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Instabilities and Pattern
Formation in Epidemic Spread
Induced by Nonlinear
Saturation Effects and
Ornstein-Uhlenbeck Noise∗
We analytically study the emergence of instabilities and the consequent steady state pattern
formation in a stochastic partial differential equation (PDE) based, compartmental model
of spatiotemporal epidemic spread. The model is characterized by: (1) strongly nonlinear
forces representing the infection transmission mechanism, and (2) random environmental
forces represented by the Ornstein-Uhlenbeck (O-U) stochastic process which better ap-
proximates real-world uncertainties. Employing second-order perturbation analysis and
computing the local Lyapunov exponent, we find the emergence of diffusion-induced insta-
bilities and analyze the effects of O-U noise on these instabilities. We obtain a range of
values of the diffusion coefficient and correlation time in parameter space that support the
onset of instabilities. Notably, the stability and pattern formation results depend critically
on the correlation time of the O-U stochastic process; specifically, we obtain lower values
of steady-state infection density for higher correlation times. Also, for lower correlation
times the results approach those obtained in the white noise case. The analytical results
are valid for lower-order correlation times. In summary, the results provide insights into
the onset of noise-induced, and Turing-type instabilities in a stochastic PDE epidemic
model in the presence of strongly nonlinear deterministic infection forces and stochastic
environmental forces represented by Ornstein-Uhlenbeck noise.

Keywords: Epidemic modeling, partial differential equations, instabilities, perturbation
theory, stochastic analysis, Ornstein-Uhlenbeck noise.

1 Introduction
The study of epidemic spread dynamics, apart from being of the-
oretical interest, is an important precursor for developing effec-
tive interventions for mitigation based on control-theoretic anal-
ysis. The complex dynamics of epidemics was exemplified by
COVID-19, marked as it was by dynamical characteristics such as
infection spikes induced by superspreader events, varying transmis-
sibility of mutants of the causative virus SARSCOV-2, and so on.
More specifically, understanding dynamic instabilities triggered by
the nonlinear and stochastic characteristics of infection spread and
the consequent emergence of self-organized spread patterns is the
facet of the aforementioned complex dynamics that fundamentally
motivates this paper.
An effective approach to the study of instabilities is to consider
an epidemic as a nonlinear, stochastic dynamical system within
the framework of a compartmental epidemic model [1]. Here,
the nonlinearity emerges in mathematical models of a susceptible
population becoming infected. On the other hand, stochasticity is
essential to describe uncertainties (for example, in human behavior
and pathogen transmission characteristics) that critically influence
the spread dynamics. Notably, describing spatiotemporal dynamics
requires a coupled partial differential equation (PDE) framework
for the compartmental model since ordinary differential equation
(ODE) models only account for temporal dynamics. The effective-
ness of the PDE approach for predicting epidemic spread was high-
lighted using reaction-diffusion type PDEs in our previous work
[2,3]; an optimization scheme enabled the PDE framework to first
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learn the critical model parameters from actual COVID-19 spread
data for a 30 day period and then predict the spread dynamics for
the succeeding 15 days. Validating the approach using COVID-19
data from the entire state of Ohio, United States, as well as the
county of Hamilton, Ohio, we also found that the numerical pre-
dictions of COVID-19 spread obtained from the PDE model were
more accurate for the smaller geographical region of the county
than the entire state. These results also motivate the study of in-
stabilities in PDE epidemic models reported in the present work.
Instabilities in reaction-diffusion PDEs and their relationship to
steady-state pattern formation were first studied by Alan Turing. He
discovered that a homogeneous steady-state solution of a reaction-
diffusion PDE can develop instabilities owing to the disparity of
diffusion coefficients of the two reacting species considered [4,5].
Standing apart for its universality, the Turing instability has been
used to explain a variety of phenomena - particularly in the bi-
ological sciences - such as the formation of striped patterns on
zebras [6–9]. Remarkably, experimental evidence for the instabil-
ity was reported in the 1990s [10] motivating further advances
[4,11]. However, Turing’s stability analysis is conspicuously based
on linearized dynamics near the steady state. Therefore, despite its
elegance in the case of linear reaction-diffusion PDEs, the Turing
analysis is not directly applicable to nonlinear systems. Nonethe-
less, it has motivated higher-order perturbative analyses aimed at
understanding the role of nonlinearity and noise in triggering in-
stabilities, leading to self-organized pattern formation in nonlinear
stochastic reaction-diffusion PDEs [12].
In recent work, we studied the onset of dynamic instabilities and
consequent pattern formation in a stochastic PDE model of epi-
demic spread, invoking higher-order perturbative analysis [13,14].
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The key findings were: (1) Higher-order perturbative analysis un-
covered dynamic instabilities induced by stochastic environmental
effects - represented by white noise - in the presence of nonlin-
ear infection forces. Remarkably, a lower-order analysis could not
reveal these instabilities. (2) Saturation parameters in nonlinear in-
fection forces in tandem with diffusion coefficients and white noise
intensity can influence the onset of instability. (3) Self-organized,
steady-state patterns of infection spread were found, correspond-
ing to the instabilities. In particular, we reported the emergence
of diffusion-driven patterns in the deterministic case and white
noise-induced patterns in cases when diffusion alone does not in-
duce steady-state patterns (i.e. noise-induced patterns even in the
absence of the classical Turing patterns).
In this paper, we investigate the case of stochastic environmen-
tal effects on the infection spread dynamics represented by the
Ornstein-Uhlenbeck (O-U) stochastic process. The fundamental
point that motivates this effort is that the non-zero correlation time
of Ornstein-Uhlenbeck noise renders it a significantly better repre-
sentation of real-world uncertainties driving an epidemic spread
than the uncorrelated white noise process. Indeed, it is well-
recognized that white noise, while mathematically tractable and
attractive, is often an inadequate approximation of stochasticity in
the real world [15].
It is also of interest to note that the O-U noise process is a non-
Markovian process (a process with "memory"). Note that while
most real-world random phenomena are more accurately modeled
as non-Markovian processes [16], the Markovian approximation
(with its idealized, vanishing correlation time) is often used since
it more readily yields analytic results. In mathematical epidemiol-
ogy, while correlated noise has been utilized in a few studies on
compartmental models of epidemic spread [17,18], it is yet to be
understood in the context of reaction-diffusion-type epidemic mod-
els. Here we seek to understand the fundamental role of the finite
correlation time of the O-U noise process on the self-organized
behavior and to analyze its effects on the emergence of stationary
patterns. Furthermore, we show that our previous results corre-
sponding to the white noise case are recovered in the limit as the
correlation time of the O-U noise process tends to zero [13,14].
To reiterate, the study of instabilities in the PDE epidemic model
under Ornstein-Uhlenbeck noise is the novel contribution of this
work. Next, we briefly discuss the rationale for considering the
nonlinearity and noise in epidemic dynamics. In compartmental
models (of which our PDE model is an example), the population is
partitioned into disjoint subsets of Susceptible (S), Infected (I), and
Recovered (R) individuals; epidemic dynamics is characterized by
the I compartment gaining individuals owing to interaction with the
S compartment. This transition is mathematically represented by
the infection force. Based on empirical observations of saturation
effects in epidemic spread patterns, the infection force is often well
represented by strongly nonlinear functions [19–21]. Therefore
one obtains a nonlinear PDE model. On the other hand, random
environmental effects are well-recognized factors driving epidemic
spread [22,23]. Therefore nonlinearity and noise ought to be taken
into account in stability analysis.
The rest of the paper is set as follows. The PDE model and the
mathematical framework for the analysis are presented in Section
2. The results are presented in Section 3. The paper concludes in
Section 4 with a brief discussion of the results and an outlook for
further research.

