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ABSTRACT

Techniques to reduce the energy burden of an industrial ecosystem often require solving
a multiobjective optimization problem. However, collecting experimental data can often
be either expensive or time-consuming. In such cases, statistical methods can be helpful.
This article proposes Pareto Front (PF) and Pareto Set (PS) estimation methods using
Bayesian Additive Regression Trees (BART), which is a nonparametric model whose
assumptions are typically less restrictive than popular alternatives, such as Gaussian
Processes (GPs). These less restrictive assumptions allow BART to handle scenarios
(e.g., high-dimensional input spaces, nonsmooth responses, large datasets) that GPs
find difficult. The performance of our BART-based method is compared to a GP-based
method using analytic test functions, demonstrating convincing advantages. Finally, our
BART-based methodology is applied to a motivating engineering problem.
Supplementary materials, which include a theorem proof, algorithms, and R code, for this
article are available online.
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1 Introduction

Many important Industry 4.0 problems can be formulated as multiobjective
optimization (MO) problems. For example, Shukla et al. (2020) described
how the use of dynamic voltage scaling in real-time embedded systems
(RTES) produces the two mutually conflicting objectives of energy
efficiency and timeliness of task execution. Furthermore, the timing
constraints of tasks in RTES can only be approximated, which prompts the
need to quantify this imprecision.

More generally, if each objective in a problem corresponds to an output
dimension in the vector-valued function f(-), the goal of MO is to
“minimize” (or “maximize,” depending on the application) this function.
Seldom will all of these objectives be simultaneously minimized by the
same input setting. Hence, we seek to find the set of best compromises
between competing objectives and the set of all inputs that produce these
compromises. (Section 3 provides a mathematical definition of best
compromises.) The former set is called the Pareto Front (PF); the latter set
is called the Pareto Set (PS).

When the function cannot be explicitly evaluated or where the number
of evaluations is limited, statistical methods can be helpful. A common
strategy in computer experiments for PF and PS estimation is to
approximate f(-) by a surrogate model trained on a small number of
evaluated points and perform inference on this fitted surrogate model.
Binois, Ginsbourger, and Roustant (2015) achieved PF estimation and
uncertainty quantification (UQ) by fitting a Gaussian Process (GP),
simulating approximate realizations of the fitted GP, and treating the
resulting approximate conditional PFs as random sets. However, their
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second step requires discretizing the input space into a finite number of
points, which may be computationally expensive if the input dimension is
large. Furthermore, no work in general has been done to quantify the
uncertainty of PS estimation with GPs.

A popular alternative to the GP for emulating single-output simulators is
the Bayesian Additive Regression Trees (BART) model introduced by
Chipman, George, and McCulloch (2010) (CGM). BART partitions the
input space into hyperrectangles and applies a constant mean model to each
hyperrectangle. Unlike GP, BART can capture nonstationarity, avoids
O(n3) matrix decompositions during fitting, easily handles categorical
inputs, and typically has fewer restrictive assumptions, which makes BART
feasible in a wider range of scenarios if enough training samples are
provided. In particular, BART is well-suited to problems with large input
dimensions and large datasets (Pratola et al. 2014). Breiman (2001)’s
Random-Forest model is also used in surrogate-based optimization and
retains many of BART’s advantages over GP, but lacks BART’s natural UQ
capabilities via its Bayesian formulation.

Though BART has been used for single-objective optimization (e.g., in
Chipman, Ranjan, and Wang 2012), it has never been used to perform
multiobjective optimization. Our primary contribution is twofold. We first
find the PF and PS of exact simulated realizations of a fitted multiple-
output BART model and hence avoid grid approximations of the input
space. We then quantify the uncertainty of these estimates of the PF and PS
of f(-) using random sets (Binois, Ginsbourger, and Roustant 2015) and our
novel extension of the depth approach described in Lopez-Pintado and
Romo (2009), Sun, Genton, and Nychka (2012), and Whitaker, Mirzargar,
and Kirby (2013).

The article is organized as follows. Section 2 introduces BART with
multiple outputs. Given a multiple-output BART function, Section 3
establishes how to find its image, PF, and PS. In Section 4, we derive UQ



measures for BART-based PF and PS estimates. In Section 5, we perform
simulation studies, comparing our approach to the popular GP approach.
Section 6 demonstrates our BART-based methodology on an engineering
application. Section 7 concludes the article with a discussion. Proofs of
stated theorems can be found in the supplementary materials.

2 BART

We  observe data D := {(y(x;),x:)};;- Each output
y(x:) = (y1(x:), y2(X5), - - -, ya(x;)) € R? is assumed to be a realization of
the random variable

Y (xi) = f(x;) + €&, £()=(fi(), f2(),--, fa(})) : Z = R (1)

where f(-) is the vector-valued function described in Section 1, each y;(-)

and fj(-) has common domain X2 CRP, noise  vectors
i

€1, ..., € ~ Ny(0,0°1;), and parameter o = (07,...,02). We assume

the domain £ is a p-dimensional bounded hyperrectangle.

