
Reliability Engineering and System Safety 207 (2021) 107391

A
0

o
a
o
r
w
[
v

u
o

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress

Assessing variable activity for Bayesian regression trees
Akira Horiguchi ∗, Matthew T. Pratola, Thomas J. Santner
The Ohio State University, Cockins Hall, 1958 Neil Ave., Columbus, OH 43210, USA

A R T I C L E I N F O

Keywords:
Bayesian Additive Regression Trees
Global sensitivity analysis
Sobol´ indices
Nonparametric
Variable importance
Variable activity

A B S T R A C T

Bayesian Additive Regression Trees (BART) are non-parametric models that can capture complex exogenous
variable effects. In any regression problem, it is often of interest to learn which variables are most active.
Variable activity in BART is usually measured by counting the number of times a tree splits for each variable.
Such one-way counts have the advantage of fast computations. Despite their convenience, one-way counts
have several issues. They are statistically unjustified, cannot distinguish between main effects and interaction
effects, and become inflated when measuring interaction effects. An alternative method well-established in
the literature is Sobol´ indices, a variance-based global sensitivity analysis technique. However, these indices
often require Monte Carlo integration, which can be computationally expensive. This paper provides analytic
expressions for Sobol´ indices for BART posterior samples. These expressions are easy to interpret and are
computationally feasible. Furthermore, we will show a fascinating connection between first-order (main-effects)
Sobol´ indices and one-way counts. We also introduce a novel ranking method, and use this to demonstrate
that the proposed indices preserve the Sobol´-based rank order of variable importance. Finally, we compare
these methods using analytic test functions and the En-ROADS climate impacts simulator.
1. Introduction

Bayesian Additive Regression Trees (BART) have become an increas-
ingly popular tool for complex regression problems and as emulators
of expensive computer simulations [1–3]. BART sidesteps the 𝑂(𝑛3)
matrix decompositions required by arguably the most popular statisti-
cal regression tool, Gaussian processes (GPs) [4]. These cubic matrix
operations pose issues whose severity continues to grow in the era
of big data. BART, like GPs, can capture complex exogenous variable
effects without having to specify their functional forms.

To assess the activity of these exogenous input variables, BART
offers a variable count heuristic proposed by Chipman et al. [1], which
comes nearly for free once a BART model is fit. This method counts
the number of times a variable is included in BART’s trees as a split
variable. For example, the tree in Fig. 1a splits on 𝑥1 twice and on 𝑥2
nce. Using this heuristic, input 𝑥1 would be considered to be twice as
ctive as input 𝑥2. The idea is that if many nodes in BART’s trees split
n a variable, then that variable is deemed important in predicting the
esponse. To this day, count-based methods remain the most popular
ay of assessing input activity in BART. For example, Bleich et al.
5] also rely on these posterior inclusion proportions in their proposed
ariable selection methods.
But as Liu et al. [6] note, one-way counts are not theoretically well-

nderstood. Furthermore, their ability to adequately capture even the
rder of input importance is suspect. Fig. 2 shows the variable counts of
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1000 posterior samples from a BART model trained in data generated
from the function 𝑓 (𝐱) = (𝑥1 − 0.5)(𝑥2 − 0.5) + 0.5(𝑥3 − 0.5) on the unit
hypercube [0, 1]3. Marginally, variables 𝑥1 and 𝑥2 have zero effect on
𝑓 (⋅), which makes variable 𝑥3 marginally the most important input. But
the variable counts in Fig. 2 show 𝑥1 and 𝑥2 to be more active than 𝑥3.
Thus, the individual marginal counts seem to conflate the interaction
effect between 𝑥1 and 𝑥2 with their marginal effects.

To better assess input activity, we may instead use the variance-
based global sensitivity analysis method introduced by Sobol´ [7]. He
showed that if 𝑓 (𝐱) is a real-valued, square-integrable function on [0, 1]𝑝

then 𝑓 (𝐱) can be decomposed into a sum

𝑓 (𝐱) = 𝑓0 +
𝑑
∑

𝑖=1
𝑓𝑖(𝑥𝑖) +

𝑑
∑

𝑖=1

∑

𝑗<𝑖
𝑓𝑖𝑗 (𝑥𝑖, 𝑥𝑗 ) +⋯ + 𝑓1,2,…,𝑝(𝑥1, 𝑥2,… , 𝑥𝑝),

where each summand depends on a subset of 𝐱. Assume that the relative
frequency with which the inputs of 𝑓 (𝐱) occur can be modeled by
𝐗 = (𝑋1, 𝑋2,… , 𝑋𝑝) where 𝑋1,… , 𝑋𝑝

𝑖𝑖𝑑∼ 𝑈 (0, 1). Then if the variance of
the 𝑖th term in the Sobol´ expansion which depends on 𝑥𝑖 is large, then
𝑥𝑖 is deemed important in predicting the response. Computing these
variances and expectations requires Monte Carlo integration when 𝑓 (𝐱)
is not known in closed form, and hence becomes untractable as the
number of inputs increases.
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Fig. 1. Two different views of the same example tree.
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Fig. 2. One-way variable counts of 1000 posterior samples from a BART ensemble
trained in data generated from the function 𝑓 (𝐱) = (𝑥1 − 0.5)(𝑥2 − 0.5) + 0.5(𝑥3 − 0.5) on
he unit hypercube [0, 1]3.

Sobol´ indices have been estimated or computed for various types
f metamodels. These approaches can be divided into two groups
epending on whether they assume the inputs are uncorrelated. For
ncorrelated inputs, Chapter 7 of [4] provides an overview of GP-
ased Sobol´ indices and their formulae for GPs with certain mean
nd correlation structures [see also8–13]. Sudret [14] provide analytic
xpressions for polynomial-chaos-based Sobol´ indices, which reduces
he computational burden to obtaining the desired polynomial-chaos
oefficients. Finally, Gramacy et al. [15] and Gramacy and Taddy [16]
uggest using Sobol´ indices for Dynamic Trees and Treed Gaussian
rocesses, which use integration approximations via Latin hypercube
esigns to compute these index estimates. For possibly correlated in-
uts, Da Veiga et al. [17] compute first-order sensitivity indices of local
olynomial smoothers and provide theoretical asymptotic properties
or the indices. Wei et al. [18], motivated by high-dimensional input
paces, show that the random-forest-based permutation variable impor-
ance measure converges in 𝑛 to twice the unnormalized total-effects
obol´ index. The methods from [17,18] avoid numerical integration,
ut do not compute interactions between specific input variables.
Our primary contribution is to use Sobol´ indices for BART model-

ased input activity. For a given BART MCMC draw, we derive analytic
xpressions that can be computed exactly for interactions of any order
nd do not require Monte Carlo integration, which can be expen-
ive when the number of input variables is large. We furthermore
stablish a connection between first-order (main-effects) Sobol´ indices
nd one-way counts. Finally, we compare the methods using analytic
est functions and demonstrate that Sobol´ indices applied to BART
ccurately capture true variable effects while remaining computation-
lly attractive and easy to interpret. To perform this comparison, we
onsider both the estimation of the Sobol´ indices and evaluate the
rder-preserving sequence of active variables using a proposed novel
ank-order statistic.
2

The rest of the paper is organized as follows. In Section 2, we review
BART. In Section 3, we derive Sobol´ indices for BART and establish a
connection between first-order Sobol´ indices and one-way counts. In
Section 4, we provide computational details. In Section 5, we introduce
our rank-order statistic, perform simulation studies, and apply Sobol´
indices to a BART-based emulator of the En-ROADS climate simulator.
In Section 6, we conclude the paper with a discussion. Proofs of stated
theorems can be found in Appendix A.

2. Review of BART

We wish to make inference on an unknown function 𝑓∶𝐷 → R,
where domain 𝐷 is a 𝑝-dimensional subset of R𝑝. We will assume
for the rest of the text that domain 𝐷 is a bounded hyperrectangle,
i.e. 𝐷 =

∏𝑝
𝑗=1 𝐼

𝑗
𝐷 =

∏𝑝
𝑗=1[𝑎

𝑗
𝐷, 𝑏

𝑗
𝐷], where 𝐼 𝑗𝐷 is the 𝑗th marginal interval

f 𝐷 for 𝑗 = 1,… , 𝑝. We observe the data 𝒟 ∶= {(𝑦(𝐱𝑖), 𝐱𝑖)}𝑖=1,…,𝑛,
here each observation 𝑦(𝐱), based on predictor 𝐱 = (𝑥1,… , 𝑥𝑝) ∈ 𝐷, is
ssumed to be a realization of the random variable

(𝐱) = 𝑓 (𝐱) + 𝜖, (1)

here 𝜖 𝑖𝑖𝑑∼ 𝑁(0, 𝜎2).
To make inference about the unknown function 𝑓 (⋅), we approxi-
ate it by a sum of 𝑚 regression trees. That is, we make the approxi-
ation

(𝐱) ≈
𝑚
∑

𝑡=1
𝑔(𝐱; 𝑡,𝑡), (2)

here each 𝑔(⋅; 𝑡,𝑡) ∶ 𝐷 → R denotes a regression tree function
nd the parameters {𝑡,𝑡}𝑚𝑡=1 are given a prior distribution in BART’s
ierarchical Bayesian model structure. Each 𝑔(⋅; 𝑡,𝑡) contributes a
mall portion to the total approximation of 𝑓 (⋅). Hence, the expected
esponse E

[

𝑌 (𝐱) ∣ {(𝑡,𝑡)}𝑚𝑡=1
]

at a given input 𝐱 is the sum of
ach of the contributions 𝑔(𝐱; 𝑡,𝑡). The model in Eq. (2) is called
a sum-of-trees model.

2.1. Single-tree model

To explain the sum-of-trees model, we will first set the number of
trees 𝑚 = 1 and describe the notation of the resulting single-tree model.

The single-tree model is the Bayesian implementation of the Classi-
fication and Regression Tree (CART) model as proposed in [19]. CART
can be used for classification, but we assume for the paper that it is
being applied to the regression setting as described in Eq. (1). The CART
model provides a prediction of 𝑓 (𝐱) at input point 𝐱 given observed data

𝒟. CART partitions the input space and fits a constant mean model in
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each subregion to form the predictions. CART constructs the partition
via a binary tree structure. To form the partitions, each internal node
contains a boolean split rule. Starting at the root node, if an input
point 𝐱 satisfies the split rule, it will travel to the node’s left child;
otherwise 𝐱 will travel to the right child. The input point 𝐱 will continue
to traverse through the tree in this way until it reaches a terminal node.
This terminal node’s parameter is the predicted value of 𝑓 (𝑥).

Fig. 1 shows an illustrative example. Suppose the tree in Fig. 1a
is used in a single-tree model to predict an output value for input
𝐱∗ = (𝑥∗1 , 𝑥

∗
2) = (0.9, 0.6), where the input space 𝐷 is the closed unit-

square [0, 1]2. Starting at the root node in Fig. 1a, we see that 𝐱∗ satisfies
this split rule (i.e. 𝑥∗2 < 0.7), which moves 𝐱∗ to the left child. We then
see that 𝐱∗ does not satisfy this split rule (i.e. 𝑥∗1 ≥ 0.2), which moves
𝐱∗ to the right child, which turns out to be a terminal node. Because
we are using a single-tree model (i.e. there is exactly 𝑚 = 1 tree), this
mean parameter 𝜇2 becomes the predicted value for input 𝐱∗. Fig. 1b
shows the corresponding hyperrectangle view of the tree.

A tree’s parameters can now be organized in the following manner.
Let  denote the set of parameters associated with the tree’s split
rules (i.e. the split variable and cutpoint for each internal node) and
topology. Let  denote the set {𝜇𝑘} of parameters associated with the
tree’s terminal nodes. The single-tree model is thus 𝑓 (⋅) ≈ 𝑔(⋅;  ,),
where 𝑓 (⋅), defined in Eq. (1), is the mean of the observed process.
Here, we think of 𝑔(⋅;  ,) being a function that assigns a value 𝜇𝑘 to
input 𝐱 according to the parameters in  and. Let 𝐑𝑘 ⊂ 𝐷 denote the
hyperrectangle associated with the tree’s terminal node that contains
parameter 𝜇𝑘. Then,

𝑔(⋅;  ,) =
||

∑

𝑘=1
𝜇𝑘𝟏𝐑𝑘

(⋅). (3)

We may further decompose each hyperrectangle 𝐑𝑘 into the Cartesian
product of its 𝑝 marginal intervals 𝐼1𝑘 ,… , 𝐼𝑝𝑘 and hence write 𝟏𝐑𝑘

(𝐱) =
∏𝑝

𝑖=1 𝟏𝐼 𝑖𝑘 (𝑥𝑖).

2.2. Sum-of-trees model

Now consider the sum-of-trees model in Eq. (2) for 𝑚 > 1. If
the parameter sets {(𝑡,𝑡)}𝑚𝑡=1 have been established, we will let the
function

(⋅; {𝑡,𝑡}𝑚𝑡=1) ∶=
𝑚
∑

𝑡=1
𝑔(⋅; 𝑡,𝑡) =

𝑚
∑

𝑡=1

|𝑡|
∑

𝑘=1
𝜇𝑡𝑘𝟏𝐑𝑡𝑘

(⋅) (4)

denote the sum-of-trees approximation in Eq. (2). To streamline nota-
tion, we will refer to  as both the function (⋅; {𝑡,𝑡}𝑚𝑡=1) and as the
collection {(𝑡,𝑡)}𝑚𝑡=1. Thus, we write ( ,) ∈  if ( ,) = (𝑡,𝑡)
for some 𝑡 = 1,… , 𝑚.

2.3. BayesIan tree models

The sum-of-trees model is specified by the parameters {(𝑡,𝑡)}𝑚𝑡=1
and 𝜎2. Hence, a trained BART model will sample from the posterior
distribution

𝜋(𝛩 ∣ 𝒟) ∝ 𝐿(𝛩 ∣ 𝒟)𝜋(𝛩), (5)

where 𝛩 = {(1,1), (2,2),… , (𝑚,𝑚), 𝜎2} are the parameters, 𝒟
is the observed data,

𝐿(𝛩 ∣ 𝒟) ∝ 𝜎−𝑛 exp
(

− 1
2𝜎2

𝑛
∑

𝑖=1

(

𝑦(𝐱𝑖) −
𝑚
∑

𝑡=1
𝑔(𝐱𝑖; 𝑡,𝑡)

)2
)

is the likelihood, and 𝜋(𝛩) is the prior.
Chipman et al. [1] specify the full prior 𝜋(𝛩) by constraining it to

satisfy independence conditions

𝜋(𝛩) =

[ 𝑚
∏

𝜋(𝑡 ∣ 𝑡)𝜋(𝑡)

]

𝜋(𝜎2), (6)
3

𝑡=1 A
and

𝜋(𝑡 ∣ 𝑡) =
∣𝑡 ∣
∏

𝑘=1
𝜋(𝜇𝑡𝑘 ∣ 𝑡) (7)

for all 𝑡 = 1,… , 𝑚. In Eq. (6), the parameter sets (𝑡,𝑡) and 𝜎2

are constrained to be mutually independent. In Eq. (7), the terminal
node parameters of every tree are constrained to be independent. These
independence conditions simplify the problem of specifying the full
prior 𝜋(𝛩) to specifying only the priors 𝜋(𝑡), 𝜋(𝜇𝑡𝑘 ∣ 𝑡), and 𝜋(𝜎2).
Forcing the priors 𝜋(𝑡) and 𝜋(𝜇𝑡𝑘 ∣ 𝑡) to be identical for all 𝑘 =
1,… , |𝑡| and 𝑡 = 1,… , 𝑚 further simplifies the prior specification
problem. Furthermore, Chipman et al. [19] choose the three prior forms
to simplify analysis and computation by taking advantage of known
conjugacy pairs. In particular, they choose the 𝜋(𝜇𝑡𝑘 ∣ 𝑡) prior to be a
conjugate Normal distribution. To configure the priors, Chipman et al.
[1] recommend automatically specifying the relevant hyperparameters
using data-driven methods.

