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Abstract Understanding controls on primary productivity is essential for describing ecosystems and their
responses to environmental change. In lakes, pelagic gross primary productivity (GPP) is strongly controlled by
inputs of nutrients and dissolved organic matter. Although past studies have developed process models of this
nutrient‐color paradigm (NCP), broad empirical tests of these models are scarce. We used data from 58 globally
distributed, mostly temperate lakes to test such a model and improve understanding and prediction of the controls
on lake primary production. The model includes three state variables–dissolved phosphorus, terrestrial dissolved
organic carbon (DOC), and phytoplankton biomass–and generates realistic predictions for equilibrium rates of
pelagic GPP. We calibrated our model using a Bayesian data assimilation technique on a subset of lakes where
DOC and total phosphorus (TP) loads were known. We then asked how well the calibrated model performed with
a larger set of lakes. Revised parameter estimates from the updated model aligned well with existing literature
values. Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent
with increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased.
Furthermore, across these diverse lake ecosystems, model predictions of GPP were highly correlated with
observed values derived from high‐frequency sensor data. The GPP predictions using the updated parameters
improved upon previous estimates, expanding the utility of a process model with simplified assumptions for water
column mixing. Our analysis provides a model structure that may be broadly useful for understanding current and
future patterns in lake primary production.
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Key Points:
• A mathematical formulation of the

nutrient‐color paradigm accurately
captures spatial variability in lake pri-
mary production

• A data assimilation technique updated
the lake process model parameters and
improved model predictions

• This simple process model can be a
useful tool for testing and predicting
lake productivity responses to
environmental change
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Plain Language Summary Understanding the controls on lake productivity is essential for
predicting the response of lake ecosystems to global change. Recent advances in mathematical models have
provided a conceptual framework for modeling lake pelagic productivity, but these models need to be tested and
refined. In this study, we used data from 58 lakes around the world to develop and improve a mathematical
model of the nutrient‐color paradigm. We found that the updated model had better predictive power than
previous models and accurately predicted primary production, mixed layer depth, and concentrations of
nutrients in a diverse set of lakes. This improved model has the potential to be a valuable tool for understanding
and predicting lake productivity in response to environmental changes.

1. Introduction
Primary production plays a central role in the ecology and biogeochemistry of ecosystems. Understanding the
controls on primary production is, consequently, essential for understanding ecosystems and predicting their
responses to global change. In lake ecosystems, one general conceptual model of the controls on pelagic gross
primary productivity (GPP) is the nutrient‐color paradigm (NCP; Williamson et al., 1999). This paradigm in-
tegrates two long‐standing master variables in limnology by emphasizing the joint role of both nutrients and
dissolved organic matter (DOM) in controlling pelagic GPP (Dillon & Rigler, 1974; Jones, 1992; Nau-
mann, 1921; Thienemann, 1925; Vollenweider, 1968; Williamson et al., 1999). Specifically, the nutrient‐color
paradigm (NCP) focuses on how inputs of nutrients and DOM influence patterns of light and nutrient limita-
tion of pelagic producers. Where lakes fall along axes of nutrient availability and colored DOM inputs are
valuable for trophic state classifications, which are predictive of the various lake ecosystem characteristics such as
biotic assemblages and lake productivity (Webster et al., 2008). Generally, clearer, more transparent waters are
associated with lower nutrient levels (oligotrophic), whereas brown or green waters often indicate higher nutrient
concentrations due to the presence of high organic material (dystrophic), algae (eutrophic), or both (mixotrophic;
Figure 1). The NCP provides a unifying framework for contextualizing diverse patterns in limnology, such as the
importance of nutrient management in controlling eutrophication and the importance of light limitation of food
web productivity in humic systems (Karlsson et al., 2009; Maberly et al., 2020; Schindler, 1977).