2.1 Multiple-Output BART

To make inference on the unknown f(-), we approximate each marginal
fi(:) (for 5 =1,...,d) by fitting a BART model to the marginal dataset
D; := {(y;(x:), xi)}?zl. These d independently fitted BART models
define our d—output BART model: the ith posterior draw of the d—output
BART model is @) = (@gi), e @((;)), where each @g.i) is the ith posterior
draw of the jth fitted BART model.

(Horiguchi, Pratola, and Santner 2021, sec. 2) described how a posterior
draw ® of a BART model induces a regression function &(-;6), where
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0 := {(F, #;)},-,. Similarly, each posterior draw ® of our d—output

BART model induces the d—output regression function
&(:0) = (&(561),6(502),...,6(50a)) : X — R (2)

where 8 = (01, .. .,0;) and each ¢, comes from the jth fitted BART model.

2.2 Prior Specification

Here, we describe our prior specifications for tree-topology parameters 7,
leaf-node parameters puy| 7, and noise variance o2 because we ultimately
deviate from CGM’s default hyperparameter values for our multiobjective
optimization problem.

The 7(J;) prior decomposes into three components: tree depth, split
variable at each internal node, and cutpoint value at each internal node. We
leave details of the first two components to CGM and Chipman, George,
and McCulloch (1998). For the cutpoint value of any given split variable,
this article uses a discrete uniform prior of 30 values over the range of the
observed input values.

CGM model py|Z; with a Gaussian prior N (0, (4n2m)_1) (after
centering and rescaling the output data so that the minimum and maximum
observed transformed response values are, respectively, ymin = —0.5 and
Ymax = 0.5). Under the sum-of-trees model, the prior on E[Y(x)] then
becomes N (0, (4x2) '), where CGM default to x = 2. For single-objective
optimization, however, Chipman, Ranjan, and Wang (2012) use k=1 to
allow BART to produce more pronounced optima. For similar reasons, we
use k=1 and m =30 trees for our applications in Section 5, but other
situations may call for different (k,m) values. We also set the minimum

number of observations allowed in each leaf node to ten.



For m(0?), we use the scaled inverse chi-square distribution
o? ~ Scale — x2(v, A) with values v=3 and A = 0.01% chosen to induce
a prior mean of 0.0003 (see CGM for details of v and 4 selection). However,
we find that the hyperparameter x more strongly influences the smoothness
of the response.

3 Multiobjective Optimization

This section details how we can find the PF and PS of the multiple-output
BART regression function (2) given some fixed 8. However, we must first
introduce the notion of Pareto dominance, which we use to identify the best
compromises between competing objectives.

Definition 1 (Pareto dominance). The objective point
v = (vy,...,vq9) € R4 (weakly) dominates the point
w = (wi,...,wg) € RY (denoted v = w) ifv; <wjforall j=1,...,d. If
at least one of these inequalities is strict, then we say v strictly dominates w
(denoted v~ w).

We can now precisely define a multiobjective function's PF and PS: the PF
is the set of all nondominated image points; the PS is the set of all inputs
that produce the PF. For example, consider Figure 1(c), which shows the
image of a biobjective function. Any point on the dashed segment is not
dominated by any other image point while any image point on a solid
segment is dominated by at least one other image point. Thus, the PF is the
dashed segment in Figure 1(c) and the PS is the interval [0.25,0.75] in
Figures I(a) and 1(b).
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Fig. 1 A biobjective function £(z) = (fi(z), f2(x)) where z € [0, 1].

We find the PF and PS of (2) using the two-step algorithm:

1. (Section 3.1) Find the image &(Z;0) and corresponding input
hyperrectangles.

2. (Section 3.2) Find all nondominated points in the image &(%Z’; 0).

Step 2 produces the desired PF. The desired PS is the union of all input
hyperrectangles (found in Step 1) that yields a point in the PF.

3.1 Finding the Image of a Multiple-Output BART Function

The following example will make it clear that (2) has a finite image. We can
find these image points and their corresponding input hyperrectangles using
the parameter values 6.

Example 1. Here, we find the image of the biobjective function &(-;0)
shown in Figure 2, where & = |0, 1]2. Any input belongs to one leaf node
per tree; these dm =4 leaf nodes correspond to an image point. For
example, the input x* = (0.1,0.07) belongs to the four dash-bordered leaf
nodes, which correspond to the image point &(x*;0) = (—b, —4) shown as
a dashed triangle. Conversely, this image point corresponds to the hatch-
filled input rectangle, which is the set of all inputs that belong to all four
dash-bordered leaf nodes.
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Fig. 2 A biobjective function &(-;0) = (&(+;601),&(+;02)) with tree ensembles (top row)
with parameters 61 (leff) and 62 (right). Bottom left: input space partitioned into 10
rectangles. Bottom right: output space with all 10 image points of & (-; 0).

