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ABSTRACT

Bayesian Additive Regression Trees (BART) are non-parametric models that can capture complex exogenous
variable effects. In any regression problem, it is often of interest to learn which variables are most active.
Variable activity in BART is usually measured by counting the number of times a tree splits for each variable.
Such one-way counts have the advantage of fast computations. Despite their convenience, one-way counts
have several issues. They are statistically unjustified, cannot distinguish between main effects and interaction
effects, and become inflated when measuring interaction effects. An alternative method well-established in
the literature is Sobol” indices, a variance-based global sensitivity analysis technique. However, these indices
often require Monte Carlo integration, which can be computationally expensive. This paper provides analytic
expressions for Sobol” indices for BART posterior samples. These expressions are easy to interpret and are
computationally feasible. Furthermore, we will show a fascinating connection between first-order (main-effects)
Sobol” indices and one-way counts. We also introduce a novel ranking method, and use this to demonstrate
that the proposed indices preserve the Sobol -based rank order of variable importance. Finally, we compare

these methods using analytic test functions and the En-ROADS climate impacts simulator.

1. Introduction

Bayesian Additive Regression Trees (BART) have become an increas-
ingly popular tool for complex regression problems and as emulators
of expensive computer simulations [1-3]. BART sidesteps the O(n%)
matrix decompositions required by arguably the most popular statisti-
cal regression tool, Gaussian processes (GPs) [4]. These cubic matrix
operations pose issues whose severity continues to grow in the era
of big data. BART, like GPs, can capture complex exogenous variable
effects without having to specify their functional forms.

To assess the activity of these exogenous input variables, BART
offers a variable count heuristic proposed by Chipman et al. [1], which
comes nearly for free once a BART model is fit. This method counts
the number of times a variable is included in BART’s trees as a split
variable. For example, the tree in Fig. 1a splits on x; twice and on x,
once. Using this heuristic, input x; would be considered to be twice as
active as input x,. The idea is that if many nodes in BART’s trees split
on a variable, then that variable is deemed important in predicting the
response. To this day, count-based methods remain the most popular
way of assessing input activity in BART. For example, Bleich et al.
[5] also rely on these posterior inclusion proportions in their proposed
variable selection methods.

But as Liu et al. [6] note, one-way counts are not theoretically well-
understood. Furthermore, their ability to adequately capture even the
order of input importance is suspect. Fig. 2 shows the variable counts of
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1000 posterior samples from a BART model trained in data generated
from the function f(x) = (x; — 0.5)(x, — 0.5) + 0.5(x3 — 0.5) on the unit
hypercube [0, 11*. Marginally, variables x; and x, have zero effect on
f(+), which makes variable x; marginally the most important input. But
the variable counts in Fig. 2 show x; and x, to be more active than x;.
Thus, the individual marginal counts seem to conflate the interaction
effect between x,; and x, with their marginal effects.

To better assess input activity, we may instead use the variance-
based global sensitivity analysis method introduced by Sobol” [7]. He
showed that if f(x) is a real-valued, square-integrable function on [0, 1]?
then f(x) can be decomposed into a sum

d d
fx)=fo+ Z filxp) + Z Z i x) 4o+ fio (X1 X0, .00 Xp),

i=1 i=1 j<i
where each summand depends on a subset of x. Assume that the relative
frequency with which the inputs of f(x) occur can be modeled by
X=X}, Xp,....X,) where X, ... X, i U(0, 1). Then if the variance of
the ith term in the Sobol” expansion which depends on x; is large, then
x; is deemed important in predicting the response. Computing these
variances and expectations requires Monte Carlo integration when f(x)
is not known in closed form, and hence becomes untractable as the
number of inputs increases.
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(a) Node view of the example tree.
Input x* = (0.9,0.6) falls into the gray terminal
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(b) Level-set view of the example tree.
Input x* = (0.9,0.6) is shown as the black point.

Fig. 1. Two different views of the same example tree.
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Fig. 2. One-way variable counts of 1000 posterior samples from a BART ensemble
trained in data generated from the function f(x)= (x; —0.5)(x, —0.5) + 0.5(x3 — 0.5) on
the unit hypercube [0, 1]°.

Sobol” indices have been estimated or computed for various types
of metamodels. These approaches can be divided into two groups
depending on whether they assume the inputs are uncorrelated. For
uncorrelated inputs, Chapter 7 of [4] provides an overview of GP-
based Sobol” indices and their formulae for GPs with certain mean
and correlation structures [see also8-13]. Sudret [14] provide analytic
expressions for polynomial-chaos-based Sobol” indices, which reduces
the computational burden to obtaining the desired polynomial-chaos
coefficients. Finally, Gramacy et al. [15] and Gramacy and Taddy [16]
suggest using Sobol” indices for Dynamic Trees and Treed Gaussian
Processes, which use integration approximations via Latin hypercube
designs to compute these index estimates. For possibly correlated in-
puts, Da Veiga et al. [17] compute first-order sensitivity indices of local
polynomial smoothers and provide theoretical asymptotic properties
for the indices. Wei et al. [18], motivated by high-dimensional input
spaces, show that the random-forest-based permutation variable impor-
tance measure converges in n to twice the unnormalized total-effects
Sobol” index. The methods from [17,18] avoid numerical integration,
but do not compute interactions between specific input variables.

Our primary contribution is to use Sobol” indices for BART model-
based input activity. For a given BART MCMC draw, we derive analytic
expressions that can be computed exactly for interactions of any order
and do not require Monte Carlo integration, which can be expen-
sive when the number of input variables is large. We furthermore
establish a connection between first-order (main-effects) Sobol” indices
and one-way counts. Finally, we compare the methods using analytic
test functions and demonstrate that Sobol” indices applied to BART
accurately capture true variable effects while remaining computation-
ally attractive and easy to interpret. To perform this comparison, we
consider both the estimation of the Sobol” indices and evaluate the
order-preserving sequence of active variables using a proposed novel
rank-order statistic.

The rest of the paper is organized as follows. In Section 2, we review
BART. In Section 3, we derive Sobol” indices for BART and establish a
connection between first-order Sobol” indices and one-way counts. In
Section 4, we provide computational details. In Section 5, we introduce
our rank-order statistic, perform simulation studies, and apply Sobol”
indices to a BART-based emulator of the En-ROADS climate simulator.
In Section 6, we conclude the paper with a discussion. Proofs of stated
theorems can be found in Appendix A.

2. Review of BART

We wish to make inference on an unknown function f:D — R,
where domain D is a p-dimensional subset of R?. We will assume
for the rest of the text that domain D is a bounded hyperrectangle,
ie. D= Hj’le 5= le [a},, b)), where I} is the jth marginal interval

of D for j = 1,...,p. We observe the data @ := {(y(X).X)}i=1.. >
where each observation y(x), based on predictor x = (x, ... i
assumed to be a realization of the random variable

Y(x) = /() +e, (€8]

where ¢ £ N(0,62).

To make inference about the unknown function f(-), we approxi-
mate it by a sum of m regression trees. That is, we make the approxi-
mation

m
JE &Y g T M), @)
t=1
where each g(-;7;,,M,) : D — R denotes a regression tree function
and the parameters {7;, M,}/" are given a prior distribution in BART’s

hierarchical Bayesian model structure. Each g(-; 7;, M,) contributes a
small portion to the total approximation of f(-). Hence, the expected
response E[Y(x) | {(T,,M,)};":]] at a given input x is the sum of
each of the contributions g(x; 7;, M,). The model in Eq. (2) is called
a sum-of-trees model.

2.1. Single-tree model

To explain the sum-of-trees model, we will first set the number of
trees m = 1 and describe the notation of the resulting single-tree model.

The single-tree model is the Bayesian implementation of the Classi-
fication and Regression Tree (CART) model as proposed in [19]. CART
can be used for classification, but we assume for the paper that it is
being applied to the regression setting as described in Eq. (1). The CART
model provides a prediction of f(x) at input point x given observed data
9. CART partitions the input space and fits a constant mean model in
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each subregion to form the predictions. CART constructs the partition
via a binary tree structure. To form the partitions, each internal node
contains a boolean split rule. Starting at the root node, if an input
point x satisfies the split rule, it will travel to the node’s left child;
otherwise x will travel to the right child. The input point x will continue
to traverse through the tree in this way until it reaches a terminal node.
This terminal node’s parameter is the predicted value of f(x).

Fig. 1 shows an illustrative example. Suppose the tree in Fig. la
is used in a single-tree model to predict an output value for input
x* = (x],x3) = (0.9,0.6), where the input space D is the closed unit-
square [0, 1]°. Starting at the root node in Fig. 1a, we see that x* satisfies
this split rule (i.e. x; < 0.7), which moves x* to the left child. We then
see that x* does not satisfy this split rule (i.e. x] > 0.2), which moves
x* to the right child, which turns out to be a terminal node. Because
we are using a single-tree model (i.e. there is exactly m = 1 tree), this
mean parameter y, becomes the predicted value for input x*. Fig. 1b
shows the corresponding hyperrectangle view of the tree.

A tree’s parameters can now be organized in the following manner.
Let 7 denote the set of parameters associated with the tree’s split
rules (i.e. the split variable and cutpoint for each internal node) and
topology. Let M denote the set {4, } of parameters associated with the
tree’s terminal nodes. The single-tree model is thus f(-) = g(-; 7, M),
where f(-), defined in Eq. (1), is the mean of the observed process.
Here, we think of g(-; 7, M) being a function that assigns a value y, to
input x according to the parameters in 7 and M. Let R, C D denote the
hyperrectangle associated with the tree’s terminal node that contains
parameter y,. Then,

IM|
g6 T M) = Y iy lg ). 3
k=1
We may further decompose each hyperrectangle R, into the Cartesian
product of its p marginal intervals I},..., T ,’; and hence write le (x) =
T, 1, ).

2.2. Sum-of-trees model

Now consider the sum-of-trees model in Eq. (2) for m > 1. If
the parameter sets {(7;, .M,)};”= . have been established, we will let the
function

m m M|
ECATL MM ) 1= g T M) = 30 D iy, () )
=1 =1 k=1
denote the sum-of-trees approximation in Eq. (2). To streamline nota-
tion, we will refer to £ as both the function £(-; {7;, M, ) and as the
collection {(T,,M,)}t”‘:l. Thus, we write (T, M) € € if (T, M) = (T;, M,)
forsometr=1,...,m.

2.3. Bayeslan tree models

The sum-of-trees model is specified by the parameters {(7;, M)} |
and 2. Hence, a trained BART model will sample from the posterior
distribution

(0| D) x L(O | D)n(O), 6

where @ = {(T;, M), (T, M,), ... ,(Tm,Mm),az} are the parameters, &
is the observed data,

n

LO|D)xoc™" exp(—ﬁ Z(J’(Xz’) - Zg(xi;TNMt))z)
=1

i=1
is the likelihood, and #(©) is the prior.

