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Assessing Power and Water Network Resilience
When Water Pumps Provide Frequency Regulation
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Abstract—Pumps in drinking water distribution networks can
be operated as flexible, controllable loads to help support the
electric power grid, e.g., by providing frequency regulation.
However, departures from conventional water network operation
should not degrade the ability of the water and power networks
to respond to high impact low frequency events. In this paper,
we evaluate the resilience of water and power distribution
networks surrounding a storm-induced power outage given an
optimal pumping strategy that minimizes electricity costs and
is capable of offering frequency regulation. The water network
resilience under optimal water pumping strategies is compared
with its resilience under a conventional rule-based water pumping
strategy. In a case study, we consider an extreme wind event
that causes power outages in the power distribution network
impacting pumps in the water network. We found that the
optimal control strategies are significantly less expensive than
the traditional rule-based strategy but the water tanks levels are
lower within the optimal pumping strategies, potentially reducing
water service availability during long power outages. However,
we also observed that the tank levels remain further from their
limits when the optimal pumping strategy provides frequency
regulation in addition to minimizing electricity costs, resulting in
improved resilience metrics.

Index Terms—extreme weather, frequency regulation, power
distribution network, resilience, water network

NOMENCLATURE

Sets
E Water network edges
J Water network junctions
K Power distribution network buses
L Power distribution network lines
N Water network nodes
P Water network pumps
R Water network reservoirs
S Water network storage tanks
T Time steps in the scheduling problem

Parameters
Ac Conductor area
b
1
ij , b

0
ij Head gain coefficients for pump ij

c Tank level slack variable penalty coefficient
c
1
ij , c

0
ij Pump power parameters of pump ij

d
t
j Water demand at junction j, time t

f
t,1
ij , f

t,0
ij Linearized parameters of edge ij, time t
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ĥj Elevation head of node j

h Height of utility pole
Hj , Hj Min., max. head for node j

kij Resistance coefficient of pipe ij

N Number of scenarios
V

t Three-second gust wind speed at time t

wij , wij Min., max. normalized speed of pump ij

xij Maximum flow rate of pump ij

y Modified age of the utility pole
�j Cross-sectional area of tank j

�T Duration of time step
✓ Angle between wind direction and conductors
⌫ Pipe head loss exponent
⇡
t
ij Energy price at time t for pump ij, time t

⇡
t
fr Price of frequency regulation capacity at time t

� Tank water level tolerance

Decision Variables
F

t
ij 2 F Frequency regulation capacity of pump ij, time t

H
t
j Hydraulic head at node j, time t

p
t
ij 2 p 3-phase real power demand of pump ij, time t

s Tank level slack variable
w

t
ij Normalized speed of pump ij, time t

W
t
ij Normalized speed squared of pump ij, time t

x
t
ij Flow rate of water through pipe ij, time t

z
t
ij On/off status of pump ij, time t

Resilience Metrics
P

t Network performance at time t

Rn Network resilience metric of scenario n

Subscripts
FR Frequency regulation
line Active lines
load Connected loads
N Operation under normal conditions
pressure Pressure met
tank Final tank capacity
W Operation under wind-induced outage conditions
wsa Water service availability

I. INTRODUCTION

As more intermittent renewable energy sources are added to
the electric power grid, more sources of flexibility are needed
to ensure safe grid operation. There is growing interest in
utilizing water pumps in drinking water distribution networks
as a source of flexibility for the electric power grid. Pumps
in water distribution networks can be treated as flexible loads,
capable of shifting their power consumption both temporally
(utilizing water storage tanks) and spatially (across multiple
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pumping stations). Recent work focuses on optimizing the
operation of water distribution networks given the interactions
and interconnection between the water network and the electric
power grid (for example, to leverage the water network to
provide services to the power grid), such as [1]–[10]. In a pilot
program, the Pennsylvania American Water utility successfully
provided frequency regulation to PJM, resulting in electricity
cost savings of 2-3% by adjusting the speed of a single variable
speed pump [11]. This pilot program demonstrates the ability
of variable speed pumps to adjust on the seconds-scale to
provide frequency regulation, and also the value provided by
these actions. In [12], the flexibility potential of leveraging
drinking water pumps to provide grid services was found to be
a sizable asset. The estimated power and energy capacity was
around 21 GW and 925 GWh in the United States, respectively.

However, we need to ensure that the proposed operational
choices do not degrade the resilience of the networks com-
pared to the resilience of conventionally implemented prac-
tices. Most water distribution networks currently operate using
heuristic control rules that adjust pump and valve settings
given time patterns or events (e.g., triggered by tank water
level and/or nodal pressures). In this work, we investigate the
performance of the water distribution network before, during,
and after a storm-induced power outage when the supply
pumps are optimally scheduled and controlled to provide grid
services.

There is a major focus on resilience in power networks
(e.g., [13]–[15]) and in water networks (e.g., [16]) since
both networks are considered critical infrastructure systems.
However, few papers investigate the resilience across inter-
connected power and water distribution systems with the
exception of [17]–[19], which propose coupled power-water
network resilience metrics. These works help capture the
interactions between power and water networks. However, to
the best of our knowledge, no work considers the impact of
optimal water distribution network control on the resilience of
power and water distribution networks.

The goal of this paper is to evaluate the operational re-
silience of the power and water distribution network to hazard
events under different water pumping operational strategies.
Specifically, we consider optimal water pumping strategies
subject to water flow constraints that minimize pump elec-
tricity costs and provide frequency regulation to the bulk
transmission system. We solve for the pump schedules and
frequency regulation capacity bid into the ancillary service
market. It should be noted that we are considering frequency
regulation (also known as second frequency control or load fre-
quency control) not frequency response (also known as droop
control or primary frequency control). Specifically, to provide
frequency regulation, the pumps must adjust their power con-
sumption based on a frequency regulation signal sent by the
independent system operator. Real-time frequency regulation
control actions are determined based on the affinity laws.
We then evaluate the strategies within a hydraulic simulation.
Metrics (e.g., the number of power distribution lines online and
the amount of water demand served) quantify the resilience
of the water and power distribution networks after a wind
event that causes power outages, and network performance

under the optimal pump control strategy is compared with
the performance under conventional rule-based water network
operation.

Some past approaches have considered water pumping pro-
viding frequency regulation, e.g., [5], [20]. In previous work,
we considered providing frequency regulation and voltage
support concurrently with fixed speed pumps [5]. In contrast,
here, we consider variable speed pumps which are better suited
to respond to a frequency regulation signal by adjusting their
speed set point. In [20], the authors solve for demand response
and frequency regulation capacity in a radial 15-node test
network using variable speed pumps; however, they do not
specify or simulate the real-time pump speed adjustments
given a frequency regulation signal, as we do here.