The posterior in Eq. (5) can thus be sampled using the following
Gibbs sampler:

1. Draw {(𝑡,𝑡)}𝑚𝑡=1 ∣ 𝜎
2,𝒟.

2. Draw 𝜎2 ∣ {(𝑡,𝑡)}𝑚𝑡=1,𝒟.

For Step 2, we can draw 𝜎2 ∣ {(𝑡,𝑡)}𝑚𝑡=1,𝒟 by performing a simple
conjugate Gibbs step. Step 1 itself will also be a Gibbs sampler that
relies on being able to sample from the conditional distribution

𝜋(𝑡,𝑡 ∣ {(𝜏 ,𝜏 )}𝜏≠𝑡, 𝜎2,𝒟) (8)

for all 𝑡 = 1,… , 𝑚. To sample from this conditional distribution, we
simplify the likelihood by noting

𝐿(𝛩 ∣ 𝒟) ∝ 𝜎−𝑛 exp
(

− 1
2𝜎2

𝑛
∑

𝑖=1

(

𝑟𝑡(𝐱𝑖) − 𝑔(𝐱𝑖; 𝑡,𝑡)
)2

)

where 𝑟𝑡(𝐱𝑖) ∶= 𝑦(𝐱𝑖) −
∑

𝜏≠𝑡 𝑔(𝐱𝑖; 𝜏 ,𝜏 ). Therefore, the conditional
distribution in Eq. (8) for any 𝑡 = 1,… , 𝑚 relies on {(𝜏 ,𝜏 )}𝜏≠𝑡
nd 𝒟 only through 𝐑𝑡 = {(𝑟𝑡(𝐱𝑖), 𝐱𝑖)}𝑖=1,…,𝑛. Hence, the conditional
istribution can be expressed as 𝜋(𝑡,𝑡 ∣ 𝐑𝑡, 𝜎2), where 𝐑𝑡 plays the
ole of 𝒟 in the single-tree version of Step 1 of the Gibbs sampler. Each
raw from the conditional distribution in Eq. (8) for any 𝑡 = 1,… , 𝑚 is
hen reduced to two draws:

(a) Draw 𝑡 ∣ 𝜎2,𝐑𝑡.
(b) Draw 𝑡 ∣ 𝑡, 𝜎2,𝐑𝑡.

. Sobol´ indices

In Section 1, we introduced the idea from [7] that the variance of
ny real-valued function defined on and square-integrable in a unit-
ypercube domain can be decomposed into a sum of variance terms.
he Sobol´ [7] results apply when inputs 𝑋1, 𝑋2,… , 𝑋𝑝 are continuous
nd mutually uncorrelated with finite interval supports. Thus, using
q. (4), we can decompose the variance of a BART ensemble function
nto a sum of terms attributed to single inputs or to interactions
etween sets of inputs.
To develop our BART-based Sobol´ indices, we will require the

ollowing assumptions:

A.1 𝑋1,… , 𝑋𝑝 are mutually uncorrelated;
A.2 𝑋𝑖’s density 𝜋𝑖 is positive almost everywhere on the domain’s 𝑖th

margin;
A.3 Conditional on parameter sets {𝑡,𝑡}𝑚𝑡=1, the relation

(𝐱; {𝑡,𝑡}𝑚𝑡=1) = (𝐱∗; {𝑡,𝑡}𝑚𝑡=1) holds if and only if input
points 𝐱 and 𝐱∗ belong to the same set of 𝑚 terminal nodes.

e use conditions A.1 and A.2 to extend the two original results
rom [7] and to derive Sobol´ indices for BART ensembles. Condition
.3 follows from each 𝜇 | being conditionally Normal. If inputs 𝐱 and
𝑡𝑘 𝑡
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𝐱∗ belong to different terminal nodes in some tree 𝜏 , then their corre-
sponding terminal node parameters almost surely have different values,
which results in 𝑔(𝐱; 𝜏 ,𝜏 ) ≠ 𝑔(𝐱∗; 𝜏 ,𝜏 ). Therefore, condition A.3
is a reasonable assumption to make. We also note that condition A.3
is used only when relating Sobol´ indices to counts and does not affect
the computation of Sobol´ indices for BART ensembles.

We can now state the desired generalized version of the vari-
ance decomposition described in [7]. For any random vector 𝐗 =
(𝑋1,… , 𝑋𝑝) that satisfies conditions A.1 and A.2 on 𝑝-dimensional
bounded hyperrectangle domain 𝐷 and for any real-valued function 𝑓
square-integrable on 𝐷, the variance of 𝑓 (𝐗) can be decomposed into a
sum of terms attributed to single inputs or to interactions between sets
of inputs. That is,

𝚅𝚊𝚛𝐗
(

𝑓 (𝐗)
)

=
𝑝
∑

𝑖=1
𝑉𝑖 +

𝑝
∑

𝑖=1

∑

𝑖<𝑗
𝑉𝑖𝑗 +⋯ + 𝑉12…𝑝, (9)

where we recursively define for each variable index set 𝑃 ⊆ {1, 2,… , 𝑝}

𝑉𝑃 ∶= 𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[𝑓 (𝐗) ∣ 𝐗𝑃 ]

)

−
∑

𝑄⊂𝑃
𝑉𝑄 (10)

where the sum is over all nonempty, proper subsets 𝑄 of 𝑃 . In
particular, the (unnormalized) first-order Sobol´ index 𝑉𝑖 (i.e. 𝑉𝑃 when
𝑃 = {𝑖}) is

𝑉𝑖 ∶= 𝚅𝚊𝚛𝑋𝑖
(E𝐗−𝑖

[𝑓 (𝐗) ∣ 𝑋𝑖])

for all 𝑖 = 1,… , 𝑝. Also, the (unnormalized) second-order Sobol´ index
𝑉𝑖𝑗 is

𝑉𝑖𝑗 ∶= 𝚅𝚊𝚛𝐗𝑖𝑗
(E𝐗−𝑖𝑗

[𝑓 (𝐗) ∣ 𝐗𝑖𝑗 ]) − 𝑉𝑖 − 𝑉𝑗

for all 𝑖 ≠ 𝑗. Often, each 𝑉𝑃 term is divided by the total variance
𝚅𝚊𝚛𝐗(𝑓 (𝐗)) to produce normalized Sobol´ index

𝑆𝑃 ∶= 𝑉𝑃 ∕𝚅𝚊𝚛𝐗(𝑓 (𝐗)). (11)

By Eq. (9), the sum of all normalized indices equals unity. This allows
comparison between indices of different functions.

3.1. Sobol´ indices applied to BART

Next, we apply this variance decomposition for general 𝐿2 functions
𝑓 (⋅) to BART ensemble functions (⋅; {𝑡,𝑡}𝑚𝑡=1). That is, we will
compute the terms in the right hand side of Eq. (9) for BART ensembles.

The core terms to compute in Eq. (10) are the conditional expecta-
tion E𝐗−𝑃

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ] and its variance with respect to 𝐗𝑃 .
By integrating both sides of Eq. (4), we obtain an analytic expression
for the conditional expectation:

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ] =

∑

𝑘∈𝐵

𝑑−𝑃𝑘 𝟏𝐑𝑃
𝑘
(𝐗𝑃 ), (12)

where the set 𝐵 indexes the terminal nodes of ensemble  , the |𝑃 |-
dimensional hyperrectangle 𝐑𝑃

𝑘 is the projection of terminal node 𝑘’s
𝑝-dimensional hyperrectangle 𝐑𝑘 onto the dimensions in 𝑃 , and 𝑑−𝑃𝑘 =
𝜇𝑘P−𝑃 (𝐑−𝑃

𝑘 ), where we introduce the notation P𝑃 (⋅) = P𝐗𝑃
(⋅) = P(𝐗𝑃 ∈

⋅). Theorem 1 then provides an analytic expression for the variance of
the conditional expectation.

Theorem 1. For any random vector 𝐗 = (𝑋1,… , 𝑋𝑝) that satisfies
conditions A.1 and A.2 on a 𝑝-dimensional bounded hyperrectangle domain
𝐷, the variance of the conditional expectation in Eq. (12) with respect to
variable index set 𝑃 is

𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]

)

=
∑

𝑘∈𝐵

∑

𝑙∈𝐵

𝑑−𝑃𝑘 𝑑−𝑃𝑙 𝐶𝑃
𝑘,𝑙 (13)

where 𝑑−𝑃𝑘 = 𝜇𝑘P−𝑃 (𝐑−𝑃
𝑘 ) and 𝐶𝑃

𝑘,𝑙 = P𝑃 (𝐑𝑃
𝑘 ∩ 𝐑𝑃

𝑙 ) − P𝑃 (𝐑𝑃
𝑘 )P𝑃 (𝐑𝑃

𝑙 )
(if 𝑃 = {1,… , 𝑝}, then 𝑑−𝑃𝑘 = 𝜇𝑘). In particular, the (unnormalized)
first-order Sobol´ index 𝑉𝑖 is

𝑉𝑖 =
∑

𝑘∈𝐵

∑

𝑙∈𝐵

𝑑−𝑖𝑘 𝑑−𝑖𝑙 𝐶 𝑖
𝑘,𝑙 ,

where 𝑑−𝑖𝑘 = 𝜇𝑘
∏

𝑗≠𝑖 P𝑗 (𝐼
𝑗
𝑘) and 𝐶 𝑖

𝑘,𝑙 = P𝑖(𝐼 𝑖𝑘 ∩ 𝐼 𝑖𝑙 ) − P𝑖(𝐼 𝑖𝑘)P𝑖(𝐼 𝑖𝑙 ).
4

3.2. How do counts and Sobol´ indices relate?

To this day, count-based methods remain the most popular ways of
assessing input activity for BART. But as Liu et al. [6] note, they are
not theoretically well-understood. We have seen in Fig. 2 a scenario in
which the one-way count metric not only inaccurately measures input
activity in the data-generating function 𝑓 but also incorrectly ranks
the variables in order of importance. Chipman et al. [1] and Bleich
et al. [5] also detail scenarios that question how accurately one-way
count metric assess input activity in the data-generating function and
suggest ad-hoc work-arounds, such as fitting BART with small 𝑚 to get
an empirically better behaved estimate of input activity. But how do
counts perform when assessing input activity in the BART ensemble
itself? To answer this question, we turn to the example in Fig. 3a. The
count metric will look at number of splits and conclude that variable
𝑥𝑗 is twice as active than variable 𝑥𝑖. But if we look at the terminal
node values of the ensemble, variable 𝑥𝑖 is clearly more important than
variable 𝑥𝑗 in determining the ensemble’s predicted value. If the count
metric is not measuring variable importance in the ensemble, then what
exactly does it measure? Theorem 2 answers this question.

heorem 2. Let  be a BART ensemble of 𝑚 regression trees with
arameters {𝑡,𝑡}𝑚𝑡=1. Assume  satisfies assumptions A.1, A.2, and A.3,
nd fix 𝑖 ∈ {1,… , 𝑝}. Then the number of unique split rules in  that involve
ariable 𝑥𝑖 equals the number of jumps in the piecewise-constant function
𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅].

To see why Theorem 2 might be true, consider a BART ensemble 0
ith 𝑚 regression trees, where each tree is simply a terminal node. The
nsemble 0, which predicts the same value for any input 𝐱 ∈ 𝐷, can
urn into any 𝑚−tree BART ensemble  by undertaking an appropriate
equence of birth processes. Any birth process slices a terminal node’s
orresponding hyperrectangle into two smaller hyperrectangles accord-
ng to some split rule. If we call this split rule ‘‘𝑥𝑖 < 𝑐’’, then this slice
ccurs on the (𝑝−1)-dimensional hyperplane 𝑥𝑖 = 𝑐 in 𝐷. The resulting
‘left’’ (‘‘right’’) hyperrectangle gains a terminal node parameter 𝜇𝑙𝑒𝑓 𝑡
parameter 𝜇𝑟𝑖𝑔ℎ𝑡), where 𝜇𝑙𝑒𝑓 𝑡 ≠ 𝜇𝑟𝑖𝑔ℎ𝑡 through assumption A.3. If the
plit rule ‘‘𝑥𝑖 < 𝑐’’ did not already exist in the ensemble, then the
iecewise-constant function E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅] must have
een constant at 𝑥𝑖 = 𝑐 prior to the birth process, which means the birth
rocess produces a jump in the piecewise-constant function at 𝑥𝑖 = 𝑐.
eanwhile, no jumps are produced in any of the other piecewise-
onstant functions E𝐗−𝑗

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑗 = ⋅] (where 𝑗 ≠ 𝑖). Hence,

nder assumptions A.1, A.2, and A.3, each birth process that produces
unique split rule that involves variable 𝑥𝑖 increments the number of
umps in the piecewise-constant function E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅]
y one.
Theorem 2 also provides a link between the one-way count metric

nd the theoretically more well-understood first-order Sobol´ index.
nder the conditions of Theorem 2, the one-way count of variable
𝑖 is the number of jumps in the conditional expectation function
𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅]. Under the conditions of Theorem 1,
he first-order Sobol´ index of variable 𝑥𝑖 is the variance of the con-
itional expectation E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖]. Thus, under certain
onditions, both the one-way count and the first-order Sobol´ index
f variable 𝑥𝑖 are functions of the conditional expectation function
𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅].
Interestingly, the number of jumps and variance can each be viewed

s a measure of variability. Under this lens, the one-way count metric
an been seen as a more crude version of the first-order Sobol´ index.
heorem 3 describes how to ‘‘standardize’’ the conditional expectation
unction so that its variance becomes the number of jumps of the
onditional expectation. We use the term standardize because many
ifferent conditional expectation functions can be transformed into the
tandardized conditional expectation function, but the standardized
onditional expectation function cannot be transformed back into the
riginal conditional expectation function.
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heorem 3. Let  be a BART ensemble satisfying A.1, A.2, and A.3.
ecall that for all dimensions 𝑖 = 1,… , 𝑝, the conditional expectation
unction E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅] is piecewise constant and hence
an be written as E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅] =
∑

𝑘∗∈𝐵𝑖

𝑒𝑖𝑘∗𝟏𝐼 𝑖𝑘∗

(⋅),

where 𝐵𝑖
 indexes the intervals of this piecewise constant function. Suppose

for any indices 𝑘∗, 𝑙∗ ∈ 𝐵𝑖
 that 𝑒

𝑖
𝑘∗ = 𝑒𝑖𝑙∗ implies 𝐼

𝑖
𝑘∗ = 𝐼 𝑖𝑙∗ (i.e. the piecewise

constant function has distinct values in different input regions). Consider the
following transformations to this conditional expectation function:

1. Center and scale {𝑒𝑖𝑘∗ ∶ 𝑘∗ ∈ 𝐵𝑖
} so that the corrected sample

variance1 equals |𝐵𝑖
 |.

