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ABSTRACT 
Research on geospatial foundation models (GFMs) has become a 
trending topic in geospatial artificial intelligence (AI) research due 
to their potential for achieving high generalizability and domain 
adaptability, reducing model training costs for individual research
ers. Unlike large language models, such as ChatGPT, constructing 
visual foundation models for image analysis, particularly in remote 
sensing, encountered significant challenges such as formulating 
diverse vision tasks into a general problem framework. This paper 
evaluates the recently released NASA-IBM GFM Prithvi for its pre
dictive performance on high-level image analysis tasks across mul
tiple benchmark datasets. Prithvi was selected because it is one 
of the first open-source GFMs trained on time-series of high-reso
lution remote sensing imagery. A series of experiments were 
designed to assess Prithvi’s performance as compared to other 
pre-trained task-specific AI models in geospatial image analysis. 
New strategies, including band adaptation, multi-scale feature 
generation, and fine-tuning techniques, are introduced and inte
grated into an image analysis pipeline to enhance Prithvi’s 
domain adaptation capability and improve model performance. 
In-depth analyses reveal Prithvi’s strengths and weaknesses, offer
ing insights for both improving Prithvi and developing future vis
ual foundation models for geospatial tasks.
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1. Introduction

Geospatial Artificial Intelligence (GeoAI) is an interdisciplinary field that integrates geo
spatial data science with artificial intelligence techniques to solve complex spatial 
problems (Janowicz et al. 2020, Li 2020). One of its most promising applications is in 
the realm of image analysis, particularly in interpreting and extracting valuable infor
mation from remote sensing imagery (Li et al. 2022a, Udawalpola et al. 2022). Remote 
sensing imagery has revolutionized the way we understand the physical process on 
the Earth’s surface and in the atmosphere. Utilizing sensors mounted on satellites, 
drones, or aircraft, remote sensing captures high-resolution images. These images 
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provide invaluable data across various sectors, including environmental monitoring 
(VoPham et al. 2018), disaster management (Mahmood 2022), agriculture (Garc�ıa 
Pereira et al. 2020), and urban planning (Alastal and Shaqfa 2022), among others. 
Traditional methods of image analysis, such as thresholding techniques, often require 
manual intervention and are time-consuming (Zhou et al. 2019). This makes them less 
efficient for handling large datasets. GeoAI, on the other hand, leverages machine 
learning algorithms to automatically analyze and interpret geospatial images, thereby 
significantly improving the speed and accuracy of data extraction (Li and Hsu 2022). 
As GeoAI continues to evolve, it opens up new avenues for more automated and intel
ligent image analysis, making it a subject of keen interest for researchers and practi
tioners in the geospatial domains (Li and Hsu 2020, Gao et al. 2023).

Recent advancement in deep learning have significantly improved the capabilities 
of geospatial image analysis, but these models come with their own set of challenges. 
One pressing issue is the requirement for large, annotated datasets for effective train
ing (Deng et al. 2009, Lin et al. 2014). This is particularly challenging in specialized 
fields such as remote sensing, where the need for domain-specific knowledge, the 
large volume of data, and data variability due to factors such as seasonal changes 
make obtaining annotated data both time-consuming and expensive (Li et al. 2021). 
Furthermore, these models are generally task-specific, meaning that a model trained 
for one application may not easily generalize to another without substantial retraining 
and fine-tuning (Zhang et al. 2020, 2021). The computational cost is another significant 
barrier, as deep learning models often require specialized hardware for both training 
and inference (Shankar and Reuther 2022).

The recent advances in AI foundation models present a compelling solution to 
some of these limitations. Unlike deep learning models that require large training 
datasets for each specific task, foundation models are often pre-trained using self- 
supervised learning (SSL) on vast amounts of data (Zhou et al. 2023). This allows 
researchers to fine-tune these models on relatively smaller, task-specific annotated 
datasets, thereby reducing the annotation burden (Gu et al. 2023, Wang, Feng, et al. 
2023a, Li et al. 2024a). Additionally, foundation models are designed to generalize 
across a variety of data analysis tasks, eliminating the need for separate models and 
the associated retraining for each specific application (OpenAI 2023, Touvron et al. 
2023). While it is true that foundation models also require substantial computational 
resources for initial training, their ability to generalize across tasks means that the 
computational cost can be amortized over multiple applications, making them a more 
efficient choice for organizations that require solutions for a range of geospatial ana
lysis tasks, as well as smaller research groups which do not have expertise or compu
tational resources for building such large models.

Prithvi, a geospatial foundation model developed by NASA and IBM, sets itself apart 
from other AI foundation models in vision tasks through several distinctive features 
(Jakubik et al. 2023). Pre-trained on contiguous US Harmonized Landsat Sentinel 2 
(HLS) data, Prithvi is uniquely equipped to process remote sensing images in time ser
ies. This capability is often absent in other foundation models and enables Prithvi to 
well perform in various downstream tasks, such as burn scars segmentation, flood seg
mentation, and land cover classification. Additionally, Prithvi is designed to work with 
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a 6-band input, including Red (R), Green (G), Blue (B), Narrow Near Infrared (NIR), Short 
Wave Infrared (SWIR) 1, and SWIR 2, as opposed to the conventional RGB imagery 
used in most AI foundation models. This multi-band capability enhances Prithvi’s abil
ity to capture a wider range of spectral information, thereby increasing its versatility 
and applicability across a diverse set of geospatial data and tasks.

Despite advancement in GeoAI and foundation models, there is a notable gap in 
the literature concerning the performance evaluation of geospatial foundation models 
such as IBM’s Prithvi in the realm of remote sensing image analysis, especially in envir
onmental feature detection and segmentation. Unlike general-purpose AI foundation 
models, Prithvi is pre-trained on remote sensing images. This unique training dataset 
raises a presumption that Prithvi may offer inherent advantages in geospatial tasks 
over other pre-trained models. In addition, Prithvi’s unique 6-band input capability, as 
opposed to the conventional RGB imagery, could have significant implications for its 
applicability and performance in real-world geospatial applications. To substantiate 
these presumptions, we raised the following research question: ‘How does IBM’s 
Prithvi perform in geospatial image analysis tasks as compared to other pre-trained 
task-specific AI models?’

To answer this question, the study’s objectives include a detailed performance 
evaluation of Prithvi on challenging image analysis tasks, such as object detection and 
instance segmentation. Four remote sensing datasets covering diverse geographical 
regions and features—including a natural feature dataset, a global Mars crater dataset, 
an Arctic permafrost landscape dataset, and an agricultural land dataset (EuroCrops 
from central Europe)—are used in the analysis. Since the Prithvi model primarily pro
vides a feature extraction backbone (the encoder part), several new strategies were 
introduced to adapt it to downstream tasks. These include band adaptation, a multi- 
scale decoder, and a new fine-tuning strategy designed to maximize its predictive 
performance.

The remainder of the paper is structured as follows. Section 2 reviews research on 
GeoAI and recent development of foundation models for geospatial image analysis. 
Section 3 introduces the four datasets used in this work, providing an overview of 
their characteristics and geographical distribution. Section 4 details the adaptations 
and enhancements applied to the Prithvi model, outlining the methodology and anal
yses conducted to evaluate Prithvi’s performance. Section 5 presents the evaluation 
and experimental results, followed by Section 6, which discusses the strengths and 
weaknesses of the Prithvi model. Section 7 concludes the paper with a summary of 
key insights and suggestions for future research.