An important aspect of our work is ensuring that opti-
mal water pumping strategies produce tractable and feasi-
ble solutions within nonconvex hydraulic simulations. When
evaluating some of the existing modeling and approximation
approaches within a hydraulic simulator, we observed cases
where the tank levels were drained or filled more than ex-
pected. This led to cases with infeasible solutions or reduced
water service availability. To address this, we improve and
extend upon existing optimal water pumping formulations that
provide frequency regulation in order for the formulation to
apply to variable speed pumps and preserve accuracy. Specifi-
cally, we use an iterative mixed integer linear programming
approach similar to [21], that incorporates variable speed
pumps while using soft tank level constraints to improve
convergence. This approach is evaluated in Section V with a
high-fidelity hydraulic simulator with two-second time steps.

In summary, the contributions of this work are 1) improv-
ing upon optimal water pumping formulations to incorporate
variable speed pumps while ensuring tractability and accuracy
within the original problem, 2) using a hydraulic simulator
to compare the accuracy and performance of the rule-based
and optimal water flow strategies under normal and extreme
conditions, 3) simulating a wind-based hazard event and
investigating the impact of pump control strategies on the
water network’s operational resilience in a case study, and 4)
discussing the implications of our results and how network
resilience can be incorporated in optimal water pumping
problems.

The rest of this paper is organized as follows: Section II
provides an overview of our approach and the considered
pump control strategies. In Section III, we present the hazard
modeling and simulation methods as well as discuss how
we quantify and compare the resilience of the power and
water network under different control strategies. The optimal
pumping problems are fully described in Section IV. Last, we
present the results of a case study in Section V and provide
concluding remarks in Section VI.

II. PROBLEM DESCRIPTION

We consider interconnected power and water distribution
networks experiencing a wind hazard event that may damage
the utility poles in the power distribution network. Under-
ground water distribution systems are indirectly impacted by
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Fig. 1. Flowchart of process.

wind events: power outages in the power distribution network
cause water pumping stations to shut down which can lead
to reduced water pressures and water shortages in the water
distribution network. While power outages impact both the
power and water distribution network, power outages do not
typically cause long-term damage to the water distribution
network [22]. It should be noted that a water distribution net-
work may have fuel-based backup pumps that may eliminate
or postpone water delivery issues. However, backup pumps
are usually insufficient to meet demand for significant power
outages [23].

A. Problem Approach

Figure 1 provides a general outline of our approach to
evaluate the resilience of the power and water distribution
networks under different operational strategies and power out-
age scenarios. We first determine the planned pump operation
for three different control strategies, which are outlined in
Section II-B and formulated in Section IV. Given the planned
pump operation, we evaluate the operational resilience of the
power and water network experiencing a wind hazard event
that damages wooden utility poles. To do this, we simulate N

large wind event scenarios and evaluate the power distribution
network’s (and correspondingly the water distribution net-
work’s) vulnerability to the considered hazard under different
operational schemes. Probabilistic fragility curves are used to
generate N wind hazard event scenarios (see Section III-A).
In this paper, we compare how different operational control
strategies pre-position a water distribution network to respond
to storm-induced power outages. For each wind event scenario,
we run hydraulic simulations given the pump outages and
restorations. We then compute power and water distribution
network resilience metrics for all scenarios. We describe the
hydraulic simulator in Section III-B and the resilience metrics
in Section III-C.

B. Water Distribution Network Operational Control Strategies

In this work, we evaluate network resilience under three
different operational strategies. The operational control strate-
gies are employed under normal operation, or pre-contingency.
When the water network is experiencing pump outages, the
water system operator would prioritize supplying sufficient
water to consumers at adequate water pressures, over mini-
mizing costs.

1) Rule-Based Control (Rule): We compare our optimal
pumping strategies against the rule-based controls that are
traditionally used by water system operators. Control rules
in EPANET can adjust the status and setting of pumps and
valves based on simulation time triggers (e.g., turn pump 2
off at 5:00 am) or network conditions (e.g., turn on pump 1
if the tank pressure goes below five meters).

2) Optimal Water Flow Control (OWF): We optimally
solve for the water pump operation subject to the water flow
constraints while minimizing water pumping electricity costs.
We formulate this problem as a mixed-integer linear program
that we solve iteratively, which is described in Section IV-B.

3) Optimal Water Flow Control + Frequency Regulation
(OWF+FR): We optimize the water pump operation to provide
frequency regulation subject to the water flow constraints. We
minimize the operational costs, i.e., the electricity cost of
pump power consumption minus the profit associated with
providing frequency regulation capacity. We solve for the
pump schedule and frequency regulation capacity that can
be provided in the ancillary service market over a 24-hour
scheduling horizon. In real time, we adjust the pump speed to
respond to the frequency regulation signal using the affinity
laws. The OWF+FR formulation and the frequency regulation
signal adjustments are described in Section IV-C.

III. WIND HAZARD EVENT MODELING AND SIMULATION

In this section, we first describe modeling wind hazard
events and the subsequent damage states of the wooden utility
poles in the power distribution network. We then describe
the hydraulic simulator and the metrics used to evaluate the
resilience of the power and water networks.

A. Hazard Simulation and Outage States
We consider a multi-period wind event that can damage

wooden utility poles. The damage states of the wooden utility
poles determine the outage statuses of the lines and buses
within the power distribution network as well as the power
outage statuses of the water pumps. We consider N scenarios,
or replications, of a wind hazard event in order to evaluate
the resilience of the networks under a range of damage state
outcomes. Below are the steps used to generate the outage
states of the power and water distribution networks given a
wind event.

1) Wind-based Hazard Event: For each scenario, the start
time of the wind event is randomly generated from a uniform
distribution. This allows us to consider the impact of hazards
occurring at different times during the simulation horizon.
Similar to [15], we assume time-varying, deterministic wind
speeds that are uniform over the entire power distribution
network. It should be noted that we could also simulate the
wind fields with spatial resolution, e.g., [24].