Elements of this conceptual model have been formalized in a wide array of mathematical models of lake pro-
ductivity (e.g., Jäger & Diehl, 2014; Jones et al., 2012; Kelly et al., 2018; Vadeboncoeur et al., 2008; Vasconcelos
et al., 2018). Mathematical models of primary production like these are valuable for at least two reasons: they
summarize explicitly what is known or hypothesized about the mechanisms that drive observed patterns, and they
provide a tool for predicting responses of primary productivity to global change. In terrestrial ecosystems, for
instance, models such as the Community Land Model are widely used to describe patterns in primary productivity
across time and space (Lawrence et al., 2019), and there is a rich history in the terrestrial literature of model‐data
integration to update model formulation and parameterization (e.g., Caldararu et al., 2023; Keenan et al., 2012).
Likewise, the oceanography community has a long history of building and refining ocean biogeochemistry
models (Fennel et al., 2022), which are often coupled with larger earth system models (e.g., Community Earth
System Model). As sufficient multisite, globally distributed data on lakes become easier to share and access via
networks such as the Global Lake Ecological Observatory Network and other open science practices, limnologists
are similarly poised to test and parameterize deterministic lake ecosystem models (Soares & Calijuri, 2021). The
need for lake models is especially important as aquatic ecosystems are increasingly recognized as large com-
ponents of earth's greenhouse gas budgets and for their potential as nature‐based climate solutions.

In this study, we quantitatively test and parameterize the mathematical formalization of the NCP proposed by
Kelly et al. (2018; Box 1). The mathematical formalization of the NCP introduced by Kelly et al. (2018) is a
simple lake model that captures the effects of hydrologic residence time (HRT), input concentrations of dissolved
organic carbon (DOC) and phosphorus, and lake surface area on the supply of co‐limiting light and phosphorus
for phytoplankton primary production (Figure 1b). This formulation of the NCP incorporates trade‐offs between
lake physical characteristics (e.g., light attenuation) and chemical properties (e.g., nutrient concentrations), which
ultimately dictate biological processes (e.g., algal biomass and ultimately phytoplankton productivity). For
example, hydrologic loading of carbon and nutrients will stimulate algal growth in lakes to a point, but in highly
humic systems productivity will be limited by light availability (Houser, 2006; Kirk, 1994; Read & Rose, 2013).

James Rusak, Facundo Scordo, Michael
J. Vanni, Piet Verburg, Gesa
A. Weyhenmeyer
Formal analysis: Isabella A. Oleksy
Funding acquisition: Christopher
T. Solomon, Stuart E. Jones
Investigation: Isabella A. Oleksy
Methodology: Christopher T. Solomon,
Stuart E. Jones
Project administration: Isabella
A. Oleksy
Software: Isabella A. Oleksy, Christopher
T. Solomon, Stuart E. Jones
Supervision: Christopher T. Solomon
Validation: Stuart E. Jones, Carly Olson,
Brittni L. Bertolet
Visualization: Isabella A. Oleksy
Writing – original draft: Isabella
A. Oleksy, Christopher T. Solomon, Stuart
E. Jones, Carly Olson, Brittni L. Bertolet
Writing – review & editing: Isabella
A. Oleksy, Christopher T. Solomon, Stuart
E. Jones, Carly Olson, Brittni L. Bertolet,
Rita Adrian, Sheel Bansal, Jill S. Baron,
Soren Brothers, Sudeep Chandra, Hsiu‐
Mei Chou, William Colom‐Montero,
Joshua Culpepper, Elvira de Eyto,
Matthew J. Farragher, Sabine Hilt, Kristen
T. Holeck, Garabet Kazanjian,
Marcus Klaus, Jennifer Klug, Jan Köhler,
Alo Laas, Erik Lundin, Alice H. Parkes,
Kevin C. Rose, Lars G. Rustam,
James Rusak, Facundo Scordo, Michael
J. Vanni, Piet Verburg, Gesa
A. Weyhenmeyer

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008140

OLEKSY ET AL. 2 of 15

 21698961, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008140 by U
niversity O

f W
isconsin - M

adison, W
iley O

nline Library on [27/02/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



The process model assumes all primary production occurs in the surface
mixed layer, the depth of which is determined by lake surface area and by the
DOC concentration. The model includes three state variables–dissolved
phosphorus, terrestrial DOC, and phytoplankton biomass–and generates
realistic predictions for equilibrium rates of GPP.