2. Assign equal probability mass |𝐵𝑖
 |

−1 to each 𝐼 𝑖𝑘∗ .

Then the number of jumps in this transformed conditional expectation
function equals its variance.

As with condition A.3, the added ‘‘𝑒𝑖𝑘∗ = 𝑒𝑖𝑙∗ implies 𝐼 𝑖𝑘∗ = 𝐼 𝑖𝑙∗ ’’
assumption in Theorem 3 follows from each 𝜇𝑘| being conditionally
Normal. We may use reasoning similar to before to argue that this
assumption is also reasonable to make.

4. Computational details

Given a 𝐿2 function 𝑓 , we wish to estimate its normalized Sobol´
indices 𝑆𝑓

𝑃 as defined in Eq. (11) for all variable index sets 𝑃 . We do
so by first training a BART model on data generated from Eq. (1) and
drawing 𝑁 samples 𝛩(1),… , 𝛩(𝑁) from the resulting BART posterior
in Eq. (5). For each variable index set 𝑃 , we then compute

𝑆𝛩(𝑗)

𝑃 ∶=
𝚅𝚊𝚛𝐗𝑃

(E𝐗−𝑃
[(𝐗; { (𝑗)

𝑡 ,(𝑗)
𝑡 }𝑚𝑡=1) ∣ 𝐗𝑃 ]) −

∑

𝑄∈2𝑃 ⧵{∅,𝑃 } 𝑉
𝛩(𝑗)

𝑄

𝚅𝚊𝚛𝐗((𝐗; {
(𝑗)
𝑡 ,(𝑗)

𝑡 }𝑚𝑡=1))

for each posterior draw 𝛩(𝑗), where 𝑗 = 1,… , 𝑁 . We can then obtain
a point estimate of 𝑆𝑓

𝑃 by approximating the integral ∫ 𝑆𝛩
𝑃 𝑑𝜋(𝛩 ∣ 𝒟)

using the sample mean of 𝑆𝛩(1)

𝑃 ,… , 𝑆𝛩(𝑁)

𝑃 . That is, our point estimate of
𝑆𝑓
𝑃 is

𝑆̂𝑓
𝑃 = 1

𝑁

𝑁
∑

𝑗=1
𝑆𝛩(𝑗)

𝑃 .

1 The definition we use for the corrected sample variance of real numbers
1,… , 𝑥𝑛 is (𝑛− 1)−1

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2, where 𝑥̄ = 𝑛−1

∑𝑛
𝑖=1 𝑥𝑖 is the sample mean of
5

𝑥1,… , 𝑥𝑛.
At the core of these calculations is the variance term

𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]

)

which we showed can be computed exactly using Theorem 1. Further-
more, it turns out that possibly many, if not all, of the summands
in Eq. (13) are zero. Theorem 4 below explains under what conditions
a summand vanishes.

4.1. Unnormalized Sobol´ indices

A sensible goal in sensitivity analysis is to compute all first-order
Sobol´ indices. According to Eq. (13), each unnormalized first-order
index 𝑉𝑖 for  is a sum of |𝐵 |

2 terms. Hence, computing all 𝑝 first-
order indices requires calculating 𝑝 × |𝐵 |

2 terms. However, we may
ake advantage of BART’s additive structure to reduce the number of
erms to compute.
Consider the example ensemble  consisting only of the 𝑚 = 4

rees in Fig. 4. Because ensemble  has |𝐵 | = 8 terminal nodes, the
nnormalized first-order Sobol´ index 𝑉1 is a sum of |𝐵 |

2 = 64 terms.
owever, only tree (1,1) splits on variable 𝑥1, which makes the
onditional expectations E[𝑔(𝐗; 2,2) ∣ 𝑋1 = 𝑥1], E[𝑔(𝐗; 3,3) ∣
1 = 𝑥1], and E[𝑔(𝐗; 4,4) ∣ 𝑋1 = 𝑥1] constant in 𝑥1. Thus,

1 = 𝚅𝚊𝚛𝑋1

(

E[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋1]
)

= 𝚅𝚊𝚛𝑋1

(

E
[

𝑚
∑

𝑡=1
𝑔(𝐗; 𝑡,𝑡) ∣ 𝑋1

]

)

= 𝚅𝚊𝚛𝑋1

(

E[𝑔(𝐗; 1,1) ∣ 𝑋1]
)

,

hich, according to Eq. (13), is a sum of only |1|
2 = 4 terms. Using

he same logic, each Sobol´ index 𝑉2, 𝑉3, and 𝑉4 reduces from a sum
f |𝐵 |

2 = 64 terms to a sum of, respectively, |2|
2 = 4, |3|

2 = 4,
nd |4|

2 = 4 terms. Hence, computing all four indices 𝑉1, 𝑉2, 𝑉3,
nd 𝑉4 reduces from a sum of 4 × |𝐵 |

2 = 256 terms to a sum of
1|

2 + |2|
2 + |3|

2 + |4|
2 = 16 terms.

More generally, to compute Eq. (13) for arbitrary variable index
et 𝑃 , we may remove any tree that does not split on any variable
n 𝑃 . Furthermore, we may take advantage of the ensemble function’s
ormulation in Eq. (4) to remove any node whose path to root node
oes not split on any variable in 𝑃 . This statement is made precise in
heorem 4.

heorem 4. Let (⋅; {𝑡,𝑡}𝑚𝑡=1) =
∑

𝑘∈𝐵
𝜇𝑘𝟏𝐑𝑘

(⋅) be the function of a
ART ensemble  . For any terminal node 𝜂 , let 𝑣(𝑘) be the index set of all
𝑘
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split variables along the path to 𝜂𝑘’s root node. For any variable index set
𝑃 , let

𝑃 (⋅; {𝑡,𝑡}𝑚𝑡=1) ∶=
∑

𝑘∈𝐵
𝑣(𝑘)∩𝑃≠∅

𝜇𝑘𝟏𝐑𝑘
(⋅)

be the ensemble function that results from removing from 𝐵 any terminal
node whose path to root node does not split on any variable in 𝑃 . Then

𝚅𝚊𝚛𝐗𝑃
(E[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]) = 𝚅𝚊𝚛𝐗𝑃

(E[𝑃 (𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]).

To get a better sense of how much computation Theorem 4 saves,
consider again the goal of computing all 𝑝 (unnormalized) first-order
Sobol´ indices if an ensemble  , but for a more realistic scenario: let
𝑝 = 10 and suppose the ensemble  is such that 𝑁1 = 𝑁2 = 𝑁3 = 𝑁4 =
𝑁5 = 1

4 |𝐵 | and 𝑁6 = 𝑁7 = 𝑁8 = 𝑁9 = 𝑁10 = 0, where 𝑁𝑖 is the
umber of terminal nodes in  whose path to root node includes split
ariable 𝑥𝑖. Theorem 4 tells us for all 𝑖 = 1,… , 𝑝, the first-order index 𝑉𝑖
is a sum of 𝑁2

𝑖 terms. Hence, computing all 𝑝 first-order Sobol´ indices
would require ∑𝑝

𝑖=1 𝑁
2
𝑖 = 5 × 1

16 |𝐵 |
2 terms to be computed, which is

a 32-fold improvement over 𝑝 × |𝐵 |
2, which is the number if terms to

compute if Theorem 4 is not used.

4.2. Total-effects index

In sensitivity analysis, we also often wish to obtain some measure
of interaction between the input variables. We can do so via the
total-effects sensitivity index, which is defined to be the sum of all
normalized sensitivity indices involving the input variable in ques-
tion [20]. For example, if 𝑝 = 3, then the total-effects index for input
variable 𝑥2 would be 𝑇2 = 𝑆2+𝑆12+𝑆23+𝑆123. Hence, 𝑇2−𝑆2 provides
a sense of the magnitude of all interactions involving variable 𝑥2.
However, in order to compute all 𝑝 total-effects sensitivity indices, this
formulation requires computing all 2𝑝−1 normalized sensitivity indices
𝑆𝑃 . Fortunately, the total-effects index is equivalent to the following
expression:

𝑇𝑖 = 1 − 𝑆−𝑖,

where 𝑆−𝑖 = 𝑆{1,…,𝑖−1,𝑖+1,…,𝑝}, and
∑𝑝

𝑖=1 𝑇𝑖 ≥ 1 with equality only if the
odel is purely additive. Hence, we only need to compute 𝑝 of these

variance expressions in order to compute all 𝑝 total-effects sensitivity
indices.
6

5. Applications

5.1. Simulation study

Simulation settings discussion.
Given data generated from Eq. (1), where the true Sobol´ index

alues for 𝑓 (𝐱) are known, this section identifies the number of inputs,
he sample size, and the magnitude of the measurement error standard
eviation which answer the following questions:

Q.1 What is the bias of BART-based Sobol´ indices for estimating the
Sobol´ indices of 𝑓 (⋅) when 𝑓 (𝐱) is measured with error?

Q.2 How does this bias compare to the bias of estimated Sobol´ in-
dices obtained using alternative nonparametric prediction mod-
els?

Q.3 How close are the first-order rankings provided by BART-based
Sobol´ indices to the first-order ranking provided by the Sobol´
indices of 𝑓 (⋅)?

Q.4 How close are the first-order rankings provided by one-way
BART counts to the first-order ranking provided by the Sobol´
indices of 𝑓 (⋅)?

For questions Q.1, Q.3, and Q.4, and for each simulation setting
below, we generate a 𝑛−point maximin LHD sample on [0, 1]𝑝 [21]. At
ach input point 𝐱 of the LHD sample, we generate response values for
given data-generating function 𝑓 (⋅)∶[0, 1]𝑝 → R from Eq. (1) where

𝜖 ∼ 𝑁(0, 𝜎2). We generate 500 data sets for each possible combination
of the following different parameter settings: 𝑝∕𝑝0 ∈ {1, 2, 3}, 𝑛 ∈
{10𝑝, 50𝑝}, and 𝜎2 ∈ {0.1𝚅𝚊𝚛(𝑓 (𝐗)), 0.25𝚅𝚊𝚛(𝑓 (𝐗))}, where (𝑝− 𝑝0) is the
number of inert variables in 𝑓 (⋅) and 𝐗 = (𝑋1,… , 𝑋𝑝), where each 𝑋𝑖

𝑖𝑖𝑑∼
𝑈 (0, 1). For each 𝑓 (⋅), the variance 𝚅𝚊𝚛(𝑓 (𝐗)) is calculated analytically
where possible, otherwise numerical integral approximations are used.
To each of these 500 data sets, we fit a BART model using the default
parameter settings of the Open Bayesian Trees (OpenBT) project found
at https://bitbucket.org/mpratola/openbt/ [22].

The five data-generation functions to be examined are:

1. From [23], the data-generating function is defined as

𝑓 (𝐱) = 10 sin(𝜋𝑥1𝑥2) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5.

This function, used in [1] and many other BART papers for
variable activity and selection, is a challenging mix of interac-
tions and nonlinearities. Here, only 𝑝0 = 5 variables influence
the response. This function’s first-order Sobol´ indices and total-
effects Sobol´ indices have the same ordering. That is, 𝑆𝑓 >
4

https://bitbucket.org/mpratola/openbt/
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𝑆𝑓
1 = 𝑆𝑓

2 > 𝑆𝑓
3 > 𝑆𝑓

5 and 𝑇 𝑓
4 > 𝑇 𝑓

1 = 𝑇 𝑓
2 > 𝑇 𝑓

3 > 𝑇 𝑓
5 . Also,

𝚅𝚊𝚛(𝑓 (𝐗)) ≈ 23.8.
2. We modify the Friedman function to create the data-generating
function defined as

𝑓 (𝐱) = 10 sin(𝜋(𝑥1 − 0.5)(𝑥2 − 0.5)) + 20(𝑥3 − 0.5)2 + 10𝑥4 + 5𝑥5.

For this modified version, the first-order Sobol´ indices for vari-
ables 1 and 2 are zero, which changes the order of the first-order
Sobol´ indices while maintaining the total-effects order (see
Table 1). Also, 𝚅𝚊𝚛(𝑓 (𝐗)) ≈ 19.0.

3. The 𝑔−function from [24] with 𝑝0 inputs is defined to be

𝑓 (𝑥1,… , 𝑥𝑝0 ) =
𝑝0
∏

𝑘=1

|4𝑥𝑘 − 2| + 𝑐𝑘
1 + 𝑐𝑘

,

where 𝐜 = (𝑐1,… , 𝑐𝑝0 ) has nonnegative components. This func-
tion is a product of univariate functions, which presents a greater
challenge to BART than sums of univariate or bivariate functions
provide. Here we use the coefficient values 𝑐𝑘 = (𝑘 − 1)∕2 for
𝑘 = 1,… , 𝑝0 suggested by Crestaux et al. [25]. We also use 𝑝0 = 5
active variables which gives us 𝚅𝚊𝚛(𝑓 (𝐗)) ≈ 3.076.

4. The Bratley function [26,27] with 𝑝0 inputs is defined to be

𝑓 (𝐱) ∶ =
𝑝0
∑

𝑖=1
(−1)𝑖

𝑖
∏

𝑗=1
𝑥𝑗

= −𝑥1 + 𝑥1𝑥2 − 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥3𝑥4 − 𝑥1𝑥2𝑥3𝑥4𝑥5 +⋯

This function is a sum of products of inputs, which provides an
even greater challenge to BART than the 𝑔−function provides.
Furthermore, this function produces nonzero Sobol’ indices for
all (non-null) variable index sets. Again, we use 𝑝0 = 5 active
variables which gives us 𝚅𝚊𝚛(𝑓 (𝐗)) ≈ 0.057.

5. The function inspired by Morris et al. [28] is defined for 𝑝0 = 5
as

𝑓 (𝐱) ∶ = 𝛼
𝑝0
∑

𝑖=1
𝑥𝑖 + 𝛽

𝑝0−1
∑

𝑖=1
𝑥𝑖

𝑝0
∑

𝑗=𝑖+1
𝑥𝑗

= 𝛼𝑥1 + 𝛽(𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥1𝑥5)

+ 𝛼𝑥2 + 𝛽(𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥2𝑥5)

+ 𝛼𝑥3 + 𝛽(𝑥3𝑥4 + 𝑥3𝑥5)

+ 𝛼𝑥4 + 𝛽(𝑥4𝑥5)

+ 𝛼𝑥5

where 𝛼 =
√

12 − 6
√

0.1(𝑝0 − 1) ≈ −0.331 and 𝛽 = 12
√

10(𝑝0−1)
≈

1.897 are chosen so that 𝑆1 = 𝑆2 = ⋯ = 𝑆5 ≈ 0.05 and total-
effects indices 𝑇1 = 𝑇2 = ⋯ = 𝑇5 ≈ 0.35. Here, 𝚅𝚊𝚛(𝑓 (𝐗)) ≈ 5.25.
See also www.sfu.ca/~ssurjano/morretal06.html.