2. Literature review

2.1. GeoAI and geospatial image analysis

GeoAI is an interdisciplinary field that combines the predictive power of AI with the 
intricacies of geospatial data science, offering a unique approach to solving complex 
spatial problems (VoPham et al. 2018, PS Chauhan and Shekhar 2021). Within this con
text, the application of GeoAI in image analysis stands out for its unique challenges 
and opportunities. One key challenge is the complexity of the data involved. Unlike 
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traditional image analysis, GeoAI deals with multispectral and multi-band images, 
often captured through advanced remote sensing technologies (Li and Hsu 2022). 
These datasets are not only large in scale but also diverse in nature, incorporating 
multiple sources such as satellites, aerial photographs, and ground-based sensors 
(Wang and Li 2021). This data heterogeneity, coupled with the temporal dynamics 
inherent in geophysical phenomena such as hurricanes and wildfire, requires spatially 
and spatiotemporally explicit algorithms capable of interpreting intricate spatial and 
temporal relationships. Meanwhile, GeoAI must account for various uncertainties, such 
as sensor errors and missing data, making the algorithms robust and adaptable. 
Despite these complexities, GeoAI has proven to be an indispensable tool in a range 
of applications, from environmental monitoring to urban planning (VoPham et al. 
2018, Kamel Boulos et al. 2019, Liu and Biljecki 2022). Its ability to handle these multi
faceted challenges sets it apart from traditional methods and makes it a focal point of 
contemporary geospatial research.

The integration of deep learning into GeoAI has significantly advanced the field of 
image analysis. Initially, the direct application of deep learning models to geospatial 
tasks yielded mixed results, often due to the complexities inherent in geospatial data 
(Lee 2019, Bhuiyan et al. 2020, Li and Hsu 2020). To overcome these limitations, the 
field has evolved to incorporate expert knowledge, thereby enhancing the models’ 
interpretability and effectiveness in handling the unique challenges of geospatial data 
(Janowicz et al. 2020, Hsu et al. 2021, Li et al. 2021). This integration of domain expert
ise has been a pivotal advancement, allowing for more reliable solutions in GeoAI 
applications. Separately, the field has also embraced transfer learning, particularly use
ful in scenarios where acquiring extensive labeled datasets is time-consuming and 
costly. This approach allows researchers to fine-tune pre-trained models for specific 
geospatial tasks. Alongside these advances, there has been a growing focus on models 
that understand spatial hierarchies, crucial for complex tasks such as urban planning 
(Stubbings et al. 2019, Zhou et al. 2021). However, challenges remain in creating mod
els that can generalize across multiple tasks without extensive model retraining. This 
sets the stage for the emergence of foundation models, which offer a more unified 
and adaptable framework for handling the complex and diverse nature of geospatial 
data.

2.2. Visual foundation models

Foundation models have emerged as a transformative force in computer vision, as 
they offer a robust framework and an appealing prospect to facilitate domain adapta
tion with low computational cost. Several innovative elements contribute to their 
transformative impact. First, foundation models process extensive and diverse datasets, 
setting them apart from traditional models that often operate on small and domain- 
specific data (Bommasani et al. 2021, Li et al. 2023a). This broad data scope is crucial 
for capturing representative image features and patterns, and it sets the stage for 
foundation models’ second defining characteristic: pre-training methodologies. Due to 
the sheer volume of data, traditional supervised learning approaches are often imprac
tical, leading to a new strategy of self-supervised learning (SSL) for pre-training the 

4 C.-Y. HSU ET AL.



foundation models (Awais et al. 2023). Because of this, the models are capable to gen
eralize across a multitude of tasks (Yuan et al. 2021, OpenAI 2023, Touvron et al. 
2023). Third, foundation models also allow for fine-tuning from a domain-specific data
set to further boost its performance and domain adaptation (Zhou et al. 2023). 
Collectively, these defining characteristics make foundation models both revolutionary 
and complex tools in the image analysis landscape.

In the realm of computer vision and image analysis, foundation models have been 
categorized into various types based on their prompting mechanisms and data modal
ities, as outlined by Awais et al. (2023). Textually prompted models like CLIP 
(Contrastive Language-Image Pre-training; Radford et al. 2021) and ALIGN (A Large- 
scale ImaGe and Noisy-Text Embedding; Jia et al. 2021) interpret visual data through 
text-based prompts, leveraging extensive image-text datasets for pre-training and vis
ual question answering. Visually prompted models such as Segment Anything Model 
(SAM; Kirillov et al. 2023) and SegGPT (Wang, Zhang, Cao, et al. 2023d) utilize visual 
cues such as bounding boxes or segmentation masks and often rely on partially syn
thetic datasets with pseudo labels. Heterogeneous modality models like CLIP2Video 
(Fang et al. 2021) and AudioCLIP (Guzhov et al. 2022) integrate multiple types of 
data—vision, text, and audio—for a more comprehensive understanding of the visual 
world. Lastly, generalist models like VisionLLM (Wang, Chen, et al. 2023c) exemplify 
the ability to generalize across a multitude of tasks when provided with appropriate 
prompts. These models not only embody the defining characteristics of foundation 
models but also showcase the adaptability and diversity that make them a corner
stone in modern computer vision research.

While foundation models have made significant strides in general-purpose com
puter vision, they come with their own set of limitations (Awais et al. 2023). One key 
issue is their limited contextual understanding, which can lead to a lack of depth 
when tackling geospatial tasks. For example, a general-purpose model might excel at 
a wide array of object recognition tasks but may struggle with the semantic interpre
tations required in specialized scientific or industrial applications (Kirillov et al. 2023). 
In addition, the use of diverse training data without human assessment can introduce 
biases or inaccuracies, leading to a propagation of such errors in downstream analyses 
(Glocker et al. 2022, W�ojcik 2022). This issue is further compounded by the difficulty in 
customizing these models to achieve expert-level performance in a specific scientific 
domain. These limitations have led to a growing interest in specialized foundational 
models that are trained on data pertinent to a research field (Alfassy et al. 2022, 
Nguyen et al. 2023, Tu et al. 2023, Wu et al. 2023). These models aim to marry the 
generalizability and adaptability of foundation models with the knowledge required 
for domain-specific tasks.

2.3. Geospatial foundation models

The quest for precision and contextual sensitivity in specific scientific domains has cat
alyzed the development of specialized foundation models. In the realm of geospatial 
analysis, this pursuit has led to the emergence of Geospatial Foundation Models 
(GFMs; Mai et al. 2023). Unlike their general-purpose counterparts, GFMs are designed 
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to interpret the complex patterns of the Earth’s surface and atmosphere. They address 
challenges such as spatial heterogeneity (Sun et al. 2023), temporal dynamics (Yao 
et al. 2023) and the multidimensional nature of geospatial data (Jakubik et al. 2023), 
marking an advancement in how we analyze and understand our planet.

In developing GFMs, Transformers have emerged as the preferred architecture, attri
buted to their superior management of long-range dependencies and the implemen
tation of a dynamic attention mechanism. This allows Transformers to focus selectively 
on image segments, emphasizing features crucial for specific tasks. Notably, the Vision 
Transformer (ViT; Dosovitskiy et al. 2021) revolutionized image analysis by treating 
images as sequences of patches, leading to its widespread adoption (Cha et al. 2023, 
Sun et al. 2023, Wang, Zhang, Xu, et al. 2023b, Dimitrovski et al. 2024). Building on 
this, the Swin Transformer (Liu et al. 2021) introduces a hierarchical design that enhan
ces image processing efficiency (Sun et al. 2023). However, addressing complex chal
lenges such as multiscale issues in spatial and temporal dimensions requires further 
enhancements to these models. For example, Jakubik et al. (2023) improved temporal 
data handling by integrating temporal information as channels. Yao et al. (2023) devel
oped a three-branch network utilizing the Video Swin Transformer (Liu et al. 2022) to 
harmonize spatial affinity, temporal continuity, and spatiotemporal interaction. In add
ition, the approach of refining established foundation models for specific geospatial 
tasks illustrates how techniques from conventional image analysis can be adapted to 
meet the unique demands of remote sensing and geospatial applications. For instance, 
SAM (Kirillov et al. 2023) excels in object segmentation within images without predict
ing category information. Yan et al. (2023) enhanced SAM’s segmentation capabilities 
for category-specific tasks by incorporating a new mask decoder and introducing a 
prompt encoder designed for SAR imagery, leveraging SAR-specific prompts. Similarly, 
Chen, Liu, et al. (2024) leveraged SAM for instance segmentation in remote sensing 
images, augmenting the model with a novel prompt learning technique. These adap
tations showcase the potential of Transformers in addressing the complex needs of 
remote sensing imagery analysis and geospatial applications, demonstrating their ver
satility and effectiveness across a broad range of geospatial contexts.