2 PDE Model and Mathematical Framework:
The full system of reaction-diffusion type PDEs in the four-
compartment model of epidemic dynamics studied in our previous
work consists of four coupled equations. Each PDE traces the spa-
tiotemporal evolution of the Susceptible (𝑆), Latent (𝐿), Infected
(𝐼), and Recovered (𝑅) population densities corresponding to the
four distinct compartments [13,14,24,25]. Here, we consider a
𝑆𝐼𝑅 model and analyze the reduced, coupled system of the 𝑆 and 𝐼

PDEs. We note here that, in the absence of reinfections that lie out-

side the scope of the present analysis (we will consider reinfection
dynamics as a separate case in future work), the 𝑅 compartment
only serves as a reservoir for the recovered individuals and does
not significantly contribute to the overall dynamics. Therefore,
studying the reduced system can yet reveal interesting aspects of
the coupled 𝑆-𝐼 dynamics.
We now turn to the rate of infection - the source of nonlinearity in
the problem. In the simplest models, the rate of infection is defined
as 𝛽(𝐼) = 𝛽0𝐼, where the constant 𝛽0 represents the transmission
rate, and 𝐼 is the infected population density. Consequently, the
infection force - the key coupling term that describes the transition
from the 𝑆 to the 𝐼 compartment - is taken to be 𝛽0𝑆𝐼. Note that
the infection force thus defined is multiplicative; hence a nonlinear
function of 𝑆 and 𝐼. However, practical considerations suggest that
infection forces with growth constraints on 𝐼 owing to saturation
effects can provide more realistic models of the 𝑆 to 𝐼 transition
than the unbounded growth of 𝐼 produced by 𝛽0𝑆𝐼. These con-
siderations include the observation that, in the absence of a corre-
spondingly large increase in the number of susceptible individuals,
a rapidly spreading infection will run out of susceptibles to infect,
and saturate. Moreover, factors such as interventions by public
health administrations, and human behavioral changes induced by
increased awareness as the infection spreads across communities,
can also inhibit and saturate the spread [26]. Accounting for such
saturation effects, the infection force can be modeled as: (see, for
instance, [20])

𝛽(𝑆, 𝐼) = 𝛽0𝑆𝐼
2

1 + 𝛼𝐼2
, (1)

where 𝛼 is a positive constant that represents the saturation param-
eter.

