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ABSTRACT
Motivated by the problem of exploring discrete but very complex state spaces in Bayesian
models, we propose a novel Markov Chain Monte Carlo search algorithm: the taxicab
sampler. We describe the construction of this sampler and discuss how its interpretation and
usage differs from that of standard Metropolis-Hastings as well as the related Hamming ball
sampler. The proposed sampling algorithm is then shown to demonstrate substantial
improvement in computation time without any loss of efficiency relative to a naïve
Metropolis–Hastings search in a motivating Bayesian regression tree count model, in which
we leverage the discrete state space assumption to construct a novel likelihood function that
allows for flexibly describing different mean-variance relationships while preserving
parameter interpretability compared to existing likelihood functions for count data.
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1. Introduction

Bayesian models often use continuous latent variable formulations in problems
involving discrete spaces. This approach stems from the work of [1], who
handled the problem of analysing binary and polychotomous data within a
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Bayesian framework via the introduction of Gaussian latent variables; the
resulting closed-form conditional posterior distributions facilitated fast
parameter updating. More recent examples of analogous continuous latent
variable approaches in other discrete settings (namely, modelling count
response data) may be found in [2], who describe a latent approach for
parameter updating involving power series likelihoods, and [3], who utilizes
Pólya–Gamma mixtures to obtain closed-form updates in the zero-inflated (ZI)
negative binomial regression setting. While powerful, viable implementations
of a continuous latent variable mechanism are not always straightforward in
certain types of discrete problems. Additionally, these formulations often
suffer from the fact that the latent variable dimension grows with the sample
size n.

An alternative approach is to work with discrete spaces directly; a popular
example of this may be seen in Bayesian regression tree models (BRTs),
where, for instance, the split rules for continuous predictors are modelled using
a discrete candidate set. Still, this choice comes with its own difficulties, as the
posterior tree space in such models is discrete, complex, and large. The
resulting issue of poor mixing in BRTs is a known one in the literature [4–6],
although recent progress has been made [7,8].

With these opposing perspectives in mind, we consider the general
approach of approximating continuous spaces via discretization, a strategy that
allows for the replacement of integrals with sums when marginalization is
required and often simplifies the problem of identifying modes in probability
distributions over compact sets. O'Hagan et al. [9] leverage this discretization
strategy, demonstrating a simple yet practical approach to fitting a Bayesian
logistic GLM using improper uniform priors. The conditional posterior
distributions of interest are subsequently discretized over a finite grid in order
to obtain a closed-form posterior that allows for approximate but
straightforward sampling. A more recent example may be found in the
machine learning literature for continuous control problems, where [10]
propose discretizing high-dimensional continuous action spaces and



sequentially obtain actions that conditionally maximize a target action-value
function one dimension at a time.

In this paper, we argue for working with discrete spaces directly and
propose an MCMC algorithm, hereafter referred to as the taxicab sampler (TC
sampler), a nod to the way in which the sampler traverses the state space. The
TC sampler extends the Hamming ball sampler (HBS) previously formulated
by Titsias and Yau [11] and can be applied in scenarios where the latter
algorithm cannot. Our proposed algorithm is readily applicable to high-
dimensional discrete spaces where a natural distance exists, e.g. the L∞

distance in our example count model application. Importantly, as with the
Hamming ball sampler, the taxicab sampler allows for marginalization over
‘slices’ of the model space, in effect resulting in Gibbs sampling from
conditional posterior distributions of interest. A key advantage of the sampler
formulation lies in its ability to leverage a computationally advantageous local
search approach over a discrete space compared to a more costly global search
strategy or an inefficient Metropolis–Hastings (MH) proposal scheme. As shall
be seen, the TC sampler delivers improved computational efficiency over a
naïve MH implementation without compromising inference.

Note that while other ‘locally-informed’ MCMC samplers have recently
been proposed for searching over discrete state spaces [12–14], their intended
usage is similar to that of the Hamming ball sampler – e.g. variable selection,
weighted permutations, and/or Ising models. As such they differ substantially
from our focus on count models, which typically contain an intrinsic ordering
with respect to a model dimension not found in these other discrete space
problems.

The remaining sections of this paper are organized as follows. In Section 2,
we detail the TC sampler mechanism, its role in a model update algorithm, and
discuss considerations for dimension-changing proposals when utilizing the
sampler. In Section 3, we describe a single-tree model designed to handle
count data involving a novel count likelihood function utilizing discrete
parameter spaces. In Section 4, we demonstrate the TC sampler's statistical



and computational efficiency in simulation experiments when fitting this
single-tree model compared to a straightforward MH approach. Section 5
offers discussion and directions for future work.

2. The taxicab sampler

For a sample of size n, we work with observed responses Y = {Yi}ni=1 ∈ Rn,
along with observed covariate matrix X = (xiv) ∈ Rn×p, where each
Xi = (xi1,… ,xip) is the row vector of covariates measured along with the
ith response Yi. We reserve the use of the notation xv, v = 1,… , p, to
exclusively describe the vth covariate dimension of X when discussing certain
aspects of tree structures in Section 3. In general, we also use the notation
Y−h = (Y1,… ,Yh−1,Yh+1,… ,Yn) for some vector Y ∈ Rn, and we use
the square bracket notation [Z] to denote the distribution of a generic random
variable Z.

As described in Section 1, our focus is on developing technology with
which we may fit models depending (in part or in whole) on parameter spaces
restricted to countable subsets of R. We assume a Bayesian setup where
inference is desired on some discrete parameter vector λ ∈ ZB. Choices other
than ZB are possible. All other model parameters are collected in the vector
θ ∈ Θ. For the purpose of exposition, we assume we work with a joint
probability distribution p(Y,θ,λ |X), where X is treated as fixed. The
unnormalized joint posterior distribution for (θ,λ) factorizes as

π(θ,λ |Y,X) ∝ p(Y |θ,λ,X)π(θ,λ). (1)

To explore the discrete parameter spaces associated with λ during model-
fitting, we introduce a fundamental tool called the taxicab sampler. Our
sampler takes motivation from the Hamming ball sampler  [11] a generic
MCMC sampling procedure for high-dimensional discrete-state models that
allows for iterative sampling from ‘slices’ of the model space that are
generated via Hamming balls. These Hamming balls are constructed using the
Hamming distance, which is defined between two vectors w,u as



dH(w,u) =∑b I{wb ≠ ub}. (2)

These balls have finite cardinality in settings where w and u take on a finite
number of configurations, and in such cases they allow for tractable
computation of normalizing constants in order to sample from slices of the
target conditional posterior distributions. The result is a powerful yet simple
technology that allows for Gibbs step updates on parameters or latent variables
in problems that would otherwise require more cumbersome MH updates.

As constructed, the HBS is ideal for performing Bayesian inference via
MCMC on binary sequences or matrices [11]. However, the Hamming
distance is less suitable in other discrete-valued discrete state space settings,
since enumerating all set elements generated by a Hamming ball becomes
significantly more expensive in non-binary settings and intractable when the
probability distribution of one or more random variables in the matrix or
sequence places positive probability on infinitely many values.