Chipman et al. [1] specify the full prior z(©) by constraining it to
satisfy independence conditions

(@) =

t=1

[~ 1 T,)ﬂ(T,)] (0%, 6)
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and
M|

x(M, 1T = [] 7 1 7D @
k=1

for all t = 1,...,m. In Eq. (6), the parameter sets (7;,.M,) and o>
are constrained to be mutually independent. In Eq. (7), the terminal
node parameters of every tree are constrained to be independent. These
independence conditions simplify the problem of specifying the full
prior 7(0) to specifying only the priors z(7;), z(u,, | T;), and z(c?).
Forcing the priors #(7;) and #(u,, | 7;) to be identical for all k =
I,....,IM,| and t+ = 1,...,m further simplifies the prior specification
problem. Furthermore, Chipman et al. [19] choose the three prior forms
to simplify analysis and computation by taking advantage of known
conjugacy pairs. In particular, they choose the z(y,, | 7;) prior to be a
conjugate Normal distribution. To configure the priors, Chipman et al.
[1] recommend automatically specifying the relevant hyperparameters
using data-driven methods.

The posterior in Eq. (5) can thus be sampled using the following
Gibbs sampler:

1. Draw {(7,, M}, | 0%, 2.
2. Draw o7 | {(T, MD}" |, D.

For Step 2, we can draw ¢ | {(T;, MDYL,, D by performing a simple
conjugate Gibbs step. Step 1 itself will also be a Gibbs sampler that

relies on being able to sample from the conditional distribution
(T, M, | (T, M) Y ey 6%, D) (8)

for all t = 1,...,m. To sample from this conditional distribution, we
simplify the likelihood by noting

i 2

L©|2)xo™" exp(—z%‘2 ;(rmx,-) —8(x: T, M) ) >

where r,(x) = y(x;) — ¥ 4 &;T,. M,). Therefore, the conditional
distribution in Eq. (8) for any + = 1,...,m relies on (T MDY e
and 9 only through R, = {(r(x,),X;)},=1 .- Hence, the conditional
distribution can be expressed as (7, M, | R,,s?), where R, plays the
role of & in the single-tree version of Step 1 of the Gibbs sampler. Each
draw from the conditional distribution in Eq. (8) for any t=1,...,m is
then reduced to two draws:

(a) Draw T, | 6%, R,.
(b) Draw M, | 7;,62,R,.

3. Sobol” indices

In Section 1, we introduced the idea from [7] that the variance of
any real-valued function defined on and square-integrable in a unit-
hypercube domain can be decomposed into a sum of variance terms.
The Sobol” [7] results apply when inputs X, X5, ..., X , are continuous
and mutually uncorrelated with finite interval supports. Thus, using
Eq. (4), we can decompose the variance of a BART ensemble function
into a sum of terms attributed to single inputs or to interactions
between sets of inputs.

To develop our BART-based Sobol” indices, we will require the
following assumptions:

Al X,,..,X,are mutually uncorrelated;

A.2 X;’s density z; is positive almost everywhere on the domain’s ith
margin;

A.3 Conditional on parameter sets {7;, M, }]” , the relation

E AT, ML) = EX*{T;, M,})) holds if and only if input

points x and x* belong to the same set of m terminal nodes.

We use conditions A.1 and A.2 to extend the two original results
from [7] and to derive Sobol” indices for BART ensembles. Condition
A.3 follows from each y,; |7; being conditionally Normal. If inputs x and
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x* belong to different terminal nodes in some tree 7, then their corre-
sponding terminal node parameters almost surely have different values,
which results in g(x; 7,, M) # g(x*; 7., M,). Therefore, condition A.3
is a reasonable assumption to make. We also note that condition A.3
is used only when relating Sobol” indices to counts and does not affect
the computation of Sobol” indices for BART ensembles.

We can now state the desired generalized version of the vari-
ance decomposition described in [7]. For any random vector X =
Xysoees X)) that satisfies conditions A.1 and A.2 on p-dimensional
bounded hyperrectangle domain D and for any real-valued function f
square-integrable on D, the variance of f(X) can be decomposed into a
sum of terms attributed to single inputs or to interactions between sets
of inputs. That is,

)4 )4
Vary (X)) = D Vi+ DDV ++Viy 9
i=1

i=1 i<j

where we recursively define for each variable index set P C {1,2,..., p}

Vp 1= Vary, (Ex_, /) 1 Xp1) = Y Vg 10
ocp

where the sum is over all nonempty, proper subsets O of P. In

particular, the (unnormalized) first-order Sobol” index V; (i.e. V when

P ={i})is

V; i=Vary (Ex_[f(X)| X;D

for all i =1, ..., p. Also, the (unnormalized) second-order Sobol” index
V;; is

1,
v, i=Var (Ex  [fX) X, D=V, -V,

for all i # j. Often, each Vp term is divided by the total variance
Vary(f(X)) to produce normalized Sobol” index

Sp 1= Vp/Varx(f(X)). 11

By Eq. (9), the sum of all normalized indices equals unity. This allows
comparison between indices of different functions.

3.1. Sobol” indices applied to BART

Next, we apply this variance decomposition for general L, functions
f(-) to BART ensemble functions &(-;{7;, J\/lt};”= ). That is, we will
compute the terms in the right hand side of Eq. (9) for BART ensembles.

The core terms to compute in Eq. (10) are the conditional expecta-
tion Ex ,[E(X; {7, M 12 | Xp] and its variance with respect to Xp.
By integrating both sides of Eq. (4), we obtain an analytic expression
for the conditional expectation:

Ex_ [EXATL ML) [ Xpl = Y d 1gp(Xp), (12)
kEBg

where the set B, indexes the terminal nodes of ensemble &, the |P|-
dimensional hyperrectangle RkP is the projection of terminal node k’s
p-dimensional hyperrectangle R, onto the dimensions in P, and d;P =
mP_p(R; "), where we introduce the notation Pp(-) = Px, () =PXp €
-). Theorem 1 then provides an analytic expression for the variance of
the conditional expectation.

Theorem 1.  For any random vector X = (X|,...,X,) that satisfies
conditions A.1 and A.2 on a p-dimensional bounded hyperrectangle domain
D, the variance of the conditional expectation in Eq. (12) with respect to

variable index set P is
Vary, (Bx_ [EK T, M) 1Xp1) = Y Y diPdr"cl,  a3)
keBg I€Bg

where d;? = uP_p(R;") and c,jj, = Pp(RY N R}) — Pp(R))Pp(R)
(if P = {1,...,p}, then d,:P = ). In particular, the (unnormalized)
first-order Sobol” index V; is

Vi= D Y didric,

kEBg 1B

where d' = u [1;4 P,(I)) and C},, = P,(IL 0 1)) = P,(IDP, (1)
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3.2. How do counts and Sobol” indices relate?

To this day, count-based methods remain the most popular ways of
assessing input activity for BART. But as Liu et al. [6] note, they are
not theoretically well-understood. We have seen in Fig. 2 a scenario in
which the one-way count metric not only inaccurately measures input
activity in the data-generating function f but also incorrectly ranks
the variables in order of importance. Chipman et al. [1] and Bleich
et al. [5] also detail scenarios that question how accurately one-way
count metric assess input activity in the data-generating function and
suggest ad-hoc work-arounds, such as fitting BART with small m to get
an empirically better behaved estimate of input activity. But how do
counts perform when assessing input activity in the BART ensemble
itself? To answer this question, we turn to the example in Fig. 3a. The
count metric will look at number of splits and conclude that variable
x; is twice as active than variable x;. But if we look at the terminal
node values of the ensemble, variable x; is clearly more important than
variable x; in determining the ensemble’s predicted value. If the count
metric is not measuring variable importance in the ensemble, then what
exactly does it measure? Theorem 2 answers this question.

Theorem 2. Let & be a BART ensemble of m regression trees with
parameters {T,, M, }:"=1. Assume € satisfies assumptions A.1, A.2, and A.3,
and fix i € {1, ..., p}. Then the number of unique split rules in £ that involve
variable x; equals the number of jumps in the piecewise-constant function
Ex  [EX AT ML) | X =]

To see why Theorem 2 might be true, consider a BART ensemble &,
with m regression trees, where each tree is simply a terminal node. The
ensemble &, which predicts the same value for any input x € D, can
turn into any m—tree BART ensemble & by undertaking an appropriate
sequence of birth processes. Any birth process slices a terminal node’s
corresponding hyperrectangle into two smaller hyperrectangles accord-
ing to some split rule. If we call this split rule “x; < ¢”, then this slice
occurs on the (p — 1)-dimensional hyperplane x; = ¢ in D. The resulting
“left” (“right”) hyperrectangle gains a terminal node parameter y,
(parameter p,,,,), where py,r; # py0p, through assumption A.3. If the
split rule “x; < ¢” did not already exist in the ensemble, then the
piecewise-constant function Ex [E(X; {7;, M,}/L) | X; = -] must have

been constant at x; = ¢ prior to the birth process, which means the birth
process produces a jump in the piecewise-constant function at x; = c.
Meanwhile, no jumps are produced in any of the other piecewise-
constant functions Ex,, [EX; (T, M,};"zl) | X; = -] (where j # i). Hence,

under assumptions A.1, A.2, and A.3, each birth process that produces
a unique split rule that involves variable x; increments the number of
jumps in the piecewise-constant function Ex [EX:H T, M, }:”: D) | X; =]
by one.

Theorem 2 also provides a link between the one-way count metric
and the theoretically more well-understood first-order Sobol” index.
Under the conditions of Theorem 2, the one-way count of variable
x; is the number of jumps in the conditional expectation function
Ex [EXAT. ML) | X; = -] Under the conditions of Theorem 1,
the first-order Sobol” index of variable x; is the variance of the con-
ditional expectation Ex [EX; {7’,,./\/1,}:”= DXl Thus, under certain

conditions, both the one-way count and the first-order Sobol” index
of variable x; are functions of the conditional expectation function
Ex [EX AT ML) X =1

Interestingly, the number of jumps and variance can each be viewed
as a measure of variability. Under this lens, the one-way count metric
can been seen as a more crude version of the first-order Sobol” index.
Theorem 3 describes how to “standardize” the conditional expectation
function so that its variance becomes the number of jumps of the
conditional expectation. We use the term standardize because many
different conditional expectation functions can be transformed into the
standardized conditional expectation function, but the standardized
conditional expectation function cannot be transformed back into the
original conditional expectation function.
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(b) Level-set view of £.

Fig. 3. Two different views of the same ensemble &.

Theorem 3. Let £ be a BART ensemble satisfying A.1, A.2, and A.3.
Recall that for all dimensions i = 1,...,p, the conditional expectation
function Ex_[EX{T;, M, })L ) | X; = -] is piecewise constant and hence
can be written as Ex_[EX{TL, ML) | X; =] = Zk*eB‘r’g e;'c*IIL-*(-),
where Bé indexes the intervals of this piecewise constant function. Suppose
for any indices k*,1* € B, thate,, = e), implies I,, = I, (i.e. the piecewise
constant function has distinct values in different input regions). Consider the
following transformations to this conditional expectation function:

1. Center and scale {e,

variance' equals |BL|.

D k* e B,is} so that the corrected sample

2. Assign equal probability mass |Bf€|_1 to each I},.

Then the number of jumps in this transformed conditional expectation
function equals its variance.