Our approach is a process called data assimilation, which is widely used for
understanding terrestrial primary production, respiration, and other Earth
system processes. To optimize model parameterization, we used a Bayesian
Markov chain Monte Carlo analysis to assimilate information from the model
and the data (Peng et al., 2011; Williams et al., 2005). To that end, we used
data from a set of 58 globally distributed lakes from the Global Lake
Ecological Observatory Network with the goal of (a) understanding whether
the model provides a useful and generalizable framework for describing
variation in lake pelagic primary production, (b) highlighting potential im-
provements to the model, and (c) identifying the requisite data that might
improve our ability to describe and predict primary production in lake eco-
systems globally.

2. Methods
2.1. Overview

We assembled data on GPP, lake concentrations of total phosphorus (TP) and
DOC, HRT, morphometry, and other characteristics for 58 lakes distributed
across North America, Europe, Asia, and Oceania (Figure 2). The first stage
of our analysis focused on a subset of 18 lakes for which data were available
on stream inflow concentrations of TP and DOC (hereafter “calibration
lakes”). We used these calibration lakes to parameterize the Kelly et al. (2018)
model and quantify uncertainty in those parameters (Box 1, Table 1). In the
second stage of our analysis, we used the parameterized model and obser-
vations of lake HRT, TP concentration, and DOC concentrations to predict
surface mixed layer GPP, inflow TP concentrations (TPin), inflow DOC
concentrations (DOCin), and mixed layer depth (zmix) in each of the 18
calibration lakes, which were chosen for their monitored lake inflows and the
remaining 40 “validation lakes.” We compared these predictions to the
observed values to understand model performance and identify biases or
places for improvement all of which are outlined in detail below. All analyses
were performed using R statistical software (version 4.2.1; R Development
Core Team, 2022). All data produced in this analysis are published on
Environmental Data Initiative (Oleksy et al., 2024).

2.2. Observed GPP Estimates

We estimated daily surface mixed layer GPP for 58 lakes by fitting a model to
high‐frequency dissolved oxygen (DO) data by maximum likelihood as
described by Solomon et al. (2013) based on diel DO curves (hereafter

“observed GPP”). We estimated mixed layer depth (zmix) as the shallowest depth at which the rate of density
change exceeded 0.075 kg m−3 m−1, a value intermediate between the default in rLakeAnalyzer (Winslow
et al., 2019, 0.1 kg m−3 m−1) and Lamont et al. (2004, 0.5 kg m−3 m−1). Then, we multiplied daily volumetric
GPP estimates (mg O2 L−1 day−1) by daily mixed layer depth (meters) and converted to units of C by assuming a
1:1 respiratory quotient; thus, GPP is reported in areal units of carbon (mg C m2 day −1). However, we recognize
that a single respiratory quotient may lead to biases in GPP estimates (Trentman et al., 2023). Since the period
over which DO was measured varied by lake, we trimmed the data sets to include only observations May 1
through October 1 in the northern hemisphere or November 1 through April 1 for the southern hemisphere (Figure

Figure 1. Conceptual diagrams illustrating two different formulations of the
nutrient‐color paradigm (NCP). (a) In this version, lakes can be classified
into four trophic states depending where they fall on an axis of phosphorus
concentrations and true color. Figure modified from Meyer et al., 2023 and
originally formulated in Williamson et al., 1999. (b) A mathematical
formulation of the NCP originally introduced by Kelly et al. (2018). This
model predictions that rates of primary production are a function of
incoming C and P nutrient loads to a lake. The magnitude of peak gross
primary production depends on the relative availability of P:C in the
hydrologic inflows and the color of the dissolved organic matter (as
dissolved organic carbon concentrations).
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S1 in Supporting Information S1). The model developed by Kelly et al. focuses on estimating “equilibrium” or
steady‐state GPP (e.g., the last simulation day). To test and parameterize that model, we compared the modeled
output to the observed median GPP rates over that monitoring period. To examine empirical relationships be-
tween observed GPP and various chemical and morphometric characteristics of lakes, we fit several linear models

Box 1 Model Description

Overview: The formalization of the nutrient‐color paradigm introduced by Kelly et al. (2018)
is a simple lake model that uses hydrologic residence time, input concentrations of terrestrial
dissolved organic carbon and phosphorus, and lake surface area to produce estimates of
pelagic phytoplankton primary production. The model assumes all primary production oc-
curs in the surface mixed layer, the depth of which is determined by lake surface area and by
the DOC concentration. The model includes three state variables–phosphate, terrestrial
dissolved organic carbon, and phytoplankton biomass–and generates realistic predictions for
equilibrium rates of primary production.

