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ABSTRACT ARTICLE HISTORY
Research on geospatial foundation models (GFMs) has become a Received 15 February 2024

trending topic in geospatial artificial intelligence (Al) research due Accepted 23 August 2024

to their potential for achieving high generalizability and domain

adaptability, reducing model training costs for individual research- ~ KEYWORDS

ers. Unlike large language models, such as ChatGPT, constructing ~ 0e0Al artificial intelligence;
. ~ X X . R feature detection; Arctic

visual foundation models for image analysis, particularly in remote armafrost: crop mapmin
sensing, encountered significant challenges such as formulating P 7 CToP Mapping

diverse vision tasks into a general problem framework. This paper

evaluates the recently released NASA-IBM GFM Prithvi for its pre-

dictive performance on high-level image analysis tasks across mul-

tiple benchmark datasets. Prithvi was selected because it is one

of the first open-source GFMs trained on time-series of high-reso-

lution remote sensing imagery. A series of experiments were

designed to assess Prithvi's performance as compared to other

pre-trained task-specific Al models in geospatial image analysis.

New strategies, including band adaptation, multi-scale feature

generation, and fine-tuning techniques, are introduced and inte-

grated into an image analysis pipeline to enhance Prithvi's

domain adaptation capability and improve model performance.

In-depth analyses reveal Prithvi's strengths and weaknesses, offer-

ing insights for both improving Prithvi and developing future vis-

ual foundation models for geospatial tasks.

1. Introduction

Geospatial Atrtificial Intelligence (GeoAl) is an interdisciplinary field that integrates geo-
spatial data science with artificial intelligence techniques to solve complex spatial
problems (Janowicz et al. 2020, Li 2020). One of its most promising applications is in
the realm of image analysis, particularly in interpreting and extracting valuable infor-
mation from remote sensing imagery (Li et al. 2022a, Udawalpola et al. 2022). Remote
sensing imagery has revolutionized the way we understand the physical process on
the Earth’s surface and in the atmosphere. Utilizing sensors mounted on satellites,
drones, or aircraft, remote sensing captures high-resolution images. These images
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provide invaluable data across various sectors, including environmental monitoring
(VoPham et al. 2018), disaster management (Mahmood 2022), agriculture (Garcia
Pereira et al. 2020), and urban planning (Alastal and Shagfa 2022), among others.
Traditional methods of image analysis, such as thresholding techniques, often require
manual intervention and are time-consuming (Zhou et al. 2019). This makes them less
efficient for handling large datasets. GeoAl, on the other hand, leverages machine
learning algorithms to automatically analyze and interpret geospatial images, thereby
significantly improving the speed and accuracy of data extraction (Li and Hsu 2022).
As GeoAl continues to evolve, it opens up new avenues for more automated and intel-
ligent image analysis, making it a subject of keen interest for researchers and practi-
tioners in the geospatial domains (Li and Hsu 2020, Gao et al. 2023).

Recent advancement in deep learning have significantly improved the capabilities
of geospatial image analysis, but these models come with their own set of challenges.
One pressing issue is the requirement for large, annotated datasets for effective train-
ing (Deng et al. 2009, Lin et al. 2014). This is particularly challenging in specialized
fields such as remote sensing, where the need for domain-specific knowledge, the
large volume of data, and data variability due to factors such as seasonal changes
make obtaining annotated data both time-consuming and expensive (Li et al. 2021).
Furthermore, these models are generally task-specific, meaning that a model trained
for one application may not easily generalize to another without substantial retraining
and fine-tuning (Zhang et al. 2020, 2021). The computational cost is another significant
barrier, as deep learning models often require specialized hardware for both training
and inference (Shankar and Reuther 2022).

The recent advances in Al foundation models present a compelling solution to
some of these limitations. Unlike deep learning models that require large training
datasets for each specific task, foundation models are often pre-trained using self-
supervised learning (SSL) on vast amounts of data (Zhou et al. 2023). This allows
researchers to fine-tune these models on relatively smaller, task-specific annotated
datasets, thereby reducing the annotation burden (Gu et al. 2023, Wang, Feng, et al.
20233, Li et al. 2024a). Additionally, foundation models are designed to generalize
across a variety of data analysis tasks, eliminating the need for separate models and
the associated retraining for each specific application (OpenAl 2023, Touvron et al.
2023). While it is true that foundation models also require substantial computational
resources for initial training, their ability to generalize across tasks means that the
computational cost can be amortized over multiple applications, making them a more
efficient choice for organizations that require solutions for a range of geospatial ana-
lysis tasks, as well as smaller research groups which do not have expertise or compu-
tational resources for building such large models.

Prithvi, a geospatial foundation model developed by NASA and IBM, sets itself apart
from other Al foundation models in vision tasks through several distinctive features
(Jakubik et al. 2023). Pre-trained on contiguous US Harmonized Landsat Sentinel 2
(HLS) data, Prithvi is uniquely equipped to process remote sensing images in time ser-
ies. This capability is often absent in other foundation models and enables Prithvi to
well perform in various downstream tasks, such as burn scars segmentation, flood seg-
mentation, and land cover classification. Additionally, Prithvi is designed to work with
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a 6-band input, including Red (R), Green (G), Blue (B), Narrow Near Infrared (NIR), Short
Wave Infrared (SWIR) 1, and SWIR 2, as opposed to the conventional RGB imagery
used in most Al foundation models. This multi-band capability enhances Prithvi’s abil-
ity to capture a wider range of spectral information, thereby increasing its versatility
and applicability across a diverse set of geospatial data and tasks.

Despite advancement in GeoAl and foundation models, there is a notable gap in
the literature concerning the performance evaluation of geospatial foundation models
such as IBM’s Prithvi in the realm of remote sensing image analysis, especially in envir-
onmental feature detection and segmentation. Unlike general-purpose Al foundation
models, Prithvi is pre-trained on remote sensing images. This unique training dataset
raises a presumption that Prithvi may offer inherent advantages in geospatial tasks
over other pre-trained models. In addition, Prithvi’s unique 6-band input capability, as
opposed to the conventional RGB imagery, could have significant implications for its
applicability and performance in real-world geospatial applications. To substantiate
these presumptions, we raised the following research question: ‘How does IBM's
Prithvi perform in geospatial image analysis tasks as compared to other pre-trained
task-specific Al models?’

To answer this question, the study’'s objectives include a detailed performance
evaluation of Prithvi on challenging image analysis tasks, such as object detection and
instance segmentation. Four remote sensing datasets covering diverse geographical
regions and features—including a natural feature dataset, a global Mars crater dataset,
an Arctic permafrost landscape dataset, and an agricultural land dataset (EuroCrops
from central Europe)—are used in the analysis. Since the Prithvi model primarily pro-
vides a feature extraction backbone (the encoder part), several new strategies were
introduced to adapt it to downstream tasks. These include band adaptation, a multi-
scale decoder, and a new fine-tuning strategy designed to maximize its predictive
performance.

The remainder of the paper is structured as follows. Section 2 reviews research on
GeoAl and recent development of foundation models for geospatial image analysis.
Section 3 introduces the four datasets used in this work, providing an overview of
their characteristics and geographical distribution. Section 4 details the adaptations
and enhancements applied to the Prithvi model, outlining the methodology and anal-
yses conducted to evaluate Prithvi's performance. Section 5 presents the evaluation
and experimental results, followed by Section 6, which discusses the strengths and
weaknesses of the Prithvi model. Section 7 concludes the paper with a summary of
key insights and suggestions for future research.