This point is made plain using a simple univariate example: suppose we
have a probabilty mass function (pmf) p(Y |λ) and prior distribution π(λ)
with support on Z, such that π(λ |Y) is unavailable in closed form.
Introducing a latent variable U to facilitate Hamming ball sampling on λ
requires construction of an auxiliary distribution p(U |λ) = I{U∈Hm(λ)}

|Hm(λ)|
,

where |⋅| denotes set cardinality. Now
Hm(λ) = {U ∈ Z : dH(U ,λ) ≤ m} = {U ∈ Z : U ≠ λ}, so that p(U |λ)

amounts to an improper uniform distribution on Z ∖ λ and no longer provides
an efficient means to aid in sampling the target posterior distribution π(λ |Y).

2.1. The taxicab sampler algorithm

For discrete state spaces of large or infinite cardinality, the L∞ distance allows
for straightforward generation of L∞ neighbourhoods of the desired radius, so
that marginalization of target distributions over all set elements contained
within the neighbourhood is tractable. With this idea in mind, we construct in



this section a TC sampler that relies on use of sets generated within an L∞

neighbourhood, centred at a vector w with some specified radius m, i.e.

Nm(w) = {u :supb |ub − wb| ≤ m}, m ≥ 0, (3)

to construct a transition kernel for an augmented bivariate chain. Algorithm 1
outlines the general TC sampler update algorithm. At its core the TC sampler
is a data augmentation scheme requiring the injection of a vector of auxiliary
variables U (possessing the same dimension as λ) into the joint probability
model in order to explore slices of the conditional posterior distribution for λ;
the sampler construction assumes a distribution for U that depends only on λ,
p(U |λ). This allows us to factorize the augmented joint probability model as

p(Y,θ,λ,U |X) = p(Y,θ,λ |X)p(U |λ). (4)

In this manuscript, we assume a uniform distribution

p(U |λ) =
I{U∈Nmλ

(λ)}

Zmλ

, (5)

where Zmλ
 is the cardinality of Nmλ

(λ); however, this choice of distribution
is not critical.

The key idea of the auxiliary vector U is that it facilitates a speedier and
more efficient exploration of the conditional posterior distribution of λ: given
some realization U = u, we may now compute in closed form the slice of the
conditional posterior distribution of λ captured by Nmλ

(u) via



(6)

(7)

It is the tractable normalization constant in (7) that allows for calculation of
these slices of the conditional posterior distribution of λ, as it only requires
summation over Zmλ

 total terms. Thus, in contrast to a MH sampler, there is
no ‘accept-reject’ mechanism; rather, λ is drawn from qmλ

 above. By
construction, higher-probability regions in these conditional posterior slices
are visited more frequently by qmλ

, while the auxiliary proposal
distribution (5) encourages random exploration of the augmented space via
uniform moves within the generated neighbourhood. From this sampler
construction, we see that the choice of mλ controls the trade-off between
computational speed and degree of exploration of the target space, with larger
choices of radius facilitating the better exploration of the target space of
interest and smaller choices of radii allowing for faster computation speed.

The complete TC sampler may now be assembled according to the
following (ordered) two-part Gibbs step:

(8)

(9)

In this two-part procedure, we observe that the TC sampler replaces individual
draws of λ with draws of (U,λ) from the augmented chain

where the states are traversed via the joint transition kernel

(10)[λ(t+1),U(t+1) |λ(t),U(t)] = [U(t+1) |λ(t)][λ(t+1) |Y,θ,U(t+1),

qmλ
(λ |Y,θ,U = u,X) =

π(λ |Y,θ,X)I{λ ∈ Nmλ
(u)}

∑λ∗∈ZB π(λ∗ |Y,θ,X)I{λ∗ ∈ Nm

=
p(Y,θ,λ |X)I{λ ∈ Nmλ

(u)}

∑λ∗∈Nmλ
(u) p(Y,θ,λ

∗ |X)
.

1. draw U ∼ p(U |λ).

2. draw λ ∼ qmλ
(λ |Y,θ,U,X).

… ,( ),( ),( ),… ,
U(t)

λ(t)

U(t+1)

λ(t+1)

U(t+2)

λ(t+2)



Figure 1 illustrates how (10) traverses the augmented state space in the simple
case where B = 1 and mλ = 1.

From the above construction, we see the TC sampler confers certain
advantages over MH proposals and direct draws from π(λ |Y,θ,X) when λ
is high-dimensional or requires an infinite sum to obtain the normalization
constant, since qmλ

 is supported on a (typically) smaller set. As a result, the
TC sampler provides a flexible balance between local and global search
strategies via a choice of mλ.

As mentioned above, in the TC sampler, the accept/reject mechanism is
replaced by a draw from the distribution qmλ

 displayed in (7). This strategy
allows the TC sampler to move all the time within the appropriate

Figure 1. Representation of valid bivariate proposal states (U (t+1),λ(t+1)) (dashed blue
circles) from state originating at (U (t),λ(t)) = (λ(t),λ(t)) (solid black circle) via the bivariate
kernel (10) with radius mλ = 1 when B = 1. Dashed directional arrows connect the origin to
each proposed state. Note that (U (t+1),λ(t+1)) = (λ(t),λ(t)) is a valid proposal state.



neighbourhood. In our simulations, we find that the local probability
renormalization mechanism leads this sampler to visit low-probability states
far more efficiently than the MH sampler. Although mλ plays the role of a
tuning parameter, its effects on the efficiency of the proposed sampler are far
less extreme than the tuning parameter in a MH sampler. To illustrate these
ideas, we include in Section B of the Supplementary Materials a challenging
example scenario involving an infinite but countable state space under a highly
multimodal distribution. The experimental results show how the TC sampler
explores the state space faster and with superior recovery of the underlying
target distribution relative to a MH sampler. Figure 2 summarizes this
scenario, showing that the TC sampler quickly converges under the Hellinger
distance, whereas the MH sampler does so at a much slower rate. We include a
similar comparison in terms of the total variation distance in Section B of the
Supplementary Materials.

Figure 2. Mean Hellinger distance (based on 100 samples) at selected iterations between
estimated and target distributions under the TC and MH samplers for the example scenario
presented in Supplementary Materials Appendix B.



The TC sampler also allows for sequential updating of λ: if λ is organized
into blocks λp, p = 1,… ,P , the ordered two-part Gibbs steps are now

(11)

(12)

for all p, where (11) depends on Zmλ,p = |Nmλ
(λp)|.

Finally, we note that integrating out U in (4) trivially recovers the non-
augmented joint probability distribution. Further, choosing mλ > 0 is
necessary for ergodicity of the induced Markov chain under the TC sampler.
With these results, the constructed TC sampler guarantees that the
corresponding marginal sampler on λ has as its stationary distribution
π(λ |Y,θ,X) under reasonable conditions; we refer the reader to the
Supplementary Materials for the associated proofs.

2.2. Considerations for dimension-changing proposals using the
taxicab sampler

The strength of the TC sampler lies in its simplicity, and it affords the ability
to circumvent larger marginalization problems when performing inference on
discrete model parameters; however, the sampler introduces a different set of
issues when we consider more complicated models and model-fitting
algorithms that involve dimension-changing proposals. In such settings, we
must contend with the auxiliary vector U injected into the model through the
TC sampler, along with the fact that the model specification may lack a
conjugate relationship between the likelihood function and discrete parameter
prior distributions.