Of the (3 x 2)(3 x 2) = 36 possible one-leaf-node-per-tree combinations,
only 10 are valid and produce an image point. For an example of an invalid
combination, an input point cannot belong to both the right and left leaf
nodes of, respectively, the first and second ensembles right tree; the
conditions x1 > 0.6 and x1 < 0.5 cannot be simultaneously satisfied. With
only 10 valid combinations, the function &(-;0) has only 10 image points
(shown in the bottom right plot of Figure 2).

Between the two ensembles, the six split rules together partition the input
space such that the resulting set of partitioning rectangles (shown in the
bottom left plot of Figure 2) is bijective to the set of valid one-leaf-node-
per-tree combinations, which is itself bijective to the image of &(+; ). Thus,
the function &(-;0) can be written as a linear combination of indicator

functions each corresponding to a partitioning rectangle.



Theorem 1 d escribes a similar result but for any d-output BART function
&(+;0): if we obtain every possible one-leaf-node-per-tree combination, we
can find the image and corresponding input (hyper)rectangles of the d-
objective function. The proof of Theorem 1 (see supplementary material)
provides more insight into how these two tasks can be achieved.

Theorem 1. Any d-output BART function in the form of (2) can be written as

a linear combination of indicator functions of hyperrectangles:

&(50) = ) aylr, (),

qEBys

where the set Bg indexes the valid one-leaf-node-per-tree combinations in
0, cach o, € R? is an image point of &(+; ), and the set of hyperrectangles
{Rq},cp, partitions 2.

3.2 Finding the PF and PS of Multiple-Output BART Function

After finding the image of a d—output BART function &(+; ), we find its
set of nondominated points using an efficient recursive algorithm from
Kung, Luccio, and Preparata (1975). For simplicity, we describe (in the
supplementary material) only one of these algorithms, which finds the
nondominated points in a finite set V' of d—dimensional vectors. In our
setting, the set V is the image of &(-;80). Kung, Luccio, and Preparata
(1975) showed that the algorithm’s time complexity has an upper bound of
O(|V|( log,|V|)*™?) if d>3. This algorithm s still valid if d € {2,3}, but
this upper bound no longer applies in these cases.

The desired PS is the union of all input hyperrectangles corresponding
to the nondominated image points. For the example in Figure 2, the PF is
the dashed triangle image point while the PS is the hatched input rectangle.

4 Uncertainty Quantification
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We can quantify the uncertainty of PF estimates induced by a fitted

multiple-output BART model by making N independent draws from the

posterior, creating for each draw the resulting BART regression function as
defined in (2), and finding each conditional PF (CPF) as described in
Section 3. This section details two UQ approaches using the sample of N

CPFs, which we denote as ¢V, ..., cV). Both approaches use dominated
point set closures (DPSCs): for i = 1,..., N, define the DPSC A® of a
CPF ¢ to be the closure of the set of points dominated by at least one

point in ¢®. That is, A® :

{y’ S @]y ' < yforatleastoney € c() },

where % C R? is the smallest compact hyperrectangle that contains every

objective point in the training set D. Figure 3 shows examples of DPSCs.
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Fig. 3 Example of 2 CPFs (triangles and squares) and the corresponding DPSCs (areas
with hatched lines) in objective space Z = [0, 1]2.

4.1 Random-Sets Approach

da Fonseca and Fonseca (2010) treated each DPSC as a realization of an
attained set — a random closed set whose probability distribution is
characterized by its attainment function.

Definition 2 (Attained set and attainment function). The DPSC of a
random PF is the set attained by the random PF. The attainment function
oy 2 % — [0,1] of an attained set & is defined as oy (y) := Py € &)
for every pointy € ¥

Example 2. Consider Figure 3 and let A® (A*) be the DPSC created from
the square (triangle) points. Define an attained set o/ to be AW with
probability 0.1 and A* otherwise. The attainment function oy of & is then

(0, ygA"U AL
0.1, yc A" A
0.9, yc Ar A"
(1, ycA"N AL

which we can interpret as the probability of y being in the random set < .

4.1.1 PF and PS Estimation

If an attained set 7 has uncountably many possible set realizations, then its
attainment function may be difficult to formulate. We may instead estimate
the attainment function using an empirical version, which takes on values in

the set {O, %, %,...,%,1}.



Definition 3 (Empirical Attainment Function). Let AN, A®) . AN pe
realizations of the attained set &/ on %. The empirical attainment function
an % — [0,1] is defined to be the fraction of attained set realizations
that contain its argument.: ay(-) := % Zf\il La0(+).

