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Abstract—The COVID-19 pandemic has reinvigorated math-
ematical analysis of epidemic spread dynamics. We analytically
investigate a partial differential equation (PDE) based, compart-
mental model of spatiotemporal epidemic spread, incorporating
nonlinear infection forces accounting for saturation effects in the
infection transmission mechanism. Using higher-order pertur-
bation analysis and computing the local Lyapunov exponent, we
find the emergence of dynamic instabilities induced both by the
saturation parameter and stochastic environmental forces driv-
ing the epidemic spread. Notably, a second-order perturbation is
found to be essential to uncover the noise-induced instabilities
since they are not observed under first-order perturbations.
We also analyze the effects of saturation and noise on such
instabilities. Finally, using numerical, stationary solutions of
the governing PDEs, we study the formation of spatial patterns
of infection spread corresponding to the instabilities. We find
the emergence of diffusion-driven patterns in the deterministic
case and noise-induced patterns in cases when diffusion alone
does not induce steady-state patterns.

Keywords: Turing instability, pattern formation, stochastic
epidemic models, stability analysis.

I. INTRODUCTION

Accurate predictive models of epidemic spread - based
on real-time infection data - are critical precursors, both
for understanding dynamic spread patterns and for enacting
interventional control measures for effective mitigation. De-
spite extensive past research, the COVID-19 pandemic laid
bare critical shortcomings in this context and concomitantly
highlighted the need to critique both the fundamentals of
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mathematical modeling of epidemic spread as well as control-
theoretic approaches for efficacious interventions. Given that
uncertainties - arising, for instance, due to randomness in
human behavior and pathogen transmission characteristics -
can be critical drivers of epidemic dynamics, the importance
of treating epidemics as stochastic dynamic systems is well-
recognized [1]. A fruitful approach in this context is to
analyze the spatiotemporal evolution of an epidemic within
the framework of a compartmental model represented by a
system of coupled partial differential equations (PDE) of the
reaction-diffusion type. In previous papers, two of the co-
authors (S.R. and M.K.) and their colleagues investigated
such a PDE model and validated its predictive capabilities
using COVID-19 spread data from the state of Ohio, US [2],
[3]. In our more recent work, dynamic instabilities in a
related nonlinear PDE model were also uncovered using
higher-order perturbation analysis [4]. Here we advance this
effort, underscoring the fact that dynamic instabilities that
arise both due to nonlinearities, and the interaction between
nonlinearity and noise (both of which are justified in the
evolution equations of epidemic spread based on physical
considerations), can significantly alter the spatiotemporal
trajectory of an epidemic as well as the landscape of spread
patterns. Furthermore, we note :(1) dynamic instabilities can
be potentially correlated with abrupt and drastic changes
in epidemic spread patterns (e.g. super spreading events),
(2) uncovering instabilities often requires higher-order per-
turbative analyses, and (3) the study of instabilities and
pattern formation in standard reaction-diffusion PDEs, and
their profound implications for a broad class of physical
systems, has a long history which may be traced back to
the remarkable phenomenon known as the Turing instability.

Alan Turing reported that the disparity of diffusion co-
efficients of the two reacting species involved can drive a
homogeneous steady state of a reaction-diffusion PDE system
to instability [5], [6], [7]. Experimental evidence for the
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Turing instability was discovered in the 1990s [8] providing
great impetus for further research [5], [9], [10]. A key point
is that the classical Turing stability analysis applies only to
linear systems. However, motivated by the Turing instability,
higher-order perturbative approaches have uncovered the role
of nonlinearity in the loss of stability and pattern formation

in stochastic systems [9], [11], [12].
We focus on the emergence of instabilities and pattern

formation in both the deterministic and stochastic versions
of a PDE model of epidemic spread, studied using higher-
order perturbative analysis. We now note the significant
factors that distinguish the approach and the results in this
paper from those in our previously reported work [4]: (1)
a different nonlinear function that represents the infection
transmission mechanism, taking into account saturation ef-
fects (2) instabilities unique to the above nonlinear function
that emerge even under an exclusively deterministic analysis
(3) new results on noise-induced instabilities, and (4) contour
plots of the spatial infection patterns in the steady state,
corresponding to numerical solutions of the PDE. We now
address the important question of how nonlinearities enter the
epidemic PDE model. The PDE model belongs to the class
of compartmental epidemic models wherein a population is
partitioned into disjoint subsets of Susceptible (.5), Infected
(I), and Recovered (R) individuals. An epidemic evolves as
the I compartment gains individuals due to interaction with
the S compartment. Mathematically, the transition between
the S and I compartments is represented by the infection
force. Supported by empirical evidence of factors such as
human behavior patterns and saturation effects, the infection
force is often adequately represented by strongly nonlinear
functions [13], [14]. As a result, the epidemic model is
represented by a system of nonlinear PDEs. We also consider
random environmental effects on the infection spread and
represent those as a white noise excitation of the Infected
population density (/) PDE. We note that the interaction
between the nonlinearity and noise in the PDE system can
lead to complex dynamics such as stochastic resonance.