2, Literature review
2.1. GeoAl and geospatial image analysis

GeoAl is an interdisciplinary field that combines the predictive power of Al with the
intricacies of geospatial data science, offering a unique approach to solving complex
spatial problems (VoPham et al. 2018, PS Chauhan and Shekhar 2021). Within this con-
text, the application of GeoAl in image analysis stands out for its unique challenges
and opportunities. One key challenge is the complexity of the data involved. Unlike
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traditional image analysis, GeoAl deals with multispectral and multi-band images,
often captured through advanced remote sensing technologies (Li and Hsu 2022).
These datasets are not only large in scale but also diverse in nature, incorporating
multiple sources such as satellites, aerial photographs, and ground-based sensors
(Wang and Li 2021). This data heterogeneity, coupled with the temporal dynamics
inherent in geophysical phenomena such as hurricanes and wildfire, requires spatially
and spatiotemporally explicit algorithms capable of interpreting intricate spatial and
temporal relationships. Meanwhile, GeoAl must account for various uncertainties, such
as sensor errors and missing data, making the algorithms robust and adaptable.
Despite these complexities, GeoAl has proven to be an indispensable tool in a range
of applications, from environmental monitoring to urban planning (VoPham et al.
2018, Kamel Boulos et al. 2019, Liu and Biljecki 2022). Its ability to handle these multi-
faceted challenges sets it apart from traditional methods and makes it a focal point of
contemporary geospatial research.

The integration of deep learning into GeoAl has significantly advanced the field of
image analysis. Initially, the direct application of deep learning models to geospatial
tasks yielded mixed results, often due to the complexities inherent in geospatial data
(Lee 2019, Bhuiyan et al. 2020, Li and Hsu 2020). To overcome these limitations, the
field has evolved to incorporate expert knowledge, thereby enhancing the models’
interpretability and effectiveness in handling the unique challenges of geospatial data
(Janowicz et al. 2020, Hsu et al. 2021, Li et al. 2021). This integration of domain expert-
ise has been a pivotal advancement, allowing for more reliable solutions in GeoAl
applications. Separately, the field has also embraced transfer learning, particularly use-
ful in scenarios where acquiring extensive labeled datasets is time-consuming and
costly. This approach allows researchers to fine-tune pre-trained models for specific
geospatial tasks. Alongside these advances, there has been a growing focus on models
that understand spatial hierarchies, crucial for complex tasks such as urban planning
(Stubbings et al. 2019, Zhou et al. 2021). However, challenges remain in creating mod-
els that can generalize across multiple tasks without extensive model retraining. This
sets the stage for the emergence of foundation models, which offer a more unified
and adaptable framework for handling the complex and diverse nature of geospatial
data.

2.2. Visual foundation models

Foundation models have emerged as a transformative force in computer vision, as
they offer a robust framework and an appealing prospect to facilitate domain adapta-
tion with low computational cost. Several innovative elements contribute to their
transformative impact. First, foundation models process extensive and diverse datasets,
setting them apart from traditional models that often operate on small and domain-
specific data (Bommasani et al. 2021, Li et al. 2023a). This broad data scope is crucial
for capturing representative image features and patterns, and it sets the stage for
foundation models’ second defining characteristic: pre-training methodologies. Due to
the sheer volume of data, traditional supervised learning approaches are often imprac-
tical, leading to a new strategy of self-supervised learning (SSL) for pre-training the
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foundation models (Awais et al. 2023). Because of this, the models are capable to gen-
eralize across a multitude of tasks (Yuan et al. 2021, OpenAl 2023, Touvron et al.
2023). Third, foundation models also allow for fine-tuning from a domain-specific data-
set to further boost its performance and domain adaptation (Zhou et al. 2023).
Collectively, these defining characteristics make foundation models both revolutionary
and complex tools in the image analysis landscape.

In the realm of computer vision and image analysis, foundation models have been
categorized into various types based on their prompting mechanisms and data modal-
ities, as outlined by Awais et al. (2023). Textually prompted models like CLIP
(Contrastive Language-Image Pre-training; Radford et al. 2021) and ALIGN (A Large-
scale ImaGe and Noisy-Text Embedding; Jia et al. 2021) interpret visual data through
text-based prompts, leveraging extensive image-text datasets for pre-training and vis-
ual question answering. Visually prompted models such as Segment Anything Model
(SAM; Kirillov et al. 2023) and SegGPT (Wang, Zhang, Cao, et al. 2023d) utilize visual
cues such as bounding boxes or segmentation masks and often rely on partially syn-
thetic datasets with pseudo labels. Heterogeneous modality models like CLIP2Video
(Fang et al. 2021) and AudioCLIP (Guzhov et al. 2022) integrate multiple types of
data—vision, text, and audio—for a more comprehensive understanding of the visual
world. Lastly, generalist models like VisionLLM (Wang, Chen, et al. 2023c) exemplify
the ability to generalize across a multitude of tasks when provided with appropriate
prompts. These models not only embody the defining characteristics of foundation
models but also showcase the adaptability and diversity that make them a corner-
stone in modern computer vision research.

While foundation models have made significant strides in general-purpose com-
puter vision, they come with their own set of limitations (Awais et al. 2023). One key
issue is their limited contextual understanding, which can lead to a lack of depth
when tackling geospatial tasks. For example, a general-purpose model might excel at
a wide array of object recognition tasks but may struggle with the semantic interpre-
tations required in specialized scientific or industrial applications (Kirillov et al. 2023).
In addition, the use of diverse training data without human assessment can introduce
biases or inaccuracies, leading to a propagation of such errors in downstream analyses
(Glocker et al. 2022, Wojcik 2022). This issue is further compounded by the difficulty in
customizing these models to achieve expert-level performance in a specific scientific
domain. These limitations have led to a growing interest in specialized foundational
models that are trained on data pertinent to a research field (Alfassy et al. 2022,
Nguyen et al. 2023, Tu et al. 2023, Wu et al. 2023). These models aim to marry the
generalizability and adaptability of foundation models with the knowledge required
for domain-specific tasks.

2.3. Geospatial foundation models

The quest for precision and contextual sensitivity in specific scientific domains has cat-
alyzed the development of specialized foundation models. In the realm of geospatial
analysis, this pursuit has led to the emergence of Geospatial Foundation Models
(GFMs; Mai et al. 2023). Unlike their general-purpose counterparts, GFMs are designed
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to interpret the complex patterns of the Earth’s surface and atmosphere. They address
challenges such as spatial heterogeneity (Sun et al. 2023), temporal dynamics (Yao
et al. 2023) and the multidimensional nature of geospatial data (Jakubik et al. 2023),
marking an advancement in how we analyze and understand our planet.

In developing GFMs, Transformers have emerged as the preferred architecture, attri-
buted to their superior management of long-range dependencies and the implemen-
tation of a dynamic attention mechanism. This allows Transformers to focus selectively
on image segments, emphasizing features crucial for specific tasks. Notably, the Vision
Transformer (ViT; Dosovitskiy et al. 2021) revolutionized image analysis by treating
images as sequences of patches, leading to its widespread adoption (Cha et al. 2023,
Sun et al. 2023, Wang, Zhang, Xu, et al. 2023b, Dimitrovski et al. 2024). Building on
this, the Swin Transformer (Liu et al. 2021) introduces a hierarchical design that enhan-
ces image processing efficiency (Sun et al. 2023). However, addressing complex chal-
lenges such as multiscale issues in spatial and temporal dimensions requires further
enhancements to these models. For example, Jakubik et al. (2023) improved temporal
data handling by integrating temporal information as channels. Yao et al. (2023) devel-
oped a three-branch network utilizing the Video Swin Transformer (Liu et al. 2022) to
harmonize spatial affinity, temporal continuity, and spatiotemporal interaction. In add-
ition, the approach of refining established foundation models for specific geospatial
tasks illustrates how techniques from conventional image analysis can be adapted to
meet the unique demands of remote sensing and geospatial applications. For instance,
SAM (Kirillov et al. 2023) excels in object segmentation within images without predict-
ing category information. Yan et al. (2023) enhanced SAM's segmentation capabilities
for category-specific tasks by incorporating a new mask decoder and introducing a
prompt encoder designed for SAR imagery, leveraging SAR-specific prompts. Similarly,
Chen, Liu, et al. (2024) leveraged SAM for instance segmentation in remote sensing
images, augmenting the model with a novel prompt learning technique. These adap-
tations showcase the potential of Transformers in addressing the complex needs of
remote sensing imagery analysis and geospatial applications, demonstrating their ver-
satility and effectiveness across a broad range of geospatial contexts.