With the empirical attainment function, we can quantify the uncertainty of
the CPFs using an ags % (Where 0 < ags < 1) PF UQ point cloud, which
we define to be the set of all CPF points y such that
an(y) € (0.5 — ars/2,0.5 + arg/2). That is, this UQ point cloud is the
set of CPF points dominated by some proportion of CPFs, where this
proportion is between (0.5 — ags/2,0.5 + ars/2). Obtaining this point
cloud requires evaluating the function an(-) at every CPF point, which
means checking the condition “y € A®” for all CPF points y and all
i=1,...,N. A single “yec A®D” check assesses y’s dominance
relationship with possibly every point in the CPF ¢ and thus takes
ﬁ(d‘c(i)’) time. Checking “y € A®” for all CPF points y and all

1 =1,..., N then takes ﬁ(d(Zf\il ‘c(i)

Regarding PS estimation, recall from Theorem I that each image point of a

)2) time.

d—output BART function &(-;0) corresponds to a partitioning
hyperrectangle. Hence, the PS of &(-;0) corresponds to a collection of
hyperrectangles. This article thus quantifies the uncertainty of conditional
PSs to be the union of the hyperrectangles corresponding to the points in

the PF UQ point cloud: @ = U_ & y;0), where @ is a PF UQ

YEP 2
point cloud and & (y;0) is the hyperrectangle corresponding to the
objective point y.
4.2 Band Depth Approach
A second approach to quantify the variability of CPFs ¢, ¢, ... @)

(with associated DPSCs AW, AR .. AWM)) is to order them using a
graph-based notion of depth. The idea is to measure the centrality of a curve



with respect to either a set of curves or a population distribution. A sample
of curves can then be ordered from the center outward, where the “deepest”
curve would be the “median” curve. Lopez-Pintado and Romo (2009)
introduced the concept of band depth for univariate functions. Whitaker,
Mirzargar, and Kirby (2013) generalized this band depth definition to
operate on sets, which we use to order ¢V, ¢® ..., c¢®™ We say that a
CPF ¢ lies in the band delimited by two CPFs c( ) and ¢® if and only if
[AD N AR C A C [AW U A®)]. We denote this relationship by
¢ C* B(c9, ¢®). Figure 4 shows an example of a band delimited by two
CPFs. We now define the band depth of ¢ to be the proportion of bands
delimited by two of the N CPFs containing ¢ in the C* sense. That is,
given CPFs ¢, c¢® ... ¢, the band depth of CPF ¢ s
N "1

N-1 * j k
BDy(e) = () Y35 S, e < B(el, ).
< 2
@ ] Q]
o o
© _| © |
o o
o N
> >
< <
o o
N N
o o
e : e _]
o o
[ [ | | | [ | | | [ | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y1 y1

Fig. 4 The lower-left boundaries of N=101 DPSCs. Left: faint gray curves correspond to the
N CPFs. Right: thick black curve corresponds to the deepest CPF. Thick gray curves
correspond to the 50% deepest CPFs corresponding to apgp = 0.5.

4.2.1 Modified Band Depth



Whitaker, Mirzargar, and Kirby (2013) noted that if N is small and the CPFs
strongly vary in shape, this band depth definition can produce many zero-
depth CPFs. To circumvent this issue for one-dimensional functions, Lopez-
Pintado and Romo (2009) defined a modified band depth that measures the
proportion of a function’s graph that is in the band. Sun, Genton, and
Nychka (2012) introduced an efficient algorithm to compute this modified
band depth. We extend this efficient algorithm to compute modified band
depth for d—dimensional CPFs, where d > 2.

Example 3. We motivate our algorithm through an illustrative example in
which we compute the depth of an arbitrary CPE, denoted as c\*), among
the N=101 CPFs in Figure 4, where we assume % = |0, 1]2. First, we
define and compute ¢ s depth at the vertical dotted line y, = 0.8, which
we denote as d®)

AO|, o5 = min{ys € [0,1] : (0.8,42) € AO)} be the minimum y, value
of the lower-left boundary of DPSC A®) that intersects the vertical line
y1 = 0.8. Analogous to the C* relation, a pair of CPFs 9 and ¢ is said
to contain CPF ") at the line y1 = 0.8 if and only ifA(*)'yl:o,g is in the
closed interval [A(j)’ylzo_g, A(k)’ylzo_g]. Then d(*)'ylzo'g is defined to be the
fraction of pairs of the N CPFs that contain ¢\, where the number of CP

pairs that contain e is
[{i: AD|y 08 < AO)|y—os}] % [{i: AD|y 08 > AO)|y—0s}| =1 (we
subtract one to avoid counting the band delimited by c\*) with itself). Note
that ’{z : A(i)'ylzo_g < A() ylzo_g}’ is simply the rank ofA(*)'ylzo_g among
{A(i)'ylzo_g :i=1,...,N} and is also equal to
N — ‘{Z ; A(i)’ylzo.s > A0) y1:0.8}‘ + 1.

We may repeat the process above for any vertical line, e.g. y1 = s, to obtain

y1=0.8- Let

the depth d® ‘ylzs of CPF ") at y1 = 8. Similarly, we may easily alter the
process above to obtain depth d(*)'y2:t of ¢) at any horizontal line, for

example, y» = t. If we create a dense uniform grid of q lines for each output



dimension and find the depth of ™) at each of the 2q lines, then we can
approximate the “overall” depth of c\*) by the sample mean of these 2q

depths:  0.5¢7 131 1 d))y,_y +0.5¢71 Y0 dO)

= (i —1)/(a—1).