We point out that the problem of dimension-changing proposals in models
using the TC sampler has a different interpretation than in models using the
HBS: the latter naturally allows for jumping between models encoded into
binary vectors during the fitting procedure, such that the HBS proposes jumps
between (potentially much) smaller- and (potentially much) larger-dimensional

1. draw Up ∼ p(Up |λp),

2. draw λp ∼ qmλ
(λp |Y,θ,Up,λ−p,X),



models with equal probability during the U-sampling step and with no
additional tools required in the proposal construction. By contrast, natural use
cases for the TC sampler are more likely to involve an intrinsic ordering
associated with models of differing dimension (e.g. we prefer proposing jumps
in model dimension within ±3 of the current state before proposing jumps in
model dimension within ±10). As such, we view dimension-jumping
proposals using the TC sampler as an additional focal point worthy of
discussion.

Fortunately, the construction of reasonable proposal distributions in these
types of problems is mediated to a degree by the fact that we work with
discrete parameter spaces instead of continuous ones, and as a result the
dimension-change in these kinds of augmented chains may be handled by
standard discrete-state Markov chain concepts [15]. Still, proposal
construction may require more care in model frameworks where traversing
models of differing dimension is non-trivial, e.g. in regression trees, and we
construct one possible proposal function for tree birth and death moves within
the BRT framework in Section 4.

When non-conjugacy rules out the ability to efficiently marginalize out the
dimension-changing parameters, we propose handling these jump proposals
via a MH step. To illustrate the construction of this type of move, we consider
a simple setting in which the model dimension B in (4) is assigned a prior
distribution π(B) such that λ ∼ π(λ |B), so that our augmented joint
probability model is now written as

(13)

where θ may or may not depend on B. In this context, we are interested in
proposing a move from the current model state associated with B to a new
model state associated with dimension B′. Within the overall transition kernel
(θ,λ,U,B) → (θ′,λ′,U′,B′), we are primarily concerned with construction
of the conditional proposal density (λ,U |B′,θ′) → (λ′,U′ |B′,θ′) and so
focus our attention on this proposal component.

p(Y,θ,λ,U,B |X) = p(Y |θ,λ,B,X)π(θ)π(λ |B)π(B)p(U



In particular, taking (λ,U |B′,θ′) → (λ′,U′ |B′,θ′) to be (10), suitably
modified to handle the change in dimension, leads to an interesting connection
with the common strategy of marginalizing over continuous dimension-
changing parameters in reversible-jump MCMC (RJMCMC). To generate the
proposed state (λ′,U′), we utilize the following order-dependent sequence of
steps:

1. Draw a ∼ p(a).
2. Generate U′ = δ(λ,a).
3. Draw λ′ ∼ qmλ

(λ′ |Y,θ′,U′,B′,X).

Here, a is a random vector of dimension B′ −B distributed according to
p(a) that satisfies the dimension-matching requirement of the jump proposal
[16, hereafter referred to as GR95]. After drawing a, we may deterministically
generate U′ from (λ,a) via a map δ : ZB′

→ ZB′  such that δ(λ,a) = U′; we
require δ be invertible in order to ensure reversibility in the resulting Markov
chain. While this choice of conditional transition function depends on Y, it
leads to useful cancellations in the resulting acceptance probability calculation,
which simplifies to

(14)

and we see via (14) that our choice of proposal function leads to an acceptance
probability ratio that weighs moving into the proposed model slice captured by
Nmλ

(U′) from the current model slice captured by Nmλ
(U). It is in (14) that

we see a correspondence with the GR95 approach of integrating out
continuous dimension-changing variables in reversible-jump moves: here, if
we allow mλ →∞, in the limit we obtain Nmλ

(U) = ZB and the numerator

α[(θ,λ,U,B), (θ′,λ′,U′,B′)] =min {1,A},

A =
[∑

λ∗∈Nmλ
(U′) p(Y |θ′,λ∗,B′)π(θ′,λ∗,B′)]p(U′ |λ′)q

[∑~
λ∈Nmλ

(U) p(Y |θ,
~
λ,B)π(θ,

~
λ,B)]p(U |λ)p(a)q(B



and denominator marginal likelihood functions in (14) are now fully
marginalized over the discrete dimension-changing vector λ.

We do not claim this choice of transition function is optimal in some sense
for a dimension-changing proposal, and for brevity also do not consider more
flexible non-deterministic reverse transitions in this subsection. We refer the
interested reader to [17] for an overview of strategies to construct proposal
functions in RJMCMC.

3. A single-tree model for count data

In this section, we introduce a single-tree model for count data using a novel
data distribution to serve as the likelihood function. Its advantages include
easily-interpretable parameters along with the ability to handle data that
displays under-, equi-, and over-dispersion. The corresponding priors encode
sensible and desirable regularization and a zero-inflated extension is
straightforward. Notably, this likelihood function is not in the exponential
family and the selected prior distributions are not conjugate.

To place our proposed model in context, we begin with brief reviews of
Bayesian regression tree models and models designed to handle count data in
Sections 3.1 and 3.2, respectively. We introduce our proposed model in
Section 3.3.

3.1. A review of Bayesian regression tree models

3.1.1. Regression tree models
Each binary decision tree T  is comprised of vertices (which we refer to as
nodes or η's), edges, and splitting rules. Nodes positioned at the terminus of a
tree branch are labelled terminal nodes and equipped with parameters that
describe the data associated with them; non-terminal nodes are labelled
internal nodes and equipped with binary rules. An internal node η may also be
referred to as a parent node; the connected nodes below it are referred to as
left and right child nodes based on their relative position to the parent. The left



panel of Figure 3 visualizes an example tree T  with parent and child nodes
labelled.

A regression tree T  partitions the covariate space according to the binary
internal node rules that comprise its interior. These internal node rules are
often equivalently referred to as decision or splitting rules and may be
compactly described using the notation (v, cv), where v ∈ {1,… , p}

corresponds to the vth dimension of the covariate space, and cv ∈ Cv

corresponds to a comparison value or set in the vth dimension, with the
relation (v, cv) = {xiv < cv} or (v, cv) = {xiv ∈ cv}.