Training GFMs predominantly utilizes Masked Autoencoders (MAE; He et al. 2022) 
due to their effectiveness in self-supervised learning (SSL) methodologies for imagery, 
offering a scalable approach to training without the need for labeled data. This SSL 
method, by obscuring parts of the input images and learning to reconstruct them, 
enables the models to learn rich representations of geospatial features and dynamics 
autonomously. However, certain scenarios necessitate supervised training and fine- 
tuning, particularly for downstream tasks or when models are developed with specific 
functionalities in mind, like segmentation that requires category information (Yan et al. 
2023, Yao et al. 2023).

In our examination of GFMs, IBM’s Prithvi (Jakubik et al. 2023) stands out for its 
unique approach to GeoAI and geospatial data analysis, prompting us to select it for 
detailed evaluation. Prithvi is unique among AI foundation models for its design that 
accommodates a 6-band input, including Red, Green, Blue, NIR, SWIR 1, and SWIR 2. 
This capability allows it to capture a broader spectrum of spectral information than 
the conventional RGB imagery, enhancing its versatility and efficacy across various 
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geospatial tasks. In addition to its advanced spectral analysis capabilities, Prithvi has 
the advantage in its scalability through processing a large dataset across the continental 
US. Furthermore, as an open-source model, Prithvi encourages wider access and commu
nity-driven enhancements. It includes the release of trained model weights, allowing 
researchers to directly fine-tune it for a variety of downstream tasks, thus amplifying its 
utility and applicability in real-world scenarios. Beyond prior evaluations focusing on its 
semantic segmentation capabilities in flood mapping (Li et al. 2023b), our assessment of 
Prithvi extends to its domain adaptability in other crucial image analysis tasks using mul
tiple datasets. Additionally, several enhancement strategies are applied on top of the 
native Prithvi model to maximize its potential for such analyses.

3. Data

In our evaluation on the Prithvi model, we utilized a total of four datasets, tailored to 
support two distinct visual recognition tasks: object detection and instance segmenta
tion. Table 1 summarizes these datasets, including the number of input image bands, 
image sizes, number of training and testing images, and number of object classes. In 
the subsequent sections, we delve deeper into the details of each dataset:

3.1. Mars crater dataset

The Mars crater dataset, employed in the 2022 GeoAI Martian Challenge, represents a 
comprehensive and varied collection of 102,675 images sourced from a global mosaic 
of Mars. Constructed using Mars Odyssey’s Thermal Emission Imaging System (THEMIS) 
daytime infrared (DIR) data, the mosaic delivers a 100 m resolution covering Mars’s 
entire surface, as documented by Edwards et al. (2011). Each image captures a 25.6 km 
by 25.6 km area, presented in 256 � 256 pixels, offering a detailed and representative 
snapshot of Martian terrain. Over 301,912 craters are annotated by Geology experts 
with instance-level bounding boxes, drawing on the extensive Mars impact crater cata
log by Robbins and Hynek (2012), a compilation from multiple rounds of manual 
reviews of infrared imagery and topographic data, documenting over 640,000 craters 
with detailed positional, morphological, and morphometric information. Following the 
process described by Hsu et al. (2021), the dataset was developed by extracting non- 

Table 1. Benchmark datasets used for evaluating the Prithvi model.

Evaluation task
Object detection Instance segmentation

Dataset statistics Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops

Dataset split (training/testing) 9000/1000 575/251 735/132 755/189
Bands 3 3 3 6
Class count 1 8 1 5
Image size (Min, Max, and Median) 

Unit: pixel
256 � 256 217 � 232 

1000 � 1000 
540 � 350

199 � 199 
507 � 507 
203 � 203

128 � 128

Statistics on objects count per image  
(Min, Max, and Median)

1, 27, 3 1, 7, 1 1, 447, 27 1, 53, 24

Statistics on object size  
(Min, Max, Median) 
Unit: pixel

8 � 7 
255 � 255 
75 � 195

40 � 50 
994 � 1000 
324 � 277

1 � 1 
506 � 504 
143 � 100

2 � 3 
128 � 128 

58 � 79
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overlapping samples from the global mosaic, applying distortion correction, and 
addressing partially visible craters. The dataset showcases diverse crater sizes, from as 
small as 0.7 km to as large as 25.5 km in diameter. This diversity poses a unique chal
lenge, requiring models to accurately discern features in both sparsely and densely 
cratered landscapes.

To tailor the dataset for our experiments, specifically aiming for tests on unseen 
areas, we resampled the dataset, focusing on images from latitudes between 30 and 
-30 degrees. The training set was adjusted to include 9,000 images, and the testing 
set now consists of 1,000 images. Despite this modification, we ensured the geograph
ical distribution of images within each set remains consistent with the original data
set’s broad coverage. This approach guarantees that the training and testing sets 
accurately reflect a balanced representation of Martian terrain, supporting a thorough 
and equitable evaluation of model effectiveness.

3.2. Earth’s natural feature dataset

The development of the natural feature dataset, as reported in the work by Li and 
Hsu (2020), represents a significant effort to compile a diverse collection of environ
mental features crucial for advancing research in geospatial analysis and landscape 
scene understanding. This foundational dataset for the current study includes over 
100 manually labeled remote-sensing images for each of eight distinct natural fea
tures: craters, volcanoes, rivers (encompassing both meandering and non-meandering 
types), lakes, sand dunes, hills, and iceberg tongues. The initial phase involved utilizing 
geographical gazetteers, with an emphasis on the United States Geological Survey 
(USGS) Geographic Name Information System (GNIS), for accurate identification and 
categorization of various terrain objects. This was followed by gathering and labeling 
images from multiple sources such as Google Earth, the USGS Earth Explorer, and rele
vant Google Images search results.

This dataset consists of a moderate number of images with a relatively low density 
of objects per image. The features in this dataset exhibit significant size variability, 
from medium sized to very large (see statistics in Table 1), reflecting the natural con
tours and diverse scales of these features. The varying image sizes add to the com
plexity of the detection task. The imagery has diverse spatial resolutions and spectral 
bands, including 1-meter optical imagery from the USGS National Agriculture Imagery 
Program, as well as sub-meter optical images and 2-meter multi-spectral images from 
DigitalGlobe’s Worldview-2 satellite. Each image in this extensive dataset is accompa
nied by detailed annotation data, including bounding boxes to accurately delineate 
the terrain features of interest. The compilation of this dataset not only facilitates the 
current study but also supports a wide range of research avenues, particularly in the 
development of landscape scene recognition techniques.

3.3. Ice-wedge polygon dataset

The Ice-wedge polygon (IWP; Bhuiyan et al. 2020) dataset stands as a critical resource 
for mapping permafrost landscapes at a pan-Arctic scape. This dataset contains a 
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collection of 867 image tiles with 34,931 annotated IWPs spread across a diverse array 
of tundra vegetation types, including sedge, tussock, and barren tundra (Li et al. 
2022b). This dataset is distinguished by its precision in annotation, featuring instance 
segmentation masks that accurately delineate each IWP, thereby facilitating fine- 
grained image analysis tasks. Originating from very high-resolution (0.5 m) imagery 
captured by Maxar sensors, the dataset highlights the variability and complexity of the 
tundra landscape. The dataset has a higher density of feature distribution within the 
image scenes compared to other datasets (see statistics in Table 1). The sizes of these 
features vary significantly, ranging from one pixel to nearly covering the entire image 
scene.

3.4. EuroCrops

The EuroCrops dataset is the most comprehensive open-access dataset in the 
European Union, featuring 944 image scenes and corresponding crop land labels cap
tured in April 2019 (Schneider et al. 2021). The dataset, derived from two cloud-free 
Top of Atmosphere (TOA) Sentinel-2 images, offers a spatial resolution of 10 meters, 
focusing on central Denmark’s agriculturally rich and flat terrains. Each image scene is 
sized at 128 by 128 pixels, with detailed labels on five cropland classes: spring cereal, 
winter cereal, maize, grassland, and ‘other’. The features vary from very small (2 by 3 
pixels) to quite large (128 by 128 pixels) within the fixed-size image scenes (128 by 
128 pixels). This dataset has a moderate to high density of objects per image, with a 
wide range of object sizes (see statistics in Table 1). The 6-band nature of this dataset 
makes it particularly helpful for evaluating the advantages of Prithvi, which is also 
trained on six-band remote sensing imagery, to support agriculture research. Figure 1
demonstrates a few samples from each benchmark dataset.