As with condition A.3, the added “¢/, = e;* implies I', = II’;”
assumption in Theorem 3 follows from each y; |7 being conditionally
Normal. We may use reasoning similar to before to argue that this

assumption is also reasonable to make.
4. Computational details

Given a L? function f, we wish to estimate its normalized Sobol
indices Slf, as defined in Eq. (11) for all variable index sets P. We do
so by first training a BART model on data generated from Eq. (1) and
drawing N samples O, ...,0™ from the resulting BART posterior
in Eq. (5). For each variable index set P, we then compute

Var,, (Bx_, [ (7,7, MOV ) 1 XD = Zoerrop Ve

SQ(!) o
P = R R
Varyg (EX: {7V, M) )

for each posterior draw OV, where j = 1,..., N. We can then obtain
a point estimate of S){; by approximating the integral | S}? dn(© | 9)
using the sample mean of Sg(l), ,S]‘Z(N). That is, our point estimate of
Slf; is

1 < )
of — ou
Sh=+ Z 59

1 The definition we use for the corrected sample variance of real numbers
X, X, is (n= 17T Y (x; — %)%, where x = 7! Y| x; is the sample mean of

Xiseees Xy

At the core of these calculations is the variance term

Vary, (Ex_,[60% {7, M, | Xp1)

which we showed can be computed exactly using Theorem 1. Further-
more, it turns out that possibly many, if not all, of the summands
in Eq. (13) are zero. Theorem 4 below explains under what conditions
a summand vanishes.

4.1. Unnormalized Sobol” indices

A sensible goal in sensitivity analysis is to compute all first-order
Sobol” indices. According to Eq. (13), each unnormalized first-order
index V; for £ is a sum of |B,|* terms. Hence, computing all p first-
order indices requires calculating p x |Bg|2 terms. However, we may
take advantage of BART’s additive structure to reduce the number of
terms to compute.

Consider the example ensemble &£ consisting only of the m = 4
trees in Fig. 4. Because ensemble £ has |Bg| = 8 terminal nodes, the
unnormalized first-order Sobol” index V; is a sum of |Bg|?> = 64 terms.
However, only tree (7;,M,) splits on variable x,, which makes the
conditional expectations E[g(X;7,, M) | X; = x1, E[g(X; T3, M3) |
X, =x], and E[g(X;T;, My) | X; = x,] constant in x,. Thus,

Vi =Vary (EBIECK: (T, M, )L ) | X,])

:VarX]<E[2g(X;T,,M,) | X1]>
=1
= Vary, (BlgCX T, M) | X11),

which, according to Eq. (13), is a sum of only |M,|* = 4 terms. Using
the same logic, each Sobol” index V,, V3, and V, reduces from a sum
of |B‘g|2 = 64 terms to a sum of, respectively, |./\/12|2 =4, |J\/l3|2 =4,
and |M,|?> = 4 terms. Hence, computing all four indices V;, V,, V5,
and V, reduces from a sum of 4 x |B;|> = 256 terms to a sum of
|M; 12+ M) + |M;|% + | My|? = 16 terms.

More generally, to compute Eq. (13) for arbitrary variable index
set P, we may remove any tree that does not split on any variable
in P. Furthermore, we may take advantage of the ensemble function’s
formulation in Eq. (4) to remove any node whose path to root node
does not split on any variable in P. This statement is made precise in
Theorem 4.

Theorem 4. Let £(-; {7, ML) = Zkesg Helg, () be the function of a
BART ensemble £. For any terminal node n,, let v(k) be the index set of all
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Fig. 4. Four trees.

split variables along the path to n,’s root node. For any variable index set
P, let

EpCATL MM ) == Y g, ()
keBg
v(k)NP#H

be the ensemble function that results from removing from B, any terminal
node whose path to root node does not split on any variable in P. Then

Vary , (BIE(X: {7, M, ™) | Xp]) = Vary, (BIE€p(X: {T, M, )™ ) | Xp)).

To get a better sense of how much computation Theorem 4 saves,
consider again the goal of computing all p (unnormalized) first-order
Sobol” indices if an ensemble &, but for a more realistic scenario: let
p = 10 and suppose the ensemble € is such that N = N, = N3 = N, =
Ns = ;|B¢| and Ng = N; = Ny = Ny = Njy = 0, where N, is the
number of terminal nodes in & whose path to root node includes split
variable x;. Theorem 4 tells us for all i = 1, ..., p, the first-order index V;
is a sum of NI.2 terms. Hence, computing all p first-order Sobol” indices
would require Z,-p:1 Ni2 =5x %lBgl2 terms to be computed, which is
a 32-fold improvement over p x |Bg|2, which is the number if terms to
compute if Theorem 4 is not used.

4.2. Total-effects index

In sensitivity analysis, we also often wish to obtain some measure
of interaction between the input variables. We can do so via the
total-effects sensitivity index, which is defined to be the sum of all
normalized sensitivity indices involving the input variable in ques-
tion [20]. For example, if p = 3, then the total-effects index for input
variable x, would be T, = S, +.5|, +.5,3 +.553. Hence, T, —.5, provides
a sense of the magnitude of all interactions involving variable x,.
However, in order to compute all p total-effects sensitivity indices, this
formulation requires computing all 2” — 1 normalized sensitivity indices
Sp. Fortunately, the total-effects index is equivalent to the following
expression:

model is purely additive. Hence, we only need to compute p of these
variance expressions in order to compute all p total-effects sensitivity
indices.

5. Applications
5.1. Simulation study

Simulation settings discussion.

Given data generated from Eq. (1), where the true Sobol” index
values for f(x) are known, this section identifies the number of inputs,
the sample size, and the magnitude of the measurement error standard
deviation which answer the following questions:

Q.1 What is the bias of BART-based Sobol” indices for estimating the
Sobol” indices of f(-) when f(x) is measured with error?

Q.2 How does this bias compare to the bias of estimated Sobol” in-
dices obtained using alternative nonparametric prediction mod-
els?

Q.3 How close are the first-order rankings provided by BART-based
Sobol” indices to the first-order ranking provided by the Sobol”
indices of f(-)?

Q.4 How close are the first-order rankings provided by one-way
BART counts to the first-order ranking provided by the Sobol”
indices of f(-)?

For questions Q.1, Q.3, and Q.4, and for each simulation setting
below, we generate a n—point maximin LHD sample on [0, 117 [21]. At
each input point x of the LHD sample, we generate response values for
a given data-generating function f(-):[0,1]” — R from Eq. (1) where
€ ~ N(0,0%). We generate 500 data sets for each possible combination
of the following different parameter settings: p/p, € {1,2,3}, n €
{10p, 50p}, and 62 € {0.1Var(f(X)),0.25Var(f (X))}, where (p— p,) is the
number of inert variables in f(-) and X = (X, ..., X,), where each X; i
U(0,1). For each f(-), the variance Var(f (X)) is calculated analytically
where possible, otherwise numerical integral approximations are used.
To each of these 500 data sets, we fit a BART model using the default
parameter settings of the Open Bayesian Trees (OpenBT) project found
at https://bitbucket.org/mpratola/openbt/ [22].

The five data-generation functions to be examined are:

1. From [23], the data-generating function is defined as
F(x) = 10sin(zx; x5) + 20(x3 — 0.5)% + 10x, + 5xs.

This function, used in [1] and many other BART papers for
variable activity and selection, is a challenging mix of interac-
tions and nonlinearities. Here, only p, = 5 variables influence
the response. This function’s first-order Sobol” indices and total-
effects Sobol” indices have the same ordering. That is, SA{ >
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S — of f S S A S S
S =8>8 >S5 andT4 >T) =T, >Tj >T5.Also,
Var(f(X)) =~ 23.8.
2. We modify the Friedman function to create the data-generating
function defined as

f(x) =10sin(z(x; — 0.5)(x, — 0.5)) + 20(x3 — 0.5)% + 10x4 + 5x5.

For this modified version, the first-order Sobol” indices for vari-
ables 1 and 2 are zero, which changes the order of the first-order
Sobol” indices while maintaining the total-effects order (see
Table 1). Also, Var(f(X)) ~ 19.0.

3. The g—function from [24] with p, inputs is defined to be

Po

[4x; = 2| + ¢,
,xp0)=H—1 e ,
k=1 k

eI

where ¢ = (¢, ... ’CPO) has nonnegative components. This func-
tion is a product of univariate functions, which presents a greater
challenge to BART than sums of univariate or bivariate functions
provide. Here we use the coefficient values ¢, = (k — 1)/2 for
k=1,...,py suggested by Crestaux et al. [25]. We also use p, =5
active variables which gives us Var(f (X)) ~ 3.076.

4. The Bratley function [26,27] with p, inputs is defined to be

Po i
OEED Y | 7
i=1 j=1

= —X1 4 XXy — X1 XpX3 + X XpX3Xy — X1 XpX3X4X5 + =+

This function is a sum of products of inputs, which provides an
even greater challenge to BART than the g—function provides.
Furthermore, this function produces nonzero Sobol’ indices for
all (non-null) variable index sets. Again, we use p, = 5 active
variables which gives us Var(f (X)) ~ 0.057.

5. The function inspired by Morris et al. [28] is defined for p, =5

as
Po po—1 Po
f(x)::aZx,-+ﬂ X; ij
i=1 i=l j=i+l

=ax; + f(x; Xy + X X3 + X X4 + X Xs5)
+axy + f(xpx3 + xpX4 + XpX5)

+ax3 + f(x3xy + x3x5)

+axy + P(xyxs)

+ axs

where a« = /12 - 63/01(p, — 1) ~ —0.331 and § = —\/1057]) ~
V —

1.897 are chosen so that .S; = §, = -+ = S5 ~ 0.05 and total-
effects indices T} = T, = --- = T5 = 0.35. Here, Var(f(X)) ~ 5.25.
See also www.sfu.ca/~ssurjano/morretal06.html.

Hence, we consider (3 X 2 X 2) X 5 = 60 possible combinations of
(p, n,0%) parameter settings and data-generating functions. We will call
these the 60 simulation scenarios.

For question Q.2, Treed Gaussian Processes (TGP) provide a bench-
mark to compare exact BART-based Sobol” indices against [29,30].
However, there exists no literature on the exact computation of TGP-
based Sobol” indices. Hence, we estimate first-order and total-effects
TGP-based Sobol” indices using the tgp: : sens () R function [16,31].
This function uses Monte Carlo integration whose error depends on its
Latin hypercube design (LHD) sampling scheme. The p + 2 required
LHD samples are randomly drawn for every MCMC iteration of the TGP
model fitting, which propagates the Monte Carlo integration error into
the posterior variability of the indices. To minimize this error, we use
100p—point LHD samples.