Hence, we consider (3 × 2 × 2) × 5 = 60 possible combinations of
(𝑝, 𝑛, 𝜎2) parameter settings and data-generating functions. We will call
these the 60 simulation scenarios.

For question Q.2, Treed Gaussian Processes (TGP) provide a bench-
mark to compare exact BART-based Sobol´ indices against [29,30].
owever, there exists no literature on the exact computation of TGP-
ased Sobol´ indices. Hence, we estimate first-order and total-effects
GP-based Sobol´ indices using the tgp::sens() R function [16,31].
This function uses Monte Carlo integration whose error depends on its
Latin hypercube design (LHD) sampling scheme. The 𝑝 + 2 required
LHD samples are randomly drawn for every MCMC iteration of the TGP
model fitting, which propagates the Monte Carlo integration error into
the posterior variability of the indices. To minimize this error, we use
100𝑝−point LHD samples.

5.2. Performance metrics

We evaluate our results in terms of two metrics: the 𝐿1 performance
metric and a rank-based performance metric.
7

𝐿1 performance metric
To answer question Q.1 posed at the beginning of the section, we

will first estimate the expectation of the 𝐿1 distance 𝑑𝐿1
(⋅, ⋅) between

BART-based Sobol´ indices and the true Sobol´ indices with respect
to the BART posterior 𝜋(𝛩 ∣ 𝒟) from Eq. (5). For example, if we are
assessing the bias of BART-based first-order Sobol´ indices for a given
number of inputs, sample size, and magnitude of the measurement
error standard deviation (i.e for a given (𝑝, 𝑛, 𝜎2)), we will estimate the
expectation

∫ 𝑑𝐿1
(𝑺 ,𝑺𝑓 ) 𝑑𝜋(𝛩 ∣ 𝒟) ≈ 1

1000

1000
∑

𝑖=1
𝑑𝐿1

(𝑺 (𝑖) ,𝑺𝑓 ) (14)

using 1000 posterior samples {(𝛩(𝑖) ∣ 𝒟)}1000𝑖=1 , where the vectors
𝑺 = (𝑆

1 , 𝑆

2 ,… , 𝑆

𝑝 ) and 𝑺𝑓 = (𝑆𝑓
1 , 𝑆

𝑓
2 ,… , 𝑆𝑓

𝑝 ) contain all first-order
obol´ indices of, respectively, BART ensemble function (⋅; {𝑡,𝑡}𝑚𝑡=1)

and data-generating function 𝑓 (⋅). Here, (⋅; {𝑡,𝑡}𝑚𝑡=1) is the BART
nsemble function that results from posterior sample (𝛩 ∣ 𝒟) while each
(𝑖)(⋅) is similarly the BART ensemble function that results from the 𝑖th
osterior sample (𝛩(𝑖) ∣ 𝒟). We will make similar estimates for two-way
nd total-effects Sobol´ index calculations. Finally, we average over
eplicated data sets 𝒟 to arrive at our overall estimated 𝐿1 distance.
n the example above, we will generate 500 values of the expected 𝐿1
distance estimate. The sample mean and standard deviation of these
500 estimates are shown in Table 2 (the numerical results are discussed
in Section 5.3).

To answer question Q.2, we follow a methodology similar to that
for answering question Q.1. We highlight three key differences. First,
we compute TGP-based Sobol´ indices, which are approximated for
any given posterior sample of the trained TGP. Second, we estimate
TGP-based Sobol´ indices for only 40 data sets due to the substantial
added computational demands of the required integral approxima-
tions. Table 2 reports the sample mean and standard of these 40
estimates. Third, we do not compute TGP-based second-order Sobol´
indices (i.e. 𝑆̂𝑇𝐺𝑃

𝑖𝑗 ) because the tgp::sens() R function does not
easily lend itself to such calculations. Hence, we rely on TGP-based
total-indices to capture input variable interactions. Regarding the latter
two key differences, we emphasize that TGP serves merely as a bench-
mark and not as the focus of this paper. Hence, we use TGP as only one
possible popular alternative to BART-based Sobol´ indices.

Rank-based performance metric
To answer questions Q.3 and Q.4, we replace the 𝐿1 distance

𝑑𝐿1
(⋅, ⋅) in Eq. (14) with a discrepancy measure 𝑑𝑟(⋅, ⋅), to be defined

in Eq. (15). This allows a more interpretable comparison between the
performances of one-way BART counts and BART-based Sobol’ indices.
Table 3 shows the sample mean and standard deviation of these 500
estimates.

As an example, we will rank the Friedman function’s normalized
first-order Sobol´ index values (𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5) = (.197, .197, .093, .350,
.087) shown in Table 1 as (2, 2, 4, 1, 5), where the most active variable
(i.e. variable 4) is assigned ranking number 1 and the least active
variable (i.e. variable 5) is assigned ranking number 5. Variables 1 and
2 are equally active, so we will adopt the convention used in many
sports competitions of assigning the minimum rank to the two variables
and then leaving a gap in the ranking numbers so that the positions of
all variables less active than variables 1 and 2 are unaffected.

Several options exist for comparing two rankings. Kendall [32]
introduces a distance that, when ties in rankings are not allowed,
is the graphical distance between two vertices in the well-studied
permutation polytope that represents all possible rankings of 𝑝 ob-
jects [33]. Emond and Mason [34] point out that when ties are allowed,
Kendall’s ‘‘distance’’ violates the triangle inequality and hence is no
longer a true metric. They advocate the distance defined by Kemeny
and Snell [35], which equals Kendall’s distance when ties are not
allowed, but remains a metric when ties are allowed.

https://www.sfu.ca/~ssurjano/morretal06.html
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Table 1
𝑆𝑓
𝑖 , 𝑇

𝑓
𝑖 , and 𝑇 𝑓

𝑖 − 𝑆𝑓
𝑖 for various data-generating functions 𝑓 and variable indices 𝑖.

𝑖 Friedman Modified Friedman 𝑔−function Bratley Morris

𝑆𝑓
𝑖 𝑇 𝑓

𝑖 𝑇 𝑓
𝑖 − 𝑆𝑓

𝑖 𝑆𝑓
𝑖 𝑇 𝑓

𝑖 𝑇 𝑓
𝑖 − 𝑆𝑓

𝑖 𝑆𝑓
𝑖 𝑇 𝑓

𝑖 𝑇 𝑓
𝑖 − 𝑆𝑓

𝑖 𝑆𝑓
𝑖 𝑇 𝑓

𝑖 𝑇 𝑓
𝑖 − 𝑆𝑓

𝑖 𝑆𝑓
𝑖 𝑇 𝑓

𝑖 𝑇 𝑓
𝑖 − 𝑆𝑓

𝑖

1 0.197 0.274 0.077 0 0.335 0.335 0.433 0.701 0.268 0.688 0.766 0.078 0.190 0.210 0.019
2 0.197 0.274 0.077 0 0.335 0.335 0.108 0.284 0.176 0.142 0.220 0.078 0.190 0.210 0.019
3 0.093 0.093 0 0.117 0.117 0 0.048 0.135 0.087 0.051 0.099 0.048 0.190 0.210 0.019
4 0.350 0.350 0 0.438 0.438 0 0.027 0.078 0.051 0.006 0.018 0.012 0.190 0.210 0.019
5 0.087 0.087 0 0.110 0.110 0 0.017 0.050 0.033 0.006 0.018 0.012 0.190 0.210 0.019
Table 2
Estimates of the expected 𝐿1 distance between BART-based Sobol´ indices and true Sobol´ indices when 𝑓 (𝐱) is measured with error. Each block of four scenarios is ordered roughly
n decreasing order of ‘‘signal-to-noise’’.

(𝑝, 𝑛, 𝜎2) BART: mean (sd) of 500 replicates TGP: mean (sd) of 40 replicates

𝑆𝑓
𝑖 vs. 𝑆

𝑖 𝑆𝑓
𝑖𝑗 vs. 𝑆

𝑖𝑗 𝑇 𝑓
𝑖 vs. 𝑇 

𝑖 𝑆𝑓
𝑖 vs. 𝑆̂𝑇𝐺𝑃

𝑖 𝑇 𝑓
𝑖 vs. 𝑇̂ 𝑇𝐺𝑃

𝑖

Friedman function

(5, 50𝑝, 0.10) 0.072 (0.021) 0.067 (0.006) 0.137 (0.037) 0.198 (0.007) 0.444 (0.030)
(5, 50𝑝, 0.25) 0.099 (0.034) 0.082 (0.005) 0.174 (0.047) 0.269 (0.019) 0.938 (0.108)
(5, 10𝑝, 0.10) 0.184 (0.065) 0.089 (0.001) 0.267 (0.095) 0.289 (0.048) 0.886 (0.218)
(5, 10𝑝, 0.25) 0.206 (0.077) 0.091 (0.002) 0.289 (0.095) 0.339 (0.058) 1.272 (0.275)

(10, 50𝑝, 0.10) 0.074 (0.018) 0.050 (0.006) 0.137 (0.024) 1.030 (0.009) 1.100 (0.027)
(10, 50𝑝, 0.25) 0.120 (0.026) 0.075 (0.008) 0.219 (0.034) 1.122 (0.017) 1.497 (0.071)
(10, 10𝑝, 0.10) 0.257 (0.051) 0.098 (0.002) 0.403 (0.059) 1.116 (0.043) 1.410 (0.179)
(10, 10𝑝, 0.25) 0.321 (0.061) 0.102 (0.003) 0.465 (0.068) 1.189 (0.044) 2.025 (0.352)

(15, 50𝑝, 0.10) 0.068 (0.014) 0.037 (0.006) 0.119 (0.018) 1.903 (0.009) 1.693 (0.013)
(15, 50𝑝, 0.25) 0.123 (0.021) 0.064 (0.008) 0.212 (0.025) 2.008 (0.015) 2.009 (0.082)
(15, 10𝑝, 0.10) 0.269 (0.045) 0.100 (0.002) 0.434 (0.050) 1.992 (0.039) 1.998 (0.227)
(15, 10𝑝, 0.25) 0.349 (0.055) 0.105 (0.003) 0.515 (0.059) 2.074 (0.037) 3.081 (0.525)

Mod. Friedman function

(5, 50𝑝, 0.10) 0.080 (0.019) 0.093 (0.019) 0.166 (0.052) 0.167 (0.013) 0.409 (0.047)
(5, 50𝑝, 0.25) 0.118 (0.028) 0.136 (0.026) 0.241 (0.070) 0.225 (0.023) 0.862 (0.080)
(5, 10𝑝, 0.10) 0.370 (0.047) 0.355 (0.004) 0.913 (0.051) 0.207 (0.031) 0.651 (0.168)
(5, 10𝑝, 0.25) 0.343 (0.049) 0.352 (0.002) 0.682 (0.067) 0.288 (0.058) 1.220 (0.234)

(10, 50𝑝, 0.10) 0.079 (0.016) 0.057 (0.014) 0.134 (0.027) 0.792 (0.011) 1.225 (0.019)
(10, 50𝑝, 0.25) 0.128 (0.025) 0.101 (0.021) 0.234 (0.042) 0.864 (0.017) 1.514 (0.041)
(10, 10𝑝, 0.10) 0.336 (0.035) 0.350 (0.002) 0.717 (0.054) 0.856 (0.039) 1.480 (0.117)
(10, 10𝑝, 0.25) 0.400 (0.057) 0.362 (0.003) 0.931 (0.055) 0.909 (0.041) 1.921 (0.261)

(15, 50𝑝, 0.10) 0.072 (0.013) 0.044 (0.011) 0.121 (0.020) 1.444 (0.012) 1.994 (0.014)
(15, 50𝑝, 0.25) 0.130 (0.020) 0.084 (0.017) 0.227 (0.030) 1.523 (0.016) 2.179 (0.029)
(15, 10𝑝, 0.10) 0.335 (0.046) 0.314 (0.017) 0.853 (0.070) 1.506 (0.033) 2.256 (0.168)
(15, 10𝑝, 0.25) 0.404 (0.056) 0.348 (0.012) 0.966 (0.063) 1.562 (0.038) 3.002 (0.431)

𝑔−function

(5, 50𝑝, 0.10) 0.374 (0.061) 0.272 (0.005) 0.448 (0.069) 0.320 (0.039) 1.640 (0.140)
(5, 50𝑝, 0.25) 0.432 (0.092) 0.269 (0.005) 0.530 (0.090) 0.410 (0.042) 2.355 (0.185)
(5, 10𝑝, 0.10) 0.643 (0.108) 0.280 (0.002) 0.747 (0.112) 0.458 (0.103) 2.217 (0.366)
(5, 10𝑝, 0.25) 0.697 (0.112) 0.279 (0.002) 0.815 (0.116) 0.539 (0.097) 2.571 (0.330)

(10, 50𝑝, 0.10) 0.374 (0.057) 0.326 (0.007) 0.570 (0.050) 0.911 (0.022) 3.407 (0.190)
(10, 50𝑝, 0.25) 0.446 (0.077) 0.341 (0.007) 0.707 (0.066) 1.008 (0.022) 4.527 (0.207)
(10, 10𝑝, 0.10) 0.688 (0.094) 0.333 (0.003) 0.997 (0.092) 1.052 (0.064) 4.436 (0.428)
(10, 10𝑝, 0.25) 0.786 (0.105) 0.336 (0.003) 1.130 (0.106) 1.095 (0.053) 5.039 (0.512)

(15, 50𝑝, 0.10) 0.367 (0.048) 0.325 (0.012) 0.584 (0.046) 1.635 (0.020) 6.983 (0.267)
(15, 50𝑝, 0.25) 0.444 (0.064) 0.356 (0.008) 0.756 (0.052) 1.527 (0.020) 5.446 (0.221)
(15, 10𝑝, 0.10) 0.650 (0.089) 0.348 (0.005) 1.050 (0.086) 1.680 (0.052) 7.474 (0.794)
(15, 10𝑝, 0.25) 0.802 (0.092) 0.354 (0.005) 1.240 (0.099) 1.738 (0.035) 8.680 (0.815)

Bratley function

(5, 50𝑝, 0.10) 0.070 (0.020) 0.043 (0.007) 0.099 (0.016) 0.180 (0.017) 0.527 (0.039)
(5, 50𝑝, 0.25) 0.106 (0.037) 0.050 (0.009) 0.146 (0.024) 0.255 (0.028) 0.962 (0.087)
(5, 10𝑝, 0.10) 0.221 (0.078) 0.081 (0.002) 0.276 (0.049) 0.219 (0.051) 0.679 (0.100)
(5, 10𝑝, 0.25) 0.293 (0.098) 0.079 (0.002) 0.343 (0.068) 0.288 (0.052) 1.074 (0.200)