2) Fragility Curves: For each scenario, we determine the
damage states of the wooden utility poles in the power
distribution network using fragility curves. A fragility curve
is a probabilistic analysis of a specific network component’s
performance under extreme conditions (see Fig. 2). For in-
stance, a wooden utility pole can have a probability of failure
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from zero (unaffected) to one (critical, 100% chance of failure)
given the wind speed intensity. We use the fragility curves of
wooden utility poles for strong wind events developed in [25].
A utility pole’s probability of failure during wind events is
estimated given information on the poles (class, age, and
height), conductors (number, diameter, orientation, and span
length), and wind (speed and direction) [25]. The fragility
curve is modeled with a lognormal cumulative distribution
function

Pf (V
t
, y, ✓, Ac, h) = �

✓
ln(2.24V t)� µ(y, ✓, Ac, h)

�(y, ✓, Ac, h)

◆
, (1)

where Pf is the probability of failure (-), V
t is the three-

second gust wind speed at time step t (m/s), y is the modified
age of the pole (years), ✓ is the angle between the wind di-
rection and the conductors (degrees), Ac is the conductor area
(m2), h is the height of pole (m), and �(·) is the cumulative
distribution function of the standard normal distribution. The
second-degree multivariable functions µ(·) and �(·) return the
mean and standard deviation of the lognormal distribution,
where the coefficients are fitted for different pole classes given
20,000 training points in [25]. It should be noted that the
fragility curve in [25] does not depict the full damage impact
of wind events on the power distribution network, since it does
not consider downed lines from vegetation and debris.

3) Utility Pole Damage Scenarios: We next create N multi-
period scenarios given the fragility curves, where each scenario
includes the damage states for all utility poles over the
scheduling horizon. Given the span length and the distance
between buses in the power distribution network topology,
we determine the number of wooden utility poles between
connected buses. For each scenario, we determine which (if
any) utility poles are damaged during the wind hazard event.
A pole fails at time t if Pf (V t

, y, ✓, Ac, h) > r
t, where

r
t 2 [0, 1] is randomly generated from a uniform distribution.

We consider a finite number of repair crews, where the poles
within the power distribution network are repaired in order of
importance. In other words, there is a priority to get critical
infrastructure, such as water pumps, online first. The water
distribution network is considered critical infrastructure and
is essential for providing clean drinking water to consumers.
Long pump outages and inadequate pressure levels can lead
to contamination, boil water advisories, and water shortages.

4) Network Outage Scenarios: Given the utility pole dam-
age states in the N scenarios, we determine what distribution
lines and water pumps are experiencing outages.

Fig. 2. Probability of wooden utility pole failure as a function of the
three-second gust wind speed. Fragility curves are depicted given the pole
parameters used in the case study for varying wind directions ✓ with respect
to the conductor orientation.

The pump and line outage information is needed for running
the hydraulic analysis (Section III-B) and solving for the
power and water network resilience metrics (Section III-C).

B. Hydraulic Simulation
We simulate the water distribution network operation us-

ing the EPANET 2.2 hydraulic simulator within the WNTR
(Water Network Tool for Resilience) package in Python [26].
EPANET is an open source hydraulic simulator that is com-
monly used by water utilities and researchers. Since we are
considering cases where there may be low pressure levels and
unmet water demands, we use the pressure-driven demand
water flow analysis (as opposed to demand-driven water flow
analysis which is only reasonable under normal operating
conditions). Within WNTR, we run hydraulic simulations over
all N scenarios for each operational control strategy.

C. Evaluating Operational Resilience
It is critical that the power and water distribution networks

are able to anticipate, absorb, adapt to, and recover from
disruptive events. Operational resilience is related to supply
and demand availability, effectiveness of corrective actions,
and the operational status of assets surrounding extreme
events [15]. We use operational resilience metrics to quantify
the performance of the power and water networks over the
response and recovery to a hazard event [13], [27]. Resilience
metrics capture network performance–such as loss of load
and unmet water demand–over a specified time frame. For a
given performance curve (such as the time-varying loss of load
over the scheduling horizon), the associated network resilience
metric Rn for scenario n is the relative network performance
under a hazard event compared to normal operation over the
scheduling horizon, i.e.,

Rn =

P
t2T P

t
W,nP

t2T P
t
N

8n = 1...N, (2)

where P
t
W,n and P

t
N are the time-varying performance curves

for the wind-induced outage scenario n and the normal oper-
ating case and T is the set of periods within the operational
horizon. Note that the value Rn is normalized, where one
indicates that the network performance is unaffected by the
hazard event. Below, we describe different power and water
network resilience metrics that can be used within resilience
studies.

1) Power Distribution Network Resilience Metrics: For the
power distribution network, we calculate resilience metrics on
the number of active lines and connected loads in the wind-
induced outage scenarios compared to the normal operating
case

Rline,n =

P
t2T

P
`2L P

t
line `,W,nP

t2T
P

`2L P
t
line `,N

8n = 1...N, (3)

Rload,n =

P
t2T

P
k2K P

t
loadk,W,nP

t2T
P

k2K P
t
loadk,N

8n = 1...N, (4)

where P
t
line `,W,n 2 {0, 1} and P

t
loadk,W,n 2 {0, 1} are the

active/connected statuses of line ` and bus k at time t for
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scenario n, L is the set of lines, and K is the set of buses.
The variables P

t
line `,N 2 {0, 1} and P

t
loadk,N 2 {0, 1} are the

active/connected statuses of line ` and bus k at time t for
the normal operating case. The power distribution network
resilience metrics Rline,n and Rload,n quantify the severity of
the wind events.

2) Water Distribution Network Resilience Metrics: For the
water distribution network, we can quantify resilience in terms
of the normalized water service availability Rwsa,n (i.e., the
ratio of delivered water to expected water demand), pressure
met Rpressure,n (i.e., demand junctions where the hydraulic
head is above the minimum head limit Hj), and the stored
water capacity of the tank Rtank,n (i.e., ratio of water stored
to cumulative tank volume) over the entire scheduling horizon
for all scenarios n

Rwsa,n =

P
t2T

P
j2J P

t
wsa j,W,nP

t2T
P

j2J P
t
wsa j,N

8n = 1...N, (5)

Rpressure,n =

P
t2T

P
j2J P

t
pressure j,W,nP

t2T
P

j2J P
t
pressure j,N

8n = 1...N, (6)

Rtank,n =

P
t2T

P
j2S P

t
tank j,W,nP

t2T
P

j2S P
t
tank j,N

8n = 1...N, (7)

where P
t
wsa j,W,n and P

t
wsa j,N are the amounts of water received

at junction j and time t for scenario n and the normal
operating case, P t

pressure j,W,n and P
t
pressure j,N indicate whether

the hydraulic head is within its operational limits at node j and
time t for scenario n and the normal operating case, P t

tank j,W,n

and P
t
tank j,N are the ratio of water volume to maximum tank

volume at tank j and time t for scenario n and the normal
operating case, J is the set of demand junctions, and S is the
set of water storage tanks. It should be noted that variations
in Rtank,n away from one are not necessarily bad; instead,
the metric provides information on the ability of the tanks to
supply and store water surrounding pump power outages.

