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Abstract: We present a Nonlinear Model Predictive Control (NMPC) framework for epidemic
spread mitigation using a Partial Differential Equation (PDE) based Susceptible-Latent-
Infected-Recovered (SLIR) epidemiological dynamic model. The spatio-temporal epidemic
spread predictions of the model were numerically validated in our previous work using
empirical COVID-19 data for Hamilton County, Ohio, employing a single-objective Genetic
Algorithm (GA) for training model parameters. The validated model serves as the basis for
the NMPC prediction and control framework developed to support the design of optimal Non-
Pharmaceutical Interventions for spread mitigation. We consider a cost function comprising
the infection spread density and the cost of applied control, with the latter representing
socioeconomic effects. With a prediction horizon (T,) of 30 days and a control horizon (T,) of 15
days. The NMPC investigates a uniformly distributed control scheme across the entire spatial
domain for three different time periods of the COVID-19 pandemic with distinct infection trends.
In summary, the article presents one of the first efforts towards developing an NMPC framework
based on a spatio-temporal epidemic dynamic model. The results provide an analytical basis for
improved spread mitigation of future epidemics.
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1. INTRODUCTION

The COVID-19 pandemic had a major impact globally
with the first cases occurring in Wuhan, China. As seen
from the Center for Disease Control’s Museum COVID-
19 Timeline CDC (2023), the infections began to spread
rapidly and soon COVID-19, caused by the virus SARS-
COV-2, was expanding globally at an alarming rate. In
response, Non-Pharmaceutical Interventions (NPIs) such
as social distancing, travel restrictions, masking, and lock-
downs in various degrees were implemented across the
globe, even as intense efforts were focused on developing
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pharmaceutical countermeasures including vaccine devel-
opment. However, the lead time essential to develop effec-
tive pharmaceutical interventions underscores the critical-
ity of NPI for effective spread mitigation, particularly in
the early stages of a novel epidemic. An epidemic is indeed
a complex dynamic system; therefore it is significant to
consider NPI as control interventions aimed at driving
an epidemic to lower infection states and seek to develop
NPI based on control-theoretic analysis based on available
empirical infection spread data. This viewpoint fundamen-
tally motivates the research reported in this paper.

Real-world epidemics are characterized by spatio-temporal
dynamics for which partial differential equations (PDE)
provide a more accurate representation (Mandal et al.
(2020); Yang et al. (2014)). Specifically, reaction-diffusion
type PDE are useful for studying the coupled, spatio-
temporal dynamics of multiple interacting entities, as evi-
dent in other applications (Deshpande et al. (2017); Wang



et al. (2012)). We also note here our previous work on
epidemic spread prediction using a PDE model, validated
using COVID-19 data from Ohio (Majid et al. (2021,
2022)).Yet another important classification is between de-
terministic and stochastic epidemic models. Uncertain-
ties arising from human behavior, the environment, and
pathogen transmission, all influence epidemic dynamics
pointing to the significance of stochastic models, includ-
ing the use of fractional stochastic differential equations
(Atangana and Igret Araz (2022)). Approaches such as
agent-based modeling (Maziarz and Zach (2020); Shamil
et al. (2021); Truszkowska et al. (2021)), as well as machine
learning techniques (Mehta et al. (2020)) have also been
used in epidemic dynamics in the COVID-19 context.

Turning next to control, several papers have discussed
Model Predictive Control (MPC) for COVID-19 spread
mitigation, using ODE frameworks (Carli et al. (2020);
Kohler et al. (2021); Scarabaggio et al. (2022); Morato
et al. (2022); Armaou et al. (2022)). While MPC based
on PDE frameworks have been reported in the context of
applications, for instance, (Wang and Yamamoto (2020);
Dufour et al. (2004); Dietze and Grepl (2023)), this re-
mains much less explored - particularly in the context of
epidemic control - and motivates our effort in this paper.
The primary contribution of this paper is to develop and
implement a Nonlinear Model Predictive Control (NMPC)
framework as a mathematical and computational tool
capable of determining control actions that optimize a
cost function accounting for infection spread intensity as
well as the socioeconomic costs of the applied control.
The approach employs our previously developed and val-
idated PDE-based SLIR model that captures the spatio-
temporal dynamics of epidemic spread (Majid et al. (2021,
2022)), allowing us to implement the control in spatial and
temporal granularity of our choice.