5.2. Performance metrics

We evaluate our results in terms of two metrics: the L; performance
metric and a rank-based performance metric.
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L, performance metric

To answer question Q.1 posed at the beginning of the section, we
will first estimate the expectation of the L, distance d; (-,-) between
BART-based Sobol” indices and the true Sobol” indices with respect
to the BART posterior (0 | @) from Eq. (5). For example, if we are
assessing the bias of BART-based first-order Sobol” indices for a given
number of inputs, sample size, and magnitude of the measurement
error standard deviation (i.e for a given (p, n, 6%)), we will estimate the
expectation

1000
1 i
/dLl(sf,sf)dn(@ |2) % 1555 2 41,57 87) 14)
i=1

using 1000 posterior samples {(O® | 9)} }2?0, where the vectors
S¢ = (Sg,Sf, ,Sl‘f) and S/ = (Sf,S2f, ,Spf) contain all first-order
Sobol” indices of, respectively, BART ensemble function £(:; {7;, M, };"= .

and data-generating function f(-). Here, £(:;{ T ML) s the BART
ensemble function that results from posterior sample (O | &) while each
£D(.) is similarly the BART ensemble function that results from the ith
posterior sample (0%) | ). We will make similar estimates for two-way
and total-effects Sobol” index calculations. Finally, we average over
replicated data sets & to arrive at our overall estimated L, distance.
In the example above, we will generate 500 values of the expected L,
distance estimate. The sample mean and standard deviation of these
500 estimates are shown in Table 2 (the numerical results are discussed
in Section 5.3).

To answer question Q.2, we follow a methodology similar to that
for answering question Q.1. We highlight three key differences. First,
we compute TGP-based Sobol” indices, which are approximated for
any given posterior sample of the trained TGP. Second, we estimate
TGP-based Sobol” indices for only 40 data sets due to the substantial
added computational demands of the required integral approxima-
tions. Table 2 reports the sample mean and standard of these 40
estimates. Third, we do not compute TGP-based second-order Sobol”
indices (i.e. ST°F) because the tgp: :sens() R function does not
easily lend itself to such calculations. Hence, we rely on TGP-based
total-indices to capture input variable interactions. Regarding the latter
two key differences, we emphasize that TGP serves merely as a bench-
mark and not as the focus of this paper. Hence, we use TGP as only one
possible popular alternative to BART-based Sobol” indices.

Rank-based performance metric

To answer questions Q.3 and Q.4, we replace the L, distance
dp (9 in Eq. (14) with a discrepancy measure d,(-,-), to be defined
in Eq. (15). This allows a more interpretable comparison between the
performances of one-way BART counts and BART-based Sobol’ indices.
Table 3 shows the sample mean and standard deviation of these 500
estimates.

As an example, we will rank the Friedman function’s normalized
first-order Sobol” index values (S, S,, 53, S4.S5) = (.197,.197,.093, .350,
.087) shown in Table 1 as (2,2,4,1,5), where the most active variable
(i.e. variable 4) is assigned ranking number 1 and the least active
variable (i.e. variable 5) is assigned ranking number 5. Variables 1 and
2 are equally active, so we will adopt the convention used in many
sports competitions of assigning the minimum rank to the two variables
and then leaving a gap in the ranking numbers so that the positions of
all variables less active than variables 1 and 2 are unaffected.

Several options exist for comparing two rankings. Kendall [32]
introduces a distance that, when ties in rankings are not allowed,
is the graphical distance between two vertices in the well-studied
permutation polytope that represents all possible rankings of p ob-
jects [33]. Emond and Mason [34] point out that when ties are allowed,
Kendall’s “distance” violates the triangle inequality and hence is no
longer a true metric. They advocate the distance defined by Kemeny
and Snell [35], which equals Kendall’s distance when ties are not
allowed, but remains a metric when ties are allowed.
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Table 1
S,.’ s TI’ , and T, S _ S,’ for various data-generating functions f and variable indices i.

i Friedman Modified Friedman g—function Bratley Morris

s/ T/ r/-s/ s/ T/ r/-s/ s/ T/ r/-s/ s/ T/ r/-s/ s/ T/ T/ -5/

1 0.197 0.274 0.077 0 0.335 0.335 0.433 0.701 0.268 0.688 0.766 0.078 0.190 0.210 0.019

2 0.197 0.274 0.077 0 0.335 0.335 0.108 0.284 0.176 0.142 0.220 0.078 0.190 0.210 0.019

3 0.093 0.093 0 0.117 0.117 0 0.048 0.135 0.087 0.051 0.099 0.048 0.190 0.210 0.019

4 0.350 0.350 0 0.438 0.438 0 0.027 0.078 0.051 0.006 0.018 0.012 0.190 0.210 0.019

5 0.087 0.087 0 0.110 0.110 0 0.017 0.050 0.033 0.006 0.018 0.012 0.190 0.210 0.019
Table 2

Estimates of the expected L, distance between BART-based Sobol” indices and true Sobol” indices when f(x) is measured with error. Each block of four scenarios is ordered roughly

in decreasing order of ‘“signal-to-noise”.

(p, n, 6) BART: mean (sd) of 500 replicates TGP: mean (sd) of 40 replicates
S,f vs. S& S,f/ vs. Sf, T[f vs. TE Slf vs. §T0F T,f vs. T76P
(5, 50p, 0.10) 0.072 (0.021) 0.067 (0.006) 0.137 (0.037) 0.198 (0.007) 0.444 (0.030)
(5, 50p, 0.25) 0.099 (0.034) 0.082 (0.005) 0.174 (0.047) 0.269 (0.019) 0.938 (0.108)
(5, 10p, 0.10) 0.184 (0.065) 0.089 (0.001) 0.267 (0.095) 0.289 (0.048) 0.886 (0.218)
(5, 10p, 0.25) 0.206 (0.077) 0.091 (0.002) 0.289 (0.095) 0.339 (0.058) 1.272 (0.275)
(10, 50p, 0.10) 0.074 (0.018) 0.050 (0.006) 0.137 (0.024) 1.030 (0.009) 1.100 (0.027)
Friedman function (10, 50p, 0.25) 0.120 (0.026) 0.075 (0.008) 0.219 (0.034) 1.122 (0.017) 1.497 (0.071)
(10, 10p, 0.10) 0.257 (0.051) 0.098 (0.002) 0.403 (0.059) 1.116 (0.043) 1.410 (0.179)
(10, 10p, 0.25) 0.321 (0.061) 0.102 (0.003) 0.465 (0.068) 1.189 (0.044) 2.025 (0.352)
(15, 50p, 0.10) 0.068 (0.014) 0.037 (0.006) 0.119 (0.018) 1.903 (0.009) 1.693 (0.013)
(15, 50p, 0.25) 0.123 (0.021) 0.064 (0.008) 0.212 (0.025) 2.008 (0.015) 2.009 (0.082)
(15, 10p, 0.10) 0.269 (0.045) 0.100 (0.002) 0.434 (0.050) 1.992 (0.039) 1.998 (0.227)
(15, 10p, 0.25) 0.349 (0.055) 0.105 (0.003) 0.515 (0.059) 2.074 (0.037) 3.081 (0.525)
(5, 50p, 0.10) 0.080 (0.019) 0.093 (0.019) 0.166 (0.052) 0.167 (0.013) 0.409 (0.047)
(5, 50p, 0.25) 0.118 (0.028) 0.136 (0.026) 0.241 (0.070) 0.225 (0.023) 0.862 (0.080)
(5, 10p, 0.10) 0.370 (0.047) 0.355 (0.004) 0.913 (0.051) 0.207 (0.031) 0.651 (0.168)
(5, 10p, 0.25) 0.343 (0.049) 0.352 (0.002) 0.682 (0.067) 0.288 (0.058) 1.220 (0.234)
(10, 50p, 0.10) 0.079 (0.016) 0.057 (0.014) 0.134 (0.027) 0.792 (0.011) 1.225 (0.019)
Mod. Friedman function (10, 50p, 0.25) 0.128 (0.025) 0.101 (0.021) 0.234 (0.042) 0.864 (0.017) 1.514 (0.041)
(10, 10p, 0.10) 0.336 (0.035) 0.350 (0.002) 0.717 (0.054) 0.856 (0.039) 1.480 (0.117)
(10, 10p, 0.25) 0.400 (0.057) 0.362 (0.003) 0.931 (0.055) 0.909 (0.041) 1.921 (0.261)
(15, 50p, 0.10) 0.072 (0.013) 0.044 (0.011) 0.121 (0.020) 1.444 (0.012) 1.994 (0.014)
(15, 50p, 0.25) 0.130 (0.020) 0.084 (0.017) 0.227 (0.030) 1.523 (0.016) 2.179 (0.029)
(15, 10p, 0.10) 0.335 (0.046) 0.314 (0.017) 0.853 (0.070) 1.506 (0.033) 2.256 (0.168)
(15, 10p, 0.25) 0.404 (0.056) 0.348 (0.012) 0.966 (0.063) 1.562 (0.038) 3.002 (0.431)
(5, 50p, 0.10) 0.374 (0.061) 0.272 (0.005) 0.448 (0.069) 0.320 (0.039) 1.640 (0.140)
(5, 50p, 0.25) 0.432 (0.092) 0.269 (0.005) 0.530 (0.090) 0.410 (0.042) 2.355 (0.185)
(5, 10p, 0.10) 0.643 (0.108) 0.280 (0.002) 0.747 (0.112) 0.458 (0.103) 2.217 (0.366)
(5, 10p, 0.25) 0.697 (0.112) 0.279 (0.002) 0.815 (0.116) 0.539 (0.097) 2.571 (0.330)
(10, 50p, 0.10) 0.374 (0.057) 0.326 (0.007) 0.570 (0.050) 0.911 (0.022) 3.407 (0.190)
g—function (10, 50p, 0.25) 0.446 (0.077) 0.341 (0.007) 0.707 (0.066) 1.008 (0.022) 4.527 (0.207)
(10, 10p, 0.10) 0.688 (0.094) 0.333 (0.003) 0.997 (0.092) 1.052 (0.064) 4.436 (0.428)
(10, 10p, 0.25) 0.786 (0.105) 0.336 (0.003) 1.130 (0.106) 1.095 (0.053) 5.039 (0.512)
(15, 50p, 0.10) 0.367 (0.048) 0.325 (0.012) 0.584 (0.046) 1.635 (0.020) 6.983 (0.267)
(15, 50p, 0.25) 0.444 (0.064) 0.356 (0.008) 0.756 (0.052) 1.527 (0.020) 5.446 (0.221)
(15, 10p, 0.10) 0.650 (0.089) 0.348 (0.005) 1.050 (0.086) 1.680 (0.052) 7.474 (0.794)
(15, 10p, 0.25) 0.802 (0.092) 0.354 (0.005) 1.240 (0.099) 1.738 (0.035) 8.680 (0.815)
(5, 50p, 0.10) 0.070 (0.020) 0.043 (0.007) 0.099 (0.016) 0.180 (0.017) 0.527 (0.039)
(5, 50p, 0.25) 0.106 (0.037) 0.050 (0.009) 0.146 (0.024) 0.255 (0.028) 0.962 (0.087)
(5, 10p, 0.10) 0.221 (0.078) 0.081 (0.002) 0.276 (0.049) 0.219 (0.051) 0.679 (0.100)
(5, 10p, 0.25) 0.293 (0.098) 0.079 (0.002) 0.343 (0.068) 0.288 (0.052) 1.074 (0.200)
(10, 50p, 0.10) 0.068 (0.017) 0.041 (0.007) 0.122 (0.012) 1.027 (0.015) 1.373 (0.032)
Bratley function (10, 50p, 0.25) 0.125 (0.030) 0.058 (0.009) 0.200 (0.021) 1.112 (0.017) 1.954 (0.087)
(10, 10p, 0.10) 0.231 (0.054) 0.103 (0.001) 0.376 (0.035) 1.039 (0.033) 1.562 (0.145)
(10, 10p, 0.25) 0.331 (0.071) 0.106 (0.002) 0.472 (0.051) 1.125 (0.050) 2.179 (0.283)
(15, 50p, 0.10) 0.065 (0.015) 0.033 (0.006) 0.117 (0.010) 1.887 (0.009) 2.234 (0.038)
(15, 50p, 0.25) 0.125 (0.021) 0.054 (0.008) 0.205 (0.017) 1.974 (0.017) 2.990 (0.122)
(15, 10p, 0.10) 0.223 (0.042) 0.107 (0.002) 0.394 (0.029) 1.905 (0.035) 2.511 (0.166)
(15, 10p, 0.25) 0.326 (0.061) 0.113 (0.002) 0.504 (0.052) 1.982 (0.024) 3.344 (0.253)