Training GFMs predominantly utilizes Masked Autoencoders (MAE; He et al. 2022)
due to their effectiveness in self-supervised learning (SSL) methodologies for imagery,
offering a scalable approach to training without the need for labeled data. This SSL
method, by obscuring parts of the input images and learning to reconstruct them,
enables the models to learn rich representations of geospatial features and dynamics
autonomously. However, certain scenarios necessitate supervised training and fine-
tuning, particularly for downstream tasks or when models are developed with specific
functionalities in mind, like segmentation that requires category information (Yan et al.
2023, Yao et al. 2023).

In our examination of GFMs, IBM’s Prithvi (Jakubik et al. 2023) stands out for its
unique approach to GeoAl and geospatial data analysis, prompting us to select it for
detailed evaluation. Prithvi is unique among Al foundation models for its design that
accommodates a 6-band input, including Red, Green, Blue, NIR, SWIR 1, and SWIR 2.
This capability allows it to capture a broader spectrum of spectral information than
the conventional RGB imagery, enhancing its versatility and efficacy across various
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geospatial tasks. In addition to its advanced spectral analysis capabilities, Prithvi has
the advantage in its scalability through processing a large dataset across the continental
US. Furthermore, as an open-source model, Prithvi encourages wider access and commu-
nity-driven enhancements. It includes the release of trained model weights, allowing
researchers to directly fine-tune it for a variety of downstream tasks, thus amplifying its
utility and applicability in real-world scenarios. Beyond prior evaluations focusing on its
semantic segmentation capabilities in flood mapping (Li et al. 2023b), our assessment of
Prithvi extends to its domain adaptability in other crucial image analysis tasks using mul-
tiple datasets. Additionally, several enhancement strategies are applied on top of the
native Prithvi model to maximize its potential for such analyses.

3. Data

In our evaluation on the Prithvi model, we utilized a total of four datasets, tailored to
support two distinct visual recognition tasks: object detection and instance segmenta-
tion. Table 1T summarizes these datasets, including the number of input image bands,
image sizes, number of training and testing images, and number of object classes. In
the subsequent sections, we delve deeper into the details of each dataset:

3.1. Mars crater dataset

The Mars crater dataset, employed in the 2022 GeoAl Martian Challenge, represents a
comprehensive and varied collection of 102,675 images sourced from a global mosaic
of Mars. Constructed using Mars Odyssey’'s Thermal Emission Imaging System (THEMIS)
daytime infrared (DIR) data, the mosaic delivers a 100 m resolution covering Mars's
entire surface, as documented by Edwards et al. (2011). Each image captures a 25.6 km
by 25.6 km area, presented in 256 x 256 pixels, offering a detailed and representative
snapshot of Martian terrain. Over 301,912 craters are annotated by Geology experts
with instance-level bounding boxes, drawing on the extensive Mars impact crater cata-
log by Robbins and Hynek (2012), a compilation from multiple rounds of manual
reviews of infrared imagery and topographic data, documenting over 640,000 craters
with detailed positional, morphological, and morphometric information. Following the
process described by Hsu et al. (2021), the dataset was developed by extracting non-

Table 1. Benchmark datasets used for evaluating the Prithvi model.

. Object detection Instance segmentation
Evaluation task
Dataset statistics Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops
Dataset split (training/testing) 9000/1000 575/251 735/132 755/189
Bands 3 3 3 6
Class count 1 8 1 5
Image size (Min, Max, and Median) 256 x 256 217 x 232 199 x 199 128 x 128
Unit: pixel 1000 x 1000 507 x 507
540 x 350 203 x 203
Statistics on objects count per image 1,27,3 1,71 1, 447, 27 1,53, 24
(Min, Max, and Median)
Statistics on object size 8x7 40 x 50 1x1 2x3
(Min, Max, Median) 255 x 255 994 x 1000 506 x 504 128 x 128

Unit: pixel 75 %195 324 x 277 143 x 100 58 x79
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overlapping samples from the global mosaic, applying distortion correction, and
addressing partially visible craters. The dataset showcases diverse crater sizes, from as
small as 0.7 km to as large as 25.5km in diameter. This diversity poses a unique chal-
lenge, requiring models to accurately discern features in both sparsely and densely
cratered landscapes.

To tailor the dataset for our experiments, specifically aiming for tests on unseen
areas, we resampled the dataset, focusing on images from latitudes between 30 and
-30 degrees. The training set was adjusted to include 9,000 images, and the testing
set now consists of 1,000 images. Despite this modification, we ensured the geograph-
ical distribution of images within each set remains consistent with the original data-
set's broad coverage. This approach guarantees that the training and testing sets
accurately reflect a balanced representation of Martian terrain, supporting a thorough
and equitable evaluation of model effectiveness.

3.2. Earth’s natural feature dataset

The development of the natural feature dataset, as reported in the work by Li and
Hsu (2020), represents a significant effort to compile a diverse collection of environ-
mental features crucial for advancing research in geospatial analysis and landscape
scene understanding. This foundational dataset for the current study includes over
100 manually labeled remote-sensing images for each of eight distinct natural fea-
tures: craters, volcanoes, rivers (encompassing both meandering and non-meandering
types), lakes, sand dunes, hills, and iceberg tongues. The initial phase involved utilizing
geographical gazetteers, with an emphasis on the United States Geological Survey
(USGS) Geographic Name Information System (GNIS), for accurate identification and
categorization of various terrain objects. This was followed by gathering and labeling
images from multiple sources such as Google Earth, the USGS Earth Explorer, and rele-
vant Google Images search results.

This dataset consists of a moderate number of images with a relatively low density
of objects per image. The features in this dataset exhibit significant size variability,
from medium sized to very large (see statistics in Table 1), reflecting the natural con-
tours and diverse scales of these features. The varying image sizes add to the com-
plexity of the detection task. The imagery has diverse spatial resolutions and spectral
bands, including 1-meter optical imagery from the USGS National Agriculture Imagery
Program, as well as sub-meter optical images and 2-meter multi-spectral images from
DigitalGlobe’s Worldview-2 satellite. Each image in this extensive dataset is accompa-
nied by detailed annotation data, including bounding boxes to accurately delineate
the terrain features of interest. The compilation of this dataset not only facilitates the
current study but also supports a wide range of research avenues, particularly in the
development of landscape scene recognition techniques.

3.3. Ice-wedge polygon dataset

The Ice-wedge polygon (IWP; Bhuiyan et al. 2020) dataset stands as a critical resource
for mapping permafrost landscapes at a pan-Arctic scape. This dataset contains a
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collection of 867 image tiles with 34,931 annotated IWPs spread across a diverse array
of tundra vegetation types, including sedge, tussock, and barren tundra (Li et al
2022b). This dataset is distinguished by its precision in annotation, featuring instance
segmentation masks that accurately delineate each IWP, thereby facilitating fine-
grained image analysis tasks. Originating from very high-resolution (0.5m) imagery
captured by Maxar sensors, the dataset highlights the variability and complexity of the
tundra landscape. The dataset has a higher density of feature distribution within the
image scenes compared to other datasets (see statistics in Table 1). The sizes of these
features vary significantly, ranging from one pixel to nearly covering the entire image
scene.

3.4. EuroCrops

The EuroCrops dataset is the most comprehensive open-access dataset in the
European Union, featuring 944 image scenes and corresponding crop land labels cap-
tured in April 2019 (Schneider et al. 2021). The dataset, derived from two cloud-free
Top of Atmosphere (TOA) Sentinel-2 images, offers a spatial resolution of 10 meters,
focusing on central Denmark’s agriculturally rich and flat terrains. Each image scene is
sized at 128 by 128 pixels, with detailed labels on five cropland classes: spring cereal,
winter cereal, maize, grassland, and ‘other’. The features vary from very small (2 by 3
pixels) to quite large (128 by 128 pixels) within the fixed-size image scenes (128 by
128 pixels). This dataset has a moderate to high density of objects per image, with a
wide range of object sizes (see statistics in Table 1). The 6-band nature of this dataset
makes it particularly helpful for evaluating the advantages of Prithvi, which is also
trained on six-band remote sensing imagery, to support agriculture research. Figure 1
demonstrates a few samples from each benchmark dataset.