In Section 2, we discuss the mathematical modeling of
the SLIR PDE, the parameters implemented within the
model, the NMPC framework, and the implemented con-
trol scheme. An evaluation of the model using empirical
COVID-19 data for Hamilton County, Ohio is analyzed
in Section 3 along with the results obtained from the
NMPC simulations. Discussions around these results are
also presented. The conclusions from this research as well
as an outlook for further work are presented in Section 4.

2. MATHEMATICAL MODELING AND THE NMPC
FRAMEWORK

2.1 Partial Differential Equation Based SLIR Model

We begin by reiterating that the present effort builds
upon our previous work reported in (Majid et al. (2021,
2022)) that focused on developing and validating a PDE-
based SLIR modeling framework. The non-dimensional
compartmental model equations are:
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Where,

A - Birth rate in the domain.

ns - Diffusion coefficient representative of intensity of
the random motion of the susceptible population.

1, - Diffusion coefficient representative of intensity of
the random motion of the latent population.

71 - Diffusion coefficient representative of intensity of
the random motion of the infected population.

nr - Diffusion coefficient representative of intensity of
the random motion of the recovered population.

V¢ - Laplacian operator to represent the random motion
of the PDEs. Please note that throughout this work
Brownian motion is considered. As such the diffu-
sion operator a = 2 is applied.

7 - The period of latency between compartments.

f - Mortality rate due to natural deaths.

¢ - Infection rate.

0 - Removal of individuals from the infected compart-

ment due to death or recovery.
€ - Fraction of the infected population that survive
the latency period and enter the infected category.
u(zx,y,t) - The control parameter which is a function
of space and time.
fa(z,y) - Gaussian kernel defining the extent of the
mobility of the latent population.

Some observations about the model equations are in order
here. Firstly, we note that the coupling term in PDE for S,
i.e. that last term in Eq. 1, represents the transition from
the S to the Latent L compartment. A key point is that
the control u(z,y, t) is applied to this term. Secondly, that
the PDE system is of the reaction-diffusion type naturally
affords a probabilistic interpretation of the dynamics if
one considers the compartmental densities as probability
densities. In other words, the system of PDEs may be
considered similar to the Fokker-Planck type equations
invoked in stochastic dynamics. Finally, we note that to
obtain the parameters of the above SLIR equations, we
utilized a single-objective Genetic Algorithm (GA) follow-
ing a similar approach used by (Yarsky (2021); Torlapati
and Clement (2019)). The GA finds the parameters of
the above model that minimizes the error between the
model outputs versus the ground truth data (in this case,
COVID-19 data for Hamilton County, OH).

2.2 NMPC Framework and Methods of Control

The NMPC framework follows a closed-loop control
scheme. The approach utilizes the PDE-based SLIR
model presented in Eqs. 1 - 4, the parameters of which
can be trained using real-world epidemic data. Once this
training and initialization of the PDE states is completed,
the NMPC then begins its evaluation process where it con-
siders the control to be active. The approach determines
the control action that optimizes a specified cost function.
The PDE-based SLIR model is used to evaluate the cost
function based on the application of a control action over
a specified prediction horizon. The optimal control action



thus obtained is then applied for the length of our control
horizon. After this period, the process then begins again
for the period of our choosing.

For evaluating the model control was uniformly distributed
across the models environment. The numerical value of
the control action in the model given by equations 1 -
4 is denoted as u and is bounded as: 0 < u < 1. For
computational ease and also accounting for the fact that
NPI measures are discrete in practice, we consider the
control to be varying with the step size 0.1. In other
words, u belongs to a vector given by: v = [0,0.1,0.2,...1].
This allows the control action to potentially take on 11
different possible values each theoretically representing
discrete types of NPI measures.

We note that u is a multiplication factor in Eq. 1 affecting
the conversion of the susceptible population to the latent
population, and eventually to the infected population. The
control action u = 1 signifies that no control is applied;
correspondingly it allows maximum conversion. On the
other hand, u = 0 represents the strictest control scenario
such as a complete lockdown that does not allow any
conversion. The value that u takes on is applied as a
constant within the SLIR compartment/state equations
for the total length of the control horizon. To determine the
optimal control value that should be implemented for when
control is applied uniformly, we consider the following cost
function:
J(u) =

Where,

u - Control action.