Unfortunately, the Kemeny-Snell (KS) distance is likely to artifi-
cially inflate when the data-generating function has either more than
two inert variables or has equally-active non-inert variables. In the
former scenario, a fitted BART model is unlikely to entirely shrink
all of its input activity measures of the inert variables. In this case,

(continued on next page)

the KS distance will be inflated by the fitted BART model assigning
small but positive effects to the inert variables. In the latter scenario,
a fitted BART model is unlikely to perfectly match its input activity
measures of the equally-active non-inert variables. In this case, the fit-
ted BART model could be incorrectly “punished” for even the slightest
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Table 2 (continued).
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(p, n, 62) BART: mean (sd) of 500 replicates TGP: mean (sd) of 40 replicates
Sl.f vs. S¢ Si// vs. S5 T[f vs. Tf S,f vs. §T6P Tl/ vs. TT6P
(5, 50p, 0.10) 0.063 (0.023) 0.017 (0.003) 0.064 (0.025) 0.439 (0.030) 0.468 (0.110)
(5, 50p, 0.25) 0.092 (0.035) 0.018 (0.003) 0.093 (0.036) 0.283 (0.028) 1.238 (0.163)
(5, 10p, 0.10) 0.137 (0.048) 0.033 (0.002) 0.140 (0.049) 0.463 (0.054) 0.517 (0.184)
(5, 10p, 0.25) 0.188 (0.070) 0.031 (0.003) 0.191 (0.072) 0.343 (0.063) 1.152 (0.315)
(10, 50p, 0.10) 0.079 (0.017) 0.029 (0.004) 0.103 (0.016) 0.627 (0.019) 0.719 (0.011)
Morris function (10, 50p, 0.25) 0.130 (0.024) 0.044 (0.004) 0.167 (0.023) 0.433 (0.024) 2.072 (0.271)
(10, 10p, 0.10) 0.220 (0.039) 0.058 (0.002) 0.284 (0.034) 0.614 (0.041) 0.785 (0.114)
(10, 10p, 0.25) 0.295 (0.056) 0.060 (0.002) 0.360 (0.051) 0.457 (0.052) 1.973 (0.511)
(15, 50p, 0.10) 0.076 (0.013) 0.026 (0.003) 0.098 (0.013) 0.830 (0.018) 0.958 (0.090)
(15, 50p, 0.25) 0.135 (0.018) 0.044 (0.005) 0.180 (0.019) 0.632 (0.021) 2.921 (0.353)
(15, 10p, 0.10) 0.239 (0.034) 0.064 (0.002) 0.326 (0.031) 0.805 (0.038) 0.990 (0.135)
(15, 10p, 0.25) 0.326 (0.043) 0.069 (0.003) 0.418 (0.042) 0.622 (0.043) 2.775 (0.679)

Table 3

Estimates of the expected d, discrepancy between BART-based Sobol” index rankings and true Sobol” index rankings when f(x) is measured with error. Each block of four scenarios
is ordered roughly in decreasing order of “signal-to-noise”.

(p, n, 62) SE vs. S‘./ Count vs. S/ TE vs. T‘.f Count vs. Tl.f Sfj' vs. SAC
Max value 20 20 20 20 20
(5, 50p, 0.10) 1.048 (1.000) 5.420 (2.195) 1.040 (1.000) 5.420 (2.195) 0.000 (0.000)
(5, 50p, 0.25) 1.152 (1.005) 6.404 (3.186) 1.144 (1.015) 6.404 (3.186) 0.008 (0.126)
(5, 10p, 0.10) 2.540 (1.484) 8.620 (3.011) 2.536 (1.488) 8.620 (3.011) 8.716 (5.690)
(5, 10p, 0.25) 2.816 (1.892) 8.916 (3.086) 2.812 (1.888) 8.916 (3.086) 9.848 (5.696)
Max value 70 70 70 70 90
) ) (10, 50p, 0.10) 0.976 (1.001) 4.984 (1.430) 0.960 (1.000) 4.984 (1.430) 0.000 (0.000)
Friedman function (10, 50p, 0.25) 1.136 (0.992) 6.144 (2.776) 1.108 (0.995) 6.144 (2.776) 0.000 (0.000)
(10, 10p, 0.10) 2.020 (0.900) 18.608 (8.795) 2.016 (0.904) 18.608 (8.795) 4.820 (9.915)
(10, 10p, 0.25) 2.412 (1.591) 23.844 (10.447) 2.424 (1.615) 23.844 (10.447) 12.772 (16.712)
Max value 120 120 120 120 210
(15, 50p, 0.10) 0.792 (0.979) 4.432 (0.862) 0.768 (0.974) 4.432 (0.862) 0.000 (0.000)
(15, 50p, 0.25) 1.008 (1.001) 5.172 (1.919) 1.008 (1.001) 5.172 (1.919) 0.000 (0.000)
(15, 10p, 0.10) 1.780 (0.754) 8.504 (5.658) 1.772 (0.762) 8.504 (5.658) 0.376 (1.647)
(15, 10p, 0.25) 1.988 (1.093) 15.456 (10.630) 1.988 (1.107) 15.456 (10.630) 3.760 (9.419)
Max value 20 20 20 20 20
(5, 50p, 0.10) 1.024 (1.001) 13.292 (1.359) 1.004 (1.001) 5.300 (1.363) 0.000 (0.000)
(5, 50p, 0.25) 1.004 (1.001) 13.728 (1.761) 1.024 (1.001) 5.752 (1.791) 0.000 (0.000)
(5, 10p, 0.10) 1.864 (0.789) 6.796 (5.295) 13.896 (4.901) 27.528 (8.823) 0.000 (0.000)
(5, 10p, 0.25) 2.020 (1.211) 3.960 (2.851) 9.280 (1.257) 9.360 (2.678) 0.136 (0.656)
Max value 70 70 70 70 90
) . (10, 50p, 0.10) 0.856 (0.991) 12.736 (1.098) 0.860 (0.991) 4.736 (1.098) 0.000 (0.000)
Mod. Friedman function (10, 50p, 0.25) 1.024 (1.001) 13.940 (2.078) 1.020 (1.001) 5.940 (2.078) 0.000 (0.000)
(10, 10p, 0.10) 1.888 (0.832) 3.840 (2.521) 9.648 (0.842) 9.392 (2.665) 0.000 (0.000)
(10, 10p, 0.25) 1.912 (1.390) 8.552 (5.685) 17.740 (5.670) 31.520 (8.478) 0.000 (0.000)
Max value 120 120 120 120 210
(15, 50p, 0.10) 0.696 (0.954) 12.500 (0.867) 0.680 (0.948) 4.500 (0.867) 0.000 (0.000)
(15, 50p, 0.25) 0.976 (1.001) 12.940 (1.348) 0.952 (1.000) 4.948 (1.354) 0.000 (0.000)
(15, 10p, 0.10) 1.724 (0.690) 5.292 (4.161) 8.096 (2.377) 12.596 (10.107) 0.000 (0.000)
(15, 10p, 0.25) 1.792 (0.958) 5.716 (5.927) 10.928 (4.388) 29.084 (15.196) 0.000 (0.000)
Max value 20 20 20 20 90
(5, 50p, 0.10) 1.068 (1.311) 5.768 (3.576) 1.092 (1.328) 5.768 (3.576) 35.640 (10.136)
(5, 50p, 0.25) 1.920 (1.757) 8.492 (4.441) 1.968 (1.759) 8.492 (4.441) 42.168 (12.003)
(5, 10p, 0.10) 4.636 (3.029) 12.864 (4.367) 4.648 (3.020) 12.864 (4.367) 52.236 (13.342)
(5, 10p, 0.25) 6.160 (3.358) 13.576 (4.197) 6.204 (3.376) 13.576 (4.197) 54.632 (13.402)
Max value 70 70 70 70 790
) (10, 50p, 0.10) 0.652 (0.996) 4.188 (3.201) 0.640 (0.984) 4.188 (3.201) 175.484 (52.348)
g-function (10, 50p, 0.25) 1.392 (1.591) 8.816 (5.697) 1.444 (1.647) 8.816 (5.697) 252.916 (64.184)
(10, 10p, 0.10) 6.388 (4.313) 27.040 (12.884) 6.428 (4.286) 27.040 (12.884) 338.148 (87.447)
(10, 10p, 0.25) 10.500 (6.133) 35.024 (12.362) 10.668 (6.162) 35.024 (12.362) 377.112 (88.710)
Max value 120 120 120 120 1990
(15, 50p, 0.10) 0.408 (0.817) 2.088 (2.360) 0.400 (0.811) 2.088 (2.360) 260.228 (98.276)
(15, 50p, 0.25) 0.864 (1.177) 6.120 (4.861) 0.928 (1.209) 6.120 (4.861) 456.692 (133.275)
(15, 10p, 0.10) 4.780 (4.517) 18.124 (10.946) 4.808 (4.544) 18.124 (10.946) 578.464 (172.922)
(15, 10p, 0.25) 10.908 (7.537) 34.672 (18.045) 11.016 (7.569) 34,672 (18.045) 733.748 (211.209)
(continued on next page)
discrepancy between the variable-activity measures of two equally- To compute the discordance measures between two rankings p f

active variables. To resolve this issue, we create a discrepancy measure

based on the multi-stage discordance measures discussed in [36].