(10, 50𝑝, 0.10) 0.068 (0.017) 0.041 (0.007) 0.122 (0.012) 1.027 (0.015) 1.373 (0.032)
(10, 50𝑝, 0.25) 0.125 (0.030) 0.058 (0.009) 0.200 (0.021) 1.112 (0.017) 1.954 (0.087)
(10, 10𝑝, 0.10) 0.231 (0.054) 0.103 (0.001) 0.376 (0.035) 1.039 (0.033) 1.562 (0.145)
(10, 10𝑝, 0.25) 0.331 (0.071) 0.106 (0.002) 0.472 (0.051) 1.125 (0.050) 2.179 (0.283)

(15, 50𝑝, 0.10) 0.065 (0.015) 0.033 (0.006) 0.117 (0.010) 1.887 (0.009) 2.234 (0.038)
(15, 50𝑝, 0.25) 0.125 (0.021) 0.054 (0.008) 0.205 (0.017) 1.974 (0.017) 2.990 (0.122)
(15, 10𝑝, 0.10) 0.223 (0.042) 0.107 (0.002) 0.394 (0.029) 1.905 (0.035) 2.511 (0.166)
(15, 10𝑝, 0.25) 0.326 (0.061) 0.113 (0.002) 0.504 (0.052) 1.982 (0.024) 3.344 (0.253)

(continued on next page)
Unfortunately, the Kemeny–Snell (KS) distance is likely to artifi-
ially inflate when the data-generating function has either more than
wo inert variables or has equally-active non-inert variables. In the
ormer scenario, a fitted BART model is unlikely to entirely shrink
ll of its input activity measures of the inert variables. In this case,
8

the KS distance will be inflated by the fitted BART model assigning
small but positive effects to the inert variables. In the latter scenario,
a fitted BART model is unlikely to perfectly match its input activity
measures of the equally-active non-inert variables. In this case, the fit-
ted BART model could be incorrectly ‘‘punished’’ for even the slightest
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Table 2 (continued).
(𝑝, 𝑛, 𝜎2) BART: mean (sd) of 500 replicates TGP: mean (sd) of 40 replicates

𝑆𝑓
𝑖 vs. 𝑆

𝑖 𝑆𝑓
𝑖𝑗 vs. 𝑆

𝑖𝑗 𝑇 𝑓
𝑖 vs. 𝑇 

𝑖 𝑆𝑓
𝑖 vs. 𝑆̂𝑇𝐺𝑃

𝑖 𝑇 𝑓
𝑖 vs. 𝑇̂ 𝑇𝐺𝑃

𝑖

Morris function

(5, 50𝑝, 0.10) 0.063 (0.023) 0.017 (0.003) 0.064 (0.025) 0.439 (0.030) 0.468 (0.110)
(5, 50𝑝, 0.25) 0.092 (0.035) 0.018 (0.003) 0.093 (0.036) 0.283 (0.028) 1.238 (0.163)
(5, 10𝑝, 0.10) 0.137 (0.048) 0.033 (0.002) 0.140 (0.049) 0.463 (0.054) 0.517 (0.184)
(5, 10𝑝, 0.25) 0.188 (0.070) 0.031 (0.003) 0.191 (0.072) 0.343 (0.063) 1.152 (0.315)

(10, 50𝑝, 0.10) 0.079 (0.017) 0.029 (0.004) 0.103 (0.016) 0.627 (0.019) 0.719 (0.011)
(10, 50𝑝, 0.25) 0.130 (0.024) 0.044 (0.004) 0.167 (0.023) 0.433 (0.024) 2.072 (0.271)
(10, 10𝑝, 0.10) 0.220 (0.039) 0.058 (0.002) 0.284 (0.034) 0.614 (0.041) 0.785 (0.114)
(10, 10𝑝, 0.25) 0.295 (0.056) 0.060 (0.002) 0.360 (0.051) 0.457 (0.052) 1.973 (0.511)

(15, 50𝑝, 0.10) 0.076 (0.013) 0.026 (0.003) 0.098 (0.013) 0.830 (0.018) 0.958 (0.090)
(15, 50𝑝, 0.25) 0.135 (0.018) 0.044 (0.005) 0.180 (0.019) 0.632 (0.021) 2.921 (0.353)
(15, 10𝑝, 0.10) 0.239 (0.034) 0.064 (0.002) 0.326 (0.031) 0.805 (0.038) 0.990 (0.135)
(15, 10𝑝, 0.25) 0.326 (0.043) 0.069 (0.003) 0.418 (0.042) 0.622 (0.043) 2.775 (0.679)
Table 3
Estimates of the expected 𝑑𝑟 discrepancy between BART-based Sobol´ index rankings and true Sobol´ index rankings when 𝑓 (𝐱) is measured with error. Each block of four scenarios
is ordered roughly in decreasing order of ‘‘signal-to-noise’’.

(𝑝, 𝑛, 𝜎2) 𝑆
𝑖 vs. 𝑆𝑓

𝑖 Count vs. 𝑆𝑓
𝑖 𝑇 

𝑖 vs. 𝑇 𝑓
𝑖 Count vs. 𝑇 𝑓

𝑖 𝑆
𝑖𝑗 vs. 𝑆

𝑓
𝑖𝑗

Friedman function

Max value 20 20 20 20 20
(5, 50𝑝, 0.10) 1.048 (1.000) 5.420 (2.195) 1.040 (1.000) 5.420 (2.195) 0.000 (0.000)
(5, 50𝑝, 0.25) 1.152 (1.005) 6.404 (3.186) 1.144 (1.015) 6.404 (3.186) 0.008 (0.126)
(5, 10𝑝, 0.10) 2.540 (1.484) 8.620 (3.011) 2.536 (1.488) 8.620 (3.011) 8.716 (5.690)
(5, 10𝑝, 0.25) 2.816 (1.892) 8.916 (3.086) 2.812 (1.888) 8.916 (3.086) 9.848 (5.696)

Max value 70 70 70 70 90
(10, 50𝑝, 0.10) 0.976 (1.001) 4.984 (1.430) 0.960 (1.000) 4.984 (1.430) 0.000 (0.000)
(10, 50𝑝, 0.25) 1.136 (0.992) 6.144 (2.776) 1.108 (0.995) 6.144 (2.776) 0.000 (0.000)
(10, 10𝑝, 0.10) 2.020 (0.900) 18.608 (8.795) 2.016 (0.904) 18.608 (8.795) 4.820 (9.915)
(10, 10𝑝, 0.25) 2.412 (1.591) 23.844 (10.447) 2.424 (1.615) 23.844 (10.447) 12.772 (16.712)

Max value 120 120 120 120 210
(15, 50𝑝, 0.10) 0.792 (0.979) 4.432 (0.862) 0.768 (0.974) 4.432 (0.862) 0.000 (0.000)
(15, 50𝑝, 0.25) 1.008 (1.001) 5.172 (1.919) 1.008 (1.001) 5.172 (1.919) 0.000 (0.000)
(15, 10𝑝, 0.10) 1.780 (0.754) 8.504 (5.658) 1.772 (0.762) 8.504 (5.658) 0.376 (1.647)
(15, 10𝑝, 0.25) 1.988 (1.093) 15.456 (10.630) 1.988 (1.107) 15.456 (10.630) 3.760 (9.419)

Mod. Friedman function

Max value 20 20 20 20 20
(5, 50𝑝, 0.10) 1.024 (1.001) 13.292 (1.359) 1.004 (1.001) 5.300 (1.363) 0.000 (0.000)
(5, 50𝑝, 0.25) 1.004 (1.001) 13.728 (1.761) 1.024 (1.001) 5.752 (1.791) 0.000 (0.000)
(5, 10𝑝, 0.10) 1.864 (0.789) 6.796 (5.295) 13.896 (4.901) 27.528 (8.823) 0.000 (0.000)
(5, 10𝑝, 0.25) 2.020 (1.211) 3.960 (2.851) 9.280 (1.257) 9.360 (2.678) 0.136 (0.656)

Max value 70 70 70 70 90
(10, 50𝑝, 0.10) 0.856 (0.991) 12.736 (1.098) 0.860 (0.991) 4.736 (1.098) 0.000 (0.000)
(10, 50𝑝, 0.25) 1.024 (1.001) 13.940 (2.078) 1.020 (1.001) 5.940 (2.078) 0.000 (0.000)
(10, 10𝑝, 0.10) 1.888 (0.832) 3.840 (2.521) 9.648 (0.842) 9.392 (2.665) 0.000 (0.000)
(10, 10𝑝, 0.25) 1.912 (1.390) 8.552 (5.685) 17.740 (5.670) 31.520 (8.478) 0.000 (0.000)

Max value 120 120 120 120 210
(15, 50𝑝, 0.10) 0.696 (0.954) 12.500 (0.867) 0.680 (0.948) 4.500 (0.867) 0.000 (0.000)
(15, 50𝑝, 0.25) 0.976 (1.001) 12.940 (1.348) 0.952 (1.000) 4.948 (1.354) 0.000 (0.000)
(15, 10𝑝, 0.10) 1.724 (0.690) 5.292 (4.161) 8.096 (2.377) 12.596 (10.107) 0.000 (0.000)
(15, 10𝑝, 0.25) 1.792 (0.958) 5.716 (5.927) 10.928 (4.388) 29.084 (15.196) 0.000 (0.000)

𝑔−function

Max value 20 20 20 20 90
(5, 50𝑝, 0.10) 1.068 (1.311) 5.768 (3.576) 1.092 (1.328) 5.768 (3.576) 35.640 (10.136)
(5, 50𝑝, 0.25) 1.920 (1.757) 8.492 (4.441) 1.968 (1.759) 8.492 (4.441) 42.168 (12.003)
(5, 10𝑝, 0.10) 4.636 (3.029) 12.864 (4.367) 4.648 (3.020) 12.864 (4.367) 52.236 (13.342)
(5, 10𝑝, 0.25) 6.160 (3.358) 13.576 (4.197) 6.204 (3.376) 13.576 (4.197) 54.632 (13.402)

Max value 70 70 70 70 790
(10, 50𝑝, 0.10) 0.652 (0.996) 4.188 (3.201) 0.640 (0.984) 4.188 (3.201) 175.484 (52.348)
(10, 50𝑝, 0.25) 1.392 (1.591) 8.816 (5.697) 1.444 (1.647) 8.816 (5.697) 252.916 (64.184)
(10, 10𝑝, 0.10) 6.388 (4.313) 27.040 (12.884) 6.428 (4.286) 27.040 (12.884) 338.148 (87.447)
(10, 10𝑝, 0.25) 10.500 (6.133) 35.024 (12.362) 10.668 (6.162) 35.024 (12.362) 377.112 (88.710)

Max value 120 120 120 120 1990
(15, 50𝑝, 0.10) 0.408 (0.817) 2.088 (2.360) 0.400 (0.811) 2.088 (2.360) 260.228 (98.276)
(15, 50𝑝, 0.25) 0.864 (1.177) 6.120 (4.861) 0.928 (1.209) 6.120 (4.861) 456.692 (133.275)
(15, 10𝑝, 0.10) 4.780 (4.517) 18.124 (10.946) 4.808 (4.544) 18.124 (10.946) 578.464 (172.922)
(15, 10𝑝, 0.25) 10.908 (7.537) 34.672 (18.045) 11.016 (7.569) 34.672 (18.045) 733.748 (211.209)

(continued on next page)
a

discrepancy between the variable-activity measures of two equally-

active variables. To resolve this issue, we create a discrepancy measure

based on the multi-stage discordance measures discussed in [36].
9

To compute the discordance measures between two rankings 𝜌𝑓
nd 𝜌 , where in our variable activity setting 𝜌𝑓 represents the true
input activity and 𝜌 represents the input activity of our fitted BART

model, Fligner and Verducci [36] assume that neither ranking has any
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Table 3 (continued).
(𝑝, 𝑛, 𝜎2) 𝑆

𝑖 vs. 𝑆𝑓
𝑖 Count vs. 𝑆𝑓

𝑖 𝑇 
𝑖 vs. 𝑇 𝑓

𝑖 Count vs. 𝑇 𝑓
𝑖 𝑆

𝑖𝑗 vs. 𝑆
𝑓
𝑖𝑗

Bratley function

Max value 20 20 20 20 90
(5, 50𝑝, 0.10) 0.000 (0.000) 0.656 (1.097) 0.000 (0.000) 0.656 (1.097) 0.124 (0.627)
(5, 50𝑝, 0.25) 0.008 (0.126) 2.004 (2.188) 0.000 (0.000) 2.004 (2.188) 1.056 (1.991)
(5, 10𝑝, 0.10) 0.280 (0.771) 9.132 (4.824) 0.280 (0.771) 9.132 (4.824) 11.872 (8.695)
(5, 10𝑝, 0.25) 0.716 (1.231) 9.932 (4.746) 0.716 (1.237) 9.932 (4.746) 15.480 (9.515)

Max value 70 70 70 70 790
(10, 50𝑝, 0.10) 0.084 (0.553) 2.124 (2.933) 0.004 (0.089) 2.124 (2.933) 28.348 (26.519)
(10, 50𝑝, 0.25) 1.236 (2.459) 4.884 (4.212) 0.580 (1.495) 4.884 (4.212) 79.328 (45.473)
(10, 10𝑝, 0.10) 5.352 (4.851) 20.588 (8.920) 5.280 (4.784) 20.588 (8.920) 197.556 (60.194)
(10, 10𝑝, 0.25) 7.352 (4.991) 25.356 (9.913) 7.284 (4.890) 25.356 (9.913) 237.864 (69.558)

Max value 120 120 120 120 1990
(15, 50𝑝, 0.10) 0.020 (0.236) 0.948 (1.905) 0.000 (0.000) 0.948 (1.905) 22.344 (31.235)
(15, 50𝑝, 0.25) 1.216 (2.566) 6.600 (6.780) 0.464 (1.517) 6.600 (6.780) 126.056 (91.807)
(15, 10𝑝, 0.10) 7.052 (7.614) 24.312 (12.077) 7.008 (7.603) 24.312 (12.077) 402.292 (128.257)
(15, 10𝑝, 0.25) 11.728 (9.074) 30.804 (12.989) 11.636 (9.031) 30.804 (12.989) 483.504 (146.360)

Morris function

Max value 20 20 20 20 90
(5, 50𝑝, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 50𝑝, 0.25) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 10𝑝, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
(5, 10𝑝, 0.25) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Max value 70 70 70 70 790
(10, 50𝑝, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 1.396 (3.844)
(10, 50𝑝, 0.25) 0.000 (0.000) 0.240 (0.951) 0.000 (0.000) 0.240 (0.951) 25.252 (24.050)
(10, 10𝑝, 0.10) 0.000 (0.000) 11.880 (7.979) 0.000 (0.000) 11.880 (7.979) 129.608 (65.530)
(10, 10𝑝, 0.25) 0.000 (0.000) 15.144 (9.359) 0.000 (0.000) 15.144 (9.359) 191.964 (78.236)

Max value 120 120 120 120 1990
(15, 50𝑝, 0.10) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.304 (2.605)
(15, 50𝑝, 0.25) 0.000 (0.000) 0.008 (0.126) 0.000 (0.000) 0.008 (0.126) 19.228 (24.255)
(15, 10𝑝, 0.10) 0.000 (0.000) 2.800 (4.816) 0.000 (0.000) 2.800 (4.816) 137.684 (91.270)
(15, 10𝑝, 0.25) 0.000 (0.000) 8.124 (8.533) 0.000 (0.000) 8.124 (8.533) 269.444 (125.489)
ties. As an example, suppose 𝜌𝑓 = (4, 3, 1, 2) and 𝜌 = (3, 1, 2, 4). The
discordances𝑊1,𝑊2,… ,𝑊4 will be computed sequentially. To compute
discordance 𝑊1, we see that variable 3 is the most active in 𝜌𝑓 . Since
variable 3 is the second most active in 𝜌 , we set 𝑊1 = 2 − 1 = 1. We
then remove variable 3 from consideration to compute 𝑊2, 𝑊3, and
𝑊4. To compute discordance 𝑊2, we see that variable 4 is the most
active of the remaining variables (1, 2, and 4) in 𝜌𝑓 . Since variable 4 is
the third most active of the remaining variables (1, 2, and 4) in 𝜌 , we
set 𝑊2 = 3 − 1 = 2. We then remove variable 4 from consideration to
compute discordances𝑊3 and𝑊4. To compute𝑊3, we see that variable
2 is the most active of the remaining variables (1 and 2) in 𝜌𝑓 . Since
variable 2 is the most active of the remaining variables (1 and 2) in 𝜌 ,
we set 𝑊3 = 1−1 = 0. We then remove variable 2 from consideration to
compute 𝑊4. Since only one variable remains, we set 𝑊4 = 0. Hence,
the discordances in this example are (𝑊1,𝑊2,𝑊3,𝑊4) = (1, 2, 0, 0).