Details: The model developed by Kelly et al. (2018) focuses on estimating “equilibrium” or
average GPP in a lake. The model includes a single, well‐mixed population of phytoplankton
(A; Equation 2) residing in the lake epilimnion, and assumes that no primary production occurs
below the thermocline. Losses from the phytoplankton pool include mortality (lA), sinking (v),

and hydrologic outflow (which is assumed to be equal to inflow, Qin). Pelagic primary production (r; Equation 3) has a theoretical maximum rate
(pA) and is co‐limited by the availability in the mixed layer of light (calculated from constant surface light I0, 350 μmol photons m−2 s−1, and light
at the bottom of the mixed layer Izmix; Equation 8) and nutrients (dissolved phosphorus, P) following Michaelis‐Menten relationships with half‐
saturation constants hA and mA. The model includes a dynamic DOC pool (C) and hydrologically linked inputs of DOC and biologically available
phosphorus (Cin, Pin). Terrestrial DOC is gained and lost via stream flow (Qin) and is subject to first‐order decay (d; Equation 1). Phytoplankton
experience the integrated light climate of the epilimnion and have access to an epilimnetic phosphorus pool (P; Equation 4) derived from the
watershed (Pin). Phytoplankton have a fixed stoichiometry (cA), and P is partially recycled (q) following mortality in the algal biomass pool (lA).
The volume of the mixed layer (Vmix) is estimated from zmix, which is a function of lake C and lake surface area (SA; Equation 5). Light
attenuation (kD) is calculated as the sum of the attenuations of DOC (kDOC) and phytoplankton (kA; Equation 6). Total P (TP) is calculated as the
sum of P in algal biomass (A) and dissolved P (Equation 7). To solve the equations, we use the LSODA integration solver implemented within the
ode function in the R package “deSolve” (Soetaert et al., 2010).

dC
dt

=
Qin
Vmix

(Cin − C) − Cd (1)

dA
dt

= A[r − lA −
v

zmix
−

Qin
Vmix

] (2)

r =
pA

kDzmix
ln(

hA + I0

hA + Izmix

) (
P

P + mA
) (3)

dP
dt

=
Qin
Vmix

(Pin − P) + qcAlAA − qrA (4)

zmix = 10
(−0.515 ∗ log10 C+0.115 ∗ log10(2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
SA
π +0.991

√
))

(5)

kD = kDOCC + kAA (6)

TP = qA + P (7)

Izmix
= I0 ∗ e(−kD ∗ zmix) (8)

Model scripts are available on https://github.com/MFEh2o/loadsGPP
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using the glm function in R. We used the gamma‐distributed response family and logarithmic link function and
report the Bonferroni adjusted p‐values.

2.3. Model Calibration

We estimated the parameters of the model by fitting the model to the observed median summer GPP, zmix, light
attenuation (kD), and in‐lake concentrations of TP, DOC, and phytoplankton biomass for the 18 calibration lakes.
These observations were collected as part of this study, except for phytoplankton biomass, for which we took
estimates for each lake from previously published studies (Table S1 in Supporting Information S1). We used lake‐
specific morphometry, HRT, stream discharge, and inflow TP and DOC concentrations to force the model (Kelly
et al., 2018). We divided lake volume by HRT to calculate average daily inflow for each lake (m3 d−1). To es-
timate DOC and TP concentrations in the inflow to each calibration lake, we calculated volume‐weighted con-
centrations as the sum of the stream nutrient flux divided by the sum of the total discharge over the study period.
Because the model generates predictions of change in biomass or net primary production (Box 1), we assumed
that autotrophic respiration was 20% of GPP (Del Giorgio & Williams, 2005).