Following a process similar to Example 3, Section B.2 of the Supplement
provides an explicit algorithm to find the depth of all N CPFs when d = 2.
Step 1 creates the 2q lines while Step 2 finds the y, and y, intersection
values for all N CPFs. At each line, Step 3 ranks the CPFs while Step 4
computes for each CPF the number of pairs of CPFs that contain it. Step 5
then calculates the depth of each CPF. Section B.3 of the supplement
material extends this d =2 process to any d > 2, which has a runtime of

O(dg? !N log N).

yo=t;» where

4.2.2 PF and PS Estimation

Our aypp % PF UQ point cloud for the depth approach is the union of the
ayvsp deepest CPFs, where 0 < aypp < 1. Our PS UQ region is then the
union of the hyperrectangles corresponding to the points in the PF UQ point
cloud.

4.3 Comparing Time Complexity

To compare the runtime of the two approaches for any d > 2, we first

express the random-sets runtime as O(dNZ’n?), where
n:=N"1 Zfil cld)

can be controlled by varying either the number of posterior draws (N) or the

is the mean number of points in each CPF. Inference

training size (n). If we fix N and increase n (and hence also 7n), the random-
sets runtime grows quadratically in n, but we would also want to grow ¢
proportionally to 7 in order to faithfully capture the ranks of the
increasingly refined CPFs, which would affect the depth runtime via g% !.
Hence, the comparison between the two runtimes depends on d. In practice,



however, the training size is fixed (which also roughly fixes 7). As N
increases, the depth runtime grows more slowly than does the random-sets
runtime (N log N vs N?), which makes the depth approach the more
computationally tractable option in this case.

5 Simulation Study
5.1 Simulation Settings

We generate data from one of four test functions: MOP2 (Fonseca and
Fleming 1995), ZDT3 (Zitzler, Deb, and Thiele 2000), DTLZ2 (Deb et al.
2005), and ZLT1 (Laumanns 2005), which for brevity are defined in the
Supplement. Figure 5 shows the MOP2 function (p = d = 2) to be the
simplest of the four. ZDT3 (p = d = 2) has a disconnected PF and PS.
DTLZ2’s (p =4 and d=2) PF and PS (not shown) are similar to MOP2’s.
ZLT1’s (p = d = 3) PF is a convex 2-dimensional surface while its PS is
the 2-dimensional probability simplex

{(xl,azz,xg) € (0,1 : 21 + o + 23 = 1}. Though the methodology in
Sections 3.2 and 4 is invariant to shifts and scales of inputs or outputs, our

performance metrics in Section 5.2 are not. Thus, we shift and scale the
input space to be 2" = [0, 1] and each objective to have range [0, 1].
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Fig. 5 The first row (MOP2) and second row (ZDT3) show, from left to right, the respective
function’s fq contour, fo contour, PS, and PF. For these plots, darker contour lines indicate

lower objective values. The third row shows the PF of DTLZ2 (left) and ZLT1 (right), where
darker values indicate lower yo values.

Given data from (1) and f(-)’s PF and PS, this section explores how
sample size and measurement error magnitude affect the accuracy of:

Q.1. BART’s PF point clouds and GP’s PF approximate point clouds.
Q.2. BART’s PS point clouds.

Q.3. Depth approach and random sets approach to UQ.

For each test function f(-), we explore the six possible combinations of
the  following  parameter  settings:  noise-variance  multiplier



¢ €{0.0,0.1,0.25} and training size n € {32p,64p}. Given any
(£(+),n, ) combination, we can create a dataset D := {(y(x;),%;)},_; by
simulating y(x;) from (1) at each design point x; of an n—point maximin
LHS on [0,1]” (from Edwin van Dam et al. 2015), where
0? = (var(f;(X)) forall j=1,...,d and X = (X3,...,X,) with each
X, SU (0,1). For each (f(-),n,({) combination, we generate either 100
such datasets D := {(y(x;),x;)};_, if f(-) is one of the three d=2
functions, or 50 such datasets if f(-) is ZLT1. To each dataset, we fit two
models: a multiple-output BART model and a multiple-output GP model
produced by fitting an independent single-output GP to each marginal
dataset D; for j=1,...,d. For each model our BTE (burn-in B steps,
terminate after 7 steps, sample every E steps) is (300, 800, 1), resulting in
500 posterior draws per generated dataset. To summarize, we fit a multiple-
output BART model and a multiple-output GP model to each of the 2, 100
datasets, obtain 500 posterior draws from each of the 4,200 models, find or
approximate the image at each posterior draw, find the CPF of each image,
compute the depth and empirical attainment function value for each CPF to
produce PF (and PS if using a BART model) UQ point clouds, and compute
performance metrics (defined in Section 5.2) for each point cloud. Running
the simulation study pipeline for ZLT1 (where d=3) for 50 datasets took
roughly 6 days with 32 cores (approximately 8.3 hours per BART model
run). However, we note the much shorter runtime for the engineering
application in Section 6, where d = 2.

We use the OpenBT implementation of BART (Pratola 2021) with
default parameter settings unless otherwise stated in Section 2. For the GP
method, we use the km and simulate functions of Roustant, Ginsbourger,
and Deville (2012)’s DiceKriging package with error variance set to the
scenario’s noise variance. Because noise variance is not known in most
applications, the GP fits can be seen as idealized. For UQ, we use
QRS — 0.25 and OMBD — 0.5.