4. The Prithvi model, task-specific adaptation, and model enhancement
4.1. Model architecture and pre-training

In the development of NASA-IBM’s Prithvi model, the pre-training phase plays a crucial
role (Jakubik et al. 2023). The model is trained on HLS data, a dataset that fuses meas-
urements from multiple satellite sensors, including NASA/USGS Landsat 8 and 9's
Operational Land Imager (OLI) and Europe’s Copernicus Sentinel-2A and Sentinel-2B’s
Multi-Spectral Instrument (MSI; Masek et al. 2021). To ensure the consistency and reli-
ability of this data, the HLS project employs algorithms for atmospheric correction,
cloud and cloud-shadow masking, and spatial co-registration. Specifically, Prithvi was
trained on the HLSL30 product, which offers a 30-meter spatial resolution and is pro-
vided in a Cloud Optimized GeoTIFF (COG) format. The training data spanned the con-
tinental United States for the year 2017 and focused on six spectral bands, namely
Blue, Green, Red, Narrow NIR, SWIR 1, and SWIR 2.

Architecture-wise Prithvi is a specialized model tailored for geospatial applications,
building upon Vision Transformer (ViT) for feature extraction (Dosovitskiy et al. 2021),
as illustrated in Figure 2. The original ViT, a groundbreaking architecture for image
classification, divides an input image into fixed-size patches, linearly embeds them,
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(d

Figure 1. Sample images from the four benchmark datasets. (a) Mars crater. (b) Earth’s natural fea-
ture. (c) Ice-wedge polygon. (d) EuroCrops.

and processes them through a series of attention layers (Vaswani et al. 2017). The
result is a sequence of feature vectors, each representing the corresponding input
patch, transformed based on the relationships between patches and the global con-
text of the input. In adapting to the unique requirements of geospatial data, one of
Prithvi's distinguishing features is its capability to process remote sensing data in a
video format. This adaptation involves transitioning the input format from the conven-
tional image tensor notation (C, H, W) to a more complex video tensor format (C, T, H,
W), where C denotes channels, T represents time steps, H, W are the height and width
of the input data. Such a modification allows the model to better capture important
feature presentation by analyzing not only the spatial relationships but also the tem-
poral relationships. For downstream tasks involving static imagery, Prithvi allows for a
straightforward adjustment by setting the temporal dimension (T) to 1, ensuring flexi-
bility in handling various types of geospatial data inputs.

During the pre-training phase, Prithvi employs a Masked AutoEncoder (MAE) learn-
ing strategy (He et al. 2022). The approach is particularly effective for self-supervised
learning scenarios, both when labeled data is scarce or expensive and when dealing
with large datasets. The MAE strategy involves masking a portion of the input data
and then training the model to predict these masked values, thereby fostering a
robust data representation. To facilitate this reconstruction, a decoder, consisting of a
series of attention layers, is added to Prithvi. This decoder takes the encoded
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Figure 2. The Prithvi model and the pre-training architecture.

representations and reconstructs the original data, allowing the model to learn the
intricate relationships within the data. The training process aims to minimize a Mean
Squared Error (MSE) loss function, which quantifies the average squared differences
between the predicted and actual values, serving as a comprehensive metric for train-
ing performance.

4.2. Task-specific adaptation of Prithvi: model head and fine-tuning

Upon completing the pre-training of Prithvi, the next step is to adapt it for specific
downstream tasks. This is achieved by appending a task-specific decoder (also called a
model head) to Prithvi’s encoder to achieve different image analysis goals. Figure 3
shows our proposed image analysis pipeline that integrates Prithvi's pretrained
encoder and is customized for object detection and instance segmentation tasks.

To achieve these image analysis goals, we developed the pipeline utilizing the
model heads (decoder) inspired by the Mask R-CNN architecture (He et al. 2017). As
depicted in Figure 3, when using the feature map generated by Prithvi's encoder as
input, the task-specific adaptation module (labeled as 4.2 in the rightmost column of
the figure) begins with the Region Proposal Network (RPN), which operates on the fea-
ture map extracted from the previous stage. The RPN employs a sliding window mech-
anism over the feature map to generate potential bounding box proposals for objects
across various scales and aspect ratios. Following the generation of these region pro-
posals, the workflow proceeds to process the Region of Interest (Rol). The Rol Align
layer is employed here to convert these proposed regions of varying sizes into fixed-
sized feature maps, enabling consistent processing by downstream layers. After the
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Figure 3. Image analysis pipeline for object detection and instance segmentation tasks.

Rol Align layer, each region undergoes processing by two distinct branches to gener-
ate comprehensive outputs. The first branch, the detection branch, is tasked with
bounding box refinement and object category classification. It refines the initial pro-
posals to more accurately enclose the objects and classifies each object into its
respective category. Following this, the second branch, the mask branch, comes into
play specifically for mask prediction for each identified object. This branch is dedicated
to determining the exact pixels within the refined bounding box that constitute the
object, enabling the model to produce detailed masks that delineate the object’s pre-
cise shape and boundaries.

Upon this pipeline, the Prithvi model can be further fine-tuned with domain data-
sets for the desired tasks. When performing object detection, only the box branch is
activated, whereas for instance segmentation, both the box and mask branches are
employed. Training Prithvi on task-specific datasets enables the model to adapt its
pre-trained knowledge to the unique characteristics of new datasets. This phase entails
adjusting the weights across the entire model, including both the backbone and the
appended head modules. Another strategy is to freeze the backbone weights and
only train the decoder part to reduce training time and computational cost. In our
study, we chose to fine-tune modules throughout the pipeline including Prithvi's back-
bone models so to achieve optimal performance. It is worth mentioning that this pipe-
line is also generalizable so the performance of Prithvi with other models can be
compared by replacing the feature extractor encoder.

To further improve the adaptability and predictive performance of the Prithvi model
in downstream tasks, and to enable the incorporation of the most common 3-band
image as input, we enhanced the pipeline by introducing two modules: the band
adaptation module and the multi-scale feature map generation module. In addition,
this pipeline enables the flexible integration of other pre-trained backbone models for
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performance comparison. The next sections will introduce how each strategy works
and conducts a comparative analysis of different models.

4.3. Band adaptation module

The Prithvi model is intrinsically designed to handle 6-band geospatial data, maximiz-
ing the use of the important information such multiband data provides. However, in
many real-world scenarios, benchmark datasets (Bhuiyan et al. 2020, Schneider et al.
2021) may have a different band configuration than the Prithvi model. To increase the
Prithvi model’s applicability across diverse datasets, we developed three strategies (as
shown in Figure 4) to adapt its original 6-band input to data with a different number
of spectral and optical bands. The adaptation to the most commonly used 3-band
RGB imagery is used as an example.

The first strategy, termed as the Zero-Padded Input, is depicted in Figure 4(b). This
method involves augmenting 3-band data by appending three channels filled with
zeros (depicted in black), simulating a 6-band input but devoid of any additional
meaningful information. While this method seems to artificially inflate the data, it is
computationally equivalent to adjusting the model’s weight loading to retain only the

Input Image Input Image
CNN Kernel CNN Kernel
6x16x16 6x16x16
(b)
Input Image Input Image
CNN Kernel CNN Kernel
6x16x16 3x16x16

(d)

Figure 4. Input adaptation strategies. (a) Original input architecture. (b) Zero-Padded Input. (c)
Channel Duplication. (d) Retrained Patch Embedding. The colors red, green, and blue represent the
R, G, B band respectively.
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weights associated with the existing bands. This is due to the convolutional nature of
the patch embedding layer that transforms the input data. Importantly, we maintain
the use of the original CNN kernels in the patch embedding layer, as demonstrated in
the initially trained model shown in Figure 4(a). Although straightforward, this method
might not fully tap into the model’s capabilities, as it operates under the assumption
that the missing three bands have a minimal bearing on the model's overall
performance.

