 base pair windows. 
Each strand was ordered as DNA gBlocks Gene Fragments 
from Integrated DNA Technologies.

Our molecules are derived from several sources of data. 
The strands for the 1

6 HEDGES rate and 2297bp design are 
all derived from the same thumbnail image of the periodic ta
ble symbol for phosphorous. The 1

8 ;
1
3, and 1

2 HEDGES rates 
strands encode the complete 8th, 4th, and 6th amendments 
of the Constitution of the United States, respectively. The 

1145 and 569bp with 1
8 HEDGES rate designs encode the 

first 76 characters and characters 28–56 of the 4th amend
ment respectively. Copies of the raw encoded data and exact 
strands synthesized for these experiments are included within 
our public code release.

2.3.2 Nanopore sequencing and preprocessing
With our synthesized DNA molecules, we sequence all strands 
using ONT nanopores of version R9.4.1. For each sequencing 
run, we use the latest available ONT basecalling models at the 
time of sequencing as reported in Supplementary Table S1 to 
generate FASTQ information. We used this initial FASTQ data 
in order to demultiplex individual reads to their original 
encoded strand and to eliminate reads that we do not want to 
impact measured decode rates from our decoders. 
Demultiplexing is done via the encoded index and CRC bytes 
within the encoded strand (Fig. 1A). Further details are avail
able in Extended Methods A.

Using HEDGES to decode basecalls, we attribute each read 
to an encoded strand if the decoded index bytes is in agreement 
with the CRC byte. While performing read attribution, we elim
inate short reads and exceedingly long chimeric reads 
(Supplementary Fig. S2). Our reason to exclude these reads is to 
obtain a clearer understanding of decoder performance on the 
characteristic of nanopore signals and not information loss that 
may occur from small fragments that result from other molecu
lar handling and processing steps. We verify that our prepro
cessing does not bias the quality of reads to significantly higher 
qualities, and eliminated reads correlate to outlier low quality 
reads that would be considered failed reads by ONT 
(Q Score<9). When considering reads of Q Score>9 
Supplementary Fig. S5 shows when demultiplexing a 5 strand 
sequencing run of 16 rate 2297bp strands the average Q Score of 
retained reads varies between 13:37 −13:57 compared to 13.25 
of the entire sequencing run.

To analyze decoding accuracy performance and basecall 
error rates while limiting computational overhead, we ran
domly sample our set of attributed reads to sizes appropriate 
for our analysis needs. To ensure high confidence in basecall 
error rates and error patterns, we take a subset of 100k reads 
for the baseline hard decoder. We analyze decoder perfor
mance and basecall error patterns for the chosen 100k subset 
against the original ONT basecall FASTQ. We also collect 
the FAST5 data corresponding to this subset so that basecall 
information of the CTC model used for soft decoding can be 
analyzed (Fig. 1B). We use the latest CTC version of the open 
source ONT Bonito basecaller available, and the exact code 
version of this model is included in our code release reposi
tory. For soft decoding, we are only interested in byte error 
rate and so we reduce the number of samples. For our novel 
soft decoder, we take a 10k subset of reads from the original 
100k subset for each strand. In our evaluation of Chandak 
et al. (2020)’s CTC decoder we experienced slow through
puts caused by the complexity of the decoder. Thus, we use a 
2k subset sampled randomly from the 10k set.

2.3.3 CTC data orientation and buffer regions
CTC matrices received from the ML model will not only in
clude data related to the payload but also buffer regions. 
Leaving data within the CTC matrix related to buffer regions 
can potentially disrupt the soft decoding algorithms by caus
ing alignments of payload bases to signals that are unrelated. 
Furthermore, DNA molecules can be sequenced as their 
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encoded forward versions or their reverse complement. This 
is important to consider so that the decoder can generate the 
appropriate bases in the trellis. To solve this problem with 
only CTC information, we adapt the techniques of K€urzinger 
et al. (2020) to locate and trim buffer region CTC data 
(Supplementary Section A.8).

2.3.4 Measuring byte error rate and system density
For all bytes within each strand, we calculate the byte error 
rate as the total number of decoding failures observed for 
each individual byte. To account for biasing that occurs in 
HEDGES decoding where bytes toward the end of a strand 
have a higher failure rate (Supplementary Fig. S12), we calcu
late a mean rate (�PB) for byte errors across all positions and 
encoded strands (Supplementary Equation S3).