In tree models, |Cv| is finite since each covariate dimension is typically
discretized over an equally spaced grid according to some resolution in order
to ensure the tree space does not become prohibitively difficult to explore.
This grid resolution is specified via a user-selected number of ‘cutpoints’ ζv
for any numeric covariate xv, and otherwise ζv = dim(xv) for categorical
covariates (however, other encodings are possible – see, for instance, [18]).
The discretization is based on the observed range of covariate values so that in

Figure 3. Left: An example tree (T ,M) containing two internal nodes (η1, η2) with rules and
three terminal nodes (η3, η4, η5) with associated parameters. The example vector
(x1,x2) = (3, 3) would be sorted along the path highlighted by the red nodes and collected in
η5; the corresponding path from root node to η5 is represented by X5 = {x1 < 4 ∩ x2 ≥ 2}.
Right: an equivalent representation of (T ,M) demonstrating how the tree structure partitions
the covariate space (X1,X2) into hyperrectangles and assigns parameter values to each.
Here X5 corresponds to the top-left hyperrectangle with parameter value λ5 = 3.



the vth dimension, each cutpoint cv is such that cv ∈ (mini (xiv),maxi (xiv))

if xv is numeric, or else a subset of categories cv ⊂ xv if xv is categorical.
Specifically, a decision rule (v, cv) operates on a continuous covariate

vector Xi as follows. The internal node rule (v, cv) evaluates the event
{xiv < cv}: if {xiv < cv} is true, Xi is deterministically assigned to the left
child node; otherwise, xi is assigned to the right child node. Each Xi is sorted
along a resultant path of internal nodes in this fashion until a terminal node η is
reached, at which point it is collected in η. To each terminal node, we also
assign a value λb where b = 1,… ,B indexes a terminal node. In this
framework, the tree structure defines a function g : Rp → R. If covariate Xi is
assigned to terminal node ηb, then we set

g(Xi) = λb.

In a probabilistic tree model, T  may be used to flexibly describe statistical
models for data (Yi,Xi). Using the notation described above, let g(⋅) denote
the function described by the tree T . The values M = (λ1,… ,λB) assigned
to the terminal nodes in T  are viewed as parameters and g(⋅) is the regression
function. This model is summarized as

(15)

where f is a generic notation for a likelihood function selected by the user and
Xb represents the intersection of the regions described by the internal nodes in
T  that form the path from the root node to terminal node ηb. The right panel
of Figure 3 shows how such a tree (T ,M) partitions and describes the
covariate space according to (15). Further assumptions (conditional
independence, for example) will allow us to write the model (15) in a
simplified, more manageable form, as seen in the sections to come. In addition
to the parameter vector λ that is used to describe the mean function, we allow
for other parameters, collected in θ, to be a part of the probabilistic

Y |X,M,θ ∼ f(⋅ |X,M,θ), where

E(Yi |Xi,M) = g(Xi) =
B

∑
b=1

λbI(Xi ∈Xb),



model (15). Such parameters may model other components of the model, such
as the variance if using a Gaussian likelihood.

3.1.2. Bayesian CART
Chipman et al. [4] (hereafter referred to as CGM98) introduce the Bayesian
analogue of the CART model along with the MH analogue of [19]'s CART
algorithm for fitting tree models.

3.1.2.1 Likelihood function and prior distribution specification in Bayesian
CART In the Bayesian CART model, the joint prior distribution π(T ,M,θ)

is assumed to factorize as

(16)

(17)

for the terminal node parameters λb, allowing for a prior distribution on the
tree topology T  that does not depend on M and codifying the assumption of a
priori independence of terminal node parameters given T . Typically,
conjugate prior distributions are assigned to the λb's and θ.

Notably, CGM98 specify π(T ) implicitly. Tree complexity is controlled
via the prior probability that a node η will be internal/non-terminal, defined as

Each splitting rule (v, cv) is determined by the choice of available covariates
xv, where v is selected uniformly among all available predictors, and the
choice of cutpoint value (or category) cv is also selected uniformly among the
available generated cutpoints given v and T ∖ η.

π(T ,M,θ) = π(M |T )π(T )π(θ),

π(M |T ) =
B

∏
b=1

π(λb |T ),

π(η is internal) = α(1 + d(η))−β, α ∈ (0, 1), β > 0,

π(η is terminal) = 1 − π(η is internal).



3.1.2.2 Fitting the Bayesian CART model Fitting a Bayesian CART model
requires mechanisms for exploring the conditional posterior distributions for
T , M, and θ. Conveniently, the choice of conjugate prior distributions for the
terminal node parameters collected in M as well as θ results in straightforward
Gibbs updates for these model parameters.

CGM98 propose searching over the tree space via the use of a top-down
stochastic tree-generating process. Broadly, trees (beginning with a single root
node) are grown by first proposing a birth move (selected with probability
π(birth)) and then uniformly selecting a terminal node to be split; tree pruning
occurs via death moves (selected with probability π(death)) performed on a
uniformly-selected next-to-terminal node. These moves are illustrated in
Figure 4. A successful birth move converts the selected terminal node η into an
internal node, which is then assigned a splitting rule and left and right child
(terminal) nodes. A successful death move reverses this birth process.
Exploration of the posterior tree space in the CGM98 model formulation is
also facilitated by two additional proposals, swap and change; proposals
affecting T  are handled via MH steps after integrating out the dimension-
changing mean vector M, made possible due to the choice of conjugate prior
distributions on the λb's.

Figure 4. Left: a tree (T ,M) with red-highlighted terminal node selected for birth. Right: an
updated tree (T ′,M′) after birth, with the updated tree structure again highlighted in red.
Here the node η2 has been converted to an internal node with rule X1 < 2 and assigned two
child terminal nodes. Note that the choice of new rule leads to a coherent re-partitioning of the



3.2. Count models

For count models, typical likelihood choices include the Poisson and negative
binomial distributions, with the latter often desirable due to its ability to model
overdispersion. Other likelihood choices for count data models have been
introduced that allow for even more flexible modelling of mean-variance
relationships (i.e. underdispersion), including the COM-Poisson [20] and
double Poisson [21], but these have historically suffered from computational
and parameter interpretation issues that have prevented more widespread
adoption [22].

In the tree literature, Murray [23] extends the BART framework to
accommodate multinomial logistic and count regression models, utilizing the
sum-of-trees approach to build up appropriate transformations of mean
functions of interest. Key to their model is a sampling algorithm that allows
for blocked MCMC updating of each tree Th, h = 1,… ,m, and its
parameters Mh while holding (𝓣−h,M−h) fixed. In the case of count data,
Murray achieves this by augmenting a Poisson or negative binomial likelihood
with additional latent variables to allow for tractable integrated marginal
likelihoods and introduce new conjugate prior distributions. The resulting
closed-form marginal likelihoods are thus available to update individual trees
via MH, and updating each tree's terminal node parameters may be performed
using Gibbs steps after latent variable updates, yielding a non-backfitting
update algorithm that still resembles BART's fast-update scheme; however, a
key disadvantage of Murray's count model formulation is the number of data-
dependent latent variable updates required when modelling zero-inflation and
overdispersion.

3.3. The likelihood function

Our proposed likelihood function is fully specified by three parameters: a
location parameter λ ∈ Z≥0; a scale parameter k ∈ Z; and a tail mass

covariate space. The reverse death move is represented by the transformation
(T ′,M′) → (T ,M).



parameter t ∈ [0, 0.5). The tail mass parameter controls the probability
assigned to each tail of the resulting distribution. The definition of this
distribution follows a piece-wise construction and is written as follows:

pt(Y |λ, k) = (18)

where we define

p∗ =min {0.99, 1−2t
t(k+1)2

}, t > 0. (19)

This distribution, which we term a tent  pmf, is unimodal and symmetric about
λ. The parameter k controls the range of Y values centred about λ in the
distribution, in that the range of values contained in the middle 100(1 − 2t)%

of the distribution (the ‘tent’) is always 2k. The tails follow a geometric
distribution and each contains t total mass. Figure 5 visualizes this distribution
for several settings of λ, k, and t.