Another strategy, referred to as Channel Duplication, is detailed in Figure 4(c). In this
method, the existing 3-band channels are replicated to create a 6-band input, with the
duplication of red, green, and blue colors evident across the six bands. This method is
based on the assumption that the initial 3 bands are sufficiently informative for the mod-
el's tasks and that the missing bands don't differ significantly in their feature-capturing
capabilities compared to the available 3 bands. However, if the original 6-band model
was designed to capture different types of features across all six bands, this method may
not adequately substitute for that missing information. Like the Zero-Padded Input strat-
egy, Channel Duplication also employs the same CNN kernels in the patch embedding
layer, maintaining the same with the model’s initial training status.

Lastly, we developed the Retrained Patch Embedding strategy, as illustrated in
Figure 4(d). Rather than modifying the data to fit the model, this approach reconfig-
ures the initial patch embedding layer of Prithvi to directly process 3-band data.
Rooted in the belief that the model’s architecture is versatile enough to adjust to
fewer bands and that these 3 bands encompass all vital information, this method
presents itself as a potentially more robust and sophisticated solution. As depicted in
Figure 4(d), the CNN kernel within the patch embedding layer is reinitialized and tail-
ored to process 3-band data, reducing the channels from 6 to 3 compared to earlier
configurations. This modification not only streamlines the data processing but also
reduces the model size, cutting down 590k parameters from the original model,
thereby enhancing the efficiency.

4.4. Comparative analysis of Prithvi with other pre-trained models:
benchmarking performance and adaptability in geospatial data processing

Leveraging the pipeline depicted in Figure 3, our goal in comparing Prithvi with estab-
lished architecture is to pinpoint its strengths and potential areas for enhancement,
with a particular focus on its training with geospatial data. To facilitate this evaluation,
we have chosen three prominent, task-specific models: ViT (Li et al. 2022c), MViTv2 (Li
et al. 2022d), and ResNet-50 (He et al. 2016). The comparison aims to highlight how
Prithvi's unique approach to processing geospatial data compares to these well-estab-
lished models. The architectures of these four models, including Prithvi, are detailed in
Figure 5 (a)-(d), providing a visual reference to understand the structural differences.
ViT, as illustrated in Figure 5(a), represents a significant shift in computer vision,
adopting the Transformer architecture originally developed for natural language proc-
essing (NLP). In this model, images are divided into patches, each processed akin to a
token in NLP, enabling the Transformer to grasp global pixel relationships from the start.
Similar to Prithvi, shown in Figure 6(c), both models operate predominantly at a single
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Figure 6. Multi-scale feature map generation modules. (a) A feature pyramid network for extract-
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scale, producing single-scale feature maps, which aligns their approach to processing vis-
ual data. The key difference between them lies in how they pay attention to these
patches. Prithvi uses a multi-head attention mechanism, which looks at the image patches
in a way that considers the entire image context, akin to taking a step back to see the
whole picture. On the other hand, ViT employs multi-head window attention, which
means it focuses on smaller, windowed areas of the image at a time, similar to zooming
in on specific details. This difference in attention methods underlines the unique ways ViT
and Prithvi handle visual information, making their comparison particularly insightful for
understanding how each could be best used in analyzing geospatial data.

ResNet-50, as depicted in Figure 5(b), distinguishes itself from transformer models
like Prithvi and ViT by utilizing a CNN structure capable of generating hierarchical fea-
tures. Unlike the single-scale focus typical of transformer architectures, ResNet-50's
convolutional layers are organized hierarchically, enabling the extraction of features at
multiple scales. A key aspect of ResNet-50's architecture is its residual connections,
highlighted in Figure 5(b). These connections employ shortcut pathways that bypass
one or more layers, directly addressing the vanishing gradient problem by allowing
gradients to flow through the network more effectively. This innovation is particularly
important as it enables the efficient training of deeper networks by ensuring that the
added layers contribute positively to the overall performance, rather than complicating
or degrading it. The operation on the residual connection is specifically designed to
activate when there is a discrepancy between the input and output dimensions, ensur-
ing smooth transitions and dimensional consistency across the network. By facilitating
deeper and more efficient network architectures without loss in performance, ResNet-
50 has set a benchmark in computer vision, making it an important model for com-
parative studies with transformer-based models.

MViTv2, illustrated in Figure 5(d), extends the Vision Transformer architecture by
incorporating a unique multi-scale attention module. This key feature enables MViTv2
to emulate the multi-scale feature generation typical of CNNs such as ResNet-50,
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blending the extensive contextual awareness of transformers with the precise, scale-
sensitive processing characteristic of CNNs. This fusion creates a hybrid model that
stands out in the architectural spectrum, offering a promising avenue for comparative
analysis. MViTv2's ability to produce hierarchical, multi-scale features marks it as a sig-
nificant model for enhancing geospatial data analysis, bridging the divide between
the singular scale focus of traditional transformer models and the layered, hierarchical
structure observed in CNNs. Notably, MViTv2 incorporates a specialized pooling oper-
ation within its residual connections, a mechanism designed to activate specifically
when there is a discrepancy between the input and output dimensions. This adaptive
feature ensures smooth transitions across dimensions, preserving essential information
without compromising the integrity of the data being processed.

4.5. Multi-scale feature map generation module

In the domain of deep learning, the ability to capture multi-scale features is crucial, par-
ticularly for tasks necessitating the identification of objects or patterns across varying
sizes. Multi-scale features play a pivotal role in gathering information across different
scales within an image, essential for recognizing patterns across a spectrum of resolu-
tions. This capability is particularly important in tasks such as object detection, segmenta-
tion, and recognition, where the defining characteristics of different objects may be most
apparent at distinct scales. Therefore, we explore the enhancement of multi-scale fea-
tures on the Prithvi model, aiming to assess how improvements in capturing these fea-
tures can augment the model’s performance across a range of geospatial analysis tasks.

In our model comparisons, the backbone architecture significantly influences the
effectiveness of multi-scale feature extraction. We analyze two distinct types of back-
bones: the first type, as illustrated in Figure 6(a), is capable of generating hierarchical
features, whereas the second type, shown in Figure 6(b), produces only single-scale
features. Figure 6(a) represents the architecture of a Feature Pyramid Network (FPN;
Lin et al. 2017), which generates multi-scale features within the backbone by aggregat-
ing and upsampling features across various levels of the hierarchy. For backbones lim-
ited to single-scale features, such as ViT, a multi-scale feature generation network (Li
et al. 2022¢) can be introduced, as shown in Figure 6(b), to mimic the function of an
FPN. Both networks play a crucial role in generating multi-scale features, which are
subsequently processed by a task adaptation head for making predictions.

In our comparative models, ResNet-50 and MViTv2 both adopt FPN shown in Figure
6(a) to generate multi-scale features. As Prithvi's backbone adopts ViT, which gener-
ates feature maps at a single scale, to enable the multi-scale feature representation
capability, the strategy described in Figure 6(b) is applied to boost its performance.

5. Experiment

In this section, we conducted a series of experiments to assess the performance of
Prithvi compared to other popular Al models. The experiments were conducted on
four NVIDIA RTX A5000 GPUs, each with 24GB of memory. To evaluate model perform-
ance, mAP (Mean Average Precision) is used as the evaluation metric. This metric,
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widely acknowledged in the computer vision community, provides a precise measure
of a model’s predictive accuracy across various Intersection Over Union (loU) thresh-
olds, which compare the predicted area of interest (AOI) with the ground-truth AOI.

5.1. Input strategies: adapting 6-band prithvi to 3-band data

While Prithvi's 6-band data is a unique aspect of the model, our study aims to assess
the domain adaptability of the Prithvi model across diverse application domains, data
sources, image resolutions, and geographical coverages. Given that many existing
benchmark datasets may have a different band configuration than the Prithvi model,
band adaptation becomes a useful feature. Additionally, because many Al models with
state-of-the-art (SOTA) performance are often pre-trained with 3-band RGB data, devel-
oping an effective strategy to adapt the Prithvi input to such data or other geospatial
benchmarks with a different number of input bands will expand the model’s applic-
ability. This approach will also help us compare whether there is a performance advan-
tage of the Prithvi model pre-trained on remote sensing images over general-purpose
Al models trained primarily on optical RGB images.