Because the rate �PB will be > 0, supplemental error correc
tion is needed to resolve byte errors following HEDGES 
decoding. Reed Solomon (RS) codes have be shown to be 
able to overcome errors within the DNA storage channel, es
pecially errors related to strand less (erasures) by generating 
RS codewords with information across encoded sequences 
(Grass et al. 2015, Organick et al. 2018, Press et al. 2020). 
With inter-strand redundancy, we can resolve residual errors 
that remain after HEDGES, an approach that Press et al. 
(2020) take as well.

Following Press et al. (2020), we use �PB to model the effective 
error rate that is observed in an RS codeword with diagonally 
striped bytes between strands (Fig. 1C). Using �PB, we calculate 
the probability to decode an RS codeword (Supplementary 
Equation S10) and choose a design that can access 1 TB with a 
mean time to failure (MTTF) of 106 accesses. With the outer 
code design, we calculate a complete density, ϕ, in bits per base 
following the steps of Supplementary Section A.5.

3 Results
3.1 Hard decoding byte errors
When considering the baseline hard decoder of the HEDGES 
code, we want to understand both the rate bytes can be re
covered and also the computational effort expended for a 
given byte error rate. As shown in Fig. 1D, the HEDGES 
decoding algorithm forms a tree representing guesses that can 
be made on what information was encoded and what errors 
may have occurred within the basecalled sequence. Figure 3 
shows the relationship of compute time and byte error rate 

for the two basecallers considered where DNA-CTC is the 
CTC output-based model used as the basis of our soft de
coder algorithms, and DNA-ONT represents ONT produc
tion basecallers (Supplementary Table S1). Both basecallers 
are applied to the same subset of 100k reads for all seven 
strands of the 2297 bp ϕHEDGES ¼

1
6 design.

We find that for both basecallers, there are diminishing 
returns when allocating more guesses to the algorithm, indi
cating that it is intractable to reach low byte error rates by 
simply increasing compute effort. The lowest mean byte error 
rates achieved for the ONT and CTC models were measured 
to be 0.254 and 0.308, respectively, when allowing a limit of 
6 million guesses. When placing these byte error rates in our 
approach to determining overall system density, we find that 
hard decoding error rates cannot meet our target MTTF¼
106 for systems larger than 1 TB (Supplementary Fig. S13). 
The higher byte error rate of decoding the CTC basecaller 
also serves as a control to show that the CTC model does not 
provide an unfair advantage in the quality of information 
produced by the ML model compared to the ONT models. 
Corresponding to this higher byte error rate, we find that 
CTC basecaller base error rates are 7.6% on average and are 
higher than the ONT basecallers base error rates (5.63%, 
Supplementary Figs S3 and S4).

3.2 Soft decoding performance analysis
Table 1 reports key metrics when comparing all three decoding 
algorithms. Error rates and densities in this table are derived 
from a subset of two of the seven 2297 bp ϕHEDGES ¼

1
6 design 

strands. Our analysis demonstrates that for the same encoded 
strands, the Beam Trellis algorithm can reduce �PB by an or
der of magnitude compared to hard decoding using 6 million 
guesses. We also find that our novel Alignment Matrix al
gorithm greatly improves �PB on this data set to 3.52%. The 
slight increase in byte error rate is a product of the error profile 
of byte errors within a strand as shown in Fig. 4. We find that 
the byte error rate of the Beam Trellis algorithm remains 
relatively constant across the length of the strand, while the 
bytes at the end of a strand have higher error rates when 
decoded by the Alignment Matrix algorithm. This is caused 
by error cascades that are generated by the prefix probability 
scoring metric from data dependencies in the matrix we use to 
store alignments in Fig. 2D. If a base is chosen such that it neg
atively impacts the score of successive bases that represent the 
correct path through a trellis, then it can become difficult to 

Figure 3. Average strand decode time versus average byte error rate when using the HEDGES baseline hard decoding algorithm for ONT and CTC 
basecalling models.
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build a high enough score to correct wrong path choices when 
only a few bases at most are added to messages between com
parisons (Supplementary Fig. S9). On the other hand, the 
Beam Trellis algorithm has the flexibility to adjust states 
representing message indexes to best align to the CTC matrix.

While the Beam Trellis algorithm does decrease �PB by 
39% compared to the Alignment Matrix algorithm, in 
practice the impact on density is quite small (8.8% increase). 
Furthermore, the Alignment Matrix algorithm has a 257x 
larger throughput when we benchmark on a direct compari
son of decoding 400 CTC matrices that we extracted from 
their respective reads. Our large gains in performance are de
rived from two factors. First, the computational complexity 
of our algorithm is reduced by a factor of L, and given we are 
decoding long messages, this can significantly impact the 

practical performance of the algorithms. Second, the limited 
complexity of our trellis architecture enables batching multi
ple reads to increase GPU utilization (Fig. 5).