W Weight factor applied to the control action (u).

= [ [I(z,y,T,)dzdy.

The cost function given by Eq. 5 is straightforward as the
main focus is to minimize the infection while penalizing

the control action. The I Fmal( u) term represents the total
number of infected people at the end of the prediction hori-
zon T}, obtained under control action u applied constantly
for the entire prediction horizon. The weight factor W is
a parameter that incorporates the cost of control in the
overall cost function. Note the term (1 —u) signifies that a
smaller value of v implies stricter control and hence needs
to be penalized more. Indeed, choosing the value of W
based on a deeper analysis of socioeconomic impacts from
NPI measures would be ideal; however, that is beyond the
scope of the current paper and is in the realm of future
work.

Ianal( ) + W(l - u)2 (5)
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3. RESULTS AND DISCUSSIONS
3.1 Hamilton County, Ohio Case Study

In this paper, the environment used for the application
of the SLIR state equations and the proposed NMPC ap-
proach is that of Hamilton County, Ohio. The dataset that
we have utilized contains the true infection and death data
based on the zip codes that make up Hamilton County.
The whole spatial domain is discretized into a 60 by 60
cell grid covering an area of approximately 413 square
miles. The SLIR state equations are also discretized
by applying Euler’s forward method. The resulting non-
dimensional/discretized SLIR equations are as follows
(Majid et al. (2021, 2022)):
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Here, X1'F"! represents the values of compartments/states
(S, L, I, or R) for a particular discrete location in (x,y)
on the day T + 1. o represents the latent population for a
discrete location on a specific day and the value is obtained
from infected/susceptible states using Eq. 10. Here, 7 is
the latency period which represents the time taken for an
individual to transition from the susceptible, latent, and
lastly infected population once exposed to infection. The
N term represents the total population corresponding to
the area of interest. The f, term represents a convolution
kernel for representing the mobility of the latent popula-
tion. Lastly, a Gaussian function is used to represent a
diminishing probability of the latent population moving
away from a specified location.

Within the 60 by 60 cells that are distributed across Hamil-
ton County, we have considered a Neumann Boundary
Condition. In the cells that may overlap with the boundary
line or approach the boundary line, there is no migration of
individuals across the boundary. If an attempt is made by
an individual in the population to cross the boundary (due
to diffusion terms in the model), it is simply redirected
back. This allows us to conserve the population within the
environment. Not all of the cells are directly in the true
environment of Hamilton County and as such these cells do
not contain this information but are still included. In total,
there are 1383 cells that contain the actual environment
space corresponding to the physical space in Hamilton
County, Ohio. Additionally, we assume that an individual
who has become infected is transitioned to the recovered
population after a period of 21 days.

To demonstrate our proposed approach using real-world
data, we consider three different time periods during the
COVID-19 pandemic for Hamilton County, Ohio. The
time periods are as follows: First (71) = April 20, 2020,
to June 3, 2020, Second (72) = October 15, 2020, to
December 28, 2020, and Third (7'3) = February 15, 2021,
to March 31, 2021. The time period (T'1) provide insights
into the influence of NMPC during the initial start of the
lockdowns imposed in Hamilton County. We also note that
around this time extreme countermeasures for mitigation
were starting to be implemented across the United States
in response to the initial wave of COVID-19 spread. The
time period (T'2) captures the start of the Alpha variant



of COVID-19. This variant began to spread in a super
spreader type manner leading to a significant increase in
infections across Hamilton County. By looking into the
effects that the Alpha variant imposed we can get a greater
understanding of the rapid dynamics that an infection
of this manner can yield. Lastly, the time period (7'3)
allows us to observe the decline of infections following
a dramatic increase that had occurred within Hamilton
County prior. This observation is based on the publicly
available empirical data. This transition period proves
to be a point of interest as it allows us to address the
dynamics while in a state of decay compared to that of a
state of growth such as what occurred during the second
time period (72).

As discussed previously, in order to obtain the necessary
parameters for the SLIR Eqs. 1 -4 & 6 - 11 we have made
use of a single-objective genetic algorithm. The reason we
have chosen to utilize a GA for obtaining the parameters is
because we found that in terms of computational time we
saw greater performance compared to the original method
used in Majid et al. (2021, 2022). The parameters that we
have obtained from the GA for the three time periods (T'1,
T2, and T3) can be seen in Table. (1).