IV. OPTIMAL WATER PUMPING FRAMEWORKS

In this section, we summarize the network constraints
and the problem formulation for the optimal water pumping
problems. The problem is solved over set T with periods
of duration �T . The water flow constraints are nonconvex,
which makes the optimization problem difficult to solve, so
we employ water flow approximations, resulting in a mixed-
integer linear program (MILP) that we solve iteratively.

A. Modeling Water Flow Constraints

The water distribution network is represented as a directed
graph with a set of nodes N and edges E connecting the nodes.
Each node is classified as either a junction J , reservoir R,
or storage tank S . The edges are either pumps P or pipes
(i.e., E \ P). The water flow at time t is characterized by the
volumetric flow rate x

t
ij through pipe ij (i.e., from node i to

node j) for all ij 2 E and the hydraulic head H
t
j at node j for

all j 2 N . The water flow constraints are summarized below.

1) Nodes: We first focus on the nodal constraints
X

i:ij2E
x
t
ij + d

t
j = 0 8 j 2 J , (8)

Hj  H
t
j  Hj 8 j 2 N , (9)

H
t
j = bhj 8 j 2 R, (10)

H
t
j = H

t�1
j � �T

�j
d
t�1
j 8 j 2 S, (11)

where d
t
j is the water injection at node j and time t, Hj and

Hj are the minimum and maximum head limits at node j, and
�j is the cross-sectional area of tank j. In (8), the conservation
of water entering and exiting each junction must be satisfied.
The hydraulic head (elevation plus pressure head) at all nodes
must be within safe operating limits in (9). Reservoirs are
modeled as infinite sources with a fixed hydraulic head bhj in
(10). In (11), the tank heads are updated given the previous
period’s head and tank water injection. Since the water de-
mands follow a daily pattern, we want to ensure that the final
tank levels over a 24-hour period are similar to the initial tank
levels. We formulate the final cumulative tank levels with a
soft constraint

X

j2S
H

t=0
j  s+

X

j2S
H

t=24
j   +

X

j2S
H

t=0
j , (12)

where  is the water level tolerance and s is the cumulative
tank level slack variable. Final tank levels outside of the tank
level range (i.e., a non-zero s value) are penalized in the
objective function. Formulating the final tank level limits as a
soft constraint helps prevent feasibility issues in the iterative
MILP formulation, which is presented in Section IV-A3.

2) Edges: We next describe the edge constraints. The
hydraulic head at each node in the water network varies given
the head loss along pipes and head gain across active pumps.
The frictional head loss along a pipe is

H
t
i �H

t
j = kij · xt

ij · |xt
ij |⌫�1 8 ij 2 E \ P, (13)

where kij is the pipe resistance coefficient of pipe ij and ⌫

is the pipe head loss exponent. The general form of (13) can
represent two common head loss formulas: Hazen-Williams
and Darcy-Weisbach. In this work, we use the Hazen-Williams
formula, where ⌫ is 1.852 and kij is a function of pipe ij’s
length, diameter, and roughness coefficient. This is consistent
with the head loss formula used within the WNTR simulator
[26].

We next consider variable speed supply pumps, where w
t
ij

is the normalized speed setting of pump ij 2 P at time t and
z
t
ij 2 {0, 1} indicates whether pump ij 2 P is on at time t

z
t
ij = 1) H

t
j �H

t
i = b

0
ij(w

t
ij)

2 + b
1
ij(x

t
ij)

2 8 ij 2 P, (14)
wij · ztij  w

t
ij  wij · ztij 8 ij 2 P, (15)

0  x
t
ij  xij · wt

ij 8 ij 2 P, (16)
z
t
ij 2 {0, 1} 8 ij 2 P, (17)

where b
0
ij and b

1
ij are the nominal pump curve parameters

of pump ij, wij and wij are the minimum and maximum
pump speeds, and xij is the maximum pump flow rate when
the pump is on and operating at the normalized pump speed.
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Fig. 3. Pump head gain (14), efficiency, and power consumption (19) for
pump 1 in the case study. The solid black lines, the blue dashed lines, and
the red dotted lines are the pump curves at nominal pump speed, maximum
pump speed, and minimum pump speed, respectively.

In (14), we use an indicator constraint to formulate the pump
head characteristics when the pump is on. When the pump
is on (i.e., z

t
ij = 1), the power law models the head gain

across the pump [28], [29]; when the pump is off, there is no
flow through the pump and the head gain is arbitrary. Several
off-the-shelf commercial solvers, such as Gurobi, have native
support for indicator constraints. Alternatively, we can use the
big-M method to formulate the on/off characteristics of the
pump performance curve. The top plot of Fig. 3 illustrates
how the pump head curve is adjusted at different pump speeds.
When the pump is off, the flow rate and speed are zero
(enforced by (15)-(16)). When the pump is on, the range
of feasible flow rates in (16) scale with the pump speed
(see Fig. 3). Specifically, the affinity laws approximate how
changes in pump speed (i.e., pump speed w1 to pump speed
w2) impact the pump characteristics [30], [31]

x1

x2
=

w1

w2
,

Ĥ1

Ĥ2

=

✓
w1

w2

◆2

,
p1

p2
=

✓
w1

w2

◆3

, (18)

where x, Ĥ , and p represent the flow rate, head gain, and
pump power, respectively. The subscripts ‘1’ and ‘2’ denote
two different operating points.

The three-phase pump power consumption depends on the
head gain and the flow rate across the pump as well as the
pump efficiency. The pump efficiency—which is dependent on
the pump flow rate and speed—is generally modeled with a
quadratic or cubic polynomial [32]. We assume that the pumps
are balanced three-phase loads with constant power factors.
Fig. 3 illustrates the relationship between the flow rate and
the pump’s head gain, efficiency, and power consumption. The
pump power consumption has a strong linear relationship with
respect to the flow rate given a constant speed. The pump
power consumption as a multivariable function of flow rate
and speed can be approximated as

p
t
ij = c

0
ij · (wt

ij)
2 + c

1
ij · xt

ij · wt
ij 8 ij 2 P, (19)

where c
0
ij and c

1
ij are parameters of the pump power consump-

tion curve at nominal pump speed.