We fit the model using a Bayesian Markov chain Monte Carlo (MCMC) technique (Besag et al., 1995; Hararuk
et al., 2018). We sampled from the posterior parameter distribution by proposing a set of parameters and accepting
or rejecting it using the Metropolis criterion (Gelman et al., 2013). We used uniform proposal distributions for the
first 30,000 iterations of the Markov chain and then calculated the parameter covariance matrix and switched the
parameter proposal distribution to the multivariate normal for another 170,000 iterations, with the covariance
matrix scaled by a factor of 1 for 30,000 iterations then by 0.2 for the next 40,000 iterations and 0.01 for the final
100,000 iterations (Xu et al., 2007). We initially used literature ranges as the bounds for the uniform proposal
distributions (Table 1) but extended those ranges after initial runs showed that the posterior distributions of
several parameters such as efficiency of phosphorus recycling from lost phytoplankton (q), maximum algal
production rate (pA), and half‐saturation constant for light‐limited phytoplankton (hA) ran up against the literature
bounds. We ran four chains, each starting from a randomly chosen parameter set drawn from the uniform proposal
distributions. Acceptance rates were around 27% for each chain. We discarded the first 100,000 iterations as a
“burn‐in” period and calculated mixing and convergence metrics (Rhat and effective sample size, Neff; Gelman

Figure 2. Global distribution of the 58 lakes included in this study. The “calibration” lakes are shaded in yellow and all others (“validation”) are in blue.
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et al., 2013) to assess performance of the algorithm. Following confirmation of algorithm performance, the chains
were pooled, and the median value for each parameter was used as a point estimate for further simulations. From
the pooled Metropolis parameter sets, 95% credible intervals were used to estimate our uncertainty in parameter
estimates.

2.4. Model Validation

To test the predictive ability of our model, we used our calibrated parameter point estimates to simulate the model
for the full 58 lake set (hereafter predicted GPP, DOCin, TPin, and zmix). We compared observed median GPP
values to steady‐state model output. We sped up the approach to equilibrium conditions by setting initial con-
ditions for simulations to observed phytoplankton biomass, DOC, and TP. We ran simulations for 2,000 time
steps. The state variables and process rates from the final day of the simulation were used as steady state values.

For most lakes (40 of 58), we lacked inflow concentrations of DOC and TP (DOCin and TPin). Thus, to predict
GPP for the validation lakes, we estimated DOCin and TPin for each lake by minimizing the sum of squared
differences between predicted and observed in‐lake concentrations of DOC and TP using the default Nelder‐Mead
algorithm in the optim function in R (Figure S2 in Supporting Information S1). The best performing DOCin and
TPin were combined with lake morphometry and HRT as drivers of a model run; the volumetric equilibrium
biomass production rate from each lake's model run is adjusted for autotrophic respiration (20% of GPP) and
multiplied by modeled equilibrium mixed‐layer depth (predicted zmix) to generate predicted GPP. Here, we use
point estimates of parameters from our calibration data set, and we do not use observed GPP in the process of
determining inflow DOC and TP concentrations. This allows us to generate predictions for GPP that are inde-
pendent of the observed GPP values.

3. Results
The lakes included in our data set were diverse in size, shape, nutrient concentrations, and productivity (Figure S1,
and Table S2 in Supporting Information S1). Most lakes were in the temperate biome (n = 44), though six were
subtropical and eight were boreal (Figure 2). Observed summer GPP varied over more than two orders of
magnitude, from <20 to >8,000 mg C m−2 d−1. Lake morphometry as well as in‐lake concentrations of nutrients
and DOM were similarly variable (Figure 3). For instance, lake surface area ranged from 0.02 to >2,300 km2,
mean depth from 0.7 to 110 m, residence time from 0.03 to 10 years, DOC concentration from 0.4 to 54.4 mg L−1

and TP from 2.4 to 298.5 μg L−1 (Figure 3, Table S2 in Supporting Information S1). Several morphometric and
chemical characteristics were correlated with rates of GPP; for instance, observed GPP was positively related to
in‐lake TP concentration and negatively related to the ratio of lake DOC:TP (Figure 3). Along a gradient of lake
volume and surface area, GPP also generally increased.