5.2 Performance Metrics

This section defines two performance metrics that jointly quantify how well

a point cloud P (either @ or & o) estimates its target set & (either & 4
or Zy):

—~

di:=d(P,P) and dy:=d(P,P)

where d(o,B) = ||, ., (minpcglla—b|l) is the average
distance from points in a finite point set 7 to a set 4 (Dubuisson and Jain
1994). These two metrics are analogous to the Type I/Type Il error of a
hypothesis test: a point cloud with many points far from the target set
(similar to false negatives) will have a large d, value while a point cloud far
away from many points in the target set (similar to false positives) will have
a large d, value. That 1s, the metrics d; and d, measure the degree to which
a point cloud exhibits these two undesirable behaviors. As examples, the
point clouds in the first and third panels of Table 1 have large d; values
while the point clouds in the second and third panels have large d, values.
Conversely, a point cloud with small d; and d, values, e.g. in the fourth

panel, indicates it is a high-performing estimate of the target set.

Table 1 Each plot shows a different PF point cloud (black triangles) that attempts to capture
the same, disconnected target set (gray lines). (Table view)

Undercoverage Overcoverage Biased coverage Good coverage

small d4, large do large d1, small do large d1, large do small dq, small do

NOTE: Of the four point clouds, the one in the fourth panel is the only one that adequately
captures target set. Qualitative values of d4 and dp for each point cloud are provided.

Our metric d; is equivalent to the function .#; in Zitzler, Deb, and
Thiele (2000), which is one of 63 performance indicators in the MO



literature reviewed by Audet et al. (2020). Though many of these indicators
penalize only one of the two mentioned undesirable behaviors, some more
recent indicators penalize both behaviors with a single metric to be used in
a sequential MO design. This article, however, focuses on characterizing the
performance of estimates of &4 and &4 . Hence, we penalize these two
behaviors separately to see sow a point cloud might underperform.

5.3 Simulation Results

Figure 6 displays bagplots of the 100 values of d(@, Pz) and
d(P#, P ) for each n = 64p simulation scenario (PS plots and similar
n = 32p scenario results can be found in the Supplement). A bagplot
extends the common boxplot for two-dimensional outputs and contains
three main features analogous to the common univariate median, the box,
and the whiskers on a conventional boxplot (Rousseeuw, Ruts, and Tukey
1999). For visual clarity, we include only two of these features: the depth
median, which is the point with the highest possible halfspace depth, and
the “bag,” which is a polygon that encloses 50% of the points around the
depth median.
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Fig. 6 Bagplots of the 100 values of d(@ 4, 2.z) and d(P 4z, P ). Each plot represents
a n = 64p simulation scenario where the variance multiplier is a value in {0,0.1,0.25}.

Bags with solid (dashed) outline and median labeled ‘d’ (‘r’) display depth (random sets)
approach. Black (gray) bags display BART (GP) model.



As another point of comparison, we also plot in Figure 6 the median
undercoverage and overcoverage of 100 sets of 10 points randomly selected
from the underlying function’s PF and perturbed according to the scenario’s
noise level. These medians are the points labeled ‘m.” Each set of 10
randomly selected points from &4 provides a sense of the undercoverage
and overcoverage one can expect from a “well-fitting” statistical model that
produces a 10-point CPF. The subsequent perturbation accounts for the
quality of the data that a statistical model is trained on. We do not perform
this comparison for the PS figures for lack of a natural mapping of
observation noise level to input noise level.

To address Q.1, we make several observations in Figure 6. We first
compare the difficulty of MO between the three d =2 functions. The ZDT3
PF point clouds tend to produce higher overcoverage than either the MOP2
or DTLZ2PF point clouds, which can be explained by ZDT3’s
disconnected PF. The PF point cloud undercoverage is roughly the same
between the three d =2 functions. The ZLT1 PF point cloud (supplementary
material, Figures 5a), however, produces much more undercoverage than
those of the other three functions, presumably because 2-dimensional
surfaces (e.g., ZLT1’s PF) are usually more difficult to cover than 1-
dimensional sets (e.g., the other three PFs). However, the PS point clouds
(supplement, Figures 2b, 3b, 4b, and 5b) perform differently between the
three d=2 functions. When d=2, the DTLZ2 PS point clouds have the
most undercoverage, which may be due to a larger input dimension (p =4).
These point clouds also have the most overcoverage (when d=2), but the
overcoverage difference between DTLZ2 and ZDT3 is roughly the same as
the overcoverage difference between ZDT3 and MOP2, which again can be
explained by ZDT3’s PS being disconnected and on the boundary of the
input space. Similar to the PF regime, the ZLT1 PS point cloud produces
much more undercoverage than those of the other three functions, which
again may be explained by ZLT1’s 2—dimensional PS. Surprisingly, the
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ZLT1 PS point clouds have fairly low overcoverage, which suggests we
could increase aypp and ars to improve undercoverage. From these
observations, we conclude that among the d=2 functions, ZDT3 has the
most difficult PF to capture while DTLZ2 has the most difficult PS to
capture, but the increased dimensionality of ZLT1’s PF and PS makes point
clouds prone to have large undercoverage.