More generally (but still assuming neither ranking has any ties),
suppose we have already computed discordances 𝑊1,… ,𝑊𝑘−1 for some
𝑘 = 1,… , 𝑞, where 𝑞 is the number of elements in vector 𝜌𝑓 , and wish
to compute 𝑊𝑘. Note that 𝑞 is not necessarily 𝑝 (e.g. 𝑞 =

(𝑝
2

)

when
the rankings represent two-way interactions). Thus, we have removed
𝑘 − 1 of the 𝑞 items (e.g. variables, variable pairs, variable triplets)
from consideration. If item 𝑖 is the most active in ranking 𝜌𝑓 among
the remaining considered items, we then find 𝑗, where item 𝑖 is the 𝑗th
most active in ranking 𝜌 among the remaining considered items. The
value 𝑊𝑘 is then set to be 𝑗 − 1.

Now suppose both ranking 𝜌𝑓 and ranking 𝜌 are allowed to have
ties. As mentioned earlier, we will adopt the ‘‘standard competition’’
ranking convention of, for each set of items tied with each other,
assigning the minimum rank to the tied items and then leaving a gap
in the ranking numbers so that the positions of all items less active
than the tied items are unaffected. For example, first-order Sobol´
index values (0.1, 0.1, 0.2, 0.2, 0.35, 0.05) would be ranked (4, 4, 2, 2, 1, 6).
Suppose we have already computed 𝑊1,… ,𝑊𝑘−1 for some 𝑘 = 1,… , 𝑞
and wish to compute 𝑊𝑘. If 𝑢 ≥ 1 items 𝑖1,… , 𝑖𝑢 are tied for most
active in ranking 𝜌𝑓 among the remaining considered items, we can
10

find 𝑗1,… , 𝑗𝑢, where item 𝑖𝑙 is the 𝑗𝑙th most active item in ranking 𝜌
among the remaining considered items. The value 𝑊𝑘 is then set to
be min𝑙=1,…,𝑢 𝑗𝑙 − 1. If 𝑎𝑟𝑔𝑚𝑖𝑛𝑙=1,…,𝑢𝑗𝑙 has more than one value, then
we pick any one (it does not matter which) of the corresponding
items 𝑖𝑙 to remove from consideration. Once an item is removed from
consideration, the value 𝑊𝑘+1 can then be computed (if 𝑘 < 𝑝). Note
that if 𝑢 = 1, this reduces to the ‘‘no-ties’’ case.

We can now define our discrepancy measure between rankings 𝜌𝑓
and 𝜌 :

𝑑𝑟(𝜌𝑓 , 𝜌 ) = 2
𝑞
∑

𝑘=1
𝑊𝑘, (15)

where discordances 𝑊1,𝑊2,… ,𝑊𝑞 are computed as described in the
previous paragraph. This measure has three particularly desirable prop-
erties. First, it equals Kendall’s distance (and hence the KS distance)
when ties are not allowed. Second, it does not inflate as the number
of data-generating function 𝑓 ’s inert variables increases. In particular,
discordance 𝑊𝑘 = 0 for all 𝑘 > 𝑞0, where 𝑞0 is the number of active
items (i.e. items with non-zero input activity measure) in 𝑓 . Hence,
the discrepancy measure is invariant to the number of inert variables.
Third, it does not inflate when 𝑓 has equally-active non-inert items.
If 𝑓 has a set of equally-active non-inert items, then the discrepancy
measure will not inflate as long as the equally-active items in the
set are consecutively ranked. These three properties can be stated as
Theorems 5, 6, and 7 whose proofs are in the Appendix.

Theorem 5. If rankings 𝜶 and 𝜷 each have no ties, then the Kemeny–
Snell distance between 𝜶 and 𝜷 equals the discrepancy measure 𝑑𝑟(𝜶, 𝜷)
in Eq. (15).

Theorem 6. Consider the discrepancy 𝑑𝑟(𝜌𝑓 , 𝜌 ) between rankings 𝜌𝑓 and
𝜌 . Then the discordance 𝑊𝑘 = 0 for all 𝑘 > 𝑞0, where 𝑞0 is the number of
active items in 𝑓 .

Theorem 7. Consider the discrepancy 𝑑𝑟(𝜌𝑓 , 𝜌 ) between rankings 𝜌𝑓 and
𝜌 . Suppose 𝑢 ≥ 1 items 𝑖𝑗 ,… , 𝑖𝑗+𝑢−1 (and no other items) have ranking

number 𝑗 in 𝜌𝑓 and ranking numbers 𝑟𝑗 ,… , 𝑟𝑗+𝑢−1 in 𝜌 . Then all |𝜌𝑓 |
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p

discordances are invariant to choice of permutation 𝜙 of set {𝑟𝑗 ,… , 𝑟𝑗+𝑢−1}
of ranking numbers.

5.3. Simulation results

To answer question Q.2, we find in Table 2 that when the under-
lying data-generating function is not known, our BART-based Sobol´
indices should always be preferred over TGP-based Sobol´ indices. For
all five data-generating functions, and for 𝑝 = 10 or 15, if we compare
the BART and TGP ‘‘𝑆𝑖’’ columns to each other and the BART and TGP
‘‘𝑇𝑖’’ columns to each other, the BART-based 𝐿1 distances are uniformly
lower than the TGP-based 𝐿1 distances, often by a dramatic amount.
For 𝑝 = 5, this observation does not hold uniformly (e.g. for the
(function, 𝑝, 𝑛, 𝜎2) = (Mod. Friedman, 5, 10𝑝, 0.10) row, the TGP-based
total-effects 𝐿1 distance is lower than that of BART), but is still valid
in most of these cases.

To answer question Q.1, we find in the BART columns of Table 2
that the bias of BART-based Sobol´ indices is largest with the multi-
plicative 𝑔−function and increases with increasing noise and decreasing
sample size.

For the five data-generating functions, the 𝐿1 distances for all five
data-generating functions and all three Sobol´ index measures tend to
increase with each of increasing noise and decreasing sample size. That
is, for a given number 𝑝 of variables, the BART-based Sobol´ indices
perform better as ‘‘signal-to-noise’’ ratio increases.

Interestingly, for the Friedman, Modified Friedman, 𝑔−, and Bratley
functions, and for each set of four scenarios, the performance difference
between data scenarios (𝑛 = 50𝑝, 𝜎2 = 0.10𝚅𝚊𝚛(𝑓 (𝐗))) and (𝑛 = 50𝑝, 𝜎2 =
0.25𝚅𝚊𝚛(𝑓 (𝐗))) is much smaller than the performance differences be-
tween (50𝑝, 0.25) and (10𝑝, 0.10) and between (10𝑝, 0.10) and (10𝑝, 0.25).
We might infer that the 𝑛 = 50𝑝 scenario saturates the data with enough
signal for modest noise increases to not make much of a performance
difference, but the change from 50𝑝 to 10𝑝 makes the signal so scarce
that modest noise increases does make a performance difference. These
differences seem to be more evenly spread out for the Morris function.

Recall from Table 1 that for the modified Friedman function, first-
order indices 𝑆𝑓

1 = 𝑆𝑓
2 = 0 while total-effects indices 𝑇 𝑓

1 = 𝑇 𝑓
2 = 0.335.

That is, variables 𝑥1 and 𝑥2 interact strongly with other inputs but
are not important on their own. We see in Table 2 that in the (𝑝 =
5, 𝑛 = 50𝑝, 𝜎2 = 0.10𝚅𝚊𝚛(𝑓 (𝐗))) and (𝑝 = 5, 𝑛 = 50𝑝, 𝜎2 = 0.25𝚅𝚊𝚛(𝑓 (𝐗)))
scenarios, BART captures both the first-order and total-effects indices
of the modified Friedman function about as well as it captures the same
indices of the original Friedman function. This implies that with enough
signal, BART is able to tell if an input is important on its own or if it
merely interacts strongly with other inputs.

Also perhaps unsurprisingly, BART performs worse with the multi-
plicative 𝑔−function than it does with the four other data-generating
functions. The Friedman function, modified Friedman function, and
Morris function each is a sum of either univariate or bivariate functions
which BART’s additive structure can presumably capture well. The
Bratley function is a sum of five simple terms with two of them being
either univariate or bivariate. On the other hand, our 𝑔−function is
a product of five univariate functions. If we note that the log of our
𝑔−function is also a sum of univariate functions, we might expect BART
to perform better if we took the log of the 𝑔−function response data.

Finally, BART tends to capture total-effects indices less accurately
than it does first-order indices. Interestingly, this observation holds
even for the high-signal scenarios. To answer questions Q.3 and Q.4,
we find in Table 3 that the first-order rankings provided by BART-based
Sobol´ indices are uniformly more accurate than those provided by
one-way BART counts. First, the ‘‘𝑆

𝑖 vs. 𝑆
𝑓
𝑖 ’’ column implies our BART-

based first-order Sobol´ indices perform incredibly well at predicting
the correct order of the true first-order Sobol´ indices across all data
scenarios for the original Friedman, modified Friedman, and Morris
functions, and across the 𝑛 = 50𝑝 scenarios for the 𝑔− and Bratley
11

functions. For all Morris-function scenarios, all 500 sets of BART-based (
first-order Sobol´ indices correctly rank the first 𝑝0 = 5 input variables
as more active than any of the other 𝑝 − 𝑝0 input variables.

Second, the ‘‘𝑇 
𝑖 vs. 𝑇 𝑓

𝑖 ’’ column implies our BART-based total-
effects Sobol´ indices also perform very well at predicting the correct
order of the true total-effects Sobol´ indices across all data scenarios
for the original Friedman and Morris functions, and across the 𝑛 = 50𝑝
scenarios for the modified Friedman, 𝑔−, and Bratley functions. Again,
for all Morris-function scenarios, all 500 sets of BART-based total-effects
Sobol´ indices correctly rank the first 𝑝0 = 5 input variables as more
active than any of the other 𝑝 − 𝑝0 input variables.

Finally, for each row, the ‘‘𝑆
𝑖 vs. 𝑆

𝑓
𝑖 ’’ expected discrepancy estimate

is the same2 or lower than the ‘‘Count vs. 𝑆𝑓
𝑖 ’’ expected discrepancy

estimate. Similarly, the ‘‘𝑇 
𝑖 vs. 𝑇 𝑓

𝑖 ’’ expected discrepancy estimate
is the same or lower than the ‘‘Count vs. 𝑇 𝑓

𝑖 ’’ expected discrepancy
estimate for all rows. These observations imply that our BART-based
Sobol´ indices outperform one-way BART counts across the board when
predicting the correct order of the true first-order Sobol´ indices and
of the true total-effects Sobol´ indices. Hence, our BART-based first-
order and total-effects Sobol´ indices should always be preferred over
one-way counts.

We conclude that our BART-based first-order Sobol´ indices can
accurately predict the raw values of first-order Sobol´ indices of ad-
ditive data-generating functions. Also, our BART-based first-order and
total-effects Sobol´ indices can accurately predict the rankings of, re-
spectively, first-order Sobol´ indices and total-effects Sobol´ indices
of both additive and multiplicative data-generating functions. Finally,
our BART-based first-order and total-effects Sobol´ indices outperform
one-way BART counts for all three data-generating functions.

5.4. Application to the En-ROADS climate simulator

We compute Sobol´ indices for a BART model trained on data gen-
erated from the En-ROADS climate simulator [37]. This simulator is a
mathematical model of how global temperature and carbon emissions,
among other factors, are influenced by changes in energy, land use,
consumption, agriculture, and other policies. It is designed to be easily
used by policymakers, educators, and the general public. The model, an
ordinary differential equation solved by Euler integration, synthesizes
what its developers consider to be the best available climate science.
This simulator is available from the Climate Interactive website.