3) Approximation and Reformulation: The water flow con-
straints are mixed-integer nonconvex due to the pipe head
loss (13), pump head gain (14), and pump power consump-
tion (19) equations. To help with our reformulation, we define
an intermediate variable W

t
ij := (wt

ij)
2 and use linear approx-

imations for the head difference constraints that we update
iteratively in the optimal pumping problem. We replace (13),
(14)-(16), (19) with

H
t
i �H

t
j = f

t,0
ij + x

t
ij 8 ij 2 E\P, (20)

z
t
ij =1)H

t
j–Ht

i = b
0
ijW

t
ij + f

t,1
ij – x

t
ij � 0 8 ij 2P, (21)

(wij)
2 · ztij W

t
ij  (wij)

2 · ztij 8 ij 2P, (22)
0  x

t
ij  xij · wij · ztij 8 ij 2P, (23)

p
t
ij = c

0
ij ·W t

ij + c
1
ij · xt

ij 8 ij 2P, (24)

where f
t,0
ij and f

t,1
ij are parameters. Instead of scaling the

maximum pump flow rate by the pump speed, we restrict the
pump head gain to be non-negative in (21) when the pump is
on. This yields a MILP that we solve in an iterative fashion
given updated parameters based on the flow rate x

t
ij of the

previous solution, similar to [21]. During each iteration, the
parameters are updated given the flow rate from the previous
iteration

f
t,0
ij := x

t
ij · (kij |xt

ij |⌫�1 � 1) 8 ij 2 E \ P, (25)

f
t,1
ij := x

t
ij ·
�
b
1
ijx

t
ij + 1

�
8 ij 2 P. (26)

We recover the pump speed a posteriori by taking the square
root of W t

ij .

B. Optimal Water Flow Pumping Control (OWF)

We first present the OWF control strategy, where the water
system operator minimizes the electricity costs of pumping
subject to the water flow constraints and the water demand
forecasts. The OWF problem is a MILP that we solve itera-
tively, where the steps are shown in Algorithm 1. The MILP
problem solved during each iteration is

min
x

X

t2T

X

ij2P
⇡
t
ij · ptij ·�T + c · |s| (OWF)

s.t. (8)� (11), (17), (20)� (24) 8 t 2 T , (12),

where the parameter ⇡t
ij is the cost of electricity at pump ij

and time t and c is the penalty on the final tank level slack
variable. The decision variable x is composed of the pump
power consumptions ptij , statuses ztij , and speeds squared W

t
ij

for all pumps ij 2 P as well as the flow rates x
t
ij 8 ij 2 E ,

and hydraulic heads H
t
j 8 j 2 N for all periods t 2 T . We

update hfik := hf t,0
ij , f

t,1
ij ik given the flow rates from the

previous iteration. We define the error as the Euclidean norm
of the difference in hfik between each consecutive iteration.
We stop iterating when the error is below a certain threshold
or we reach a maximum number of iterations. While there
are no convergences guarantees, we found that the algorithm
performed well with the daily tank level as a soft constraint.
The absolute value |s| in the objective function is reformulated
using a non-negative slack variable.
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Algorithm 1 Iterative OWF MILP Algorithm
Require: Water network topology, initial tank conditions

H
t=0
j 8 j 2 S , and forecasted electricity prices ⇡t

ij 8 ij 2
P, t 2 T and water demands d

t
j 8 j 2 J , t 2 T

Output: Pump power consumption p
t
ij , status z

t
ij , and speed

w
t
ij 8 ij 2 P, t 2 T

1: Set k  0, tolerance, maxIter, and error
2: Initialize hfik in (25)-(26), and hxik.
3: while error � tolerance OR k  maxIter do
4: k  k + 1
5: Solve (OWF)k using hfik�1 to obtain hxt

ijik.
6: Calculate hfik given hxt

ijik in (25)-(26).
7: Calculate error := ||hfik � hfik�1||2.
8: end while
9: The water system operator sets pump status z

t
ij := hztijik

and speed w
t
ij := h(W t

ij)
(1/2)ik.

C. Optimal Water Pumping Control + Frequency Regulation
(OWF+FR)

We next present the OWF+FR control strategy, where the
water system operator minimizes the cost associated with
pump electricity consumption and the cost associated with
providing frequency regulation capacity subject to the water
flow constraints. To provide frequency regulation, the pumps
track a frequency regulation signal sent by the independent
system operator (which is updated on a seconds timescale) to
balance real-time supply and demand mismatches. The water
system operator solves for the optimal frequency regulation
capacity in advance and then the pumps adjust their power
consumption in real time as a function of the frequency
regulation signal, i.e., es 2 [�1, 1], which is biased by the
schedule and scaled by the frequency regulation capacity.
We assume a generator sign convention where up frequency
regulation (a positive signal) corresponds to a decrease in
pump power consumption and down frequency regulation (a
negative signal) corresponds to an increase in pump power
consumption.

In our formulation, we solve for the scheduled pump oper-
ation as well as the available frequency regulation capacity
to adjust the pump power consumption given a frequency
regulation signal. We assume that the water distribution net-
work needs to be capable of providing the offered frequency
regulation capacity over the entire hour time step t which
is consistent with CAISO day-ahead market requirements for
energy storage [33]. This ensures that the pumps can respond
to the worst case signals (i.e., +1 or �1 for the entire
hour). Additionally, we can use the same timescale as the
quasi-steady state water flow constraints in our optimization
problem. We assume that there is an offsetting mechanism so
that the frequency regulation signal is ‘energy neutral’ over the
contracted period [33]. We define F

t
ij as the maximum three-

phase symmetric up and down frequency regulation capacity
that pump ij can provide at time t

F
t
ij � 0 8 ij 2 P. (27)

The OWF+FR problem is solved using the same iterative
method as OWF, where the optimization problem solved in

every iteration is

min
x

X

t2T

X

ij2P
⇡
t
ij · ptij ·�T � ⇡t

fr · F t
ij + c · |s|

s.t. Wscheduled(p) 8 t 2 T , (OWF+FR)
WFR(p± F ), (27) 8 t 2 T ,

where ⇡
t
fr is the expected price of frequency regulation ca-

pacity. The scheduled water flow constraint set Wscheduled(·)
contains (8)-(12), (17), (20)-(24). The constraint sets WFR(·)
represent the water flow constraints if the full down and up
frequency regulation was used, i.e., (8)-(11), (17), (20)-(24).
The input p ± F is the power consumption when providing
frequency regulation equal to the full frequency regulation
capacity and replaces the left side of (24). The decision
variable x includes the water flow variables associated with the
schedule and frequency regulation capacity for all periods. The
scheduled power consumption p

t
ij , speed w

t
ij , and frequency

regulation capacities F
t
ij for each pump ij are solved for

in the day-ahead optimization problem. The total frequency
regulation capacity at time t is the cumulative capacity for all
pumps at time t, i.e., F t =