4. The Prithvi model, task-specific adaptation, and model enhancement

4.1. Model architecture and pre-training

In the development of NASA-IBM’s Prithvi model, the pre-training phase plays a crucial 
role (Jakubik et al. 2023). The model is trained on HLS data, a dataset that fuses meas
urements from multiple satellite sensors, including NASA/USGS Landsat 8 and 9’s 
Operational Land Imager (OLI) and Europe’s Copernicus Sentinel-2A and Sentinel-2B’s 
Multi-Spectral Instrument (MSI; Masek et al. 2021). To ensure the consistency and reli
ability of this data, the HLS project employs algorithms for atmospheric correction, 
cloud and cloud-shadow masking, and spatial co-registration. Specifically, Prithvi was 
trained on the HLSL30 product, which offers a 30-meter spatial resolution and is pro
vided in a Cloud Optimized GeoTIFF (COG) format. The training data spanned the con
tinental United States for the year 2017 and focused on six spectral bands, namely 
Blue, Green, Red, Narrow NIR, SWIR 1, and SWIR 2.

Architecture-wise Prithvi is a specialized model tailored for geospatial applications, 
building upon Vision Transformer (ViT) for feature extraction (Dosovitskiy et al. 2021), 
as illustrated in Figure 2. The original ViT, a groundbreaking architecture for image 
classification, divides an input image into fixed-size patches, linearly embeds them, 
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and processes them through a series of attention layers (Vaswani et al. 2017). The 
result is a sequence of feature vectors, each representing the corresponding input 
patch, transformed based on the relationships between patches and the global con
text of the input. In adapting to the unique requirements of geospatial data, one of 
Prithvi’s distinguishing features is its capability to process remote sensing data in a 
video format. This adaptation involves transitioning the input format from the conven
tional image tensor notation (C, H, W) to a more complex video tensor format (C, T, H, 
W), where C denotes channels, T represents time steps, H, W are the height and width 
of the input data. Such a modification allows the model to better capture important 
feature presentation by analyzing not only the spatial relationships but also the tem
poral relationships. For downstream tasks involving static imagery, Prithvi allows for a 
straightforward adjustment by setting the temporal dimension (T) to 1, ensuring flexi
bility in handling various types of geospatial data inputs.

During the pre-training phase, Prithvi employs a Masked AutoEncoder (MAE) learn
ing strategy (He et al. 2022). The approach is particularly effective for self-supervised 
learning scenarios, both when labeled data is scarce or expensive and when dealing 
with large datasets. The MAE strategy involves masking a portion of the input data 
and then training the model to predict these masked values, thereby fostering a 
robust data representation. To facilitate this reconstruction, a decoder, consisting of a 
series of attention layers, is added to Prithvi. This decoder takes the encoded 

Figure 1. Sample images from the four benchmark datasets. (a) Mars crater. (b) Earth’s natural fea
ture. (c) Ice-wedge polygon. (d) EuroCrops.
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representations and reconstructs the original data, allowing the model to learn the 
intricate relationships within the data. The training process aims to minimize a Mean 
Squared Error (MSE) loss function, which quantifies the average squared differences 
between the predicted and actual values, serving as a comprehensive metric for train
ing performance.

4.2. Task-specific adaptation of Prithvi: model head and fine-tuning

Upon completing the pre-training of Prithvi, the next step is to adapt it for specific 
downstream tasks. This is achieved by appending a task-specific decoder (also called a 
model head) to Prithvi’s encoder to achieve different image analysis goals. Figure 3
shows our proposed image analysis pipeline that integrates Prithvi’s pretrained 
encoder and is customized for object detection and instance segmentation tasks.

To achieve these image analysis goals, we developed the pipeline utilizing the 
model heads (decoder) inspired by the Mask R-CNN architecture (He et al. 2017). As 
depicted in Figure 3, when using the feature map generated by Prithvi’s encoder as 
input, the task-specific adaptation module (labeled as 4.2 in the rightmost column of 
the figure) begins with the Region Proposal Network (RPN), which operates on the fea
ture map extracted from the previous stage. The RPN employs a sliding window mech
anism over the feature map to generate potential bounding box proposals for objects 
across various scales and aspect ratios. Following the generation of these region pro
posals, the workflow proceeds to process the Region of Interest (RoI). The RoI Align 
layer is employed here to convert these proposed regions of varying sizes into fixed- 
sized feature maps, enabling consistent processing by downstream layers. After the 

Figure 2. The Prithvi model and the pre-training architecture.
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RoI Align layer, each region undergoes processing by two distinct branches to gener
ate comprehensive outputs. The first branch, the detection branch, is tasked with 
bounding box refinement and object category classification. It refines the initial pro
posals to more accurately enclose the objects and classifies each object into its 
respective category. Following this, the second branch, the mask branch, comes into 
play specifically for mask prediction for each identified object. This branch is dedicated 
to determining the exact pixels within the refined bounding box that constitute the 
object, enabling the model to produce detailed masks that delineate the object’s pre
cise shape and boundaries.

Upon this pipeline, the Prithvi model can be further fine-tuned with domain data
sets for the desired tasks. When performing object detection, only the box branch is 
activated, whereas for instance segmentation, both the box and mask branches are 
employed. Training Prithvi on task-specific datasets enables the model to adapt its 
pre-trained knowledge to the unique characteristics of new datasets. This phase entails 
adjusting the weights across the entire model, including both the backbone and the 
appended head modules. Another strategy is to freeze the backbone weights and 
only train the decoder part to reduce training time and computational cost. In our 
study, we chose to fine-tune modules throughout the pipeline including Prithvi’s back
bone models so to achieve optimal performance. It is worth mentioning that this pipe
line is also generalizable so the performance of Prithvi with other models can be 
compared by replacing the feature extractor encoder.

To further improve the adaptability and predictive performance of the Prithvi model 
in downstream tasks, and to enable the incorporation of the most common 3-band 
image as input, we enhanced the pipeline by introducing two modules: the band 
adaptation module and the multi-scale feature map generation module. In addition, 
this pipeline enables the flexible integration of other pre-trained backbone models for 

Figure 3. Image analysis pipeline for object detection and instance segmentation tasks.
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performance comparison. The next sections will introduce how each strategy works 
and conducts a comparative analysis of different models.

4.3. Band adaptation module

The Prithvi model is intrinsically designed to handle 6-band geospatial data, maximiz
ing the use of the important information such multiband data provides. However, in 
many real-world scenarios, benchmark datasets (Bhuiyan et al. 2020, Schneider et al. 
2021) may have a different band configuration than the Prithvi model. To increase the 
Prithvi model’s applicability across diverse datasets, we developed three strategies (as 
shown in Figure 4) to adapt its original 6-band input to data with a different number 
of spectral and optical bands. The adaptation to the most commonly used 3-band 
RGB imagery is used as an example.

The first strategy, termed as the Zero-Padded Input, is depicted in Figure 4(b). This 
method involves augmenting 3-band data by appending three channels filled with 
zeros (depicted in black), simulating a 6-band input but devoid of any additional 
meaningful information. While this method seems to artificially inflate the data, it is 
computationally equivalent to adjusting the model’s weight loading to retain only the 

Figure 4. Input adaptation strategies. (a) Original input architecture. (b) Zero-Padded Input. (c) 
Channel Duplication. (d) Retrained Patch Embedding. The colors red, green, and blue represent the 
R, G, B band respectively.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



weights associated with the existing bands. This is due to the convolutional nature of 
the patch embedding layer that transforms the input data. Importantly, we maintain 
the use of the original CNN kernels in the patch embedding layer, as demonstrated in 
the initially trained model shown in Figure 4(a). Although straightforward, this method 
might not fully tap into the model’s capabilities, as it operates under the assumption 
that the missing three bands have a minimal bearing on the model’s overall 
performance.