We also compare performance between BART and (idealized) GP. In the
MOP2 PF results, the no-noise scenario shows an
overcoverage/undercoverage tradeoff between BART and GP while the two
noisy n = 128 scenarios show GP outperforming BART in both metrics. The
DTLZ2 PF results show roughly equal performance between BART and GP.
The ZDT3 PF results show BART’s performance improving relative to GP’s
performance as noise increases, which suggests that the fitted stationary GP
models struggle with ZDT3’s irregular oscillations in its image. These
observations imply that BART performs possibly worse than idealized GP
(which presumably performs better than a fitted GP when noise is not
known) in “simpler” scenarios but better adapts to “complex” behaviors in
the underlying data-generating function. We conclude that when the
underlying function and noise level are not known, BART may be a safer
bet than the GP.

To address Q.2, we refer to Figures 2b, 3b, 4b, and 5b in the
supplementary material. For each d=2 test function, the depth approach
tends to produce similar overcoverage and undercoverage as the random
sets approach. Overcoverage tends to be larger than undercoverage for each
function and each approach, which suggests aypp and agrsg could be
lowered to produce point clouds with less overcoverage and minimally
more undercoverage. For ZLT1, the difference between the two approaches
is slightly more pronounced. When n =96, there seems to be a tradeoff
between overcoverage and undercoverage, but when n=192, the depth
approach seems to have slightly less undercoverage and roughly equal
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overcoverage as the random sets approach. Interestingly, undercoverage of
ZLT1’s PS point clouds remains large and does not decrease with larger
sample size, which suggests there is a region of the PS that the point clouds
consistently fail to cover.

To address Q.1, we now compare the depth approach to the random sets
approach. We first look at BART’s PF point clouds. For the MOP2 and
ZLT1 functions, the depth approach tends to produce more overcoverage
and less undercoverage than the random sets approach. For ZDT3, the depth
approach tends to produce less overcoverage and undercoverage than the
random sets approach. For DTLZ2, the depth approach tends to produce
less overcoverage and undercoverage than the random sets approach when
the observations are not noisy, but more overcoverage when noise is
present. In all of these BART PF observations, the depth approach either
outperforms or produces an overcoverage/undercoverage tradeoff with the
random sets approach. That is, in no BART PF scenario does the random
sets approach outperform the depth approach, which suggests the depth
approach produces either as good or better PF point clouds than does the
random sets approach. For GP, the depth approach tends to produce less
overcoverage and less undercoverage than the random sets approach for all
three d=2 test functions, which suggests the depth approach produces
overall better GP-based PF point clouds than does the random sets
approach. From these observations and from the depth approach’s runtime
advantage as discussed in Section 4.3, we conclude that the depth approach
should be used over the random sets approach if using either BART or GP.

6 Engineering Application

Consider the single cut turning cost operation from Trautmann and Mehnen
(2009) (TM), who consider the MO problem of simultaneously minimizing
the machining and tool costs, C),, : Z — R and C; : Z — R, respectively,
for an industrial engineering application where



Cm(Vc) fr) = bch_lfr_l and Ct(Vc’ f?’) = b2V02f1§ (3)

with constants b; ~ 12, 354fmm?min ' and by ~ 0.0284£mm >min?.
Each cost has two input variables: cutting speed v, with typical values
between 10 and 400 mm/min, and the feed f, with typical values between
0.04 and 1 mm. Thus, we use the input space & = [10,400] x [0.04, 1].

As shown in the left and middle plots of Figure 7, no image point is far
from the PF. Thus, it is “easy” to estimate the PF. However, this same
property in the output space makes PS estimation very difficult, as any
input will map to an image point close to or on the PF. Because many input
points are far from the PS (shown in the right plot of Figure 7), PS
estimates will tend to have large uncertainty.
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Fig. 7 Left: image (gray) and PF (black) of the single cut turning cost operation biobjective
function. Middle: the left plot zoomed into the lower-left region. Right: input space (gray) and
PS (black).

TM perform PF estimation but not UQ or PS estimation, which hides
the aforementioned large uncertainty in PS estimates. In contrast, we apply
our BART-based methodology (with BTE (300, 2300, 1)) to perform PF/PS
estimation and UQ on two training datasets generated from (1), where
02 =0 and (3) takes the role of f(-). We generate noiseless data, but
approach the problem as if we do not a priori know the level of noise in the
observations. Due to sharp peaks in C,, and C, in the generated data, we fit



our two BART models to log C),, and log C;. We then transform the BART
predictions back to C,, and C, before performing PF/PS estimation and UQ.
For UQ, we use only the depth approach per our simulation study
conclusions in Section 5.3. The runtime of this analysis for n=15,300 was
2 min and 45 sec with 32 cores.