Table 1. Model Parameters

Parameters (T1) (T2) (T3)
p) 0.0072 0.0308 0.0084
Ns 4.8818 x 10~° 6.7088 x 10~% | 6.1000 x 10~5
nL 3.1601 x 10~ 0.0816 2.9251 x 10~°
nr 1.8013 x 10~° 0.0062 2.2501 x 10~°
R 2.8900 x 10~° | 5.3970 x 108 | 6.8410 x 10~°
T 5 days 5 days 5 days
0 5.7700 x 10~ 15 | 2.8200 x 10~15 | 2.8030 x 10~ 1°
@ 4.0284 x 10~% | 4.6908 x 10=* | 3.2884 x 10~ %
5 0.0280 1.0002 x 10~7 0.0280
w 0.0283 0.0517 0.0490
€ 0.1353 0.1631 0.1500
a 0.8019 0.0029 0.6315

One of the first tasks is to obtain an appropriate value
of weighting factor W in the cost function given by Eq.
5. It may be noted that total infections would be min-
imum when strictest control corresponding to u = 0 is
applied. However, a strict control would have undesirable
socioeconomic effect in the region. Since a detailed anal-
ysis of socioeconomic impact of different interventions is
beyond the scope of this paper, we conducted a numerical
evaluation of the cost function to determine a suitable
value of W that would show demonstrable impact on the
cost function. In this evaluation, we observed the values of
W that would produce a convex curve for the total cost
function signifying the fact that a feasible choice of control
input exists where relative contribution of two terms in
the cost function, infections and cost of control, would be
properly weighted to have effect on the total cost value.
We found an appropriate value of W to be 9500 that has
been used in all of the simulations. In Fig. (1), an example
of the analysis that we performed for the weight factor W
can be observed.

In all the results presented as follows, we consider a
prediction horizon of 7}, = 30 days and control horizon
of T,, = 15 days. This means that the cost function
is evaluated for its value when prediction is carried out
for 30 days from the current day considering a constant

application of control u for entire 30 days. This process
is carried out at the interval of every 15 days which
means a new value of optimal control action is obtained
at every 15 days. In this paper, we present results for
2 succeeding applications of control actions at 15 day
intervals each. We have considered the control horizon of
15 days since it provides a good time granularity in which
interventions can be implemented in real-world. Also, a
prediction horizon of 30 days was chosen since a larger
value would result in erroneous prediction due to changing
nature of the pandemic.
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3.2 Simulation Processes

For each simulation, they follow the same steps. These
steps include: training/initialization, prediction, optimiza-
tion, and implementation. Where the prediction, optimiza-
tion, and implementation are repeated depending on how
many instances of applied control we are using. For each
of the simulations, we have considered that the process
is conducted two times (that represents the two instances
of control applied). This implies that we carry out the
optimization process twice with respect to the cost func-
tion Eq. 5. In each of numerical studies presented here,
real-world data from day 0 to day 30 is used to train
the parameters of the PDE-based SLIR model (please see
Majid et al. (2021, 2022) for details on this approach).
The first instance of control is applied from day 30 to day
45, and the second instance of control is applied from day
45 to day 60. In Fig. (2), we show the process that all
of the simulations follow. For brevity, we present the full
simulation process/results for the second time period (7'2)
only.

Figure (2) begins by showing the prediction of infected
people based on the output of the PDE-based SLIR
model. The model is trained using the real-world data from
Day 0 - Day 30. Subsequently, 11 different plots showing
infection numbers for 11 different potential values of u is
shown for the prediction horizon (7,(1) = 30 days, Day 31
- Day 60) for the 1st instance of control. Similarly, the next
plot shows the model prediction for infection numbers for
11 different potential values of u for the prediction horizon
(Tp(2) = 30 days, Day 46 - Day 75) for the 2nd instance of
control. The figure also shows the model outputs as a result



of application of the first instance of control (u = 0.50,
obtained from optimization process) from Day 31 - Day
45. Lastly, the final plot shows the real-world infection
numbers, model output when no control is applied (u = 1),
and when two instances of optimal controls (v = 0.50 for
both instances) are applied for the first control horizon
(T(1) from Day 31 - Day 45) and the second instance of
the control horizon (T,,(2) from Day 46 - Day 60).