Therefore, to assess the adaptability of the Prithvi model, our experiment aims to
evaluate the effectiveness of different input adaptation strategies, detailed in Section
4.3. To achieve this, we utilized the proposed image analysis pipeline depicted in
Figure 3, integrated with Prithvi's pre-trained encoder. It was then further fine-tuned
by each of the four benchmark datasets. The results presented in Table 2 highlight
the comparative effectiveness of various input strategies applied across four datasets
using mAP50 as the performance metric (where 50 means the loU threshold is 50%).
Among these, the Retrained Patch Embedding strategy emerged as the most effective,
securing the highest mAP50 scores (0.840, 0.499, 0.483, and 0.595, respectively) and
simultaneously reducing the model’s size, as discussed in Section 4.3. This strategy’s
success is attributable to several key factors.

First, the Retrained Patch Embedding approach modifies Prithvi's architecture at a
low-level, adjusting the initial patch embedding layer to efficiently handle 3-band
data. This modification enables the model to leverage the full spectrum of information
present in the data, eliminating the need for artificial data augmentation or manipula-
tion. In contrast, the Zero-Padded method simply expands the dataset by appending
channels of zeros, which add no real value and may distract the model from focusing
on pertinent features. Similarly, the Channel Duplication method, although it maintains
the integrity of the original data, only duplicates existing information. This could
restrict the model’s capacity to detect subtle differences within the data, owing to the
resultant information redundancy.

Table 2. Effectiveness of different band adaptation strategies on multiple datasets and tasks.
Performance metric: mAP50.

Input Strategy Mars crater Earth’s Natural Feature Ice-wedge polygon EuroCrops™
Zero-Padded Input 0.811 0.477 0.461 0.567
Channel Duplication 0.827 0.495 0.478 0.571
Retrained Patch Embedding 0.840 0.499 0.483 0.595

*The R, G, B bands of the EuroCrops dataset was used to test the input adaptation strategy.
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These findings emphasize the critical role of selecting an appropriate input strategy
to enhance geospatial data analysis in sophisticated models like Prithvi. By precisely
aligning with both the model’s architecture and the inherent characteristics of the
data, the Retrained Patch Embedding strategy demonstrates its ability to significantly
improve performance for adopting the popular 3-band image data as the model
input.

5.2 Prithvi performance enhancement through pretrained multi-scale feature
module integration

From experiments 5.1 and 5.2, the importance of multi-scale features in enhancing
Prithvi's performance became evident. In this experiment, we aim to further improve
upon this aspect by exploring the potential for additional refinement of Prithvi’s capa-
bilities. Our approach focuses on the integration of pre-trained weights from other
models to enhance Prithvi’s ability to process features more effectively.

This experiment is structured around three distinct model configurations to evalu-
ate the impact of a multi-scale feature module on Prithvi. The first model, ‘Prithvi
Single-Scale’, employs the baseline Prithvi model, focusing exclusively on single-scale
features, as investigated in experiment 5.1. The second model, ‘Prithvi Enhanced Multi-
Scale’, extends Prithvi by integrating a multi-scale feature module. This module is
distinctively initialized randomly and then directly trained on downstream datasets,
foregoing any pre-training, as detailed in experiment 5.2. The third model, ‘Prithvi
Advanced Multi-Scale (Pretrained)’, further evolves this approach by not only adding a
multi-scale feature module to Prithvi but also enriching it with pre-trained weights
from the study by Li et al. (2022c). This strategic integration of pre-trained weights is
intended to capitalize on the extensive insights gained from training on large-scale
datasets, thereby enhancing Prithvi’s feature processing capabilities further.

Our experimental findings, illustrated in Figure 7, highlight significant performance
improvements in the Prithvi model achieved through the integration of multi-scale
feature processing and the strategic application of pre-trained weights. Transitioning
from its original setup, which was limited to single-scale feature processing, to
advanced configurations that embrace multi-scale capabilities, Prithvi exhibits a per-
formance boost across all four datasets. This improvement is largely credited to the
inclusion of pre-trained weights, spotlighting the importance of drawing on extensive
training to strengthen feature recognition across varying scales. As illustrated in Figure
7, the performance improvement is more substantial when the original model exhibits
lower predictive performance (as seen in the results of the other three datasets com-
pared to the Mars crater dataset). Performance improvement is also greater when the
features are more commonly seen in other pre-training datasets, such as Earth’s natu-
ral features and the EuroCrops dataset, as opposed to ice wedge polygon, which is a
less commonly seen landscape feature in general Al benchmark datasets. Overall, this
strategy demonstrates the potential of leveraging other models’ pre-trained weights
and accumulated knowledge to improve performance. It serves as a blueprint for
enhancing deep learning models, suggesting that integrating pre-existing, well-trained
components into new models can boost their efficiency and effectiveness.



20 C.-Y. HSU ET AL.

0.9

Bl Prithvi Single-Scale
B Prithvi Enhanced Multi-Scale
Bl Prithvi Advanced Multi-Scale (Pretrained)

0.8

0.7 4

mAP50

0.6

0.5 4

0.4 -

Mars Crater Earth's Natural Features Ice-Wedge Polygon EuroCrops

Figure 7. Prithvi model performance across datasets.

5.3. Comparative evaluation of Prithvi with established architectures across
downstream visual recognition tasks

In this experiment, we evaluate Prithvi’'s performance in object detection and instance
segmentation, comparing it against three other models as introduced in Section 4.4.
To improve their performance, all four models, including Prithvi, were enhanced with
a multi-scale feature map generation module, as discussed in Section 4.5, to integrate
multi-scale features effectively. Specifically, MViTv2 and ResNet-50 utilize the FPN to
enrich their inherent hierarchical feature maps, as shown in Figure 6(a). Conversely,
Prithvi and ViT adopt a multi-scale feature generation network, depicted in Figure
6(b), tailored to their architecture. Despite their architectural differences, each model
utilizes our proposed image analysis pipeline (Figure 3) for both detection and seg-
mentation tasks. This provides a uniform basis for comparison, as detailed in Section
4.2. To facilitate a comprehensive evaluation, all models were fine-tuned on specific
downstream datasets with no weights frozen, enabling a full exploration of each archi-
tecture’s capabilities.

A notable distinction lies in their initial training phases; all models, except Prithvi,
were pre-trained on the ImagetNet for the model backbone and COCO (The Microsoft
Common Objects in Context; Lin et al. 2014) for the task-specific head. To ensure a
fair comparison, all the models featured a pre-trained backbone combined with a
newly introduced multi-scale feature map generation module and a task-adaptation
head for this phase of the experiment. By implementing this strategy, we ensured that
all models were evaluated under similar conditions, facilitating an accurate assessment
of their performance.

In our evaluation, detailed in Table 3, Prithvi demonstrated superior accuracy, par-
ticularly in detecting Earth’s natural features, with a notable mAP50 score of 0.550.
This achievement not only significantly outperformed the traditional CNN model,
ResNet-50, but also surpassed the scores of other transformer-based models. Prithvi's
consistent performance across a variety of datasets—achieving mAP50 scores of 0.859
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Table 3. Comparative results of Prithvi and popular supervised models on geospatial datasets.
Multiple performance metrics are used here: mAP50 is the mAP with an loU threshold of 50%);
mAP [.50:.05:.95] refers to the mean average mAP over different loU thresholds [0.5, 0.55, 0.6,
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95], mAP_S, mAP_M, and mAP_L measure the mAP across different
scales. Small objects are smaller than or equal to 32® pixels, medium objects are between 32?
and 962 pixels (not including 322), and large objects are larger than 96 pixels..