and pg, where in our variable activity setting p, represents the true
input activity and p, represents the input activity of our fitted BART
model, Fligner and Verducci [36] assume that neither ranking has any
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(p, n, 6%) S¢ vs. S/ Count vs. S/ TE vs. T/ Count vs. T/ S vs. Sf;
Max value 20 20 20 20 90
(5, 50p, 0.10) 0.000 (0.000) 0.656 (1.097) 0.000 (0.000) 0.656 (1.097) 0.124 (0.627)
(5, 50p, 0.25) 0.008 (0.126) 2.004 (2.188) 0.000 (0.000) 2.004 (2.188) 1.056 (1.991)
(5, 10p, 0.10) 0.280 (0.771) 9.132 (4.824) 0.280 (0.771) 9.132 (4.824) 11.872 (8.695)
(5, 10p, 0.25) 0.716 (1.231) 9.932 (4.746) 0.716 (1.237) 9.932 (4.746) 15.480 (9.515)
Max value 70 70 70 70 790
) (10, 50p, 0.10) 0.084 (0.553) 2.124 (2.933) 0.004 (0.089) 2.124 (2.933) 28.348 (26.519)
Bratley function (10, 50p, 0.25) 1.236 (2.459) 4.884 (4.212) 0.580 (1.495) 4.884 (4.212) 79.328 (45.473)
(10, 10p, 0.10) 5.352 (4.851) 20.588 (8.920) 5.280 (4.784) 20.588 (8.920) 197.556 (60.194)
(10, 10p, 0.25) 7.352 (4.991) 25.356 (9.913) 7.284 (4.890) 25.356 (9.913) 237.864 (69.558)
Max value 120 120 120 120 1990
(15, 50p, 0.10) 0.020 (0.236) 0.948 (1.905) 0.000 (0.000) 0.948 (1.905) 22.344 (31.235)
(15, 50p, 0.25) 1.216 (2.566) 6.600 (6.780) 0.464 (1.517) 6.600 (6.780) 126.056 (91.807)
(15, 10p, 0.10) 7.052 (7.614) 24.312 (12.077) 7.008 (7.603) 24.312 (12.077) 402.292 (128.257)
(15, 10p, 0.25) 11.728 (9.074) 30.804 (12.989) 11.636 (9.031) 30.804 (12.989) 483.504 (146.360)
Max value 20 20 20 20 90
(5, 50p, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 50p, 0.25) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 10p, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 10p, 0.25) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Max value 70 70 70 70 790
) ) (10, 50p, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 1.396 (3.844)
Morris function (10, 50p, 0.25) 0.000 (0.000) 0.240 (0.951) 0.000 (0.000) 0.240 (0.951) 25.252 (24.050)
(10, 10p, 0.10) 0.000 (0.000) 11.880 (7.979) 0.000 (0.000) 11.880 (7.979) 129.608 (65.530)
(10, 10p, 0.25) 0.000 (0.000) 15.144 (9.359) 0.000 (0.000) 15.144 (9.359) 191.964 (78.236)
Max value 120 120 120 120 1990
(15, 50p, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.304 (2.605)
(15, 50p, 0.25) 0.000 (0.000) 0.008 (0.126) 0.000 (0.000) 0.008 (0.126) 19.228 (24.255)
(15, 10p, 0.10) 0.000 (0.000) 2.800 (4.816) 0.000 (0.000) 2.800 (4.816) 137.684 (91.270)
(15, 10p, 0.25) 0.000 (0.000) 8.124 (8.533) 0.000 (0.000) 8.124 (8.533) 269.444 (125.489)

ties. As an example, suppose Py = 43,12 and po = (3,1,2,4). The
discordances W,, W,, ..., W, will be computed sequentially. To compute
discordance W}, we see that variable 3 is the most active in p,. Since
variable 3 is the second most active in p., we set W, =2 -1 = 1. We
then remove variable 3 from consideration to compute W,, W3, and
W,. To compute discordance W,, we see that variable 4 is the most
active of the remaining variables (1, 2, and 4) in p,. Since variable 4 is
the third most active of the remaining variables (1, 2, and 4) in pg, we
set W, = 3 — 1 = 2. We then remove variable 4 from consideration to
compute discordances W5 and W,. To compute W, we see that variable
2 is the most active of the remaining variables (1 and 2) in p - Since
variable 2 is the most active of the remaining variables (1 and 2) in pg,
we set W3 = 1—1 = 0. We then remove variable 2 from consideration to
compute W;. Since only one variable remains, we set W, = 0. Hence,
the discordances in this example are (W, W,, W3, W,) = (1,2,0,0).

More generally (but still assuming neither ranking has any ties),
suppose we have already computed discordances W/, ..., W,_, for some
k=1,...,q, where g is the number of elements in vector p,, and wish
to compute W,. Note that ¢ is not necessarily p (e.g. ¢ = (’2’) when
the rankings represent two-way interactions). Thus, we have removed
k — 1 of the ¢ items (e.g. variables, variable pairs, variable triplets)
from consideration. If item i is the most active in ranking p, among
the remaining considered items, we then find j, where item i is the jth
most active in ranking p, among the remaining considered items. The
value W, is then set to be j — 1.

Now suppose both ranking p, and ranking p, are allowed to have
ties. As mentioned earlier, we will adopt the “standard competition”
ranking convention of, for each set of items tied with each other,
assigning the minimum rank to the tied items and then leaving a gap
in the ranking numbers so that the positions of all items less active
than the tied items are unaffected. For example, first-order Sobol”
index values (0.1,0.1,0.2,0.2,0.35,0.05) would be ranked (4,4,2,2,1,6).
Suppose we have already computed W, ..., W,_, for some k =1, ...,¢
and wish to compute W,. If u > 1 items i,,...,i, are tied for most
active in ranking p, among the remaining considered items, we can
find j|,...,j,, where item i, is the j,th most active item in ranking p,
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among the remaining considered items. The value W) is then set to
be min,_, ,Jj, — 1. If argmin,_, _,j, has more than one value, then
we pick any one (it does not matter which) of the corresponding
items i, to remove from consideration. Once an item is removed from
consideration, the value W, can then be computed (if ¥ < p). Note
that if u = 1, this reduces to the “no-ties” case.

We can now define our discrepancy measure between rankings p,
and pg:

q
d(ps.pe) =2 Y Wy 15
k=1

where discordances W, W,, ... W, are computed as described in the
previous paragraph. This measure has three particularly desirable prop-
erties. First, it equals Kendall’s distance (and hence the KS distance)
when ties are not allowed. Second, it does not inflate as the number
of data-generating function f’s inert variables increases. In particular,
discordance W, = 0 for all k > ¢,, where g, is the number of active
items (i.e. items with non-zero input activity measure) in f. Hence,
the discrepancy measure is invariant to the number of inert variables.
Third, it does not inflate when f has equally-active non-inert items.
If f has a set of equally-active non-inert items, then the discrepancy
measure will not inflate as long as the equally-active items in the
set are consecutively ranked. These three properties can be stated as
Theorems 5, 6, and 7 whose proofs are in the Appendix.

Theorem 5. If rankings a and B each have no ties, then the Kemeny—
Snell distance between a and f equals the discrepancy measure d.(a, f)
in Eq. (15).

Theorem 6. Consider the discrepancy d,(p;, p¢) between rankings p, and
pe. Then the discordance W), = 0 for all k > q,, where g, is the number of
active items in f.

Theorem 7. Consider the discrepancy d,(p;, p¢) between rankings p, and
pe. Suppose u > 1 items i;,...,i;,, | (and no other items) have ranking

number j in p, and ranking numbers r;,...,r;y, | in pe. Then dll |p/|
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discordances are invariant to choice of permutation ¢ of set {r;, ...
of ranking numbers.

) rj+u—] }

5.3. Simulation results

To answer question Q.2, we find in Table 2 that when the under-
lying data-generating function is not known, our BART-based Sobol”
indices should always be preferred over TGP-based Sobol” indices. For
all five data-generating functions, and for p = 10 or 15, if we compare
the BART and TGP “S;” columns to each other and the BART and TGP
“T,” columns to each other, the BART-based L, distances are uniformly
lower than the TGP-based L, distances, often by a dramatic amount.
For p = 5, this observation does not hold uniformly (e.g. for the
(function, p, n,62) = (Mod. Friedman, 5, 10p,0.10) row, the TGP-based
total-effects L, distance is lower than that of BART), but is still valid
in most of these cases.

To answer question Q.1, we find in the BART columns of Table 2
that the bias of BART-based Sobol” indices is largest with the multi-
plicative g—function and increases with increasing noise and decreasing
sample size.

For the five data-generating functions, the L, distances for all five
data-generating functions and all three Sobol” index measures tend to
increase with each of increasing noise and decreasing sample size. That
is, for a given number p of variables, the BART-based Sobol” indices
perform better as “signal-to-noise” ratio increases.

Interestingly, for the Friedman, Modified Friedman, g—, and Bratley
functions, and for each set of four scenarios, the performance difference
between data scenarios (n = 50p, 62 = 0.10Var(f(X))) and (n = 50p, 62 =
0.25Var(f(X))) is much smaller than the performance differences be-
tween (50p,0.25) and (10p, 0.10) and between (10p,0.10) and (10p, 0.25).
We might infer that the n = 50p scenario saturates the data with enough
signal for modest noise increases to not make much of a performance
difference, but the change from 50p to 10p makes the signal so scarce
that modest noise increases does make a performance difference. These
differences seem to be more evenly spread out for the Morris function.

Recall from Table 1 that for the modified Friedman function, first-
order indices Slf = Szf = 0 while total-effects indices Tlf = Tzf = 0.335.

That is, variables x; and x, interact strongly with other inputs but
are not important on their own. We see in Table 2 that in the (p =
5,n = 50p, 0% = 0.10Var(f(X))) and (p = 5,n = 50p, 62 = 0.25Var(f(X)))
scenarios, BART captures both the first-order and total-effects indices
of the modified Friedman function about as well as it captures the same
indices of the original Friedman function. This implies that with enough
signal, BART is able to tell if an input is important on its own or if it
merely interacts strongly with other inputs.

Also perhaps unsurprisingly, BART performs worse with the multi-
plicative g—function than it does with the four other data-generating
functions. The Friedman function, modified Friedman function, and
Morris function each is a sum of either univariate or bivariate functions
which BART’s additive structure can presumably capture well. The
Bratley function is a sum of five simple terms with two of them being
either univariate or bivariate. On the other hand, our g—function is
a product of five univariate functions. If we note that the log of our
g—function is also a sum of univariate functions, we might expect BART
to perform better if we took the log of the g—function response data.

Finally, BART tends to capture total-effects indices less accurately
than it does first-order indices. Interestingly, this observation holds
even for the high-signal scenarios. To answer questions Q.3 and Q.4,
we find in Table 3 that the first-order rankings provided by BART-based
Sobol” indices are uniformly more accurate than those provided by
one-way BART counts. First, the “Sf vs. S,.f ” column implies our BART-
based first-order Sobol” indices perform incredibly well at predicting
the correct order of the true first-order Sobol” indices across all data
scenarios for the original Friedman, modified Friedman, and Morris
functions, and across the n = 50p scenarios for the g— and Bratley
functions. For all Morris-function scenarios, all 500 sets of BART-based
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first-order Sobol” indices correctly rank the first p, = 5 input variables
as more active than any of the other p — p, input variables.

Second, the “T,.S vs. T,.f ” column implies our BART-based total-
effects Sobol” indices also perform very well at predicting the correct
order of the true total-effects Sobol” indices across all data scenarios
for the original Friedman and Morris functions, and across the n = 50p
scenarios for the modified Friedman, g—, and Bratley functions. Again,
for all Morris-function scenarios, all 500 sets of BART-based total-effects
Sobol” indices correctly rank the first p, = 5 input variables as more
active than any of the other p — p, input variables.

Finally, for each row, the “Sf VS. Sl.f ” expected discrepancy estimate
is the same? or lower than the “Count vs. S,.f ” expected discrepancy
estimate. Similarly, the “Tf Vs. Tl.f ” expected discrepancy estimate
is the same or lower than the “Count vs. Tif ” expected discrepancy
estimate for all rows. These observations imply that our BART-based
Sobol” indices outperform one-way BART counts across the board when
predicting the correct order of the true first-order Sobol” indices and
of the true total-effects Sobol” indices. Hence, our BART-based first-
order and total-effects Sobol” indices should always be preferred over
one-way counts.