The rest of the paper is set as follows. The analytic
framework and the research methodology are presented in
Section 2. The results are presented in Section 3. The paper
concludes in Section 4 with a discussion of the results and
concluding remarks.

II. ANALYTIC FRAMEWORK AND METHODOLOGY:

In the complete compartmental model that underlies this
work, the full system of reaction-diffusion type PDEs consists

of four coupled PDEs - one each for the Susceptible (5),
Latent (L), Infected (), and Recovered (R) population
densities corresponding to the four respective compartments
[15], [2], [4]. However, since re-infections lie outside the
scope of the present analysis, and also since L does not
explicitly contribute to the infection force in the model, the
dynamics of the reduced system of coupled PDEs for S and
I may be meaningfully analyzed for stability. Therefore we
focus on this reduced system for our analysis.

We now address the rate of infection. In models without
saturation, the rate of infection is defined as B(I) = fol,
where [y represents the per capita contact, and I is the
infected population density. However, taking saturation into
account, the rate of infection 3(I) can be modeled as [16],

[17) .

py =1,

+al

where the term 1 + oJf? represents the inhibition effect
that leads to saturation, i.e. an upper bound on S(I). This
is interpreted as a ‘psychological’ effect reflecting human
behavior. This psychological effect is typically a consequence
of interventional measures that are enforced - represented
by a - such as isolation, quarantine, restriction of public
movement, aggressive sanitation, and so on [18]. For lower
infection values, a population might take an epidemic less
seriously, and this could lead to a rapid increase in the
rate of infection. However, as more and more people get
infected, individuals are more likely to acknowledge the
gravity of the situation and could start responding more
positively to protection measures. This behavioral change
could be manifest in the increased acceptance of protective
measures such as social distancing, sanitation, self-isolation,
and masking. This type of behavior indeed influences the rate
of further spread and is represented as a nonlinear function,
B(I), as specified in Eqn. (1). In this work, « is a non-
negative constant that stands for the rate of saturation. Higher
values of o represent faster saturation.

A. Model:

Considering randomness in the infected population density
and the nonlinear infection force given in Eqn. (1) [16], [17],
the system of coupled PDEs for S and I can be written as:

95 (x,y,1) Bo SI?

€]

o N el 2
5t =b—dS 1+aIQ+DV S (2a)
81 (gjvyat) 50 SI2 2
- AT T+E(t 2
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where b, the birth rate, d, and v the death rates and D is
the diffusion coefficient for the population density S, V2
is the Laplacian operator, and £(t,z,y) is a spatiotemporal
Gaussian white noise with

(€ (t1,m1,91) € (t2, 22, 92))
= 2D15 (.131 — 332) 1) (yl — y2) 1) (tl — tg) . (3)

Let (So, o) be the homogeneous, steady-state solution of
the system described by Eq. (2). The quantities Sy, and Iy
are obtained by setting the right-hand side of Eqn. 2 to zero
(taking time derivatives to be zero), along with vanishing
diffusion and noise terms. Thus (Sp,Ip) simultaneously
satisfies:

Bo SIZ
b—dSy — =0, (4a)
1+al?
Sol3
?%i%—vhzo. (4b)
0

The acceptable nontrivial solution of Eqn. (4) is obtained as

o b—’}/IO
fid ,

2
/(%) - (o + )
Iy = . (6)
Q(av—f—%)

Under no-noise and diffusion-less conditions, this solution
(So, Ip) is stable, based on sign constraints imposed on the
parameter values by physical considerations. However, it is
seen that competing populations (i.e. S, and ), if allowed to
diffuse, will self-organize in unique patterns. In other words,
pattern formation emerges if diffusion causes instability in
the homogeneous steady solution - the phenomenon at the
heart of the Turing instability. Some points are in order
here. Firstly, the ability of the diffusion parameter to cre-
ate instability could depend on the saturation parameter c.
Secondly, it is possible that diffusion alone is insufficient
to generate instability. However, diffusing populations may
undergo instabilities in the presence of noise of even small
intensity. These aspects are investigated in this work.

So ®)

B. Stability and Moments

For stability analysis, we first perturb the system from
its uniform steady-state solution as Sy — Sy + 4.5 and
Iy — Iy + d1. Moreover, in light of our previous results -

which underscored the importance of higher-order perturba-
tion analysis - we go beyond standard linear stability analysis
and invoke the Taylor series expansion up to second order in
the perturbation around (Sp, Ip) in our analysis. Following
the analysis similar to our work [4], we write the coupled
linear equations for moments in matrix form:

X = AX, (7

where X = (21,79, 73,24, 25)7, and A is a 5 x 5 matrix.
The components x; are given as x1 = (05), z2 = (JI),
x3 = (058%), x4 = (61%), x5 = (615S). The matrix A is
obtained as

ay az as a4 as

by by 0 —a4 —0j
A=10 0 2a1 0 2as |, ®)
0 2Cr O 2by  2by

C[ 0 b1 as h

where h = a1 + b, and other matrix elements are defined
as:

a1 = — |k*D +d+ Bolg (9a)
1 —1—0413 ’
2B80S01o(1 — al?)
= — = b
az (1+Oé[02)2 , a3 07 (9 )
BoSo[l — a3 (6 — o))
= 9
= (1+ al?)3 ’ ©)
Io(1 — al? 12
ap = Dol =ale) Pl o)
(14 alf)? (14 alf)
26050[0(1 — Oélg)
by = — |k* +v — 9
2 7 1+ al2) ©e)