Performance metric Model Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops
mAP50 Prithvi 0.859 0.550 0.505 0.607
ViT 0.844 0.522 0.492 0.601
MViTv2 0.847 0.540 0.502 0.594
ResNet50 0.793 0.515 0.486 0.561
mAP[.50:.05:.95] Prithvi 0.424 0.292 0.270 0.376
ViT 0.412 0.265 0.263 0.371
MViTv2 0.413 0.281 0.266 0.364
ResNet50 0.381 0.273 0.260 0.335
mAP_S Prithvi 0.389 N/A 0.246 0.367
S: small ViT 0.374 N/A 0.238 0.365
MViTv2 0.377 N/A 0.243 0.360
ResNet50 0.346 N/A 0.235 0.331
mAP_M Prithvi 0.639 0.127 0.429 0.477
M: medium ViT 0.637 0.144 0.422 0.448
MViTv2 0.646 0.111 0.417 0.435
ResNet50 0.623 0.139 0.415 0.393
mAP_L Prithvi 0.829 0.303 0.597 N/A
L: large ViT 0.794 0.272 0.574 N/A
MViTv2 0.806 0.296 0.596 N/A
ResNet50 0.771 0.284 0.576 N/A

and 0.505 for Mars crater and ice-wedge polygons, respectively, and a score of 0.607
for the EuroCrops dataset. Prithvi also outperforms the other models on all four test-
ing datasets using the averaged mAP score mAP[.50:.05:.95] over multiple loU thresh-
olds. Based on the dataset description detailed in Section 3, it is clear that the object
sizes of the datasets vary. Hence, we further applied mAP measures across scales to
more comprehensively understand the model’s performance. As the results in Table 3
show, Earth’s natural features often have large sizes (relative to the image scene),
while the crop lands in EuroCrops range from relatively small to medium sizes. While
there are some variations in the model’s performance for segmenting objects with
varying sizes, Prithvi still shows advantages over the other models, especially in mAP_
S and mAP_L. This result further verifies Prithvi's adaptability and effectiveness in
addressing diverse environmental and geospatial problems.

The direct comparison of Prithvi with ViT, considering their architectural similarities,
offers valuable insights. Here, except for mAP_M on the Earth’s natural features data-
set, Prithvi consistently demonstrates better performance than the ViT architecture.
This comparison highlights the benefits of pre-training on extensive remote sensing
datasets, which likely contributed to Prithvi's better performance over ViT.
Furthermore, the comparison between ViT and MViTv2 (with stronger performance
observed for MViTv2 than for ViT) highlights the importance of incorporating hierarch-
ical features early in the pre-training process. MViTv2's ability to seamlessly integrate
these features showcases a flexible approach to visual data processing that leverages
the strengths of both transformer and CNN architectures.
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Besides the prediction accuracy, we also compared the computational efficiency of
different model architectures in terms of both training and inference speed. Table 4
lists the results. The numbers in the table are averaged speed over the four datasets.
In fact, because all the input images, regardless of their sizes, will be transformed by
all models into a fixed-size image before going through the image analysis pipeline,
the time cost is independent of input datasets.

Table 4 results show that Prithvi and ViT exhibit similar inference and training
speeds due to their analogous architectures, as shown in Figure 5. ViT’'s multi-head
window attention, compared to Prithvi’s multi-head attention, gives it a slight speed
advantage. Both Prithvi and ViT are slower than MViTv2 and ResNet50, whose hier-
archical structures progressively reduce the size of processed feature maps, leading to
faster computations. ResNet50’s particularly faster speed than the other transformer-
based models is attributed to its efficient residual connections and simpler architec-
ture. In summary, while Prithvi has shown a clear advantage in prediction accuracy, it
runs slower than the other comparative models. Hence, it is more suitable for applica-
tions requiring high result accuracy and demanding less in computational efficiency.

5.4. Impact of image resolution on model performance

This experiment further explores the impact of input image resolution on model per-
formance. We selected two datasets, ice-wedge polygons and EuroCrops, and the two
best-performing models, Prithvi and MViTv2, for the comparison. For each dataset, we
reduced the image resolution to 1/2, 1/4, and 1/8 of the original value and tested the
model performance. The results, as shown in Table 5, indicate that both Prithvi and
MViTv2 experience reduced performance as image resolution becomes coarser, but
the trend of performance decrease is similar, even though the two models are pre-
trained on different images (HLS vs. ImageNet). For example, on the EuroCrops data-
set, when the image resolution is reduced to half (from 10m to 20m), the
performance of both the Prithvi and MViTv2 models decreases substantially (29.16%
for Prithvi and 27.78% for MViTv2). When the resolution is reduced further, a more sig-
nificant decrease is observed (Table 5). In contrast, when the image resolution for the
ice-wedge polygon dataset is reduced to half of its original size (from 0.5m to 1m),
there is only a slight reduction in model performance. When the resolution of the
input image is reduced further, the performance of both Prithvi and MViTv2 drops
significantly.

This difference in results is less likely due to the discrepancy in image resolution
between the pre-training images and the testing images of the foundation model, but
rather due to the relative object size and the level of detail captured in the image
scene. For EuroCrops, which uses Sentinel-2 data similar to the Prithvi pre-training

Table 4. Computational efficiency of the Prithvi model.

Model Inference time (s) per image Training time (s) per iteration
Prithvi 0.297 0.657
ViT 0.263 0.441
MViTv2 0.164 0.319

ResNet50 0.097 0.265




INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 23

Table 5. Model performance (measured by mAP50) with different input image resolutions.

EuroCrops Model 10m 20m 40m 80m
(Original)
Prithvi 0.607 0.430 (—29.16%) 0.251 (—58.65%) 0.154 (—74.63%)
MViTv2 0.594 0.429 (—27.78%) 0.259 (—56.40%) 0.141 (-76.26%)
Ice-wedge polygons 5m m 2m 4m
(Original)
Prithvi 0.505 0.503 (-0.4%) 0.399 (-20.99%) 0.166 (-67.13%)
MViTv2 0.502 0.496 (-1.2%) 0.388 (-22.71%) 0.171 (-65.94%)

Table 6. Prithvi's capability in enabling few-shot learning. The predictive accuracy values reported
are mAP50.

Percentage of training data used Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops
100% 0.859 0.550 0.505 0.607
75% 0.858 0.550 0.502 0.602
50% 0.855 0.520 0.503 0.586
25% 0.848 0.444 0.458 0.580

data, when the resolution of the testing image decreases, we did not observe a per-
formance advantage for Prithvi compared to MViTv2, which is pretrained on ImageNet.
This is because the cropland boundaries in EuroCrops are not very sharp in the ori-
ginal image, so decreasing the image resolution makes the object boundaries blurrier
and therefore more difficult to detect. However, even though the absolute size of ice-
wedge polygon is small, because super high-resolution imagery (0.5 m) is used for the
analysis, it maintains a good size in the image. Thus, even when reducing the reso-
lution to half, the features are still large and clear enough to be detected. Hence, our
conclusion is that while input image resolution does affect model performance, the
impact is more dataset-dependent and less dependent on the consistency of image
resolutions between the pre-training and testing images.

5.5. Data effectiveness of Prithvi in enabling few-shot learning

One desired property of a foundation model is the enablement of zero-shot or few-
shot learning, and this capability is well-documented in large language models (LLMs).
In this section, we conducted an ablation study using 75%, 50%, and 25% of the train-
ing data to assess Prithvi's few(er)-shot learning capability. As shown in Table 6,
Prithvi's performance has been quite stable when reducing the training datasets from
100% to 75%, with no or very slight reduction in predictive performance. When reduc-
ing the training dataset to 50%, a more noticeable decrease is found for processing
Earth’s natural features and EuroCrops datasets. The model performance on Mars cra-
ter and ice-wedge polygon datasets remains quite good. This is likely because the fea-
tures in Mars craters and ice-wedge polygons are more similar to each other, so with
fewer samples, the model is still good at making predictions. For the other two data-
sets, which have more diversity in their training samples and feature types, more per-
formance variance is observed. Overall, the Prithvi model shows very good data
efficiency, with less than a 10% performance drop observed for the Mars crater, ice-
wedge polygon, and EuroCrops datasets when reducing the training samples from
100% to 25%. The models show a more significant reduction (19%) in predictive
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performance for the Earth’s natural features, likely due to the smaller total number of
samples in the dataset compared to the others (refer to Table 1 for dataset
characteristics).