Observed GPP varied nonlinearly with both inflow DOC and TP concentrations in a manner consistent with
increasing light limitation as DOC inputs increased and decreasing nutrient limitation as TP inputs increased
(Figure 4a). This relationship with GPP held for lake DOC and TP concentrations as well with lower overall
concentrations of DOC and TP in lakes than inflows (Figure 4b, Figure S3 in Supporting Information S1).
Generally, GPP was highest at relatively low DOCin and intermediate‐to‐high TPin and lowest at high DOCin and
high DOCin:TPin (Figure 4a, Figure S4 in Supporting Information S1).

Model predictions of primary production, mixed layer depth, light attenuation, and in‐lake concentrations of TP
and DOC for the 18 calibration lakes achieved a good fit with observed values (adjusted R2 0.63–0.86). Pre-
dictions of GPP in the calibration lakes using the updated parameters (Table 1) were slightly biased (slope 0.5;
95% CI 0.41–0.92; Figure 5d); the underprediction of GPP was particularly notable for lakes with moderate to
high observed GPP with very high TPin (Figure S5 in Supporting Information S1). Predicted GPP had a sym-
metric mean absolute percent error (SMAPE) of 68% compared to observed GPP. Modeled to observed SMAPE
was relatively small for in‐lake concentrations of TP (39%) and DOC (39%) and for zmix (33%; Figure 5). In-
tercepts and slopes for DOClake, zmix, and kD were not different from 0 to 1, respectively (Figure S6 in Supporting
Information S1). All parameters showed good performance in our MCMC run (Table S3 in Supporting Infor-
mation S1). Overall, the predictions from the fitted model with updated parameters were much more precise and
much less biased than those from the previous version of the model (Kelly et al., 2018), which used literature‐
derived point estimates of the parameters (Figure S7 in Supporting Information S1).
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Our calibrated model generated good predictions of mixed layer depth and pelagic GPP in the 40 validation lakes
despite the need to estimate DOCin and TPin (Figures 5c and 5d). Predicted TPlake and DOClake for the 40
validation lakes were identical to the observations by nature of the procedure that we used to estimate inflow
concentrations for these lakes where observed DOCin and TPin were not available (Figures 5a and 5b). The ac-
curacy of the GPP and zmix predictions were similar for the full data set as for the calibration set with SMAPE of
72% and 34%, respectively (Figures 5c and 5d).

Figure 3. Empirical relationships between median gross primary production and a range of lake chemistry, hydrology, and
morphometry variables for the 58 lakes in this study. Bonferroni‐corrected p‐values are printed on each plot and regression
fits with 95% confidence intervals are shown for covariates with p < 0.05. Note log10 scale on both axes. HRT = hydrologic
residence time; WSA:LA = watershed area to lake area ratio.
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The updated parameter estimates were plausible relative to existing literature estimates of these parameters
(Figure 6). For all 10 parameters, the 95% credible interval overlapped with, or was contained within, the range of
values reported in the literature. Estimates of the DOC mineralization rates (d), the light attenuation coefficient of
phytoplankton (kA), efficiency of phosphorus recycling from lost phytoplankton (q), and the sinking rate of
phytoplankton (v) parameters were close to the previously observed ranges suggested by literature reports
(Figure 6). Credible intervals for the parameters were tightly constrained in some cases, such as d, kA, kDOC, v, q,
and loss rate of phytoplankton (lA), but much broader in others.

4. Discussion
The ability of the model to accurately predict pelagic GPP, with limited input data, across a tremendously diverse
set of lakes in which GPP rates span orders of magnitude speaks to the utility of the NCP as an organizing
principle (Naumann, 1921). The model captures some simple but fundamental mechanisms that govern phyto-
plankton productivity across lakes: specifically, how inputs from the watershed and lake morphology interac-
tively influence the nutrient and light climate. Our calibrated and parsimonious model shows promise in
addressing the long‐standing challenge of accurately modeling pelagic GPP across spatial scales for the very least
in temperate lake ecosystems. By testing and parameterizing this model, we advance the understanding of
variation in pelagic production across a wide range of limnological characteristics. Although several recent
observational and experimental studies have qualitatively evaluated this model (Bergström & Karlsson, 2019;
Bogard et al., 2020; Isles et al., 2021; Olson et al., 2020; Puts et al., 2023; Senar et al., 2021), to our knowledge
this work is the first to rigorously challenge the original model formulation and parameterization by confronting
the model with observations from a diverse set of lakes from temperate, subtropical, and boreal biomes.