For this paper, we looked specifically at how the average global
temperature increase by 2100 from pre-industrial levels is influenced
by the 18 ‘‘top-level’’ input variables shown when the En-ROADS
climate simulator is first loaded on to a web browser. We explored a
subset of 11 variables as summarized in Fig. 5 and left the remaining
7 variables at their default settings. Based on an initial exploratory
analysis, we found these 7 variables to be either redundant (coal, bioen-
ergy, nuclear, electrification of buildings and industry, deforestation),
impractical or unethical to control (population growth), or too discrete
to treat as a continuous variable (technological carbon removal). Each
input variable is bounded by a minimum and maximum value. We
found a maximin LHD of 10×11 = 110 points on [0, 1]11 and scaled it so
that the design space contained the range of possible values. However,
the simulator rounds values entered into its text fields, effectively
rounding each design point to the nearest point on the induced 11-
dimensional grid. We then manually obtained response values for each
design point. The simulator also rounded the response values to the
nearest first decimal place. Because a 0.1 ◦F difference is smaller than
a 0.1 ◦C difference, we used Fahrenheit values. We then rescaled this
‘‘rounded’’ maximin LHD design back onto [0, 1]11 to which we trained
a BART model with the default parameter settings of, in particular,

2 We say two estimates 𝑒𝑠𝑡1(𝑠𝑒1) and 𝑒𝑠𝑡2(𝑠𝑒2) are the same if the intervals
roduced by the estimate plus or minus the shown standard error overlap
i.e. if interval (𝑒𝑠𝑡 − 𝑠𝑒 , 𝑒𝑠𝑡 + 𝑠𝑒 ) and interval (𝑒𝑠𝑡 − 𝑠𝑒 , 𝑒𝑠𝑡 + 𝑠𝑒 ) overlap).
1 1 1 1 2 2 2 2
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Fig. 5. Variable activity measures of BART and GP models trained on data from En-ROADS climate simulator. Variable counts (top panel), BART-based first-order Sobol´ indices
(second panel), BART-based total-effects Sobol´ indices (third panel), and the difference between total-effects and first-order (bottom panel) are shown. Variable activity measures
of the 10,000 ensembles corresponding to posterior samples of the trained BART model are shown in black. Point estimates of Sobol´ indices of the trained GP model based on
the same data are shown in gray.
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10,000 posterior samples from the distribution in Eq. (5) and 200 trees.
or this climate application, we use the BART R package [38].
We computed the first-order, second-order, and total-effects Sobol´

ndices of the BART model trained on our collected climate simulator
ata. Because main effects account for more than 96% of the BART
odel’s total variance, we do not show two-way Sobol´ indices. By
aking the mean first-order Sobol´ indices of the 11 input variables
ver the 10,000 posterior samples, we see in Fig. 5 that carbon price
ccounts for 35.1% of the BART model’s total variance, which is twice
s much as the next largest impacts of energy efficiency of buildings and
ndustry at 16.1%, methane and other (which includes nitrous oxide
nd fluorinated gases) at 14.4%, and economic growth at 13.1%. The
otal-effects Sobol´ indices imply a similar conclusion. Variable counts
ail to provide evidence of such large differences in impacts of the input
ariables.
For comparison, we also estimated sensitivity indices and created

ange plots (see [4], Chapter 7) by fitting a constant mean Gaussian
rocess (GP) model (i.e. kriging model; see [39]) to the training data.
n Fig. 5, we see that the Sobol´ indices of the trained BART model
atch those of the trained kriging model quite well. We also see that
he one-way counts of the trained BART model poorly matches both the
irst-order and total-effects Sobol´ indices of the trained kriging model,
hich supports the hypothesis that the variable count heuristic is not
meaningful input activity measure. In Fig. 6, we show range plots of
he four most active input variables. For each input, we approximated
he marginal response at each of 10 equally spaced points by varying
he remaining inputs using a 29-point Sobol´ sequence design [40]. In
12
he left two plots (carbon price and energy efficiency of buildings and
ndustry), the response and its slope decrease with increasing input
alues. In the right two plots (economic growth and methane & other),
he response and its slope increase with increasing input values. Hence,
ll four of these input variables seem to marginally have diminishing
ffects on future temperature increase.
To assess prediction accuracy, we predicted temperature increases

rom an out-of-sample test set of 37 samples, which are chosen manu-
lly to achieve a wide range of true temperature increase values. The
ean-squared prediction error of the mean BART and GP predictions at
he 37 out-of-sample points are, respectively, 0.333 and 0.968. Fig. 7a
hows that the BART model accurately predicts temperature increase
t, roughly, mid-range values of 𝑓 (𝐱) ∈ [2.5 ◦F, 7.5 ◦F]. Outside of this
ange, the BART model tends to underpredict temperature increase.
e suspect this underprediction issue at the upper range is due to the
raining points having a maximum global temperature increase value
f 7.8 ◦F and hence can be fixed by adding more training samples with
xtreme response values, which can be done by using combinations of
xtreme values of the four most active input variables. The underpre-
iction might also be fixed by increasing the prior variance of BART’s
erminal node parameters as discussed in [2]. However, for this paper
e use the default parameter settings in the BART R package [38]. We
lso see in Fig. 7b that the 𝜎 samples appear to be stationary, which
mplies MCMC convergence.
We conclude that in this no-noise application with 𝑝 = 11 predictors,

sample size of 𝑛 = 10𝑝 suffices for a trained BART model to adequately
apture input importance through its Sobol´ indices. Variable counts,
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Fig. 6. Range plots of the four most active input variables. The trained BART model is shown in black while the trained GP model is shown in gray.
Fig. 7. Diagnostic plots of BART model trained on data from En-ROADS climate simulator.
n the other hand, do not provide enough evidence to convincingly
rder variables in terms of their importance.

. Summary and discussion

This paper has provided analytic expressions, explicit interpreta-
ions, and computational algorithms for determining Sobol´ indices
or BART models. The indices are computed exactly and avoid Monte
arlo approximations. We showed the relationship between Sobol´
ndices for BART models and sensitivity indices obtained from one-way
ounts, which are the predominant way of assessing input activity in
ART (see [5,41] among others). Theorem 2 showed that under certain
13
conditions, both the one-way count and the first-order Sobol´ index
of variable 𝑥𝑖 are functions of the conditional expectation function
E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1)|𝑋𝑖 = ⋅]. We then quantify the properties of Sobol´
indices estimated from the BART model for five different analytic
functions. First the bias and the uncertainty of the BART-based Sobol´
indices for estimating the true Sobol´ indices for the underlying 𝑓 (⋅)
are estimated. We find that the bias of the BART-based Sobol´ indices is
largest with the multiplicative 𝑔−function than with any of the additive
test functions. Then the rankings of variable activity as measured by
the BART-based Sobol´ indices are compared with those provided by
one-way counts. To make the second comparisons, we proposed a
rank discrepancy 𝑑 to better suit the problem of comparing input
𝑟
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activity assessments. We find that the first-order and total-effects BART-
based Sobol´ indices empirically outperform one-way BART counts at
capturing, respectively, a function’s first-order and total-effects Sobol´
indices.

Finally, we applied our BART-based Sobol´ indices to data generated
by the En-ROADS climate simulator to explore how to best reduce
future global temperature increases. In particular we note that 32 of
the 37 input values in Fig. 7a and 109 of the 110 training inputs result
in future global temperature increases above 1.5 ◦C (2.7 ◦F), which is
the agreed upon upper limit of average global temperature increase
above pre-industrial levels set by the 2016 Paris Agreement under the
United Nations Framework Convention on Climate Change [42]. In
words, the vast majority of policy scenarios described in Section 5
will result in global temperature increases of at least 1.5 ◦C by the
year 2100. Indeed, a 2018 report from the Intergovernmental Panel on
Climate Change claims that this temperature increase will likely reach
1.5 ◦C between 2030 and 2052 if it increases at its current rate [43].
The IPCC report also details the global impact of a 1.5 ◦C increase.
Given these drastic predictions, it is imperative to identify the most
impactful factors in minimizing this temperature increase. To achieve
a temperature increase below 1.5 ◦C by 2100, Figs. 5 and 6 suggest
maximizing carbon price and the energy efficiency of buildings and
industry while minimizing economic growth and the use of methane
and other gases (which includes nitrous oxide and fluorinated gases).

This research suggests additional statistical investigations. Linero
[41] shows empirically that when a Dirichlet prior is used to generate
variable selection probabilities for tree nodes, the posterior probability
of an arbitrary inert variable being included in a BART model can dras-
tically shrink. If inert variables are simply not used in a BART model’s
split rules, then Theorem 4 tells us that computing all Sobol´ indices up
to some order will require fewer calculations. Furthermore, excluding
inert variables might also improve the accuracy or efficiency of our
BART-based Sobol´ indices. These observations suggest comparing the
accuracy of our BART-based Sobol´ indices using a Dirichlet prior with
those obtained from the default prior as well as the effect of increasing
sample sizes.

As has been noted, Bleich et al. [5] and Linero [41], among others,
use variable counts in their variable selection methods for BART mod-
els. We have seen in the En-ROADS climate simulator example that a
trained BART model better captures input activity through its Sobol´
indices rather than through one-way counts. This example suggests that
additional research is needed to study the specificity and sensitivity in
selecting active inputs for the two methods in order definitively draw
this conclusion.

We conclude with two important data/model extensions. Our
derivation of the Sobol´ index calculations assumed that the input
variables are uncorrelated. This is not true in many applications. For
dependent input variables it will be very useful to derive analytic
expressions for BART-based Sobol´ indices. Here ideas from [44–46],
who all discuss various ways to estimate Sobol´ sensitivity indices in
the dependent input variable case will be of use. Finally, we note that
most of the results in the paper should extend to other tree ensemble
methods, such as the random forest method described in [47].

Implementation of BART-based first-order, second-order, and total-
effects Sobol´ indices can be found in the Open Bayesian Trees
(OpenBT) project at https://bitbucket.org/mpratola/openbt/ [22].
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Appendix A. Proofs of theorems

Proof of Theorem 1. According to Eq. (10), the first step to computing
the Sobol´ index for tree function 𝑔(⋅;  ,) and variable index set 𝑃 ⊂
{1, 2,… , 𝑝} is to compute the conditional expectation E𝐗−𝑃

[𝑔(𝐗;  ,) ∣

𝐗𝑃 ]. By taking the appropriate conditional expectation of both sides
of Eq. (3), we get

E𝐗−𝑃
[𝑔(𝐗;  ,) ∣ 𝐗𝑃 ] =

||

∑

𝑘=1
𝑑−𝑃𝑘 𝟏𝐑𝑃

𝑘
(𝐗𝑃 ), (A.1)

where hyperrectangle 𝐑𝑃
𝑘 =

∏

𝑖∈𝑃 𝐼 𝑖𝑘, and coefficients 𝑑−𝑃𝑘 = 𝜇𝑘P−𝑃
(𝐑−𝑃

𝑘 ). Due to Assumption A.1, the coefficient expression simplifies to

𝑑−𝑃𝑘 = 𝜇𝑘
∏

𝑗∉𝑃
P𝑗 (𝐼

𝑗
𝑘). (A.2)

According to Eq. (10), the first step to computing the Sobol´ index
for ensemble function (⋅; {𝑡,𝑡}𝑚𝑡=1) and variable index set 𝑃 ⊂
{1, 2,… , 𝑝} is to compute the conditional expectation E𝐗−𝑃

[(𝐗; {𝑡,
𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]. By taking the appropriate conditional expectation of
both sides of Eq. (4), using linearity of expectations, and plugging
in Eq. (A.1), we get

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ] =

𝑚
∑

𝑡=1
E𝐗−𝑃

[𝑔(𝐗; 𝑡,𝑡) ∣ 𝐗𝑃 ]

=
𝑚
∑

𝑡=1

|𝑡|
∑

𝑘=1
𝑑𝑃𝑡𝑘𝟏𝐑𝑃

𝑡𝑘
(𝐗𝑃 ).

It is more convenient to view this conditional expectation as a single
sum over the ensemble’s terminal nodes rather than as a double sum
as shown above. Hence, we can express this conditional expectation as

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ] =

∑

𝑘∈𝐵

𝑑−𝑃𝑘 𝟏𝐑𝑃
𝑘
(𝐗𝑃 ), (A.3)

where 𝐵 = ∪𝑚
𝑡=1𝐵𝑡 is the index set over the terminal nodes of the trees

in ensemble  .
Finally we are able to compute the variance terms in Eq. (10)

for general variable index set 𝑃 ⊂ {1, 2,… , 𝑝}. First, we compute
𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]

)

. Into this term we plug in

Eq. (A.3), apply the general result 𝚅𝚊𝚛(𝑈 ) = 𝙲𝚘𝚟(𝑈,𝑈 ) for generic
random variable 𝑈 , and use the bilinearity property of covariance to get

𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]

)

=
∑ ∑

𝑑−𝑃𝑘 𝑑−𝑃𝑙 𝙲𝚘𝚟𝐗𝑃

(

𝟏𝐑𝑃
𝑘
(𝐗𝑃 ), 𝟏𝐑𝑃

𝑙
(𝐗𝑃 )

)

,

𝑘∈𝐵 𝑙∈𝐵

https://bitbucket.org/mpratola/openbt/
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where the coefficients 𝑑−𝑃𝑘 and 𝑑−𝑃𝑙 are defined in Eq. (A.2). To each
covariance term, which we will denote as 𝐶𝑃

𝑘,𝑙, we can apply the
elementary covariance result 𝙲𝚘𝚟(𝑈, 𝑉 ) = E𝑈𝑉 − E𝑈E𝑉 for generic
random variables 𝑈 and 𝑉 to get

𝐶𝑃
𝑘,𝑙 = P𝑃 (𝐑𝑃

𝑘 ∩ 𝐑𝑃
𝑙 ) − P𝑃 (𝐑𝑃

𝑘 )P𝑃 (𝐑𝑃
𝑙 ).

Thus,

𝚅𝚊𝚛𝐗𝑃

(

E𝐗−𝑃
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]

)

=
∑

𝑘∈𝐵

∑

𝑙∈𝐵

𝑑−𝑃𝑘 𝑑−𝑃𝑙 𝐶𝑃
𝑘,𝑙 .

In particular, when 𝑃 = {𝑖}, then

E𝐗−𝑖
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖] =

∑

𝑘∈𝐵

𝑑−𝑖𝑘 𝟏𝐼 𝑖𝑘 (𝑋𝑖),

where 𝑑−𝑖𝑘 = 𝜇𝑘
∏

𝑗≠𝑖 P𝑗 (𝐼
𝑗
𝑘). The first-order Sobol´ index in Eq. (10)

then becomes

𝑉𝑖 =
∑

𝑘∈𝐵

∑

𝑙∈𝐵

𝑑−𝑖𝑘 𝑑−𝑖𝑙 𝐶 𝑖
𝑘,𝑙 ,

where

𝐶 𝑖
𝑘,𝑙 = P𝑖(𝐼 𝑖𝑘 ∩ 𝐼 𝑖𝑙 ) − P𝑖(𝐼 𝑖𝑘)P𝑖(𝐼 𝑖𝑙 ).

Proof of Theorem 2. Consider a BART ensemble 0 with 𝑚 regression
trees, where each tree is simply a terminal node with one terminal
node parameter. Thus, the ensemble 0 predicts the same value for
any input 𝐱 ∈ 𝐷 and is hence a constant-mean model. Then any
BART ensemble  with 𝑚 regression trees can be thought of as 0
having undergone a sequence of birth processes. Any birth process
slices a terminal node’s corresponding hyperrectangle into two smaller
hyperrectangles according to some split rule. If we call this split rule
‘‘𝑥𝑖 < 𝑐’’, then this slice occurs on the (𝑝 − 1)-dimensional hyperplane
𝑥𝑖 = 𝑐 in 𝐷. The resulting ‘‘left’’ hyperrectangle gains a terminal
node parameter 𝜇𝑙𝑒𝑓 𝑡 while the resulting ‘‘right’’ hyperrectangle gains
a terminal node parameter 𝜇𝑟𝑖𝑔ℎ𝑡. Thus, if prior to the birth process the
piecewise-constant function E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅] is constant
at 𝑥𝑖 = 𝑐 (i.e. the split rule ‘‘𝑥𝑖 < 𝑐’’ does not already exist in the
ensemble) and 𝜇𝑙𝑒𝑓 𝑡 ≠ 𝜇𝑟𝑖𝑔ℎ𝑡 (which is true almost surely but is also
ensured through assumption A.3), then the birth process produces a
jump in the piecewise-constant function at 𝑥𝑖 = 𝑐. Meanwhile, the birth
process does not produce a jump in any of the other piecewise-constant
functions E𝐗−𝑗

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑗 = ⋅] (for 𝑗 ≠ 𝑖). Hence, under the
mentioned conditions, each birth process that produces a unique split
rule that involves variable 𝑥𝑖 increments the number of jumps in the
piecewise-constant function E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅] by one.