⎧⎪⎨⎪⎩(1 − 2t)
k+ 1 − |Y − λ|

(k+ 1)2
, |Y − λ| ≤ k,

tp∗(1 − p∗)|Y−λ|−k−1, |Y − λ| > k,



We treat t as a hyperparameter to be fixed prior to the outset of any
modelling problem. The choice of including separate scale and tail parameters
in this pmf allows for additional flexibility in modelling data: the tail
parameter t may be calibrated to describe relevant features of interest at the
outset of the problem, whereas the behaviour of data closer to the mode can be
described separately using k. Moving forward, we refer to the pmf
parameterized by (λ, k) for a given t using Pt(λ, k). Probabilities according to
Y ∼ Pt(λ, k) will be referred to using pt(Y |λ, k), with the conditioning
suppressed in cases where the parameterization is clear.

3.4. Prior distributions on λ and k

Figure 5. Several examples of the tent distribution using the tent and tail definitions given
in (18) and (19). P0.01(0, 1) is represented by the black circles, P0.025(0, 2) is represented by
the red triangles, and P0.05(0, 7) is represented by the blue crosses.



Since we utilize a single-tree approach for our proposed model, we maintain
the implicit prior formulation on T  as specified in CGM98, along with the
prior factorization assumptions in (16) and (17). For simplicity, given the tree
T  we define a discrete uniform prior distribution on the terminal node mean
parameters, i.e.

λb |T , d1, d2
ind.
∼ DU{d1, d2}, d1, d2 ∈ N≥0, d1 < d2, (20)

in effect allowing the likelihood to guide our search algorithm toward good
choices of λb. In application, we have taken d1 =min (y) and d2 =max (y) as
reasonable but vague default hyperparameter values.

We propose using a similar function to the one defined in (18) and (19) as
the prior distribution on each ki. Since the tent pmf places positive mass on Z,
we adjust the likelihood function accordingly to ensure appropriate behaviour
of the likelihood scale parameter; in particular, we work with the
exponentiated likelihood parameterization

Yi |λi, ki, t
ind.
∼ Pt(λi, ⌊eki⌋), i = 1,… ,n, (21)

so that ⌊eki⌋ ∈ Z≥0 as previously required. Moving forward, we will use (21)
in all instances involving the likelihood function unless otherwise noted. We
specify the prior model on kb associated to terminal node ηb as

(22)

where

l̃og(λ) = {

The prior mode in (22) is a function of a hyperparameter value κ, which may
be chosen to reflect some belief in the true underlying degree of dispersion if
prior information is available, or otherwise chosen to provide an initial guide

kb |λb,κ,βk, tk,T
ind.
∼ Ptk (⌊ κ

2d(ηb)
⌋,⌊ l̃og(λb)

(1+d(ηb))
βk
⌋), κ ∈ Z≥0

0, λ ≤ 1,
log(λ), λ > 1.



for the likelihood fit at the grand mean model level. The mode is also a
function of node depth with respect to its terminal node ηb and codifies the
belief that terminal nodes at deeper levels of a tree, reflecting more complex
regions of the response surface, should accordingly seek to explain less
variability in the data.

The prior scale also encodes desirable behaviour. The denominator
(1 + d(ηb))βk  utilizes the node depth penalization function in the CGM98 tree
prior, where in this setting βk controls the rate at which the prior dispersion
increases or decreases; allowing βk →∞ has the effect of concentrating the
scale prior on its current location parameter, while letting βk → 0 allows the
current λb to fully dictate the dispersion of the scale prior distribution.

From above, the full hierarchical model is specified as follows:

(23)

4. Comparing the algorithms for the single-tree count data
example

In this example, we generate observations from a true underlying model and
attempt to recover the correct tree structure and terminal node parameters via
our single-tree count model (see Section 3) using the taxicab update algorithm,
and compare to a naïve MH algorithm in order to illustrate the gains in
computational speed under the proposed approach. We also considered other
example settings, including data exhibiting excess zeroes, for which we
developed a ZI extension to our TC-augmented model. These results are
available in the Supplementary Materials and were similar to what is reported
here. In the present example, we considered the following two-covariate true
data-generating model:

Yi | t,T ,λi, ki,Xi
ind.
∼ Pt(λi, ⌊exp{ki}⌋),

λb | d1, d2,T
iid
∼ DU{d1,… , d2}, b = 1,… ,B,

kb |λb,κ,βk, tk,T
ind.
∼ Ptk (⌊

κ

2d(ηb)
⌋,⌊ l̃og(λb)

(1 + d(ηb))βk
⌋), b

T |α,β, ζv ∼ π(T |α,β, ζv).



Yi |Xi
ind.
∼ Pt(g(Xi), ⌊ek⌋ = ⌊e2⌋), (24)

where

g(Xi) = (25)

with Xij ∼ Unif(0, 10) for i = 1,… ,n and j = 1, 2. For simplicity, we took t 
= 0 in this true model so that (24) places positive probability on a finite set of
values.

We proceeded to generate n = 10, 100, and 1000 observations according to
this true model for use in our fitting procedures.

4.1. Setup

In the non-ZI model, we begin by injecting auxiliary vectors
U = (U1,… ,UB) ∈ ZB and R = (R1,… ,RB) ∈ ZB into our joint
distribution, so that we now work with an augmented joint distribution
p(Y,T ,λ,k,U,R). We note, in particular, that the auxiliary vectors in this
model are only of dimension B, whereas in other approaches they are typically
of dimension n (e.g. [1,23]). We further require the ability to factorize this
joint distribution as

p(Y,T ,λ,k,U,R) = p(Y,T ,λ,k)p(U |λ)p(R |k), (26)

where

(27)

⎧⎪⎨⎪⎩10, xi1 ≤ 5,xi2 ≤ 5,
20, xi1 ≤ 5,xi2 > 5,
30, xi1 > 5,xi2 ≤ 5,
40, xi1 > 5,xi2 > 5,

p(Y,T ,λ,k) = {
B

∏
b=1

L (λb, kb |Y, ⋅)π(λb |T )π(kb |λb,T )}π

p(U |λ)p(R |k) =
B

∏
b=1

p(Ub |λb)p(Rb | kb).



Utilizing B total blocks for updating both λ and k, the complete TC sampler in
this problem is now constructed as

(28)

(29)

for b = 1,… ,B. Note that several cancellations follow in the numerator and
denominator of both (28) and (29) according to (27), including π(T ),
π(λb |T ), and all likelihood contributions from terminal nodes besides ηb; the
auxiliary distribution for the fixed terminal node parameter also naturally
cancels from these kernels ( p(Rb | kb) for the update of λb, p(U ′

b |λ
′
b) for the

update of kb).
For the naïve MH algorithm, we utilized simple MH moves with discrete

uniform proposal distributions to update (λb, kb) values, along with tree birth
and death moves using the marginal likelihood approach described in CGM98.
In both search approaches, we utilized birth and death moves along with [7]'s
cutpoint perturb proposal as an added way to facilitate exploration of the
posterior tree space.