We conclude that our BART-based first-order Sobol” indices can
accurately predict the raw values of first-order Sobol” indices of ad-
ditive data-generating functions. Also, our BART-based first-order and
total-effects Sobol” indices can accurately predict the rankings of, re-
spectively, first-order Sobol” indices and total-effects Sobol” indices
of both additive and multiplicative data-generating functions. Finally,
our BART-based first-order and total-effects Sobol” indices outperform
one-way BART counts for all three data-generating functions.

5.4. Application to the En-ROADS climate simulator

We compute Sobol” indices for a BART model trained on data gen-
erated from the En-ROADS climate simulator [37]. This simulator is a
mathematical model of how global temperature and carbon emissions,
among other factors, are influenced by changes in energy, land use,
consumption, agriculture, and other policies. It is designed to be easily
used by policymakers, educators, and the general public. The model, an
ordinary differential equation solved by Euler integration, synthesizes
what its developers consider to be the best available climate science.
This simulator is available from the Climate Interactive website.

For this paper, we looked specifically at how the average global
temperature increase by 2100 from pre-industrial levels is influenced
by the 18 “top-level” input variables shown when the En-ROADS
climate simulator is first loaded on to a web browser. We explored a
subset of 11 variables as summarized in Fig. 5 and left the remaining
7 variables at their default settings. Based on an initial exploratory
analysis, we found these 7 variables to be either redundant (coal, bioen-
ergy, nuclear, electrification of buildings and industry, deforestation),
impractical or unethical to control (population growth), or too discrete
to treat as a continuous variable (technological carbon removal). Each
input variable is bounded by a minimum and maximum value. We
found a maximin LHD of 10x 11 = 110 points on [0, 1]'! and scaled it so
that the design space contained the range of possible values. However,
the simulator rounds values entered into its text fields, effectively
rounding each design point to the nearest point on the induced 11-
dimensional grid. We then manually obtained response values for each
design point. The simulator also rounded the response values to the
nearest first decimal place. Because a 0.1 °F difference is smaller than
a 0.1 °C difference, we used Fahrenheit values. We then rescaled this
“rounded” maximin LHD design back onto [0, 1]'! to which we trained
a BART model with the default parameter settings of, in particular,

2 We say two estimates est(se;) and est,(se,) are the same if the intervals
produced by the estimate plus or minus the shown standard error overlap
(i.e. if interval (est; — se,, est, + se;) and interval (est, — se,, est, + se,) overlap).
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Fig. 5. Variable activity measures of BART and GP models trained on data from En-ROADS climate simulator. Variable counts (top panel), BART-based first-order Sobol” indices
(second panel), BART-based total-effects Sobol” indices (third panel), and the difference between total-effects and first-order (bottom panel) are shown. Variable activity measures
of the 10,000 ensembles corresponding to posterior samples of the trained BART model are shown in black. Point estimates of Sobol” indices of the trained GP model based on

the same data are shown in gray.

10,000 posterior samples from the distribution in Eq. (5) and 200 trees.
For this climate application, we use the BART R package [38].

We computed the first-order, second-order, and total-effects Sobol”
indices of the BART model trained on our collected climate simulator
data. Because main effects account for more than 96% of the BART
model’s total variance, we do not show two-way Sobol” indices. By
taking the mean first-order Sobol” indices of the 11 input variables
over the 10,000 posterior samples, we see in Fig. 5 that carbon price
accounts for 35.1% of the BART model’s total variance, which is twice
as much as the next largest impacts of energy efficiency of buildings and
industry at 16.1%, methane and other (which includes nitrous oxide
and fluorinated gases) at 14.4%, and economic growth at 13.1%. The
total-effects Sobol” indices imply a similar conclusion. Variable counts
fail to provide evidence of such large differences in impacts of the input
variables.

For comparison, we also estimated sensitivity indices and created
range plots (see [4], Chapter 7) by fitting a constant mean Gaussian
process (GP) model (i.e. kriging model; see [39]) to the training data.
In Fig. 5, we see that the Sobol” indices of the trained BART model
match those of the trained kriging model quite well. We also see that
the one-way counts of the trained BART model poorly matches both the
first-order and total-effects Sobol” indices of the trained kriging model,
which supports the hypothesis that the variable count heuristic is not
a meaningful input activity measure. In Fig. 6, we show range plots of
the four most active input variables. For each input, we approximated
the marginal response at each of 10 equally spaced points by varying
the remaining inputs using a 2°-point Sobol” sequence design [40]. In

12

the left two plots (carbon price and energy efficiency of buildings and
industry), the response and its slope decrease with increasing input
values. In the right two plots (economic growth and methane & other),
the response and its slope increase with increasing input values. Hence,
all four of these input variables seem to marginally have diminishing
effects on future temperature increase.

To assess prediction accuracy, we predicted temperature increases
from an out-of-sample test set of 37 samples, which are chosen manu-
ally to achieve a wide range of true temperature increase values. The
mean-squared prediction error of the mean BART and GP predictions at
the 37 out-of-sample points are, respectively, 0.333 and 0.968. Fig. 7a
shows that the BART model accurately predicts temperature increase
at, roughly, mid-range values of f(x) € [2.5 °F,7.5 °F]. Outside of this
range, the BART model tends to underpredict temperature increase.
We suspect this underprediction issue at the upper range is due to the
training points having a maximum global temperature increase value
of 7.8 °F and hence can be fixed by adding more training samples with
extreme response values, which can be done by using combinations of
extreme values of the four most active input variables. The underpre-
diction might also be fixed by increasing the prior variance of BART’s
terminal node parameters as discussed in [2]. However, for this paper
we use the default parameter settings in the BART R package [38]. We
also see in Fig. 7b that the o samples appear to be stationary, which
implies MCMC convergence.

We conclude that in this no-noise application with p = 11 predictors,
a sample size of n = 10p suffices for a trained BART model to adequately
capture input importance through its Sobol” indices. Variable counts,
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Fig. 7. Diagnostic plots of BART model trained on data from En-ROADS climate simulator.

on the other hand, do not provide enough evidence to convincingly
order variables in terms of their importance.

6. Summary and discussion

This paper has provided analytic expressions, explicit interpreta-
tions, and computational algorithms for determining Sobol” indices
for BART models. The indices are computed exactly and avoid Monte
Carlo approximations. We showed the relationship between Sobol”
indices for BART models and sensitivity indices obtained from one-way
counts, which are the predominant way of assessing input activity in
BART (see [5,41] among others). Theorem 2 showed that under certain
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conditions, both the one-way count and the first-order Sobol” index
of variable x; are functions of the conditional expectation function
Ex [EX; {TL MTLDIX; =1 We then quantify the properties of Sobol”
indices estimated from the BART model for five different analytic
functions. First the bias and the uncertainty of the BART-based Sobol”
indices for estimating the true Sobol” indices for the underlying f(-)
are estimated. We find that the bias of the BART-based Sobol” indices is
largest with the multiplicative g—function than with any of the additive
test functions. Then the rankings of variable activity as measured by
the BART-based Sobol” indices are compared with those provided by
one-way counts. To make the second comparisons, we proposed a
rank discrepancy d, to better suit the problem of comparing input
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activity assessments. We find that the first-order and total-effects BART-
based Sobol” indices empirically outperform one-way BART counts at
capturing, respectively, a function’s first-order and total-effects Sobol”
indices.

Finally, we applied our BART-based Sobol” indices to data generated
by the En-ROADS climate simulator to explore how to best reduce
future global temperature increases. In particular we note that 32 of
the 37 input values in Fig. 7a and 109 of the 110 training inputs result
in future global temperature increases above 1.5 °C (2.7 °F), which is
the agreed upon upper limit of average global temperature increase
above pre-industrial levels set by the 2016 Paris Agreement under the
United Nations Framework Convention on Climate Change [42]. In
words, the vast majority of policy scenarios described in Section 5
will result in global temperature increases of at least 1.5 °C by the
year 2100. Indeed, a 2018 report from the Intergovernmental Panel on
Climate Change claims that this temperature increase will likely reach
1.5 °C between 2030 and 2052 if it increases at its current rate [43].
The IPCC report also details the global impact of a 1.5 °C increase.
Given these drastic predictions, it is imperative to identify the most
impactful factors in minimizing this temperature increase. To achieve
a temperature increase below 1.5 °C by 2100, Figs. 5 and 6 suggest
maximizing carbon price and the energy efficiency of buildings and
industry while minimizing economic growth and the use of methane
and other gases (which includes nitrous oxide and fluorinated gases).

This research suggests additional statistical investigations. Linero
[41] shows empirically that when a Dirichlet prior is used to generate
variable selection probabilities for tree nodes, the posterior probability
of an arbitrary inert variable being included in a BART model can dras-
tically shrink. If inert variables are simply not used in a BART model’s
split rules, then Theorem 4 tells us that computing all Sobol” indices up
to some order will require fewer calculations. Furthermore, excluding
inert variables might also improve the accuracy or efficiency of our
BART-based Sobol” indices. These observations suggest comparing the
accuracy of our BART-based Sobol” indices using a Dirichlet prior with
those obtained from the default prior as well as the effect of increasing
sample sizes.

As has been noted, Bleich et al. [5] and Linero [41], among others,
use variable counts in their variable selection methods for BART mod-
els. We have seen in the En-ROADS climate simulator example that a
trained BART model better captures input activity through its Sobol”
indices rather than through one-way counts. This example suggests that
additional research is needed to study the specificity and sensitivity in
selecting active inputs for the two methods in order definitively draw
this conclusion.

We conclude with two important data/model extensions. Our
derivation of the Sobol” index calculations assumed that the input
variables are uncorrelated. This is not true in many applications. For
dependent input variables it will be very useful to derive analytic
expressions for BART-based Sobol” indices. Here ideas from [44-46],
who all discuss various ways to estimate Sobol” sensitivity indices in
the dependent input variable case will be of use. Finally, we note that
most of the results in the paper should extend to other tree ensemble
methods, such as the random forest method described in [47].

Implementation of BART-based first-order, second-order, and total-
effects Sobol” indices can be found in the Open Bayesian Trees
(OpenBT) project at https://bitbucket.org/mpratola/openbt/ [22].
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Appendix A. Proofs of theorems

Proof of Theorem 1. According to Eq. (10), the first step to computing
the Sobol” index for tree function g(-; 7, M) and variable index set P C
{1,2,..., p} is to compute the conditional expectation Ex ,le(X; T,.M)|

Xpl. By taking the appropriate conditional expectation of both sides
of Eq. (3), we get
IM]
Ex_, 180G T. M) | Xp] = ) d; " 1gp(Xp), (A1)
k=1
where hyperrectangle R} = [],cp I}, and coefficients d; 7 = u,P_p
(R;'D ). Due to Assumption A.1, the coefficient expression simplifies to

ai" = HIP,(I,{).
JEP

(A.2)

According to Eq. (10), the first step to computing the Sobol” index
for ensemble function ECGATL ML) and variable index set P C
{1,2,...,p} is to compute the conditional expectation IEX_P[é‘(X; {71,
M} ) | Xpl. By taking the appropriate conditional expectation of
both sides of Eq. (4), using linearity of expectations, and plugging
in Eq. (A.1), we get

M) | Xpl = Y By [8(X: T, M) | Xp]
t=1
m | M|

=1

Ex_, [E(X: (T,

P
df1gr (Xp).