Another strategy, referred to as Channel Duplication, is detailed in Figure 4(c). In this 
method, the existing 3-band channels are replicated to create a 6-band input, with the 
duplication of red, green, and blue colors evident across the six bands. This method is 
based on the assumption that the initial 3 bands are sufficiently informative for the mod
el’s tasks and that the missing bands don’t differ significantly in their feature-capturing 
capabilities compared to the available 3 bands. However, if the original 6-band model 
was designed to capture different types of features across all six bands, this method may 
not adequately substitute for that missing information. Like the Zero-Padded Input strat
egy, Channel Duplication also employs the same CNN kernels in the patch embedding 
layer, maintaining the same with the model’s initial training status.

Lastly, we developed the Retrained Patch Embedding strategy, as illustrated in 
Figure 4(d). Rather than modifying the data to fit the model, this approach reconfig
ures the initial patch embedding layer of Prithvi to directly process 3-band data. 
Rooted in the belief that the model’s architecture is versatile enough to adjust to 
fewer bands and that these 3 bands encompass all vital information, this method 
presents itself as a potentially more robust and sophisticated solution. As depicted in 
Figure 4(d), the CNN kernel within the patch embedding layer is reinitialized and tail
ored to process 3-band data, reducing the channels from 6 to 3 compared to earlier 
configurations. This modification not only streamlines the data processing but also 
reduces the model size, cutting down 590k parameters from the original model, 
thereby enhancing the efficiency.

4.4. Comparative analysis of Prithvi with other pre-trained models: 
benchmarking performance and adaptability in geospatial data processing

Leveraging the pipeline depicted in Figure 3, our goal in comparing Prithvi with estab
lished architecture is to pinpoint its strengths and potential areas for enhancement, 
with a particular focus on its training with geospatial data. To facilitate this evaluation, 
we have chosen three prominent, task-specific models: ViT (Li et al. 2022c), MViTv2 (Li 
et al. 2022d), and ResNet-50 (He et al. 2016). The comparison aims to highlight how 
Prithvi’s unique approach to processing geospatial data compares to these well-estab
lished models. The architectures of these four models, including Prithvi, are detailed in 
Figure 5 (a)-(d), providing a visual reference to understand the structural differences.

ViT, as illustrated in Figure 5(a), represents a significant shift in computer vision, 
adopting the Transformer architecture originally developed for natural language proc
essing (NLP). In this model, images are divided into patches, each processed akin to a 
token in NLP, enabling the Transformer to grasp global pixel relationships from the start. 
Similar to Prithvi, shown in Figure 6(c), both models operate predominantly at a single 
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Figure 5. Comparable backbone model architectures. (a) ViT, (b) ResNet-50, (c) Prithvi, and (d) 
MViTv2.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15



scale, producing single-scale feature maps, which aligns their approach to processing vis
ual data. The key difference between them lies in how they pay attention to these 
patches. Prithvi uses a multi-head attention mechanism, which looks at the image patches 
in a way that considers the entire image context, akin to taking a step back to see the 
whole picture. On the other hand, ViT employs multi-head window attention, which 
means it focuses on smaller, windowed areas of the image at a time, similar to zooming 
in on specific details. This difference in attention methods underlines the unique ways ViT 
and Prithvi handle visual information, making their comparison particularly insightful for 
understanding how each could be best used in analyzing geospatial data.

ResNet-50, as depicted in Figure 5(b), distinguishes itself from transformer models 
like Prithvi and ViT by utilizing a CNN structure capable of generating hierarchical fea
tures. Unlike the single-scale focus typical of transformer architectures, ResNet-50’s 
convolutional layers are organized hierarchically, enabling the extraction of features at 
multiple scales. A key aspect of ResNet-50’s architecture is its residual connections, 
highlighted in Figure 5(b). These connections employ shortcut pathways that bypass 
one or more layers, directly addressing the vanishing gradient problem by allowing 
gradients to flow through the network more effectively. This innovation is particularly 
important as it enables the efficient training of deeper networks by ensuring that the 
added layers contribute positively to the overall performance, rather than complicating 
or degrading it. The operation on the residual connection is specifically designed to 
activate when there is a discrepancy between the input and output dimensions, ensur
ing smooth transitions and dimensional consistency across the network. By facilitating 
deeper and more efficient network architectures without loss in performance, ResNet- 
50 has set a benchmark in computer vision, making it an important model for com
parative studies with transformer-based models.

MViTv2, illustrated in Figure 5(d), extends the Vision Transformer architecture by 
incorporating a unique multi-scale attention module. This key feature enables MViTv2 
to emulate the multi-scale feature generation typical of CNNs such as ResNet-50, 

Figure 6. Multi-scale feature map generation modules. (a) A feature pyramid network for extract
ing hierarchical image features. (b) A multi-scale image feature generation strategy from single- 
scale feature maps.
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blending the extensive contextual awareness of transformers with the precise, scale- 
sensitive processing characteristic of CNNs. This fusion creates a hybrid model that 
stands out in the architectural spectrum, offering a promising avenue for comparative 
analysis. MViTv2’s ability to produce hierarchical, multi-scale features marks it as a sig
nificant model for enhancing geospatial data analysis, bridging the divide between 
the singular scale focus of traditional transformer models and the layered, hierarchical 
structure observed in CNNs. Notably, MViTv2 incorporates a specialized pooling oper
ation within its residual connections, a mechanism designed to activate specifically 
when there is a discrepancy between the input and output dimensions. This adaptive 
feature ensures smooth transitions across dimensions, preserving essential information 
without compromising the integrity of the data being processed.

4.5. Multi-scale feature map generation module

In the domain of deep learning, the ability to capture multi-scale features is crucial, par
ticularly for tasks necessitating the identification of objects or patterns across varying 
sizes. Multi-scale features play a pivotal role in gathering information across different 
scales within an image, essential for recognizing patterns across a spectrum of resolu
tions. This capability is particularly important in tasks such as object detection, segmenta
tion, and recognition, where the defining characteristics of different objects may be most 
apparent at distinct scales. Therefore, we explore the enhancement of multi-scale fea
tures on the Prithvi model, aiming to assess how improvements in capturing these fea
tures can augment the model’s performance across a range of geospatial analysis tasks.

In our model comparisons, the backbone architecture significantly influences the 
effectiveness of multi-scale feature extraction. We analyze two distinct types of back
bones: the first type, as illustrated in Figure 6(a), is capable of generating hierarchical 
features, whereas the second type, shown in Figure 6(b), produces only single-scale 
features. Figure 6(a) represents the architecture of a Feature Pyramid Network (FPN; 
Lin et al. 2017), which generates multi-scale features within the backbone by aggregat
ing and upsampling features across various levels of the hierarchy. For backbones lim
ited to single-scale features, such as ViT, a multi-scale feature generation network (Li 
et al. 2022c) can be introduced, as shown in Figure 6(b), to mimic the function of an 
FPN. Both networks play a crucial role in generating multi-scale features, which are 
subsequently processed by a task adaptation head for making predictions.

In our comparative models, ResNet-50 and MViTv2 both adopt FPN shown in Figure 
6(a) to generate multi-scale features. As Prithvi’s backbone adopts ViT, which gener
ates feature maps at a single scale, to enable the multi-scale feature representation 
capability, the strategy described in Figure 6(b) is applied to boost its performance.

5. Experiment

In this section, we conducted a series of experiments to assess the performance of 
Prithvi compared to other popular AI models. The experiments were conducted on 
four NVIDIA RTX A5000 GPUs, each with 24GB of memory. To evaluate model perform
ance, mAP (Mean Average Precision) is used as the evaluation metric. This metric, 
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widely acknowledged in the computer vision community, provides a precise measure 
of a model’s predictive accuracy across various Intersection Over Union (IoU) thresh
olds, which compare the predicted area of interest (AOI) with the ground-truth AOI.