The calibrated model parameters mostly overlap with ranges reported in the literature, though in some cases the
estimates were poorly constrained (Figure 6). For some of these parameters, the wide bounds likely arise because
of substantial variation in the true value of that parameter among our study lakes; kDOC, for instance, can be highly
variable among lakes (Lapierre et al., 2013; Thottathil et al., 2018). In other cases, those wide bounds may
indicate a lack of informative data for that parameter, equifinality issues in fitting a complex model, or the in-
fluence of processes that were not represented in the model structure (Table 1). Many of the more poorly con-
strained parameters are related to algal physiology (e.g., pA, the maximum production rate of photosynthesis and
hA, the half‐saturation constant for light‐limited production of phytoplankton), suggesting that physiological traits
or other community‐scale processes contribute to lake‐to‐lake variation (Edwards et al., 2013; Litchman, 2023;
Zwart et al., 2015). There is a clear trade‐off between generality, ease of use, and specificity in parameterization of
any model. For future applications of this model, we have provided constrained intervals from which to pull

Figure 4. (a) Relationship between lake gross primary production (GPP) and lake dissolved organic carbon (DOC) as a
function of DOC:TP of lake inflows and (b) Lake total phosphorus versus lake DOC as a function of GPP. Note log10 scale on
legends.
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candidate parameter sets and identified parameters on which to focus further empirical and theoretical devel-
opment (Table 1).

At least three priorities for model refinement are apparent from the systematic biases that we observed in some
model predictions. First, the model's omission of internal P loading is a likely explanation for low GPP predictions
in lakes receiving very high TP loads (Shatwell & Köhler, 2019; Welch & Cooke, 2005). Inclusion of internal P
loading may more accurately capture internal recycling of P that is necessary to sustain such high rates of GPP in
these eutrophic systems (Olson & Jones, 2022; Orihel et al., 2017). Second, in clear lakes where the euphotic zone
extends below the mixed layer, we may be underestimating pelagic primary production (Leach et al., 2018).
Further, benthic primary production can contribute substantially to whole‐lake production in shallow and clear
lakes (Seekell et al., 2015; Vadeboncoeur et al., 2003), thus improvements on the model should include these
important contributors to whole‐lake production. Lastly, the model may not capture the complete suite of
mechanisms driving mixed‐layer depth leading to an overprediction of zmix in lakes with a shallow zmix

(Figure 5c). Currently, zmix is a function of DOC concentration and surface area (Box 1; Perez‐Fuentetaja

Figure 5. Predicted and observed values of lake total phosphorus, lake dissolved organic carbon, mixed layer depth (zmix),
and gross primary production for the 18 “calibration” lakes (yellow) and 40 “validation” lakes (blue). Diagonal is the 1:1 line,
and the yellow and blue lines are linear fits for each set of points. Summary statistics for the validation lakes, including the
symmetric mean absolute percent error, the root mean squared error (RMSE), and the linear slope (and ranges of 95%
confidence intervals) are shown in the blue box on panels C and (d) Error bars represent ±1 standard deviation bars from the
MCMC output. In panels A and B, modeled lakes fall exactly on the 1:1 line because of our procedure for estimating TPin and
DOCin (see Methods Model validation). Note log10 scale on both axes.
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et al., 1999). However, inclusion of other important predictors including depth and chlorophyll a (Hanna, 1990;
Osgood, 1988; Perez‐Fuentetaja et al., 1999) or more complex representations of zmix that incorporate wind
stirring, convective overturn, and density‐induced flows may improve estimates (Hipsey et al., 2019; Krishna
et al., 2021). Future work could explore process‐based formulations for modeling internal P loading and zmix and
balancing process inclusion and parsimony. Ultimately, integrating our model with a 1D physical model could
improve model performance.