Here, the tree birth and death moves require accounting for a change of
dimension in both λ and k. Since the repertoire of tree moves we work with
are local perturbations by design, we proceed to describe the construction of a
dimension-changing move for tree birth proposals with respect to the local
change about a terminal node ηb that has been selected for birth, with its
proposed left and right child nodes denoted by ηb(l) and ηb(r), respectively, and
the proposed rule (v′, c′) assigned to ηb in the new structure T ′. Further, let
~
λ = (λ1,… ,λb−1,λb(l),λb(r),λb+1,… ,λB), with equivalent definitions for
~
k, ~U, and ~R. In this joint setting, we also let m = (mλ,mk). Conveniently,
the transition proposals between T  and T ′ in our model are still handled as in
CGM98, and so the immediate problem is that of the conditional transitions

U ′
b ∼ p(U ′

b |λb),

λ′b ∼ qmλ
(λ′b |Y,T , kb,U

′
b) ∝ p(Y,T ,λ′b, kb)I{λ

′
b ∈ Nmλ

(U ′
b)},

R′
b ∼ p(R′

b | kb),

k′b ∼ qmk
(k′b |Y,T ,λb,R

′
b) ∝ p(Y,T ,λ′b, k

′
b)I{k

′
b ∈ Nmk

(R′
b)},



(30)

(31)

(32)

(33)

given T  and T ′.
Per GR95, one useful way to resolve the transitions (30) and (32) is

through dimension-matching. Specifically, we generate discrete random
variables aλ and ak and subsequently define an invertible and deterministic
mapping δ : Z2 → Z

2 to match the dimension of our current state to that of the
proposed state: for some θ, a ∈ Z we define

(34)

(35)

with inverse δ−1 : Z2 → Z
2 given by

(36)

(37)

so that we obtain the desired transitions in this problem via the following
sequence of operations:

1. Generate random scalars
aλ ∼ DU{−2mλ, 2mλ}, ak ∼ DU{−2mk, 2mk}.

2. Given aλ, generate the auxiliary variables
(ub(l),ub(r)) = δ(λb, aλ) = (λb − ⌊ aλ

2 ⌋,λb + ⌈ aλ
2 ⌉).

3. Given ak, generate the auxiliary variables
(rb(l), rb(r)) = δ(kb, ak) = (kb − ⌊ ak

2 ⌋, kb + ⌈ ak
2 ⌉).

λb → (Ub(l),Ub(r)),

(Ub(l),Ub(r)) → (λb(l),λb(r)),

kb → (Rb(l),Rb(r)),

(Rb(l),Rb(r)) → (kb(l), kb(l))

δ(θ, a) = (δ1[θ, a], δ2[θ, a])

= (θ− ⌊ a
2
⌋, θ+ ⌈ a

2
⌉),

δ−1(x, y) = (δ−11 [x, y], δ−12 [x, y])

= (⌊ x+ y

2
⌋, y− x), x, y ∈ Z,



Note that the choice of support for the random scalars aλ and ak, in tandem
with the definition of the function δ, ensures that the newly proposed auxiliary
variables in steps #2 and #3 of the above operation are contained respectively
within the neighbourhoods centred at the current parameter values λb and kb in
birth proposals, as required under the TC sampler framework.

From here, the transitions (31) and (33) are proposed according to

(38)

(39)

where (38) and (39) follow the general definition

The full reverse transition is then generated according to

(40)

(41)

(42)

where (40) and (41) again allow for a deterministic mapping from the
proposed higher-dimensional model to the lower-dimensional one, and (42)
simply calculates the joint probability of the reverse transitions
(λb(l),λb(r)) → (λb,Ub) and (kb(l), kb(r)) → (kb,Rb).

The acceptance probability for this birth move is calculated as

(43)

(44)

(λb(l), kb(l)) ∼ qm(λb(l), kb(l) |Y,T
′,Ub(l),Rb(l)),

(λb(r), kb(r)) ∼ qm(λb(r), kb(r) |Y,T
′,Ub(r),Rb(r)),

qm(λb, kb |Y,T ,Ub,Rb) ∝ p(Y,T ,λb, kb)I{λb, kb ∈ N
2

m (Ub,Rb)},

I{λb, kb ∈ N
2

m (Ub,Rb)} = I{(λb, kb) ∈ Nmλ
(Ub) ×Nmk

(Rb)}.

Ub = δ−11 (λb(l),λb(r)) = ⌊ 1
2
(λb(l) + λb(r))⌋,

Rb = δ−11 (kb(l), kb(r)) = ⌊ 1
2
(kb(l) + kb(r))⌋,

(λb, kb) ∼ qm(λb, kb |Y,T ,Ub,Rb),

α[(T ,λ,k,U,R), (T ′,
~
λ,

~
k,

~
U,

~
R)]

= min{1,
π(T ′,

~
λ,

~
k,

~
U,

~
R |Y, ⋅)q(T ,λ,k,U,R |T ′,

~
λ,

π(T ,λ,k,U,R |Y, ⋅)q(T ′,
~
λ,

~
k,

~
U,

~
R |T ,λ,k



In the case of a death move, the acceptance probability is calculated as the
inverse of (44).

The moves described and constructed in this section give rise to the fully
specified updating algorithm for our proposed single-tree non-ZI count model
using the TC sampler, detailed in Algorithm 2.

We followed the ‘restart’ strategy described in CGM98, running 20
individual chains for 3000 iterations each and restarting each new chain from a
single-node tree. 500 burn-in iterations were used for each run and discarded
prior to analysis. We utilized ζ = 50 cuts to discretize each covariate
dimension. Hyperparameter settings for this set of comparison simulations are
detailed in Table 1.

Table 1. Hyperparameter settings for runtime comparison. (Table view)

Method Parameters Values considered
Naïve MH k prior: (κ,βk, tk) combinations (4,1,0.025)
 Tree depth prior: (α,β) combinations (0.95,4)
 MH proposal radii: (λ, k, c) combinations (4,2,25), (6,2,25)
 Tent pmf tail mass parameter: t 0.025
Taxicab k prior: (κ,βk, tk) combinations (4,1,0.025)
 Tree depth prior: (α,β) combinations (0.95,4)
 N (⋅) radii: (mλ,mk) combinations (2,1), (3,1), (4,2), (5,2)
 MH proposal radius: c 25
 Tent pmf tail mass parameter: t 0.025



The choice of MH proposal radius for cutpoints c was selected so that
perturbation proposal corresponding to an existing cut c = 24 or 25 could
conceivably propose any other available cutpoint value in the corresponding
covariate dimension. The choices of ball and MH proposal radii for each
(λb, kb) pair were intended to highlight any potential differences or variability
in fit and computation time. For simplicity we fixed t = 0.025 and tk = 0.025

for all runs. Assessment of fit was based on mean absolute error (MAE) and
L2 norm, both averaged over the 20 runs at each combination of
hyperparameter settings.