III. RESULTS

The results fall into two categories - stability, and steady-
state pattern formation. The stability results are obtained by
numerically solving for the eigenvalues of A in Eqn. (7)
and plotting the maximal eigenvalue against the square of
the wave number % for each case of interest. We note that
this maximal eigenvalue is the leading Lyapunov exponent,
positive values for which indicate instability ( [9], [11], [4]).
The pattern formation results are obtained by numerically
solving for stationary solutions of the PDEs Eqns.2 and
obtaining contour plots of the solutions. We note that Eqn. (2)
is solved using a central difference scheme on a grid size of
100x 100, with Az = Ay = 1.0. The time step is At = 0.01,
along with no flux boundary conditions. Pattern formation
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is plotted on the z — y plane in a range of (10,100) on
each axis. The system parameters identical across all cases
are b=1,d = 1.0, v = 2.8, and § = 35.0. The varying
parameters are defined in the corresponding figure captions.
In the absence of diffusion D = 0.0 and noise (C; = 0.0),
the homogeneous stationary state (Sp, Ip) is stable for the
parameter values considered. However, if the susceptible and
infected populations are allowed to diffuse, instabilities in
the homogeneous stationary state emerge for certain values
of the diffusion constant D. Under noise-free conditions,
we observe uniquely diffusion-driven instabilities arising for
D = 6.0 from the dispersion relation plotted in Fig. (1). The
largest eigenvalue ()\) is positive over a finite range of k2
(square of wave number). This range depends on the value
of the saturation parameter («) and increases with lowering
a-values (i.e. lower saturation levels). This diffusion-driven
instability produces distinct patterns shown in Figs. (4)-(6).
As evident from these figures, without saturation (o = 0.0),
we obtain a mixed pattern of two types: stripes and dots.
However, with increasing values of the saturation parameter,
only stripe-like patterns survive [Fig. (6)]. Notably, with a
lower value of the diffusion constant D = 3.0, no diffusion-
induced instability is observed as the largest eigenvalue is
negative for the entire range of k-values [Fig. (2)] (for all
the three a values considered); correspondingly, no pattern is
seen in Fig. (7). However, if we introduce noise (C; = 0.1)
in the infected population dynamics, we see from Fig (3)
that the largest eigenvalue becomes positive in a finite range
of k-values for « = 0.0, and o« = 0.5. This is a noise-
driven instability and we obtain a noise-induced pattern in
Fig. (8) for & = 0.0 with an ensemble size of 10000.
While our choice of parameter values is based on numerical
experiments, other sets of appropriately chosen values could
yield similar results.

IV. DISCUSSION AND CONCLUDING REMARKS

For the nonlinear infection force considered, a first-order
perturbation analysis of the PDEs only captured the diffusion-
driven instability and was unable to uncover the effects of
additive noise on stability. However, a second-order per-
turbation demonstrates (i) the diffusion driven instabilities
(deterministic) and (ii) noise induced instabilities. In the
deterministic case, the instability persists for a wider range
of k-values, if we lower the value of saturation parameter
(). This range of k-values is smaller for higher levels of
saturation. This saturation drives the system from a mixed

pattern (stripes and dots) to a only stripes-like pattern, thus,
changing the spatial distribution of the infected population
in equilibrium. In the stochastic case, noise does not only
affect the existing diffusion-driven instability but it also can
instigate new instabilities.

To summarize, the results highlight that: (1) nonlinearity
and noise, both independently and in tandem, can induce
Turing-type instabilities and pattern formation; in particular,
both the saturation parameter and the transmission rate are
significant factors, (2) higher-order perturbative analysis can
uncover such instabilities that might be hidden under lower-
order analyses. Our ongoing research involves the physical
characterization of such instabilities with respect to epidemic
spread as well as a control-theoretic approach to driving epi-
demics rapidly to endemic equilibria characterized by specific
patterns. Finally, given the wide spectrum of research topics
- across disciplines - where reaction-diffusion PDEs and
Turing instability play a central role, we expect the results
to have broader significance beyond epidemic modeling.

0 0.5 1 15 2
k2

Fig. 1. The variation of largest eigenvalue (\) with the wave number k2
for second order perturbation. The parameter values are: C7 = 0.0 and
D =6.0
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Fig. 2. The variation of largest eigenvalue (\) with the wave number k2  Fig. 4. The contour plot of infected population density I in = — y plane.
for second order perturbation. The parameter values are: C; = 0.0, and  The values of other parameters are: o = 0.0, D = 6.0, and C; = 0.0.
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Fig. 5. The contour plot of infected population density I in  — y plane.
Fig. 3. The variation of largest eigenvalue (\) with the wave number k2 The values of other parameters are: o = 0.5, D = 6.0, and C7 = 0.0

for second order perturbation. The parameter values are: C; = 0.1, and
D =30
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