P
ij2P F

t
ij . Unlike our previous

work [5], which solves for the combined voltage support
and frequency regulation capacity of fixed speed pumps as a
mixed-integer second order cone program, the problem here is
formulated as a MILP that solves for the frequency regulation
capacity of variable speed pumps iteratively and the affinity
laws are used to determine the real-time pump adjustments of
variable speed pumps; this allows the problem to be solved
quickly with nonlinear real-time adjustments. The iterative
solution approach for solving the OWF+FR problem is similar
to Algorithm 1, where we solve the (OWF+FR) problem
at each iteration instead of the (OWF) problem. Once the
problem converges, the water system operator also determines
the frequency regulation capacity, F t

ij .
The real-time pump power adjustments are determined by

the affinity laws (18) given the frequency regulation signal es

ŵij = w
t
ij ·
 
1 +

F
t
ijes
p
t
ij

!1/3

8 ij 2 P, t 2 T , (28)

where ŵij is the real-time pump speed. The scheduled pump
speed w

t
ij , pump power consumption p

t
ij , and frequency

regulation capacity F
t
ij are determined in (OWF+FR) for each

period of �T . The real-time pump speed changes based on
the frequency regulation signal on a faster time scale (e.g.,
every two seconds). This relationship applies when the pump
is on and providing frequency regulation.

V. CASE STUDY

In a case study, we compare power and water network
resilience metrics given the optimal and rule-based pumping
strategies under wind-induced power outages. We consider
an interconnected power and water distribution network, with
network topologies shown in Fig. 4. We consider a 72-hour
time horizon.
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Fig. 4. Topology of the interconnected power distribution network (left)
and water distribution network (right). Blue nodes in the power distribution
network indicate the buses that have a pump connected.

A. Set Up

For the water distribution network, we use NET3, a 96-
node example network included in the EPANET software.
We set the minimum pressure head at the demand junc-
tions to 20 psi and the maximum nominal pump flow to
xij = (b0ij/b

1
ij)

1/2 m3
/h (same as the definition in WNTR).

The pump curves are determined from EPANET’s single-
point curve definition given the desired flow rate and head
at nominal speed provided in the EPANET INP file. The
minimum and maximum normalized pump speeds are 0.7 and
1.3, respectively. In [31], the authors found that for speed
changes less than 33% of the nominal speed, the affinity laws
accurately approximate pump performance and changes in the
pump efficiency curve can be neglected. We use cubic pump
efficiency functions developed in [32], where the peak wire-
to-water efficiency of both pumps is 75%.

For the power distribution network, we use the IEEE 34-
node test feeder [34]. We assume that all of the utility poles
are 50-year old class five poles; class five distribution poles
are typically used in the United States [35]. We assume a
span length of 46 meters, Ac = 2 m2, and height of 12.2
meters. The pumps are connected to buses 844 and 814. The
electricity price is shown in Fig. 5a. We set the frequency
regulation capacity price to $0.20/kW and assume it is known
in advance.

For the wind-based hazard, we assume the three-second gust
wind speed is spatially uniform (yet with temporal variations)
over the feeder, with an event duration of five hours (see
Fig. 5b). To consider different storm intensities, we use a
multiplier to scale the three-second wind gust speed, e.g.,
a 150% wind speed intensity indicates that the wind speeds
in Fig. 5b are multiplied by 1.5. The wind direction is 30�

from due east. It should be noted that the orientation of each
conductor with respect to the wind direction determines the
‘steepness’ of the fragility curve. The probability of failure
is higher at smaller wind speeds when the angle between
the wind and conductor is larger (see Fig. 2). There can
be multiple pole outages that impact the outage of a power
distribution line. The active time to repair each pole is five
hours [27]. We consider five crews repairing the utility poles in
order of priority. It is assumed that no repairs are made during
the storm for safety purposes. Therefore, the repairs start at the
end of the wind event. The wind event start time is randomly

Fig. 5. (Left) Electricity prices over scheduling horizon and (Right) Nominal
three-second wind gust speed during the wind hazard event.

generated from a uniform distribution U[t = 9, t = 19] to
ensure that the entire wind event concludes in the first 24
hours. We consider a sample size of N = 500 scenarios, where
we also evaluate the impact of sample size in Section V-B5.

For the hydraulic simulation, we use the EPANET 2.2
simulator within the WNTR v.1.0.0 Python package [26].
For all control strategies in our case study, we assume the
water network reverts to rule-based control when the water
distribution network experiences an outage. While we could
also update the optimal water pumping problem given a
partial outage or restoration, we do not have information on
how the water system operator would make changes to the
rule-based operation during and after an outage event. As a
result, the only aspect that changes between simulations in
our case study is what strategy is used before the outage
occurs. For the rule-based control strategy, we use the pre-
existing controls in NET3’s input file. For the optimal control
strategies, we add a condition so that the WNTR rule-based
controls are not used under normal conditions (i.e., before any
pump outages occur). This is done by rewriting the WNTR
controls as rules with an additional simulation time condition.
We use a hydraulic time step and reporting time step of
two seconds to be consistent with the frequency regulation
signal. With the optimal control strategies, we set the pump
speed and status using simulation time condition rules. For the
frequency regulation signal within the real-time simulation, we
use PJM’s RegD signal from January 1, 2020 [36]. We use
the EPANET simulator within the WNTR package instead of
the WNTR simulator since the WNTR simulator is missing
features necessary for our hydraulic analysis (e.g., the WNTR
simulator cannot accommodate variable speed pumps). The
EPANET simulator has an issue where the tanks can still
supply water to the network when the tanks are empty resulting
in incorrectly reported supplied water values and pressure
values. We can estimate the actual water service ability by
subtracting the (fictional) amount of water that is supplied to
the network by the tanks at their minimum water level from
the EPANET simulator’s reported supplied water demand. To
verify the accuracy of this approach, we compare the water
service availability calculated a posteriori with the EPANET
solver with the water service availability calculated with the
WNTR simulator for a fixed speed pump case. We found that
the water service availability is very similar between the two
approaches (i.e., 35.76% versus 35.56%).