5.1. Input strategies: adapting 6-band prithvi to 3-band data

While Prithvi’s 6-band data is a unique aspect of the model, our study aims to assess 
the domain adaptability of the Prithvi model across diverse application domains, data 
sources, image resolutions, and geographical coverages. Given that many existing 
benchmark datasets may have a different band configuration than the Prithvi model, 
band adaptation becomes a useful feature. Additionally, because many AI models with 
state-of-the-art (SOTA) performance are often pre-trained with 3-band RGB data, devel
oping an effective strategy to adapt the Prithvi input to such data or other geospatial 
benchmarks with a different number of input bands will expand the model’s applic
ability. This approach will also help us compare whether there is a performance advan
tage of the Prithvi model pre-trained on remote sensing images over general-purpose 
AI models trained primarily on optical RGB images.

Therefore, to assess the adaptability of the Prithvi model, our experiment aims to 
evaluate the effectiveness of different input adaptation strategies, detailed in Section 
4.3. To achieve this, we utilized the proposed image analysis pipeline depicted in 
Figure 3, integrated with Prithvi’s pre-trained encoder. It was then further fine-tuned 
by each of the four benchmark datasets. The results presented in Table 2 highlight 
the comparative effectiveness of various input strategies applied across four datasets 
using mAP50 as the performance metric (where 50 means the IoU threshold is 50%). 
Among these, the Retrained Patch Embedding strategy emerged as the most effective, 
securing the highest mAP50 scores (0.840, 0.499, 0.483, and 0.595, respectively) and 
simultaneously reducing the model’s size, as discussed in Section 4.3. This strategy’s 
success is attributable to several key factors.

First, the Retrained Patch Embedding approach modifies Prithvi’s architecture at a 
low-level, adjusting the initial patch embedding layer to efficiently handle 3-band 
data. This modification enables the model to leverage the full spectrum of information 
present in the data, eliminating the need for artificial data augmentation or manipula
tion. In contrast, the Zero-Padded method simply expands the dataset by appending 
channels of zeros, which add no real value and may distract the model from focusing 
on pertinent features. Similarly, the Channel Duplication method, although it maintains 
the integrity of the original data, only duplicates existing information. This could 
restrict the model’s capacity to detect subtle differences within the data, owing to the 
resultant information redundancy.

Table 2. Effectiveness of different band adaptation strategies on multiple datasets and tasks. 
Performance metric: mAP50.
Input Strategy Mars crater Earth’s Natural Feature Ice-wedge polygon EuroCrops�

Zero-Padded Input 0.811 0.477 0.461 0.567
Channel Duplication 0.827 0.495 0.478 0.571
Retrained Patch Embedding 0.840 0.499 0.483 0.595
�The R, G, B bands of the EuroCrops dataset was used to test the input adaptation strategy.
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These findings emphasize the critical role of selecting an appropriate input strategy 
to enhance geospatial data analysis in sophisticated models like Prithvi. By precisely 
aligning with both the model’s architecture and the inherent characteristics of the 
data, the Retrained Patch Embedding strategy demonstrates its ability to significantly 
improve performance for adopting the popular 3-band image data as the model 
input.

5.2 Prithvi performance enhancement through pretrained multi-scale feature 
module integration

From experiments 5.1 and 5.2, the importance of multi-scale features in enhancing 
Prithvi’s performance became evident. In this experiment, we aim to further improve 
upon this aspect by exploring the potential for additional refinement of Prithvi’s capa
bilities. Our approach focuses on the integration of pre-trained weights from other 
models to enhance Prithvi’s ability to process features more effectively.

This experiment is structured around three distinct model configurations to evalu
ate the impact of a multi-scale feature module on Prithvi. The first model, ‘Prithvi 
Single-Scale’, employs the baseline Prithvi model, focusing exclusively on single-scale 
features, as investigated in experiment 5.1. The second model, ‘Prithvi Enhanced Multi- 
Scale’, extends Prithvi by integrating a multi-scale feature module. This module is 
distinctively initialized randomly and then directly trained on downstream datasets, 
foregoing any pre-training, as detailed in experiment 5.2. The third model, ‘Prithvi 
Advanced Multi-Scale (Pretrained)’, further evolves this approach by not only adding a 
multi-scale feature module to Prithvi but also enriching it with pre-trained weights 
from the study by Li et al. (2022c). This strategic integration of pre-trained weights is 
intended to capitalize on the extensive insights gained from training on large-scale 
datasets, thereby enhancing Prithvi’s feature processing capabilities further.

Our experimental findings, illustrated in Figure 7, highlight significant performance 
improvements in the Prithvi model achieved through the integration of multi-scale 
feature processing and the strategic application of pre-trained weights. Transitioning 
from its original setup, which was limited to single-scale feature processing, to 
advanced configurations that embrace multi-scale capabilities, Prithvi exhibits a per
formance boost across all four datasets. This improvement is largely credited to the 
inclusion of pre-trained weights, spotlighting the importance of drawing on extensive 
training to strengthen feature recognition across varying scales. As illustrated in Figure 
7, the performance improvement is more substantial when the original model exhibits 
lower predictive performance (as seen in the results of the other three datasets com
pared to the Mars crater dataset). Performance improvement is also greater when the 
features are more commonly seen in other pre-training datasets, such as Earth’s natu
ral features and the EuroCrops dataset, as opposed to ice wedge polygon, which is a 
less commonly seen landscape feature in general AI benchmark datasets. Overall, this 
strategy demonstrates the potential of leveraging other models’ pre-trained weights 
and accumulated knowledge to improve performance. It serves as a blueprint for 
enhancing deep learning models, suggesting that integrating pre-existing, well-trained 
components into new models can boost their efficiency and effectiveness.
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5.3. Comparative evaluation of Prithvi with established architectures across 
downstream visual recognition tasks

In this experiment, we evaluate Prithvi’s performance in object detection and instance 
segmentation, comparing it against three other models as introduced in Section 4.4. 
To improve their performance, all four models, including Prithvi, were enhanced with 
a multi-scale feature map generation module, as discussed in Section 4.5, to integrate 
multi-scale features effectively. Specifically, MViTv2 and ResNet-50 utilize the FPN to 
enrich their inherent hierarchical feature maps, as shown in Figure 6(a). Conversely, 
Prithvi and ViT adopt a multi-scale feature generation network, depicted in Figure 
6(b), tailored to their architecture. Despite their architectural differences, each model 
utilizes our proposed image analysis pipeline (Figure 3) for both detection and seg
mentation tasks. This provides a uniform basis for comparison, as detailed in Section 
4.2. To facilitate a comprehensive evaluation, all models were fine-tuned on specific 
downstream datasets with no weights frozen, enabling a full exploration of each archi
tecture’s capabilities.

A notable distinction lies in their initial training phases; all models, except Prithvi, 
were pre-trained on the ImagetNet for the model backbone and COCO (The Microsoft 
Common Objects in Context; Lin et al. 2014) for the task-specific head. To ensure a 
fair comparison, all the models featured a pre-trained backbone combined with a 
newly introduced multi-scale feature map generation module and a task-adaptation 
head for this phase of the experiment. By implementing this strategy, we ensured that 
all models were evaluated under similar conditions, facilitating an accurate assessment 
of their performance.

In our evaluation, detailed in Table 3, Prithvi demonstrated superior accuracy, par
ticularly in detecting Earth’s natural features, with a notable mAP50 score of 0.550. 
This achievement not only significantly outperformed the traditional CNN model, 
ResNet-50, but also surpassed the scores of other transformer-based models. Prithvi’s 
consistent performance across a variety of datasets—achieving mAP50 scores of 0.859 

Figure 7. Prithvi model performance across datasets.
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and 0.505 for Mars crater and ice-wedge polygons, respectively, and a score of 0.607 
for the EuroCrops dataset. Prithvi also outperforms the other models on all four test
ing datasets using the averaged mAP score mAP[.50:.05:.95] over multiple IoU thresh
olds. Based on the dataset description detailed in Section 3, it is clear that the object 
sizes of the datasets vary. Hence, we further applied mAP measures across scales to 
more comprehensively understand the model’s performance. As the results in Table 3
show, Earth’s natural features often have large sizes (relative to the image scene), 
while the crop lands in EuroCrops range from relatively small to medium sizes. While 
there are some variations in the model’s performance for segmenting objects with 
varying sizes, Prithvi still shows advantages over the other models, especially in mAP_ 
S and mAP_L. This result further verifies Prithvi’s adaptability and effectiveness in 
addressing diverse environmental and geospatial problems.