We took 1000 posterior samples to compute both the L2 norm and MAE
quantities, along with their standard deviation (SD) and standard error (SE)
respectively. Total runtime was also recorded at each combination of model
settings, measuring the length of time elapsed to execute the model-fitting
algorithm for all 20 runs. The results of this comparison are presented in
Tables 2 and 3, corresponding to the respective outcomes for the naïve MH
and TC sampler approaches.

Table 2. Comparison of runtime results for models fit with naïve MH and TC sampler
approaches. (Table view)

Method n (λ, k, c) radii Runtime (s)
Naïve MH 10 (4,2,25) 101.85
 10 (6,2,25) 101.81
 100 (4,2,25) 546.45
 100 (6,2,25) 544.52
 1000 (4,2,25) 3847.76
 1000 (6,2,25) 4072.09
Method n (mλ,mk, c) radii Runtime (s)
Taxicab 10 (2,1,25) 5.11
 10 (3,1,25) 5.52
 10 (4,2,25) 7.84
 10 (5,2,25) 8.68
 100 (2,1,25) 24.67
 100 (3,1,25) 28.93
 100 (4,2,25) 41.03
 100 (5,2,25) 53.81



4.2. Performance comparison

Performance between the two methods with respect to L2 norm was
comparable across sample size, with improved recovery of the true underlying
(T ,M) for larger n. As expected, computation time increased in both

Method n (λ, k, c) radii Runtime (s)
 1000 (2,1,25) 216.39
 1000 (3,1,25) 242.84
 1000 (4,2,25) 337.98
 1000 (5,2,25) 443.24

All reported values are rounded to the nearest hundredths place.

Table 3. Comparison of MAE and L2 norm results for models fit with naïve MH and TC sampler
approaches. (Table view)

Method n (λ, k, c) radii MAE (SE) L2 norm (SD)
Naïve MH 10 (4,2,25) 6.12 (0.02) 189.11 (36.79)
 10 (6,2,25) 6.15 (0.02) 189.39 (41.17)
 100 (4,2,25) 2.73 (0.00) 52.30 (1.88)
 100 (6,2,25) 2.73 (0.00) 52.57 (1.97)
 1000 (4,2,25) 2.73 (0.00) 54.22 (3.10)
 1000 (6,2,25) 2.75 (0.01) 55.84 (11.88)
Method n (mλ,mk, c) radii MAE (SE) L2 norm (SD)
Taxicab 10 (2,1,25) 6.23 (0.04) 195.68 (23.43)
 10 (3,1,25) 6.17 (0.03) 193.60 (21.77)
 10 (4,2,25) 6.05 (0.03) 192.16 (27.89)
 10 (5,2,25) 6.08 (0.02) 191.33 (21.80)
 100 (2,1,25) 3.98 (0.42) 84.00 (48.17)
 100 (3,1,25) 3.49 (0.26) 76.63 (42.65)
 100 (4,2,25) 2.76 (0.23) 52.84 (5.12)
 100 (5,2,25) 2.74 (0.00) 52.33 (2.81)
 1000 (2,1,25) 2.75 (0.01) 54.77 (1.82)
 1000 (3,1,25) 2.75 (0.01) 54.72 (2.03)
 1000 (4,2,25) 2.73 (0.00) 54.80 (2.47)
 1000 (5,2,25) 2.74 (0.01) 54.28 (1.25)

All reported values are rounded to the nearest hundredths place.



methods with sample size and larger choice of N (⋅) radii in the TC sampler
approach. Depending on sample size, the TC algorithm was anywhere between
8 to 20 times faster than the naïve MH algorithm for ‘similar’ N (⋅) and MH
proposal radii settings. The runtime improvements were on the larger end of
this range for (mλ,mk) ∈ {(2, 1), (3, 1)}, though the reported MAE and L2

norm values at these settings were suboptimal compared to the
(mλ,mk) = (4, 2) and (5, 2) settings at the n = 100 sample size. With respect
to TC sampler results for the n = 1000 sample size, the most-probable tree
configurations were frequently close to the ground truth tree structure, with
some runs identifying somewhat larger trees due to the inclusion of extraneous
internal node rules that were unable to be pruned away; we note that similar
behaviour occurred with most probable tree configurations at this sample size
setting under the naïve MH sampler with comparable frequency, indicating the
‘excess’ estimated tree structure is an effect of the underlying stochastic-
search mechanism used to explore posterior trees in these kinds of models, as
opposed to an inherent issue with the TC sampler itself.

Though the calculated MAEs were in-sample, they are included in both
summary tables as a simple way to screen any potentially noticeable
differences in mean parameter fits both within and between model fits
according to the two algorithms. The MAEs for the (mλ,mk) = (2, 1) and
(mλ,mk) = (3, 1) settings at n = 100 are somewhat higher than their
counterparts under the naïve MH sampler, suggesting that chains involving
combinations of smaller (mλ,mk) values require longer mixing time for
intermediate sample sizes due to constraints imposed in the construction of our
dimension-changing proposals (see Figure 6); however, the MAE in the
(mλ,mk) = (4, 2) and (5, 2) settings at n = 100 is in line with the n = 100
results in the naïve MH sampler, indicating that, in medium sample size cases,
the TC sampler is able to identify good tree structures and terminal node
parameter values in shorter chains at other reasonable N (⋅) radii settings.
Otherwise, MAEs did not appear appreciably different between the two
approaches in the reported results, showing that the TC sampler performs



comparably to the naïve MH sampler in a large number of cases at a fraction
of the computation time.

5. Discussion

The taxicab sampler presented here builds on the ideas presented in [11],
offering a flexible, natural and useful extension to operations on non-binary
discrete state spaces in Bayesian models. We have demonstrated the improved
efficiency and inferential capabilities of the TC sampler relative to a MH
sampler in a challenging univariate setting involving a complicated
multimodal distribution, suggesting that even equipping the TC sampler with
relatively small choices of radius parameter m can result in tangible
performance improvements over a MH sampler with comparable choice of
random walk proposal radius value.

Here, we have also shown the ability of the TC sampler to aid in
performing efficient inference in a Bayesian regression tree count model
setting with comparable performance to that of a naïve MH sampler
implementation at a fraction of the computational cost; further gains in speed
could be achieved by parallelizing TC sampler computations. Further, while
exotic, our proposed single-tree count model offers a number of advantages,

Figure 6. Left: most-probable tree configuration identified on run #5 (with 26.13% within-run
posterior probability) using TC sampler algorithm at n = 100 with (mλ,mk) = (2, 1) and L2

norm = 137.397; the displayed terminal node parameter values are from a single saved
iteration associated with this tree structure. In this configuration the sampler has not accepted a
birth proposal with internal rule involving X2 at node η2 to recover the optimal tree structure
given the generated cutpoints. Right: most-probable tree configuration identified on run #1 (with
31.17% within-run posterior probability) using TC sampler algorithm at n = 100 with
(mλ,mk) = (2, 1) and L2 norm = 50.00.



including interpretability of model parameters and the ability to readily model
under-, equi-, and over-dispersion over different regions of covariate space,
showing how the use of discrete parameter spaces in tandem with a non-
conjugate, non-exponential-family-based model specification can serve as an
interesting alternative compared to a more traditional modelling approach
relying on continuous latent state spaces.