Proof of Theorem 3. We have the following transformations to the
conditional expectation function E𝐗−𝑖

[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖 = ⋅]:

1. First, center and scale the 𝑒𝑖𝑘∗ . Let

𝑒𝑖𝑘∗ =
√

|𝐵𝑖
 |

𝑒𝑖𝑘∗ − 𝑒𝑖⋅
𝑠

,

where 𝑒𝑖⋅ = |𝐵𝑖
 |

−1 ∑
𝑘∗∈𝐵𝑖


𝑒𝑖𝑘∗ and 𝑠2 = [

∑

𝑘∗∈𝐵𝑖

(𝑒𝑖𝑘∗ −𝑒𝑖⋅)

2]∕(|𝐵𝑖
 |−

1) is the corrected sample variance of the {𝑒𝑖𝑘∗}. Note that for any
two indices 𝑘∗, 𝑙∗ ∈ 𝐵𝑖

 , the relation 𝑒𝑖𝑘∗ = 𝑒𝑖𝑙∗ holds if and only
if 𝑒𝑖𝑘∗ = 𝑒𝑖𝑙∗ .

2. Second, assign equal probability mass |𝐵𝑖
 |

−1 to each 𝐼 𝑖𝑘∗ . Intro-
duce new intervals 𝐼 𝑖𝑘∗ by shifting and scaling 𝐼 𝑖𝑘∗ so that

(a) {𝐼 𝑖𝑘∗}𝑘∗∈𝐵𝑖

still partitions 𝐼 𝑖𝐷 into exactly |𝐵𝑖

 | sets, and

(b) P𝑖(𝐼 𝑖𝑘∗ ) = |𝐵𝑖
 |

−1 for all 𝑘∗ ∈ 𝐵𝑖
 .

Now define ℎ̃𝑖 (𝑋𝑖) ∶= Ẽ𝐗−𝑖
[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝑋𝑖] =

∑

𝑘∗∈𝐵𝑖

𝑒𝑖𝑘∗𝟏𝐼 𝑖𝑘∗

(𝑿𝒊). Using previous definitions, we have

𝚅𝚊𝚛𝑋𝑖

(

ℎ̃𝑖 (𝑋𝑖)
)

= 𝚅𝚊𝚛𝑋𝑖

(

∑

∗ 𝑖
𝑒𝑖𝑘∗𝟏𝐼 𝑖𝑘∗ (𝑋𝑖)

)
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𝑘 ∈𝐵
=
∑

𝑘∗∈𝐵𝑖


∑

𝑙∗∈𝐵𝑖


𝑒𝑖𝑘∗𝑒𝑖𝑙∗

[

P𝑖(𝐼 𝑖𝑘∗ ∩ 𝐼 𝑖𝑙∗ ) − P𝑖(𝐼 𝑖𝑘∗ )P𝑖(𝐼 𝑖𝑙∗ )

]

.

Recall that the intervals 𝐼 𝑖𝑘∗ still partition the original domain 𝐼 𝑖𝐷.
So if 𝑘∗ ≠ 𝑙∗, then 𝐼 𝑖𝑘∗ ∩ 𝐼 𝑖𝑙∗ = ∅ and hence P𝑖(𝐼 𝑖𝑘∗ ∩ 𝐼 𝑖𝑙∗ ) = 0. Thus,
∑

𝑘∗∈𝐵𝑖


∑

𝑙∗∈𝐵𝑖


𝑒𝑖𝑘∗𝑒𝑖𝑙∗P𝑖(𝐼 𝑖𝑘∗ ∩ 𝐼 𝑖𝑙∗ ) =
∑

𝑘∗∈𝐵𝑖


(𝑒𝑖𝑘∗ )2P𝑖(𝐼 𝑖𝑘∗ ).

Since each interval 𝐼 𝑖𝑘∗ has equal probability mass, each P𝑖(𝐼 𝑖𝑘∗ )
becomes simply |𝐵𝑖

 |
−1. So then

𝚅𝚊𝚛𝑋𝑖

(

ℎ̃𝑖 (𝑋𝑖)
)

= |𝐵𝑖
 |

−1 ∑

𝑘∗∈𝐵𝑖


(𝑒𝑖𝑘∗ )2 − |𝐵𝑖
 |

−2 ∑

𝑘∗∈𝐵𝑖


∑

𝑙∗∈𝐵𝑖


𝑒𝑖𝑘∗𝑒𝑖𝑙∗ .

Note that the coefficients ̃𝑒𝑖𝑘∗ are centered so that the sum
∑

𝑘∗∈𝐵𝑖


̃𝑒𝑖𝑘∗
(and hence the double sum term in the preceding equation) equals zero.
Also note that the ̃𝑒𝑖𝑘∗ are scaled so that

∑

𝑘∗∈𝐵𝑖

( ̃𝑒𝑖𝑘∗ )

2 = |𝐵𝑖
 |(|𝐵

𝑖
 | − 1).

We then have

𝚅𝚊𝚛𝑋𝑖

(

ℎ̃𝑖 (𝑋𝑖)
)

= |𝐵𝑖
 | − 1.

Now let 𝐶 𝑖
 be the set of all unique cutpoints involved in any split

rule in  that includes variable 𝑥𝑖. Recall that the set 𝐵𝑖
 indexes a

set of intervals that partition the domain’s 𝑖th margin, i.e. the set 𝐵𝑖


indexes the set of intervals 𝐼 𝑖𝑘∗ = [𝛾1, 𝛾2) (or [𝛾1, 𝛾2] if 𝛾2 = 𝑏𝑖𝐷), where
𝛾1 and 𝛾2 are any two consecutive (in value) points in 𝐶 𝑖

 ∪ {𝑎𝑖𝐷, 𝑏
𝑖
𝐷}.

Between any two such partitioning intervals must be a cutpoint in
𝐶 𝑖
 . Furthermore, by the assumption that 𝑒

𝑖
𝑘∗ = 𝑒𝑖𝑙∗ implies 𝐼 𝑖𝑘∗ = 𝐼 𝑖𝑙∗

for any indices 𝑘∗, 𝑙∗ ∈ 𝐵𝑖
 , all cutpoints in 𝐶 𝑖

 must lie between two
such partitioning intervals. That is, no cutpoint in 𝐶 𝑖

 can lie in the
interior of any such partitioning interval. Thus, |𝐵𝑖

 | − 1 = |𝐶 𝑖
 |, which

is simply the number of unique split rules in  that include variable 𝑥𝑖
and hence, by Theorem 2, equals the number of jumps in the original
conditional expectation function, which equals the number of jumps in
the transformed conditional expectation function.

Proof of Theorem 4. For any terminal node 𝑘 ∈ 𝐵 where 𝑣(𝑘) ∩ 𝑃 =
∅, the random quantity E[𝜇𝑘𝟏𝐑𝑘

(𝐗) ∣ 𝐗𝑃 ] is constant almost surely.
Therefore,

𝚅𝚊𝚛𝐗𝑃
(E[(𝐗; {𝑡,𝑡}𝑚𝑡=1) − 𝜇𝑘𝟏𝐑𝑘

(𝐗) ∣ 𝐗𝑃 ])

= 𝚅𝚊𝚛𝐗𝑃
(E[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ] − E[𝜇𝑘𝟏𝐑𝑘

(𝐗) ∣ 𝐗𝑃 ])

= 𝚅𝚊𝚛𝐗𝑃
(E[(𝐗; {𝑡,𝑡}𝑚𝑡=1) ∣ 𝐗𝑃 ]).

The result of the theorem will follow by applying this argument to all
such terminal nodes.

Proof of Theorem 5. In general, the Kemeny–Snell (KS) distance
between rankings 𝜶 = (𝛼1,… , 𝛼𝑝) and 𝜷 = (𝛽1,… , 𝛽𝑝) is defined to be

𝑑𝐾𝑆 (𝛼, 𝛽) =
1
2

𝑝
∑

𝑖=1

𝑝
∑

𝑗=1
|𝐴𝑖𝑗 − 𝐵𝑖𝑗 |

where

𝐴𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 𝜶 prefers object 𝑖 to object 𝑗
−1 𝜶 prefers object 𝑗 to object 𝑖
0 𝜶 prefers objects 𝑖 and 𝑗 equally

and 𝐵𝑖𝑗 is similarly defined for ranking 𝜷.
For the rest of the proof, we will assume that rankings 𝜶 and 𝜷 each

have no ties. We will also take ranking 𝜶 to be the reference vector and
hence will, without loss of generality, assume 𝜶 = (1, 2,… , 𝑝). We will
also refer to the sum in Eq. (15) as the discrepancy 𝑑𝑟. Finally, we will
prove desired equality via induction.

We first note that these assumptions greatly simplify the KS dis-
tance. If we think of the values 𝐴𝑖𝑗 (similarly 𝐵𝑖𝑗) as constituting a

𝑝 × 𝑝 matrix 𝐴 (similarly 𝐵) whose 𝑖𝑗 entry is 𝐴𝑖𝑗 (similarly 𝐵𝑖𝑗), then
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both matrices 𝐴 and 𝐵 are antisymmetric, which implies |𝐴𝑖𝑗 − 𝐵𝑖𝑗 | =
𝐴𝑗𝑖 − 𝐵𝑗𝑖| for all 𝑖, 𝑗 = 1,… , 𝑝 and 𝐴𝑖𝑗 = 𝐵𝑖𝑗 = 0 if 𝑖 = 𝑗. Therefore, we
ay reformulate the KS distance as

𝐾𝑆 (𝜶, 𝜷) =
∑

𝑖<𝑗
|𝐴𝑖𝑗 − 𝐵𝑖𝑗 |.

We now proceed with the proof by induction. Suppose 𝑝 = 2. Half
he 𝐾𝑆 distance is then 1

2 |𝐴12 − 𝐵12|, where 𝐴12 = 1, while the 𝐴𝐻
distance becomes 𝑊1 (since 𝑊𝑝 = 0 by default). One of two cases may
occur. If 𝛽1 < 𝛽2, then 𝛽1 = 1 and 𝛽2 = 2. In this case, both the 𝐴𝐻
istance and half the 𝐾𝑆 distance are zero. If 𝛽1 > 𝛽2, then 𝛽1 = 2 and
2 = 1. In this case, both the 𝐴𝐻 distance and half the 𝐾𝑆 distance are
nity. We note that values 𝛽1 and 𝛽2 must be distinct due to ranking 𝜷
aving no ties. Thus, the induction hypothesis holds for 𝑝 = 2.
Now suppose the induction hypothesis holds for arbitrary 𝑝−1 ≥ 3.

he KS distance can be decomposed into

𝐾𝑆 (𝜶, 𝜷) = 𝑑𝐾𝑆 (𝜶−1, 𝜷−1) +
𝑝
∑

|𝐴1𝑗 − 𝐵1𝑗 |,
16

𝑗=2 𝑊
here we define 𝜶−1 ∶= (𝛼2,… , 𝛼𝑝) and 𝜷−1 similarly for ranking 𝜷. The
iscrepancy 𝑑𝑟, due to its stagewise nature, can also be decomposed:

𝐴𝐻 (𝜶, 𝜷) = 𝑊1 + 𝑑𝐴𝐻 (𝜶−1, 𝜷−1),

here 𝑊1 = 𝛽1 − 1 by default. By assumption, half the KS distance
etween 𝜶−1 and 𝜷−1 equals the discrepancy 𝑑𝑟 between the same two
uantities. Hence, we need only prove that 1

2
∑𝑝

𝑗=2 |𝐴1𝑗 − 𝐵1𝑗 | = 𝛽1 − 1
to complete the proof.

First, we note that 𝐴1𝑗 = 1 for all 𝑗 > 1 and, since 𝐵1𝑗 is either 1 or
−1, the quantity 𝐴1𝑗 − 𝐵1𝑗 is nonnegative. Thus, |𝐴1𝑗 − 𝐵1𝑗 | = 1 − 𝐵1𝑗
for all 𝑗 > 1. But 𝐵1𝑗 is simply 𝟏𝛽1<𝛽𝑗 − 𝟏𝛽1>𝛽𝑗 . Hence,

∑𝑝
𝑗=2 𝐵1𝑗 =

(𝑝 − 𝛽1) − (𝛽1 − 1) = 𝑝 − 2𝛽1 + 1. Therefore, 1
2
∑𝑝

𝑗=2 |𝐴1𝑗 − 𝐵1𝑗 | = 𝛽1 − 1.

Proof of Theorem 6. Suppose we have computed discordances 𝑊1,… ,
𝑊𝑘−1 for some 𝑘 > 𝑞0 and wish to compute discordance 𝑊𝑘. Then the
emaining considered items, each having input activity measure values
f zero, all have ranking number 1 in ranking 𝜌𝑓 . Since at least one
emaining considered item has ranking number 1 in ranking 𝜌 , we get

𝑘 = 1 − 1 = 0.
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Proof of Theorem 7. We will partition the discordances into three sets:
𝑊1,… ,𝑊𝑗−1}, {𝑊𝑗 … ,𝑊𝑗+𝑢−1}, and {𝑊𝑗+𝑢,… ,𝑊

|𝜌𝑓 |}. After letting,
for all 𝑘 = 1,… , 𝑗 − 1, 𝑗 + 𝑢,… , |𝜌𝑓 |, item 𝑖𝑘 be the item removed from
consideration after computing 𝑊𝑘 but (if 𝑘 < |𝜌𝑓 |) before computing
𝑊𝑘+1, we will then prove the desired invariance to permutation 𝜙 for
the three sets of discordances.

First, consider discordances 𝑊1,… ,𝑊𝑗−1. These discordances de-
pend only on the ranking numbers of items 𝑖1,… , 𝑖𝑗−1 in 𝜌𝑓 and in 𝜌 .
Because these ranking numbers are invariant to choice of permutation
𝜙, these discordances are also invariant to 𝜙.

Now consider discordances 𝑊𝑗+𝑢,… ,𝑊
|𝜌𝑓 |. Similar to the previous

set of discordances, these discordances depend only on the ranking
numbers of items 𝑖𝑗+𝑢,… , 𝑖

|𝜌𝑓 | in 𝜌𝑓 and in 𝜌 . Because these ranking
numbers are invariant to choice of permutation 𝜙, these discordances
are also invariant to 𝜙.

Finally, consider discordances𝑊𝑗 … ,𝑊𝑗+𝑢−1. Because items 𝑖𝑗+1,… ,
𝑖𝑗+𝑢 (and no other items) have ranking number 𝑗 in 𝜌𝑓 , these discor-
dance values are 𝑊𝑘 = 𝑟(𝑘) − 𝑗 + 1 for 𝑘 = 𝑗,… , 𝑗 + 𝑢 − 1, where
𝑟(𝑗),… , 𝑟(𝑗+𝑢−1) are the order statistics of ranking numbers 𝑟𝑗 ,… , 𝑟𝑗+𝑢−1.
Because order statistics are invariant to permutations of the statistic
values, these discordances are invariant to permutation 𝜙.

Appendix B. Figures for En-ROADS climate simulator

See Fig. B.8.
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