6. Discussions on the strengths and limitations of Prithvi

In previous experiments, we explored the effectiveness of the band adaptation strat-
egy and multi-scale feature for adapting and enhancing Prithvi for diverse geospatial
tasks. Since Prithvi contains only a backbone model pre-trained on multi-spectral data-
sets, it lacks a fully released pipeline trained across all its components: backbone,
multi-scale feature generator, and detection/segmentation head. In contrast, some
other models, such as MViTv2, are already pre-trained on large Al benchmark datasets
across all these modules to achieve optimal performance during model adaptation. To
ensure a fair comparison, in the experiments from Section 5.1 to Section 5.3, we main-
tained consistent experimental conditions across all models, including the use of the
multi-scale module and the use of pre-trained weights in the detection/segmentation
head. These experiments demonstrated the power of Prithvi’'s backbone model in
adapting to remote sensing image analysis tasks due to the knowledge learned from
similar data during pre-training.

In this section, we conduct further experiments to identify areas for improvement
in Prithvi. We compared the Prithvi model with the MViTv2-Optimal model, which is
fully pre-trained and optimized on the entire segmentation pipeline with multi-spec-
tral data input. The EuroCrop dataset is used as the experimental dataset because it
contains the 6-band data required for Prithvi. Since the pre-trained MViTv2-Optimal
can only take 3-band data as input, only the RGB band of the EuroCrop data is sent to
MViTv2-Optimal.

Table 7 shows the comparative results. When Prithvi takes 6-band input, the mod-
el's predictive performance improves (from 0.641 to 0.657) compared to when it is
given only 3-band input. This improvement validates that incorporating a broader
spectral range can enhance a model’s capacity to interpret and analyze remote sens-
ing imagery, underscoring the value of accessing extensive spectral information to
boost the effectiveness of deep learning models.

When the Prithvi model taking 6-band input is compared with the optimized
MViTv2 taking 3-band input, it still shows a performance gap. This result emphasizes
the value of conducting full pre-training/fine-tuning across task-specific pipeline (as
the MViTv2-Optimal did). And this feature is critical to achieve a SOTA performance to
fully demonstrate the value of multi-spectral remote sensing training data in relevant
analysis. In fact, in other foundation model such as Microsoft’'s Florence model (Yuan
et al. 2021), the SOTA performance is achieved not only because of the backbone
model pretrained on a massive amount data (which is highly important), the model is
further carefully trained on large datasets supporting downstream tasks. Despite the

Table 7. A comparison between Prithvi and the optimal configuration of MViTv2 on 6-band data.
Model EuroCrops (6-band) EuroCrops (3-band)

Prithvi 0.657 0.641
MViTv2-Optimal N/A 0.708
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power demonstrated by Prithvi’s backbone model, pre-training on the entire pipeline
is a clear area for improvement for the Prithvi model.

It is also worth mentioning that a fully trained task-specific pipeline is critical to
improving Prithvi’s data efficiency and enabling few-shot learning. In Section 5.6, we
demonstrated the stable performance of Prithvi when substantially reducing the train-
ing sample size in downstream tasks. However, there are still at least 100 samples
used in each benchmark dataset to fine-tune the Prithvi model due to the need to
train new heads and adaptation layers. When a well-trained task-specific pipeline
becomes available, there is an opportunity for Prithvi (and other vision foundation
models) to enable domain adaptation with only a few data samples.

7. Conclusion and future work

This paper evaluates the effectiveness of NASA-IBM's foundation model Prithvi in its abil-
ity for multiple downstream tasks for remote sensing image analysis. Four benchmark
datasets containing environmental and land use features and covering diverse geo-
graphical regions are selected in the analysis. Through a series of experiments, we dem-
onstrated the advantages of the Prithvi model in gaining useful geospatial knowledge
from multi-spectral HLS data and its effectiveness in object detection and segmentation
tasks compared to other large task-specific Al models. Besides evaluation, we have also
proposed and developed an image analysis pipeline that can incorporate multiple back-
bone models with enhancement strategies to further boost up Prithvi's performance.
The patch embedding strategy improves the Prithvi model’s data adaptability, and the
multi-scale feature generation further enhances Prithvi's feature extraction capability.

However, we also identified a weakness in Prithvi, specifically its lack of a fully
trained task-specific pipeline despite its powerful backbone model for geospatial ana-
lysis. The analysis in Section 6 demonstrates that although the incorporation of multi-
spectral data is crucial in remote sensing image analysis, its effectiveness may not be
well showcased without an optimized model pipeline carefully trained with large data-
sets. Despite fine-tuning the proposed pipeline (Figure 3) with smaller, domain-specific
datasets, the introduced parameters may not be well trained due to the limited scale
of relevant data. Therefore, a potential area for Prithvi’s improvement is further fine-
tuning major image analysis pipelines with its pre-trained backbones to enhance
performance in downstream tasks. Achieving this, however, is non-trivial, demanding
substantial computing power and the exploration of new techniques for model train-
ing and behavior monitoring. A community-driven approach and collaboration among
academia, industry, and government agencies may provide valuable insights to collect-
ively advance in this direction.

As geospatial foundation model research has been rapidly advancing, it is very impor-
tant to develop a standardized benchmarking approach to ensure the thorough evalu-
ation and fair comparison of existing models. In preparing the benchmarking data, it is
crucial to prevent data leakage, a known issue where general foundation models memor-
ize content from pre-training data (Chen, Li, et al. 2024, Xu et al. 2024). For the evaluation
of geospatial foundation models, especially vision models, four strategies could help
mitigate this issue: (1) Geographical diversity: Since geospatial data are often
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associated with specific locations, ensuring that benchmarking datasets come from a
wide range of geographical locations can prevent overlap between pre-training and test-
ing data. In our case, multiple datasets such as Mars crater, Arctic lce Wedge Polygon,
and EuroCrops have different geographical coverages (Martian surface, Arctic, and cen-
tral Denmark) from Prithvi's pre-training data centered on the continental US. (2)
Transparency: Clear documentation of benchmark data utilization should be strongly
encouraged in the GeoAl research community. Filling out a ‘benchmark transparency
card’ (Xu et al. 2024) with a list of datasets and evaluation-related questions will help
improve transparency and clarity, facilitating the healthy development of geospatial
foundation models. (3) Multimodality: Geospatial data is very rich in terms of data
source, resolution, and spectral bands. Leveraging data acquired from diverse satellite
platforms will help evaluate transferability in Earth science applications across data
modalities. In Prithvi’s case, we adopted datasets from diverse input sources and applica-
tion areas to achieve a comprehensive view of the model’s transferability and adaptabil-
ity. (4) Spatial autocorrelation: A significant difference between GeoAl and general Al
research is its location relevance. Because of this, GeoAl datasets will possess the prop-
erty of being spatially correlated, indicating that geospatial data from nearby locations
are more similar to each other. To prevent data leakage issues, it is important to identify
potential spatial autocorrelation within the benchmark data to avoid oversampling pre-
training data that have more geographical proximity to the testing data (Li et al. 2024b).
We hope these discussions will facilitate further dialogue toward developing a sustain-
able ecosystem for geospatial foundation model and GeoAl research.

In conclusion, this research contributes to a more comprehensive understanding of
geospatial foundation models by exploring the benefits of pre-training with remote
sensing imagery and important aspects leading to stronger predictive performance in
real-world applications. We have also demonstrated methods to adapt and enhance
the data and application adaptability of the Prithvi model. The knowledge gained
from this study is intended to be valuable for geospatial researchers interested in inte-
grating geospatial foundation models (GFM), like Prithvi, into their research. Our work
also provides insights into the construction and fine-tuning of future GFM for achiev-
ing optimal performance.
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