Table 2. Simulation Results

Data Type (T1) (T2) (T3)
Optimal Control (1) vu=08 | u=05 | u=0.8
Optimal Control Cost (1) 2515 9874 3854
Optimal Control (2) u=08 | u=05 | u=0..8
Optimal Control Cost (2) 3288 8838 4411
Infections without Control 2840 13135 4343
Infections with Control 2135 7499 3474

3.3 (T1) - First Time Period

The results for the time period (T'1) (please see Table.
2) indicate a total number of 2135 infections, in contrast
to the 2840 infections observed in the absence of control,
i.e., approximately a 256% reduction in new infections. The
corresponding optimal control value was determined to be
u = 0.8 for both instances of control, where the cost of the
first instance of control was 2515 and the cost of the second
instance of control was 3288. Essentially, with respect to
the empirical COVID-19 data the NMPC has determined
that a moderate increase/application of control should be
taken at this time. However, this result makes sense given
that, at this time, the total number of infections were at
a lower amount compared to other time periods.

3.4 (T2) - Second Time Period

The results for the time period (T2) (please see Table. 2)
indicate a total number of 7499 infections when control is
active on the environment. In the absence of control, the
total number of infections was 13135. By applying control
to the environment, we observed approximately a 43%
reduction in infections. The corresponding optimal control
value for both instances came out to be © = 0.5, where the
cost of the first instance of control was 9874 and the cost
of the second instance of control was 8838. As mentioned
prior this time period is associated with the emergence of
the Alpha variant of COVID-19 leading to an increase in
infections as well as the total overall cost. Unlike the first
time period (T1), the cost for second instance of control
was lower than the cost for the first instance of control.
This proves to be interesting as we can infer this as the
control measure is achieving a steady level of containment
for the infection.

3.5 (T3) - Third Time Period

The results for the time period (T'3) (please see Table. 2)
indicate a total number of 3474 infections when control
is active on the environment. In the absence of control,
the total number of infections was 4343. By applying
control to the environment, we observed approximately a
21% reduction in infections. The optimal control for this
simulation followed the same behavior as that of the first

time period (7'1). For both instances, the optimal control
value came out to be u = 0.8, where the cost of the first
instance of control was 3854 and the cost of the second
instance of control was 4411. Overall, this simulation was
similar to that of the first time period such that both
of these simulations showcased an increase in cost for
maintaining the current control value.

4. CONCLUSIONS

We presented a Nonlinear Model Predictive Control
(NMPC) approach to the mitigation of epidemic spread.
Our underlying epidemiological model is an SLIR frame-
work wherein the spatio-temporal spread dynamics is rep-
resented using a system of coupled, reaction-diffusion type,
partial differential equations. Building upon this dynamic
model, we applied the NMPC approach to COVID-19
data for Hamilton County, Ohio, USA. The application of
control followed a uniformly implemented control scheme
across the entire spatial domain. Spatio-temporal reduc-
tions in new infections (i.e. the spread) corresponding to
this control scheme were quantitatively analyzed while ac-
counting for the cost of the control measures in each case.
Specifically, for the periods T'1, T2, and T'3 investigated,
both the first and third periods witnessed the application
of a minimum amount of control. While the second time
period implemented control with quantitatively medium
intensity. Ultimately, for all three time periods they each
experienced control uniformly across the domain and with
respect to the infection trends for these time periods the
optimized NPI control actions are shown to provide in-
creased mitigation of the epidemics spread.

We note that, to the best of our knowledge, this is one of
the first research efforts to develop an NMPC framework
for mitigation of epidemics using a PDE-based SLIR
model. Indeed, the results suggest several directions for
future work. The use of nonlinear PDEs within MPC
frameworks is itself largely unexplored, and there are in-
teresting theoretical merits in exploring approaches based
on linearization as well as rigorous PDE to ODE con-
versions. Additionally, in the context of epidemic miti-
gation, obtaining accurate representations of NPIs in the
SLIR model is also a noteworthy future direction of work
where a variety of mechanistic or data-driven approaches
can be explored. Expanding the uniform control scheme
to consider a targeted/selective control scheme based on
geographical areas also merits interest. Finally, obtaining
an accurate representation of the socioeconomic impacts
of the NPI measures is another challenging yet potentially
rewarding area of potential future work. We conclude with
the hope that the results presented in this article motivate
further research.
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