Figure 8 shows the 50% PF and PS point clouds for two training sizes:
n= 15,300 to match the number of function evaluations made by TM, and n
= 1500 to consider the case of an expensive simulator. The dark PF points
correspond to the dark PS regions and indicate relatively low C,, and C,
values. As explained in the previous paragraph, both PS point clouds
(Figures 8(b) and 8(d)) show large uncertainty. On the other hand, the two
PF point clouds (Figures 8(a) and 8(c)) indicate small uncertainty and differ
only slightly from each other, which implies only a minor loss in PF
inference even with a training size reduction of 90%. Hence, a practitioner
can pick an input setting to achieve relatively low C,, and C, values even
with n=1500.
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(a) n = 15300 PF UQ. (b) n = 15300 PS UQ. (c) n =1500 PF UQ. (d)n = 1500 PS UQ.
Fig. 8 50% UQ point clouds for the PF and PS.

If such a single cut turning cost operation is embedded in a continuously
monitored and adapting manufacturing system, it makes sense to allow
cutting speed to be continuously manipulated by automated systems using
relevant manufacturing information obtained in real-time. For example, a
sudden jump in the price of raw materials might increase the impact of



cutting speed on tool wear cost and hence change the nature of the PF. Our
methodology provides an automated approach to understanding which input
settings will result in low-cost outcomes.

7 Summary and Discussion

Using the fact that BART produces a set of hyperrectangles which partition
the input domain (Theorem 1), this article describes the details of using
BART for performing multiobjective optimization, provides an algorithm to
find the PF and PS of the multiple outputs and inputs, and compares two
different approaches of UQ for the PF and PS. A “random-sets” approach
and a newly proposed “depth” approach are used to quantify the uncertainty
of BART-generated and GP-generated PF and PS estimates. The depth
approach performs similarly or better than the random sets approach (while
being computationally advantageous). When the underlying function and
noise level is unknown, UQ based on BART-based MO optimization may
be superior to GP-based MO optimization. We also note that BART can
readily handle categorical inputs, which are often a challenge in GP models.
Finally, we demonstrated our BART-based PF and PS estimation to data
generated from an engineering application.

This article suggests several topics for additional research. First, our UQ
comparisons used apypp = 0.50 and agg = 0.25, but we could lower these
values to decrease the expected overcoverage and increase the expected
undercoverage (or raise these o values to increase expected overcoverage
and decrease expected undercoverage). Indeed, the empirical results in this
article suggest using lower values than our a choices but it is unknown what
ayvsp and arg values will produce desirable overcoverage/undercoverage
values in general.

Second, this article used one-stage maximin LHDs. Presumably,
BART’s PF and PS estimates could be improved using alternative input
designs. For example, Chipman, Ranjan, and Wang (2012) performed



sequential design using single-output BART prediction, but additional
design research is required for multiple-output BART.

Third, this article assumes an independent correlation structure in the
distribution of €; in (1). Introducing dependence would require a modeling
approach that cannot be accomplished via independent BART model fits.
To date, no such approach exists.

The implementation for finding the PF and PS of a two-output or three-
output BART model can be found in the Open Bayesian Trees (OpenBT)
project at https://bitbucket.org/mpratola/openbt/.
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Fig. 1 A biobjective function (z) = (f1(x), f2(z)) where z € [0, 1].
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Fig. 2 A biobjective function &(-; ) = (&(+; 1),8(-; 2)) with tree ensembles (top row)
with parameters 61 (left) and 6o (right). Bottom left: input space partitioned into 10
rectangles. Bottom right: output space with all 10 image points of é"(-; )
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Fig. 3 Example of 2 CPFs (triangles and squares) and the corresponding DPSCs (areas
with hatched lines) in objective space
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Fig. 4 The lower-left boundaries of N=101 DPSCs. Left: faint gray curves correspond to the
N CPFs. Right: thick black curve corresponds to the deepest CPF. Thick gray curves
correspond to the 50% deepest CPFs corresponding to .
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function’s f4 contour, fo contour, PS, and PF. For these plots, darker contour lines indicate
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Fig. 6 Bagplots of the 100 values of d( Pz, P z) and d( Pz, P z). Each plot represents
a m = 64p simulation scenario where the variance multiplier is a value in {0,0.1,0.25}.
Bags with solid (dashed) outline and median labeled ‘d’ (‘r’) display depth (random sets)
approach. Black (gray) bags display BART (GP) model.
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(a) n = 15300 PF UQ. (b) n = 15300 PS UQ. (c¢) n = 1500 PF UQ. (d) n = 1500 PS UQ.
Fig. 8 50% UQ point clouds for the PF and PS.



Table 1 Each plot shows a different PF point cloud (black triangles) that attempts to capture
the same, disconnected target set (gray lines).

Undercoverage Overcoverage Biased coverage Good coverage

small d4, large do large d1, small d2 large d1, large d2 small dq, small do

NOTE: Of the four point clouds, the one in the fourth panel is the only one that adequately
captures target set. Qualitative values of d4 and dp for each point cloud are provided.
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