For this strand design, the Alignment Matrix algorithm 
launches 3072 threads per read (Supplementary Fig. S9). Given 
the total thread occupancy of our GPUs (32 warps

SM × 32 threads
warp × 

34 SM
GPU¼ 34:8k threads), latency can be hid between data de

pendencies in the matrix by increasing the number of parallel 
reads decoding. However, for the Beam Trellis algorithm, 
we do not consider batching given that we launch approxi
mately 552k threads per read which already saturates GPU 
thread occupancy (Supplementary Fig. S8).

We also perform an analytic estimation of the total memory 
footprint of the two soft decoders (Supplementary Fig. S10). 
We found that for the 400 reads used for benchmarking, the 

Table 1. Comparison of decoding metrics for algorithm and molecule combinations.a

Molecule Algorithm Tread s/read �PB (%) ϕ bits/bp Error-free reads (%)

DNA Alignment matrix 0.713 3.52 0.203 87.15
Beam 183.17 2.25 0.221 84.08
Tree-6M (hard) 12.78 23.44 0.0128 58
Tree-1M (hard) 2.7 29.74 N/A 49.5

RNA Alignment matrix 1.06 12.52 0.106 74.34
Tree-6M (hard) 16.29 23.61 0.0128 56.72
Tree-1M (hard) 3.46 32.62 N/A 43.72

a Tread measures just decode time excluding CTC model time. All hard decoders use ONT basecaller models.

Figure 4. Byte error rate versus byte position for both soft decoders. Points represent mean error rate across encoded strands (Supplementary Equation 
S2), error bars calculated with Supplementary Equation S5 estimate a 95% confidence interval.

Figure 5. Speedups achieved with alignment matrix algorithm when batching multiple reads for GPU computation compared to decoding a single 
read (left y-axis) and compared to the decode rate of Beam Trellis algorithm (right y-axis).
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amount of memory used for each read on average is 52x lower 
when using the Alignment Matrix algorithm (0.032 GB) ver
sus the Beam Trellis algorithm (1.66 GB).

Using the same two strands, we demonstrate the versatility 
of soft decoding CTC data by applying our decoder library 
with no changes directly to the CTC outputs of the open 
source RODAN RNA basecaller (Neumann et al. 2022).  
Table 1 shows that again, CTC soft decoding outperforms 
hard decoding even when using ONT production basecallers. 
While we do find RNA has about 15% less total error free 
reads compared to DNA soft decoding, these results imply 
that storage systems that rely on RNA are feasible even under 
the conservative single-read assumption.

3.3 Optimizing alignment matrix parameters
Given the computational advancements made by Alignment 
Matrix algorithm, it is now possible to evaluate and under
stand parameter choices for the decoder. The parameters that 
we consider are strand length, HEDGES encoding density, and 
the reads chosen to provide to the decoder. We choose strand 
length to understand how the computational complexity of the 
decoder impacts decode time in practice. Also, given the posi
tional dependence on error rate for bytes, we are interested in 
understanding how this profile may change with shorter 
strands. When changing the encoding rate, we want to under
stand the density tradeoff of higher density encodings with the 
corresponding byte error rate that must be designed around. 
Lastly, we consider if information density can be significantly 
influenced by the quality of reads given to the decoder.

Table 2 summarizes decode throughput, �PB, and ϕ for each 
design and when we consider reads of all quality in our data 
set (Nominal) and when reads are chosen from the set of 
reads with Q Scores in the range ½15:1;15:4�. Decoding rate 
as a function of strand length shows that the rate of informa
tion decoded outpaces the rate of information lost from a 
strand when shortening strands. For example, the 569 bp; 1

6 
design has 383 bases of information after removing buffers 
and indexing and decodes at 0.0719s read, while the 
2297bp; 16 design encodes information over 2112bp and 
decodes at 0.723s/read. So, while the shorter strand needs 
5:5x as many strands to encode the same information, we can 
infer that decoding this total amount of information is 1:8x 
faster. Comparing �PB for shorter strands shows that when 
there are less bytes within a strand the overall byte error 
decreases by reducing impacts of cascaded errors 

(Supplementary Fig. S15). However, the overall density (ϕ) is 
largest for the 2297 bp; 1

6 design because it can amortize over
head related to indexing and buffer regions more efficiently. 
These results indicate that strand length may be tuned to 
maximize density or byte throughput.