Additionally, the absence of a standard way of measuring and reporting water color or chromophoricity precluded
our ability to properly pinpoint the role of variation in DOC chromophoricity in estimating GPP. However,
inconsistent reporting in DOC composition makes it difficult to test this hypothesis or parameterize kDOC. Some
combinations of UV‐Vis absorption and fluorescence spectra indicators such as DOC‐specific absorbance at
254 nm, spectral slope ratio, fluorescence index, and others are reported in the literature (Jaffé et al., 2008; Sankar
et al., 2020; Spencer et al., 2012). These measurements are representative of various DOM properties, including,
but not restricted to, aromaticity, molecular weight, and source. Having simultaneously estimates of DOC,
chlorophyll a, and kD would allow us to better evaluate how much light the DOC is absorbing or not absorbing.
Alternatively, in the absence of these measurements for all the lakes, we could improve kDOC by developing
components of the model that allow one to predict chromophoricity of DOC from lake state or other easily
measured lake or lake‐watershed characteristics.

Along with changes in model structure and parameterization, changes in the types of measurements limnologists
make at their field sites may accelerate the process of learning from process‐based models. Calls for full lake
carbon and nutrient budgets have been made in other contexts; for example, making accurate predictions to
climate‐driven hydrologic changes (Hanson et al., 2015) or methane emissions (Beaulieu et al., 2019) will require
nutrient load data. Recent work has demonstrated the power of empirical nutrient loads to predict lake metabolism
(Corman et al., 2023). Nutrient loads are a key input to the model yet only 30% of the lakes had nutrient load
measurements. Although 18 lakes were a sufficient sample size for this calibration, the broader application of this
model relies on empirical estimates of lake nutrient loads. However, we acknowledge that standardizing nutrient
budget estimates across lakes will be a challenge, particularly in hydrologically isolated lakes where inputs are
largely diffuse (e.g., groundwater; Lewandowski et al., 2015).

Figure 6. Parameter estimates from this study (maximum likelihood estimate and 95% credible interval) compared to the original values used by Kelly et al. (2018) and
ranges observed in the literature (Table S1 in Supporting Information S1). cA = phosphorus to carbon quota of phytoplankton; d = dissolved organic carbon (DOC)
mineralization rate; hA = half‐saturation constant for light‐limited production of phytoplankton, kA = light attenuation coefficient of phytoplankton, kDOC = light
attenuation coefficient of DOC, lA = loss rate of phytoplankton, mA = half‐saturation constant for nutrient‐limited production of phytoplankton, pA = maximum
production rate of photosynthesis, q = efficiency of phosphorus recycling from lost phytoplankton, v = sinking rate of phytoplankton.
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5. Conclusion
Models like the one that we considered here could be applied to understanding patterns and changes in lake
ecosystems as they are improved and refined. Although terrestrial ecologists have a long history of model
intercomparison projects (Fisher et al., 2014), analogous approaches in limnology have been largely limited to
hydrodynamic modeling (e.g., LaKEMIP, ISIMIP). Our empirical test of this simple process model and data‐
driven calibration of its parameters will allow the limnological community to further test hypotheses and
make predictions about lake GPP at broad spatial scales. For example, future applications include simulating
potential environmental change impacts on lakes, such as how changes in precipitation or land use may alter
GPP in lakes of different sizes and hydrologic settings. Ultimately, the process of iteratively developing, testing,
and improving models is the key to moving our field toward better understanding and prediction of lake
ecosystem function, allowing us to constrain the fate of C in lentic ecosystems globally.

Data Availability Statement
Raw data for this project were contributed by coauthors and compiled from publicly available data repositories
by the National Ecological Observatory Network and the North Temperate Lakes Long‐Term Ecological Res-
earch Program. All the daily metabolism estimates, high frequency sensor data (DO, surface, photosynthetically
active radiation, and temperature), lake nutrients, lake nutrient loads, modeled output, and all appropriate met-
adata, including data provenance for previously published datasets, are available at Environmental Data Initiative
via 10.6073/pasta/e27f31948f7bbf4a4af3bc323467e785.
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