The direct comparison of Prithvi with ViT, considering their architectural similarities, 
offers valuable insights. Here, except for mAP_M on the Earth’s natural features data
set, Prithvi consistently demonstrates better performance than the ViT architecture. 
This comparison highlights the benefits of pre-training on extensive remote sensing 
datasets, which likely contributed to Prithvi’s better performance over ViT. 
Furthermore, the comparison between ViT and MViTv2 (with stronger performance 
observed for MViTv2 than for ViT) highlights the importance of incorporating hierarch
ical features early in the pre-training process. MViTv2’s ability to seamlessly integrate 
these features showcases a flexible approach to visual data processing that leverages 
the strengths of both transformer and CNN architectures.

Table 3. Comparative results of Prithvi and popular supervised models on geospatial datasets. 
Multiple performance metrics are used here: mAP50 is the mAP with an IoU threshold of 50%); 
mAP [.50:.05:.95] refers to the mean average mAP over different IoU thresholds [0.5, 0.55, 0.6, 
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95], mAP_S, mAP_M, and mAP_L measure the mAP across different 
scales. Small objects are smaller than or equal to 322 pixels, medium objects are between 322 

and 962 pixels (not including 322), and large objects are larger than 962 pixels..
Performance metric Model Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops

mAP50 Prithvi 0.859 0.550 0.505 0.607
ViT 0.844 0.522 0.492 0.601

MViTv2 0.847 0.540 0.502 0.594
ResNet50 0.793 0.515 0.486 0.561

mAP[.50:.05:.95] Prithvi 0.424 0.292 0.270 0.376
ViT 0.412 0.265 0.263 0.371

MViTv2 0.413 0.281 0.266 0.364
ResNet50 0.381 0.273 0.260 0.335

mAP_S 
S: small

Prithvi 0.389 N/A 0.246 0.367
ViT 0.374 N/A 0.238 0.365

MViTv2 0.377 N/A 0.243 0.360
ResNet50 0.346 N/A 0.235 0.331

mAP_M 
M: medium

Prithvi 0.639 0.127 0.429 0.477
ViT 0.637 0.144 0.422 0.448

MViTv2 0.646 0.111 0.417 0.435
ResNet50 0.623 0.139 0.415 0.393

mAP_L 
L: large

Prithvi 0.829 0.303 0.597 N/A
ViT 0.794 0.272 0.574 N/A

MViTv2 0.806 0.296 0.596 N/A
ResNet50 0.771 0.284 0.576 N/A
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Besides the prediction accuracy, we also compared the computational efficiency of 
different model architectures in terms of both training and inference speed. Table 4
lists the results. The numbers in the table are averaged speed over the four datasets. 
In fact, because all the input images, regardless of their sizes, will be transformed by 
all models into a fixed-size image before going through the image analysis pipeline, 
the time cost is independent of input datasets.

Table 4 results show that Prithvi and ViT exhibit similar inference and training 
speeds due to their analogous architectures, as shown in Figure 5. ViT’s multi-head 
window attention, compared to Prithvi’s multi-head attention, gives it a slight speed 
advantage. Both Prithvi and ViT are slower than MViTv2 and ResNet50, whose hier
archical structures progressively reduce the size of processed feature maps, leading to 
faster computations. ResNet50’s particularly faster speed than the other transformer- 
based models is attributed to its efficient residual connections and simpler architec
ture. In summary, while Prithvi has shown a clear advantage in prediction accuracy, it 
runs slower than the other comparative models. Hence, it is more suitable for applica
tions requiring high result accuracy and demanding less in computational efficiency.

5.4. Impact of image resolution on model performance

This experiment further explores the impact of input image resolution on model per
formance. We selected two datasets, ice-wedge polygons and EuroCrops, and the two 
best-performing models, Prithvi and MViTv2, for the comparison. For each dataset, we 
reduced the image resolution to 1/2, 1/4, and 1/8 of the original value and tested the 
model performance. The results, as shown in Table 5, indicate that both Prithvi and 
MViTv2 experience reduced performance as image resolution becomes coarser, but 
the trend of performance decrease is similar, even though the two models are pre
trained on different images (HLS vs. ImageNet). For example, on the EuroCrops data
set, when the image resolution is reduced to half (from 10 m to 20 m), the 
performance of both the Prithvi and MViTv2 models decreases substantially (29.16% 
for Prithvi and 27.78% for MViTv2). When the resolution is reduced further, a more sig
nificant decrease is observed (Table 5). In contrast, when the image resolution for the 
ice-wedge polygon dataset is reduced to half of its original size (from 0.5 m to 1 m), 
there is only a slight reduction in model performance. When the resolution of the 
input image is reduced further, the performance of both Prithvi and MViTv2 drops 
significantly.

This difference in results is less likely due to the discrepancy in image resolution 
between the pre-training images and the testing images of the foundation model, but 
rather due to the relative object size and the level of detail captured in the image 
scene. For EuroCrops, which uses Sentinel-2 data similar to the Prithvi pre-training 

Table 4. Computational efficiency of the Prithvi model.
Model Inference time (s) per image Training time (s) per iteration

Prithvi 0.297 0.657
ViT 0.263 0.441
MViTv2 0.164 0.319
ResNet50 0.097 0.265
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data, when the resolution of the testing image decreases, we did not observe a per
formance advantage for Prithvi compared to MViTv2, which is pretrained on ImageNet. 
This is because the cropland boundaries in EuroCrops are not very sharp in the ori
ginal image, so decreasing the image resolution makes the object boundaries blurrier 
and therefore more difficult to detect. However, even though the absolute size of ice- 
wedge polygon is small, because super high-resolution imagery (0.5 m) is used for the 
analysis, it maintains a good size in the image. Thus, even when reducing the reso
lution to half, the features are still large and clear enough to be detected. Hence, our 
conclusion is that while input image resolution does affect model performance, the 
impact is more dataset-dependent and less dependent on the consistency of image 
resolutions between the pre-training and testing images.

5.5. Data effectiveness of Prithvi in enabling few-shot learning

One desired property of a foundation model is the enablement of zero-shot or few- 
shot learning, and this capability is well-documented in large language models (LLMs). 
In this section, we conducted an ablation study using 75%, 50%, and 25% of the train
ing data to assess Prithvi’s few(er)-shot learning capability. As shown in Table 6, 
Prithvi’s performance has been quite stable when reducing the training datasets from 
100% to 75%, with no or very slight reduction in predictive performance. When reduc
ing the training dataset to 50%, a more noticeable decrease is found for processing 
Earth’s natural features and EuroCrops datasets. The model performance on Mars cra
ter and ice-wedge polygon datasets remains quite good. This is likely because the fea
tures in Mars craters and ice-wedge polygons are more similar to each other, so with 
fewer samples, the model is still good at making predictions. For the other two data
sets, which have more diversity in their training samples and feature types, more per
formance variance is observed. Overall, the Prithvi model shows very good data 
efficiency, with less than a 10% performance drop observed for the Mars crater, ice- 
wedge polygon, and EuroCrops datasets when reducing the training samples from 
100% to 25%. The models show a more significant reduction (19%) in predictive 

Table 5. Model performance (measured by mAP50) with different input image resolutions.
EuroCrops Model 10m 

(Original)
20m 40m 80m

Prithvi 0.607 0.430 (−29.16%) 0.251 (−58.65%) 0.154 (−74.63%)
MViTv2 0.594 0.429 (−27.78%) 0.259 (−56.40%) 0.141 (−76.26%)

Ice-wedge polygons .5m 
(Original)

1m 2m 4m

Prithvi 0.505 0.503 (-0.4%) 0.399 (-20.99%) 0.166 (-67.13%)
MViTv2 0.502 0.496 (-1.2%) 0.388 (-22.71%) 0.171 (-65.94%)

Table 6. Prithvi’s capability in enabling few-shot learning. The predictive accuracy values reported 
are mAP50.
Percentage of training data used Mars crater Earth’s natural feature Ice-wedge polygon EuroCrops

100% 0.859 0.550 0.505 0.607
75% 0.858 0.550 0.502 0.602
50% 0.855 0.520 0.503 0.586
25% 0.848 0.444 0.458 0.580
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performance for the Earth’s natural features, likely due to the smaller total number of 
samples in the dataset compared to the others (refer to Table 1 for dataset 
characteristics).