The TC sampler may also offer additional benefits in the context of
efficiently searching over the posterior tree space in Bayesian regression tree
models. Whereas [8] use a full marginalization strategy to perform
advantageous tree updates in these types of models, the ability to marginalize
over a subset of tree structures to sidestep traversing low-probability regions
of the posterior tree space is desirable in its own right, and the local
marginalization approach presented in this paper offers interesting
considerations for this tree-mixing problem if a suitable distance can be
identified.
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Figure 1. Representation of valid bivariate proposal states (U (t+ 1), λ (t+ 1)) (dashed blue
circles) from state originating at (U (t), λ (t)) = (λ (t), λ (t)) (solid black circle) via the
bivariate kernel (10) with radius mλ = 1 when B = 1. Dashed directional arrows connect the
origin to each proposed state. Note that (U (t+ 1), λ (t+ 1)) = (λ (t), λ (t)) is a valid proposal
state.



Figure 2. Mean Hellinger distance (based on 100 samples) at selected iterations between
estimated and target distributions under the TC and MH samplers for the example scenario
presented in Supplementary Materials Appendix B.



Figure 3. Left: An example tree (T , M ) containing two internal nodes (η1, η2) with rules
and three terminal nodes (η3, η4, η5) with associated parameters. The example vector
(x1, x2) = (3, 3) would be sorted along the path highlighted by the red nodes and
collected in η5; the corresponding path from root node to η5 is represented by
X 5 = {x1 < 4 ∩x2 ≥ 2}. Right: an equivalent representation of (T , M ) demonstrating
how the tree structure partitions the covariate space (X1, X2) into hyperrectangles and
assigns parameter values to each. Here X 5 corresponds to the top-left hyperrectangle with
parameter value λ5 = 3.



Figure 4. Left: a tree (T , M ) with red-highlighted terminal node selected for birth. Right:
an updated tree (T ′, M ′) after birth, with the updated tree structure again highlighted in
red. Here the node η2 has been converted to an internal node with rule X1 < 2 and
assigned two child terminal nodes. Note that the choice of new rule leads to a coherent re-
partitioning of the covariate space. The reverse death move is represented by the
transformation (T ′, M ′) → (T , M ).



Figure 5. Several examples of the tent distribution using the tent and tail definitions given
in (18) and (19). P0.01(0, 1) is represented by the black circles, P0.025(0, 2) is represented
by the red triangles, and P0.05(0, 7) is represented by the blue crosses.



Figure 6. Left: most-probable tree configuration identified on run #5 (with 26.13% within-run
posterior probability) using TC sampler algorithm at n = 100 with (mλ, mk) = (2, 1) and L2
norm = 137.397; the displayed terminal node parameter values are from a single saved
iteration associated with this tree structure. In this configuration the sampler has not
accepted a birth proposal with internal rule involving X2 at node η2 to recover the optimal
tree structure given the generated cutpoints. Right: most-probable tree configuration
identified on run #1 (with 31.17% within-run posterior probability) using TC sampler
algorithm at n = 100 with (mλ, mk) = (2, 1) and L2 norm = 50.00.



Table 1. Hyperparameter settings for runtime comparison.

Method Parameters Values considered
Naïve MH k prior: (κ, βk, tk) combinations (4,1,0.025)
 Tree depth prior: (α , β) combinations (0.95,4)
 MH proposal radii: (λ, k, c) combinations (4,2,25), (6,2,25)
 Tent pmf tail mass parameter: t 0.025
Taxicab k prior: (κ, βk, tk) combinations (4,1,0.025)
 Tree depth prior: (α , β) combinations (0.95,4)
 N (⋅) radii: (mλ, mk) combinations (2,1), (3,1), (4,2), (5,2)
 MH proposal radius: c 25
 Tent pmf tail mass parameter: t 0.025



Table 2. Comparison of runtime results for models fit with naïve MH and TC sampler
approaches.

Method n (λ, k, c) radii Runtime (s)
Naïve MH 10 (4,2,25) 101.85
 10 (6,2,25) 101.81
 100 (4,2,25) 546.45
 100 (6,2,25) 544.52
 1000 (4,2,25) 3847.76
 1000 (6,2,25) 4072.09
Method n (mλ, mk, c) radii Runtime (s)
Taxicab 10 (2,1,25) 5.11
 10 (3,1,25) 5.52
 10 (4,2,25) 7.84
 10 (5,2,25) 8.68
 100 (2,1,25) 24.67
 100 (3,1,25) 28.93
 100 (4,2,25) 41.03
 100 (5,2,25) 53.81
 1000 (2,1,25) 216.39
 1000 (3,1,25) 242.84
 1000 (4,2,25) 337.98
 1000 (5,2,25) 443.24

All reported values are rounded to the nearest hundredths place.



Table 3. Comparison of MAE and L2 norm results for models fit with naïve MH and TC
sampler approaches.

Method n (λ, k, c) radii MAE (SE) L2 norm (SD)
Naïve MH 10 (4,2,25) 6.12 (0.02) 189.11 (36.79)
 10 (6,2,25) 6.15 (0.02) 189.39 (41.17)
 100 (4,2,25) 2.73 (0.00) 52.30 (1.88)
 100 (6,2,25) 2.73 (0.00) 52.57 (1.97)
 1000 (4,2,25) 2.73 (0.00) 54.22 (3.10)
 1000 (6,2,25) 2.75 (0.01) 55.84 (11.88)
Method n (mλ, mk, c) radii MAE (SE) L2 norm (SD)
Taxicab 10 (2,1,25) 6.23 (0.04) 195.68 (23.43)
 10 (3,1,25) 6.17 (0.03) 193.60 (21.77)
 10 (4,2,25) 6.05 (0.03) 192.16 (27.89)
 10 (5,2,25) 6.08 (0.02) 191.33 (21.80)
 100 (2,1,25) 3.98 (0.42) 84.00 (48.17)
 100 (3,1,25) 3.49 (0.26) 76.63 (42.65)
 100 (4,2,25) 2.76 (0.23) 52.84 (5.12)
 100 (5,2,25) 2.74 (0.00) 52.33 (2.81)
 1000 (2,1,25) 2.75 (0.01) 54.77 (1.82)
 1000 (3,1,25) 2.75 (0.01) 54.72 (2.03)
 1000 (4,2,25) 2.73 (0.00) 54.80 (2.47)
 1000 (5,2,25) 2.74 (0.01) 54.28 (1.25)

All reported values are rounded to the nearest hundredths place.


	Abstract
	1. Introduction
	2. The taxicab sampler
	2.1. The taxicab sampler algorithm
	2.2. Considerations for dimension-changing proposals using the taxicab sampler

	3. A single-tree model for count data
	3.1. A review of Bayesian regression tree models
	3.2. Count models
	3.3. The likelihood function
	3.4. Prior distributions on λ and k

	4. Comparing the algorithms for the single-tree count data example
	4.1. Setup
	4.2. Performance comparison

	5. Discussion
	Disclosure statement
	Funding
	References