We solve the OWF and OWF+FR problems using Gurobi
v9.5.2 in the JuMP package in Julia over the scheduling
horizon. We initialize the iterative algorithms with the rule-
based schedule. We set the tank violation penalty c to 10,000
in order to maintain feasibility within the successive iterations
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TABLE I
DAILY OPERATIONAL COSTS UNDER NORMAL OPERATION

Control Electricity Frequency Regulation Total
Strategy Cost ($) Profit ($) Costs ($)
(Rule) 208.02 - 208.02
(OWF) 83.59 - 83.59
(OWF+FR) 107.55 44.91 62.64

of Algorithm 1 while discouraging final tank levels outside
our desired range. We set  to 2 m.

B. Results

1) Performance of Water Network Operation Strategies
under Normal Operation: We first compare the three control
strategies under normal operation using the EPANET simula-
tor. Figure 6 depicts the tank levels and pump power consump-
tion for each control strategy. Due to the diurnal pattern of
water demands and the operational constraint that ensures the
tank levels at the start of each day are similar (12), the normal
operation for the three days within the scheduling horizon is
very similar. Although we consider a 72-hour time horizon for
both normal and extreme operations, we show the results for
the normal operating conditions over a 24-hour time horizon.
The pump power consumption between the control strategies
ends up varying significantly. In the rule-based control, pump
1 switches on and off frequently. This is because the rule-based
operation has stricter constraints on the tank level: a control
rule enforces that pump 1 is turned on whenever tank 1’s water
level goes below 40% and continues pumping until tank 1’s
water level goes above 60% of its total available capacity. In
the optimal control strategies, the pump speed varies away
from the normalized pump speed in order to realize lower
costs and/or provide frequency regulation. In the OWF+FR
case, very frequent pump power changes occur during periods
where the pump is providing frequency regulation. Frequent
pump power adjustments are made as the pumps change their
speeds to track the frequency regulation signal. The pumps
do not always provide frequency regulation. In the OWF+FR
case in Fig. 6, the optimization problem determines that it
is most cost-effective for the water distribution network to
provide frequency regulation for seven time periods within the
scheduling horizon. During the other periods, the pumps are
operating at their minimum pump speed wij and are unable
to provide up frequency regulation (i.e., decrease pump power
consumption from their scheduled set point). Since the pumps
must provide symmetric up and down frequency regulation,
this prevents the pumps from providing frequency regulation
during these time periods. We calculate the average tank level
over the scheduling horizon as 64.1%, 56.3%, and 58.4%
for the rule-based, OWF, and OWF+FR cases, respectively.
This indicates that the rule-based operation keeps the tank
fuller during each 24-hour period. We also can observe that
the optimal tank level is higher when providing frequency
regulation, likely because there needs to be enough water in
the tanks for the pumps to provide both up and down frequency
regulation.

Table I reports the electricity costs, frequency regulation
profit, and total costs for the three control strategies. We

Fig. 6. (Left) Tank water levels as percentage of total operational tank
volume, and (Right) pump power consumption in the Rule-based (top), OWF
(middle), and OWF+FR (bottom) control strategies under normal operating
conditions. The lightly shaded blue and red bands in the OWF+FR’s pump
power consumption plot (bottom right) illustrates the frequency regulation
capacity for pumps 1 and 2, respectively.

Fig. 7. Convergence of the OWF (left) and OWF+FR (right) iterative solution
approaches.

observe that the total costs of the optimal control strategies
are significantly less than the rule-based control strategy.
For instance, the costs of the OWF and OWF+FR solutions
are 59.8% and 69.9% less than the rule-based solution cost.
This is because the optimal pumping strategies minimize the
electricity cost associated with pumping and, in the OWF+FR
problem, maximizes profit associated with frequency regula-
tion.

2) Accuracy and Performance of Solution Approach: We
next evaluate the accuracy and performance of the optimal
pumping strategies within the two-second resolution hydraulic
simulator under normal operation. All control strategy solu-
tions were feasible where the hydraulic heads, pump flow
rates, and tank levels were within the specified limits. Ad-
ditionally, the final tank levels were similar to the initial
tank levels (see Fig. 6). The OWF and OWF+FR problem
converged in 4011 and 1649 iterations, respectively. Fig. 7
shows the iteration error for the OWF and OWF+FR problem.
While there are no guarantees of convergence, we found that
the approach performed well. The solver time for the MILP
iteration was less than a tenth of a second for the OWF
problem and 2 seconds for the OWF+FR problem on a 64-
bit Intel i7 core CPU at 2.10 GHz and 32-GB RAM.

Figure 8 illustrates the water pumps’ ability to follow
the frequency regulation signal with the OWF+FR control
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Fig. 8. Frequency regulation performance over one hour within the OWF+FR
problem. The blue solid line is the expected pump power consumption given
the frequency regulation signal. The red dashed line is the actual pump power
consumption simulated in WNTR. The yellow solid line is the scheduled, or
nominal, pump schedule.

Fig. 9. Percentage of power distribution lines online for varying wind speed
intensities. Each curve is the average performance curve over 500 scenarios.

strategy. We examine the OWF+FR control strategy over the
span of one hour to better observe the pump adjustments
made based on the two-second frequency regulation signal.
It should be noted that other time periods in which the pumps
provide frequency regulation have a similar performance. We
calculate the real-time pump speed in (28) given the frequency
regulation signal and the optimal frequency regulation ca-
pacity, scheduled pump speed, and scheduled pump power
consumption solved for in (OWF+FR). Overall, we observe
that the pumps generally follow the frequency regulation signal
but the affinity laws appear to consistently over-estimate the
real-time pump power deviation that is provided. It should be
noted that the affinity laws are an approximation of the change
in pump curves. The actual pump set point is determined
given the intersection of the pump head curve and the sys-
tem curve. However, when we calculated PJM’s performance
score using [37], the pump performance was sufficient. To
minimize the signal error further, we could alternatively use
real-time feedback of the pump power consumption to adjust
the pump speed instead of using the affinity laws (e.g., with
a proportional-integral controller).