6. Discussions on the strengths and limitations of Prithvi

In previous experiments, we explored the effectiveness of the band adaptation strat
egy and multi-scale feature for adapting and enhancing Prithvi for diverse geospatial 
tasks. Since Prithvi contains only a backbone model pre-trained on multi-spectral data
sets, it lacks a fully released pipeline trained across all its components: backbone, 
multi-scale feature generator, and detection/segmentation head. In contrast, some 
other models, such as MViTv2, are already pre-trained on large AI benchmark datasets 
across all these modules to achieve optimal performance during model adaptation. To 
ensure a fair comparison, in the experiments from Section 5.1 to Section 5.3, we main
tained consistent experimental conditions across all models, including the use of the 
multi-scale module and the use of pre-trained weights in the detection/segmentation 
head. These experiments demonstrated the power of Prithvi’s backbone model in 
adapting to remote sensing image analysis tasks due to the knowledge learned from 
similar data during pre-training.

In this section, we conduct further experiments to identify areas for improvement 
in Prithvi. We compared the Prithvi model with the MViTv2-Optimal model, which is 
fully pre-trained and optimized on the entire segmentation pipeline with multi-spec
tral data input. The EuroCrop dataset is used as the experimental dataset because it 
contains the 6-band data required for Prithvi. Since the pre-trained MViTv2-Optimal 
can only take 3-band data as input, only the RGB band of the EuroCrop data is sent to 
MViTv2-Optimal.

Table 7 shows the comparative results. When Prithvi takes 6-band input, the mod
el’s predictive performance improves (from 0.641 to 0.657) compared to when it is 
given only 3-band input. This improvement validates that incorporating a broader 
spectral range can enhance a model’s capacity to interpret and analyze remote sens
ing imagery, underscoring the value of accessing extensive spectral information to 
boost the effectiveness of deep learning models.

When the Prithvi model taking 6-band input is compared with the optimized 
MViTv2 taking 3-band input, it still shows a performance gap. This result emphasizes 
the value of conducting full pre-training/fine-tuning across task-specific pipeline (as 
the MViTv2-Optimal did). And this feature is critical to achieve a SOTA performance to 
fully demonstrate the value of multi-spectral remote sensing training data in relevant 
analysis. In fact, in other foundation model such as Microsoft’s Florence model (Yuan 
et al. 2021), the SOTA performance is achieved not only because of the backbone 
model pretrained on a massive amount data (which is highly important), the model is 
further carefully trained on large datasets supporting downstream tasks. Despite the 

Table 7. A comparison between Prithvi and the optimal configuration of MViTv2 on 6-band data.
Model EuroCrops (6-band) EuroCrops (3-band)

Prithvi 0.657 0.641
MViTv2-Optimal N/A 0.708
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power demonstrated by Prithvi’s backbone model, pre-training on the entire pipeline 
is a clear area for improvement for the Prithvi model.

It is also worth mentioning that a fully trained task-specific pipeline is critical to 
improving Prithvi’s data efficiency and enabling few-shot learning. In Section 5.6, we 
demonstrated the stable performance of Prithvi when substantially reducing the train
ing sample size in downstream tasks. However, there are still at least 100 samples 
used in each benchmark dataset to fine-tune the Prithvi model due to the need to 
train new heads and adaptation layers. When a well-trained task-specific pipeline 
becomes available, there is an opportunity for Prithvi (and other vision foundation 
models) to enable domain adaptation with only a few data samples.

7. Conclusion and future work

This paper evaluates the effectiveness of NASA-IBM’s foundation model Prithvi in its abil
ity for multiple downstream tasks for remote sensing image analysis. Four benchmark 
datasets containing environmental and land use features and covering diverse geo
graphical regions are selected in the analysis. Through a series of experiments, we dem
onstrated the advantages of the Prithvi model in gaining useful geospatial knowledge 
from multi-spectral HLS data and its effectiveness in object detection and segmentation 
tasks compared to other large task-specific AI models. Besides evaluation, we have also 
proposed and developed an image analysis pipeline that can incorporate multiple back
bone models with enhancement strategies to further boost up Prithvi’s performance. 
The patch embedding strategy improves the Prithvi model’s data adaptability, and the 
multi-scale feature generation further enhances Prithvi’s feature extraction capability.

However, we also identified a weakness in Prithvi, specifically its lack of a fully 
trained task-specific pipeline despite its powerful backbone model for geospatial ana
lysis. The analysis in Section 6 demonstrates that although the incorporation of multi- 
spectral data is crucial in remote sensing image analysis, its effectiveness may not be 
well showcased without an optimized model pipeline carefully trained with large data
sets. Despite fine-tuning the proposed pipeline (Figure 3) with smaller, domain-specific 
datasets, the introduced parameters may not be well trained due to the limited scale 
of relevant data. Therefore, a potential area for Prithvi’s improvement is further fine- 
tuning major image analysis pipelines with its pre-trained backbones to enhance 
performance in downstream tasks. Achieving this, however, is non-trivial, demanding 
substantial computing power and the exploration of new techniques for model train
ing and behavior monitoring. A community-driven approach and collaboration among 
academia, industry, and government agencies may provide valuable insights to collect
ively advance in this direction.

As geospatial foundation model research has been rapidly advancing, it is very impor
tant to develop a standardized benchmarking approach to ensure the thorough evalu
ation and fair comparison of existing models. In preparing the benchmarking data, it is 
crucial to prevent data leakage, a known issue where general foundation models memor
ize content from pre-training data (Chen, Li, et al. 2024, Xu et al. 2024). For the evaluation 
of geospatial foundation models, especially vision models, four strategies could help 
mitigate this issue: (1) Geographical diversity: Since geospatial data are often 
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associated with specific locations, ensuring that benchmarking datasets come from a 
wide range of geographical locations can prevent overlap between pre-training and test
ing data. In our case, multiple datasets such as Mars crater, Arctic Ice Wedge Polygon, 
and EuroCrops have different geographical coverages (Martian surface, Arctic, and cen
tral Denmark) from Prithvi’s pre-training data centered on the continental US. (2) 
Transparency: Clear documentation of benchmark data utilization should be strongly 
encouraged in the GeoAI research community. Filling out a ‘benchmark transparency 
card’ (Xu et al. 2024) with a list of datasets and evaluation-related questions will help 
improve transparency and clarity, facilitating the healthy development of geospatial 
foundation models. (3) Multimodality: Geospatial data is very rich in terms of data 
source, resolution, and spectral bands. Leveraging data acquired from diverse satellite 
platforms will help evaluate transferability in Earth science applications across data 
modalities. In Prithvi’s case, we adopted datasets from diverse input sources and applica
tion areas to achieve a comprehensive view of the model’s transferability and adaptabil
ity. (4) Spatial autocorrelation: A significant difference between GeoAI and general AI 
research is its location relevance. Because of this, GeoAI datasets will possess the prop
erty of being spatially correlated, indicating that geospatial data from nearby locations 
are more similar to each other. To prevent data leakage issues, it is important to identify 
potential spatial autocorrelation within the benchmark data to avoid oversampling pre- 
training data that have more geographical proximity to the testing data (Li et al. 2024b). 
We hope these discussions will facilitate further dialogue toward developing a sustain
able ecosystem for geospatial foundation model and GeoAI research.

In conclusion, this research contributes to a more comprehensive understanding of 
geospatial foundation models by exploring the benefits of pre-training with remote 
sensing imagery and important aspects leading to stronger predictive performance in 
real-world applications. We have also demonstrated methods to adapt and enhance 
the data and application adaptability of the Prithvi model. The knowledge gained 
from this study is intended to be valuable for geospatial researchers interested in inte
grating geospatial foundation models (GFM), like Prithvi, into their research. Our work 
also provides insights into the construction and fine-tuning of future GFM for achiev
ing optimal performance.
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