When comparing changes in ϕHEDGES, we find that between 
any two encoding densities the lower density has a lower �PB. 
However, this does not always lead to higher densities. For 
example, ϕHEDGES ¼

1
8 has �PB ¼ 1:27% and ϕHEDGES ¼

1
6 has 

�PB ¼ 2:59%, but the density for the former is 0.175bits/bp 
while ϕHEDGES ¼

1
6 can achieve a 0.215bits/bp with its error 

rate. However, �PB becomes too large to build efficient RS 
codes for the remaining higher encoding densities of 
ϕHEDGES ¼

1
3 ;

1
2. We consider if passing better quality reads 

can increase the viability of larger ϕHEDGES by evaluating 10k 
reads in 15 Q-score bins ranging from 10.9 to 15.1. By con
trolling the Q score, we show that �PB can be reduced greatly 
for ϕHEDGES ¼

1
3 from 27% for reads in the Q score range 

½10:9 −11:2� to 10.17% for reads in the range of ½15:1 − 15:4�
(Supplementary Fig. S16). This leads to a 6:4x increase in 
density for ϕHEDGES ¼

1
3 when higher quality reads are given 

to the decoder (Table 2).
We combine our findings together in Fig. 6 by tuning 

strand length for each code rate when assuming error rates 
are for Q scores in the range of ½15:1 −15:4�. This allows for 
projections to be made about the maximum density that can 
be achieved with our decoder. In this analysis, we make the 
assumption that the measured error rate versus byte position 
can be truncated to emulate shorter strand lengths than what 
were synthesized. This analysis shows that the largest ϕ¼
0:33 bits=bp is reached for ϕHEDGES ¼

1
3 and strand length of 

950bp. Compared to the highest read density of 
Supplementary Fig. S1 (Chen et al. 2021), this projected den
sity is 4x larger. These curves also indicate that limiting �PB 

with shorter strands for larger encoding densities is important 
to maximize density, but for ϕHEDGES ¼

1
6 ;

1
8 their �PB is low 

enough such that longer strands are preferred in order to am
ortize the overhead of bases associated with indexing or over
head for functional sites.

4 Conclusion
Most DNA storage systems remain at a scale <1 GB and can 
tolerate slow decoding. However, to scale to large capacities 
and to advance our understanding of these systems, decoders 
must improve their throughput, read density, and support for 
varying strand length, molecule type, and encoding density. 
Our decoder is versatile and a step in that direction, but not 
the final step.

Further improvements in speed and error rate are needed 
and highly possible. Porting to more powerful GPUs will de
liver speedups proportional to their threading capacity since 
Alignment Matrix is largely compute-bound and has only 
modest memory needs. Soft decoding is a key reason for low 
error rates, and we demonstrated Alignment Matrix 
works on outputs from both Bonito and RODAN on DNA 
and RNA, respectively. This implies that our approach is able 
to work independently of a particular model. We expect that 
our approach can benefit from advances in basecaller models 
as they are released. However, to ensure they remain compat
ible in the long run, it may be important to adapt to other 
common model outputs such as conditional random fields 
(Pag�es-Gallego and de Ridder 2023). Additionally, the 

Table 2. Table of timing benchmarking, byte error rate (�P B ), and density 
for six strand designs that are encoded and synthesized for experimental 
evaluation.a

Design Nominal Q score [15.1,15.4]

LðbpÞ;ϕHEDGES Tread s/read �PB (%) ϕ bits/bp �PB (%) ϕ bits/bp

2281;1=8 0.645 1.27 0.175 0.92 0.181
2297;1=6 0.723 2.59 0.215 1.12 0.241
1145;1=6 0.209 1.77 0.203 0.93 0.218
569;1=6 0.0719 0.81 0.163 0.29 0.174
2285;1=3 0.761 22.55 0.041 10.17 0.262
2288;1=2 0.82 56.34 n/a 37.18 n/a

a Nominal refers to the case where each strand in each design is 
evaluated over a 10k read set derived from the entire space of viable 
sequencing reads. Q score refers to analysis done when considering a subset 
of 10k reads that all have Q scores in the range of 15.1 and 15.4. Seconds/ 
read includes both ML model and decoder time, and decoding is done with 
a batch size of 50.
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learned model could be coupled with the codeword space by 
leveraging application-specific training to improve inference 
quality of strands specific to the encoding (Wick et al. 2019).
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