3) Resilience of Power Network Surrounding Wind Hazard
Events: Next, we consider the impact of the wind hazard
on the power distribution network. We calculate the averaged
resilience metrics of the active distribution lines Rlines,n and
connected loads Rload,n (using the definitions in (3) and (4))
over all scenarios n and report the results in Table II. As
expected, the loss in loads and lines increases as the wind
speed intensity increases. The power distribution network
performance curves help us understand the implications of
storm severity over time. To illustrate, in Fig. 9, we plot
the active line performance curves of the power distribution
network, averaged over 500 scenarios, while varying the three-
second wind gust speed intensity. In Fig. 9, we can observe that

TABLE II
AVERAGE POWER DISTRIBUTION NETWORK RESILIENCE METRICS

Wind Speed (%) Rload (%) Rlines (%)
100 99.22 99.38
125 87.54 89.78
140 59.37 67.42
150 39.27 47.90

TABLE III
AVERAGE WATER DISTRIBUTION NETWORK RESILIENCE METRICS

Wind Rwsa (%) Rtank (%)
Speed Rule OWF OWF+FR Rule OWF OWF+FR
100 99.91 99.89 99.85 98.35 99.08 93.20
125 97.31 96.54 96.51 75.98 58.58 73.36
140 77.83 73.17 77.58 47.74 36.92 45.82
150 46.49 37.66 47.06 24.76 25.16 22.71

the recovery time of the 140% and 150% wind intensities is
significantly longer than the 100% and 125% wind intensities.

4) Resilience of Water Network Surrounding Wind Hazard
Events: We next evaluate the resilience of the rule-based,
OWF, and OWF+FR control strategies when the water dis-
tribution network is experiencing pump outages due to a wind
hazard. Table III presents the resilience of the rule-based,
OWF, and OWF+FR control strategies for varying wind speed
intensities. We calculate the average resilience metrics for
Rwsa,n and Rtank,n over all scenarios n using the definitions
in (5) and (7). We do not compute Rpressure,n because of
limitations with the EPANET simulator, which are discussed
in Section V-A. As expected, the resilience of the water
distribution network decreases as the wind hazard intensity
increases. The water availability between control strategies
is close but generally worse in the optimal control strategies
compared to the rule-based strategy. We also observe that tank
levels are more depleted in the optimal control strategies.

One thing to note is that the controls in the rule-based
strategy keep the tank levels within a smaller range of possible
values (e.g., a control rule enforces tank 1’s water storage
to be between 40% and 60% of the total operational tank
capacity). Alternatively, the optimal pumping problems do
not place further limits on the tank levels throughout the
scheduling horizon. Since the optimal pumping strategies
choose less expensive operating points, there is a chance that
the operational set points may end up being more risky for the
water distribution network. To address this, we can incorporate
constraints within the optimal pumping problem to improve the
water network resilience. For example, we could strictly limit
the scheduled tank level operation to be within a restricted
range of values or penalize deviations outside of a certain
range of tank levels. In the case where the water system
operator is aware of an upcoming hazard event, pre-filling
tank constraints can be incorporated into the optimal pumping
problem, as is often done in practice.

To illustrate this, we investigate the impact of adding a
minimum tank level constraint to the OWF control strategy. We
choose the OWF control strategy since the resilience metrics
were generally lowest for this strategy. We enforce that tank 1’s
water storage must be greater than or equal to 45% capacity. In
Table IV, the resilience metrics are presented for the modified
OWF control strategy. As expected, when we constrain the
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TABLE IV
AVERAGE RESILIENCE METRICS FOR MODIFIED OWF

Wind Speed Rwsa (%) Rtank (%)
100 99.94 100.00
125 97.34 64.19
140 74.36 40.58
150 38.88 28.65

Fig. 10. Box plots of the OWF solution’s Rwsa,n (left) and Rtank,n (right)
resilience metrics for 500 and 1000 scenarios with 140% wind intensity.

lower limits of tank 1, we see that the resilience of the water
distribution network increases. In this case, we still observe
that the resilience metrics are lower than in the rule-based
scenario. This is because the rule-based strategy requires that
pump 1 remains on until tank 1 is at 60% capacity, whereas
the OWF strategy just enforces a lower limit for the tank level.

In all cases, pump outages deplete the tanks. This is because
the tanks provide more water to meet demand when the pumps
cannot. For short periods, tanks can be used to hedge against
outages and water demand uncertainty. The OWF+FR control
strategy generally performs better than the OWF control
strategy and comparable to the rule-based strategy. This is
likely due to the OWF+FR schedule maintaining a more
conservative set point in which the tank levels vary less in
order to be able to respond to both up and down frequency
regulation. Consequently, while the scheduled electricity cost
in the OWF+FR solution is higher than the cost in the OWF
solution (see Table I), using the water pumps to supply
frequency regulation decreases total costs and can help hedge
the water distribution network against hazards.

5) Impact of Scenario Sample Size on the Resilience Met-
rics: Lastly, we evaluate whether we get representative results
when using a sample size of 500 scenarios. To do this, we re-
run all of the hydraulic simulations of the rule-based, OWF,
and OWF+FR control strategies using 1,000 scenarios and
compare the characteristic mean and standard deviations for
these two sample sets. Fig. 10 compares the distribution of
the resilience metrics over the two sample sets. Overall, the
mean and standard deviation of the water distribution network
resilience metrics Rwsa,n and Rtank,n across 500 scenarios and
1000 scenarios are close. This indicates that the resilience
results calculated using 500 scenarios are representative of the
actual resilience of the control strategies.

VI. CONCLUSION

In this paper, we evaluate the ability of water pumps in
the water distribution network to provide frequency regulation
services to the bulk transmission system given wind hazard
events. We compare the performance and operational resilience
of the water network given a wind-based event under different
control strategies. The wind event causes power outages in the
power distribution network which then causes pump outages

in the water distribution network. We find that the cost of
the optimal strategies are significantly less expensive than
the traditional, heuristic approach (i.e., with cost reductions
greater than 59%). When simulating the wind-based hazards,
the optimal strategies performed worse since less water de-
mand was supplied and the tank levels remained at lower levels
than the rule-based control. This is due to the fact that the rule-
based control strategy has stricter tank limits during normal
operation than what is included in the optimal water flow
problem. However, we can incorporate constraints that can
improve the network resilience (e.g., tank limits throughout
the scheduling horizon or tank pre-filling requirements before
a big storm).

Furthermore, we observe that operational resilience im-
proves when the water network provides frequency regulation
(OWF+FR) compared to just minimizing electricity costs,
since the frequency regulation service helps buffer the tank
levels. This indicates that allocating reserve capacity to fre-
quency regulation may also help provide a buffer in water
distribution network operation against hazards. Future work
will implement methods to eliminate error in the frequency
regulation response (i.e., a feedback controller), develop met-
rics to capture other significant aspects of performance, such
as water quality and pressure met, investigate performance on
more water distribution networks as well as consider network
simplification approaches (e.g. [38]), and evaluate trade-offs
between operational costs and long-term concerns of wear-
and-tear on the pumps due to more frequent pump changes.
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