It is more convenient to view this conditional expectation as a single
sum over the ensemble’s terminal nodes rather than as a double sum
as shown above. Hence, we can express this conditional expectation as

Ex_p[EX: (T ML) [ Xpl = 3 d " 1gr(Xp),
kEBg

(A.3)

where By = U, By is the index set over the terminal nodes of the trees
in ensemble &£.

Finally we are able to compute the variance terms in Eq. (10)
for general variable index set P c {I,2,...,p}. First, we compute

Varyg, (Exip[S(X;{T,,M,}:":] | XP]>. Into this term we plug in

Eq. (A.3), apply the general result Var(U) = Cov(U,U) for generic
random variable U, and use the bilinearity property of covariance to get

Vary, (Ex [ECK: (T, M) | XPJ)

= z Z d;Pdl—PconP<1R£(Xp), 1RIP(X,,)>,

kEBg 1€Bg
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where the coefficients dk‘ and d‘ are defined in Eq. (A.2). To each
covariance term, which we w1ll denote as Ckl’ we can apply the
elementary covariance result Cov(U,V) = EUV — EUEV for generic

random variables U and V to get
Cl =PpRy NR)) = Pp(R)Pp(R)).
Thus,

Z ZdePCP

Vary, (EX_PWX; (T M) | XPJ>
keBg l€EBg

In particular, when P = {i}, then

Ex_ [EX AT, M) 1 X1 = Y,

d7'1, (X)),
kEBg ¢

where d]:i = Uy H#i IP’j(I,{). The first-order Sobol” index in Eq. (10)
then becomes

=Y Y didic,

kEBg IE€Bg

where

Ch, =P UL I)) = PUDPU).

Proof of Theorem 2. Consider a BART ensemble &, with m regression
trees, where each tree is simply a terminal node with one terminal
node parameter. Thus, the ensemble &, predicts the same value for
any input x € D and is hence a constant-mean model. Then any
BART ensemble & with m regression trees can be thought of as &,
having undergone a sequence of birth processes. Any birth process
slices a terminal node’s corresponding hyperrectangle into two smaller
hyperrectangles according to some split rule. If we call this split rule
“x; < ¢”, then this slice occurs on the (p — 1)-dimensional hyperplane
x; = c¢ in D. The resulting “left” hyperrectangle gains a terminal
node parameter y;,,, while the resulting “right” hyperrectangle gains
a terminal node parameter y,,,,,. Thus, if prior to the birth process the
piecewise-constant function Ex_[E(X; {T;, M,}/L,) | X; = -] is constant
at x; = ¢ (i.e. the split rule “x; < ¢” does not already exist in the
ensemble) and yy,;, # Hyigp (Which is true almost surely but is also
ensured through assumption A.3), then the birth process produces a
jump in the piecewise-constant function at x; = c. Meanwhile, the birth
process does not produce a jump in any of the other piecewise-constant
functions Ex,j [EX; {T,,M,};”:]) | X; =] (for j # i). Hence, under the
mentioned conditions, each birth process that produces a unique split
rule that involves variable x; increments the number of jumps in the
piecewise-constant function Ex [EX; (T ML) X =] by one.

Proof of Theorem 3. We have the following transformations to the
conditional expectation function Ex [E(X; {7, M, }IL ) | X; = I

1. First, center and scale the e . Let

— el

~ i Sk .

el . = B! s
e =\ 1BLl =

*

where ¢i = |BL|”' Tioen, ¢ and 57 = [Tyeep (e )1/ (1B -

1) is the corrected sample variance of the {e! ¢ } Note that for any

two indices k*,/* € By, the relation el « = . holds if and only

if eL* = e;*.

2. Second, assign equal~ probability mass |Bf€|_1 to each I ,‘( Intro-
duce new intervals I/;. by shifting and scaling I,, so that

@ {I'p ) e B, still partitions I} into exactly |B.| sets, and
(b) Py(i".) = |B,|™" for all k* € BL.

Now define hi,(X,-) = ]Ex_[ [EX{T, ML
(X ;). Using previous definitions, we have

DXl = Zk*esg el

Vary (hL(X)) =Varxi< > el (Xi)>

—
k €B,
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= DY e [P 0 ) = BT O |
k*€B. I*€Bl,

Recall that the intervals I',. still partition the original domain I},. i
So if k* # 1*, then I'iy. N I'} = ¢ and hence P,(I';. N I}.) = 0. Thus,

Y Y el P n i)=Y (e ) Plig).
k*eBL I*€B., k*eB,

Since each interval I',. has equal probability mass, each P,(I’,.)
becomes simply |Bi.|_1. So then

1BLT Y @ =BT Y Y e

k*€BL k*€BL I*€BL

(X)) =

Vary, (

Note that the coefficients e/ .« are centered so that the sum ... B e
(and hence the double sum term in the preceding equation) equals zero
Also note that the ek are scaled so that Zk*eB, (ek* )2 = |B’ |(|B’ | = 1.

We then have
Vary (AL(X)) =

Now let Cfe be the set of all unique cutpoints involved in any split
rule in € that includes variable x;. Recall that the set B, indexes a
set of intervals that partition the domain’s ith margin, i.e. the set B,
indexes the set of intervals I;, = [r},7,) (or [y, 7,] if y, = b)), where
7, and y, are any two consecutive (in value) points in Ce U {ay, by}
Between any two such partitioning intervals must be a cutpoint in
CL. Furthermore, by the assumption that ¢}, = e}, implies I!, = I/,
for any indices k*,I* € B"'&,, all cutpoints in Cfg must lie between two
such partitioning intervals. That is, no cutpoint in Cé can lie in the
interior of any such partitioning interval. Thus, |B,| -1 = |C{|, which

|BL|—1.

is simply the number of unique split rules in £ that include variable x;
and hence, by Theorem 2, equals the number of jumps in the original
conditional expectation function, which equals the number of jumps in
the transformed conditional expectation function.

Proof of Theorem 4. For any terminal node k € By where v(k)n P =
@, the random quantity E[ykle (X) | Xpl is constant almost surely.
Therefore,

Varg, BIEX; {T;, ML) — i dg, X) | Xp])

=Vary, BIEXK T, M2 ) | Xpl = Elp g, X | Xp])

= Vary, (BIEX; (T, M, L) | XpD).

The result of the theorem will follow by applying this argument to all
such terminal nodes.

Proof of Theorem 5. In general, the Kemeny-Snell (KS) distance
between rankings a = (a;, ..., ®,) and f = (f;, ..., §,) is defined to be

Z Z Ay~ Byl

tlj

dygs(a,p) =

where

1 « prefers object i to object j

A;; =3-1 a prefers object j to object i
0  a prefers objects i and j equally
and B;; is similarly defined for ranking B.

For the rest of the proof, we will assume that rankings « and g each
have no ties. We will also take ranking a to be the reference vector and
hence will, without loss of generality, assume « = (1,2, ..., p). We will
also refer to the sum in Eq. (15) as the discrepancy d,. Finally, we will
prove desired equality via induction.

We first note that these assumptions greatly simplify the KS dis-
tance. If we think of the values A;; (similarly B;;) as constituting a
p X p matrix A (similarly B) whose ij entry is A;; (similarly B;;), then
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Fig. B.8. Range plots for each of the 11 input variables.

both matrices A and B are antisymmetric, which implies |4;; — B;;| =
|A; = Bj| foralli,j=1,...,pand A;; = B;; =0 if i = j. Therefore, we
may reformulate the KS distance as

dgs(a, )= Y |A; - Byl.
i<j

We now proceed with the proof by induction. Suppose p = 2. Half
the K.S distance is then %|A12 — By,|, where A, = 1, while the AH
distance becomes W, (since W,=0 by default). One of two cases may
occur. If g, < B,, then f; = 1 and p, = 2. In this case, both the AH
distance and half the K .S distance are zero. If g, > j,, then g, =2 and
B, = 1. In this case, both the AH distance and half the K.S distance are
unity. We note that values g, and f, must be distinct due to ranking g
having no ties. Thus, the induction hypothesis holds for p = 2.

Now suppose the induction hypothesis holds for arbitrary p—1 > 3.
The KS distance can be decomposed into

P
dgs(a, B) =dgsa_, B_))+ Y 1Ay, = By,
j=2
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where we define @_; := (ay, ..., a,) and B_, similarly for ranking f. The
discrepancy d,, due to its stagewise nature, can also be decomposed:

dyp(a,p) =W, +dgy(a_y, By,

where W, = B, — 1 by default. By assumption, half the KS distance
between a_; and p_, equals the discrepancy d, between the same two
quantities. Hence, we need only prove that % Zj_’zz [Ay; =Byl =p -1
to complete the proof.

First, we note that A,; =1 for all j > 1 and, since By; is either 1 or
—1, the quantity A,; — By; is nonnegative. Thus, [A,; — By;| = 1 — By;
for all j > 1. But By; is simply 1ﬂ1<ﬂ,- - 1ﬂ1>ﬁj' Hence, Zj-,:z By, =
(p—B))— (B, —1)=p—-2p, + 1. Therefore, %Z;’zz |Ay; = Byl =p; - 1.

Proof of Theorem 6. Suppose we have computed discordances W, ...,
W,_, for some k > g, and wish to compute discordance W,. Then the
remaining considered items, each having input activity measure values
of zero, all have ranking number 1 in ranking p,. Since at least one
remaining considered item has ranking number 1 in ranking p., we get
W,=1-1=0.
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Proof of Theorem 7. We will partition the discordances into three sets:
(Wi Wisi s AW Wi ) and {I/Vj+u,...,W|pf|}. After letting,
forall k=1,....j = 1,j +u,....|ps|, item i) be the item removed from

consideration after computing W), but (if k < |p,|) before computing
W1, we will then prove the desired invariance to permutation ¢ for
the three sets of discordances.

First, consider discordances W/, s Wiy These discordances de-
pend only on the ranking numbers of items i;,...,i;_; in p, and in p,.
Because these ranking numbers are invariant to choice of permutation
¢, these discordances are also invariant to ¢.

Now consider discordances Witus s W), - Similar to the previous

set of discordances, these discordances depend only on the ranking
numbers of items i JTPRNNN N /| inp, and in p,. Because these ranking
numbers are invariant to choice of permutation ¢, these discordances
are also invariant to ¢.

Finally, consider discordances W ..., W, Because items i JLs s
i;1, (and no other items) have ranking number j in p,, these discor-
dance values are W, = ryy, —j+ 1 for k = j,...,j +u — 1, where
T(iys o+ s T(j4u—1) ATE the order statistics of ranking numbers r;, ..., r bu—1-
Because order statistics are invariant to permutations of the statistic
values, these discordances are invariant to permutation ¢.

Appendix B. Figures for En-ROADS climate simulator
See Fig. B.8.
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