2.1 Model:. We consider a nonlinear infection force with satu-
ration effects (see, Eq. (1)) to obtain a reduced system of coupled,
reaction-diffusion PDEs for 𝑆 and 𝐼 as:

𝜕𝑆

𝜕𝑡
= 𝑏 − 𝑑𝑆 − 𝛽0

𝑆𝐼2

1 + 𝛼𝐼2
+ 𝐷∇2𝑆, (2a)

𝜕𝐼

𝜕𝑡
=

𝛽0𝑆𝐼
2

1 + 𝛼𝐼2
− (𝛾 + 𝑑)𝐼 + ∇2𝐼 + 𝜉 (𝑡, 𝑥, 𝑦) , (2b)

where the birth rate is denoted by 𝑏, the death rate is 𝑑 in the
susceptible and infected population (owing to reasons other than
the considered epidemic), and 𝛾 is the recovery rate in the infected
population (represents individuals who recover due to vaccination
from the epidemic). The diffusion coefficient corresponding to
the susceptible population density 𝑆 is taken to be 𝐷. Note here
that, the diffusion coefficient in the PDE for 𝐼 is assumed to be
unity for ease of analysis. In other words, while we thus scale
the diffusion parameters, the analysis that follows will be valid for
other constant diffusion coefficients, say, 𝐷1 and 𝐷2 for the 𝑆 and
𝐼 PDEs, respectively. The Laplacian operator is ∇2, and 𝜉 (𝑡, 𝑥, 𝑦)
is the spatiotemporal Ornstein-Uhlenbech (O-U) process, which at
a point (𝑥, 𝑦) in space can be defined as [15]

𝜏
𝜕

𝜕𝑡
𝜉 (𝑥, 𝑦, 𝑡) = −𝜉 (𝑥, 𝑦, 𝑡) + 𝜂(𝑥, 𝑦, 𝑡), (3)

where the autocorrelation function of Gaussian white noise
𝜂(𝑡, 𝑥, 𝑦) reads as

⟨𝜂 (𝑡1, 𝑥1, 𝑦1) 𝜂 (𝑡2, 𝑥2, 𝑦2)⟩

= 𝜎2𝛿 (𝑥1 − 𝑥2) 𝛿 (𝑦1 − 𝑦2) 𝛿 (𝑡1 − 𝑡2) . (4)

Here 𝜎 is the noise intensity and the 𝛿(.) represent the Dirac
delta function of its argument. The correlation function of the
spatiotemporal O-U process is given by:
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⟨𝜉 (𝑡1, 𝑥1, 𝑦1) 𝜉 (𝑡2, 𝑥2, 𝑦2)⟩

=
𝜎2

2𝜏
𝑒−|𝑡1−𝑡2 |/𝜏𝛿 (𝑥1 − 𝑥2) 𝛿 (𝑦1 − 𝑦2) , (5)

We note that this O-U noise term in Eq. (2) represents the random
effects of the environment on the dynamics of 𝐼. Consider (𝑆0, 𝐼0),
the homogeneous steady state solution of the stochastic PDE system
described by Eq. (2). The equilibrium quantities 𝑆0, and 𝐼0 may
be obtained by setting the right-hand side of Eq. (2) to zero, in the
absence of diffusion and noise terms. Thus (𝑆0, 𝐼0) simultaneously
satisfies:

𝑏 − 𝑑𝑆 − 𝛽0 𝑆𝐼2

1 + 𝛼𝐼2
= 0, (6a)

𝛽0 𝑆𝐼2

1 + 𝛼𝐼2
− (𝛾 + 𝑑)𝐼 = 0. (6b)

The nontrivial solution of Eq. (6) is:

𝑆0 =
𝑏 − (𝛾 + 𝑑)𝐼0

𝑑
,

𝐼0 =

𝑏𝛽0
𝑑

+
√︃(︂

𝑏𝛽0
𝑑

)︂2
− 4(𝛾 + 𝑑)

(︂
𝛼(𝛾 + 𝑑) + (𝛾+𝑑)𝛽0

𝑑

)︂
2
(︂
𝛼(𝛾 + 𝑑) + (𝛾+𝑑)𝛽0

𝑑

)︂ .

It is important to note here that, in the absence of both the external
noise (perturbing the PDE for 𝐼) and the diffusion term, the solu-
tion (𝑆0, 𝐼0) is stable. However, it is to be expected that competing
populations in reaction-diffusion systems, if allowed to diffuse, will
self-organize leading to unique patterns. In other words, pattern
formation occurs if diffusion causes instability in the homogeneous
steady solution; indeed this remarkable phenomenon is termed the
Turing instability. Importantly though, while diffusion alone might
be insufficient for creating instabilities in a reaction-diffusion epi-
demic model, diffusing population densities may undergo instabil-
ities in the presence of noise of even small intensity. This interplay
between noise and diffusion becomes even more intriguing in the
presence of saturation effects and here we study this with a focus
on O-U noise.

2.2 Stability and Moments. For stability analysis, we consider
small perturbations to the uniform steady solutions, i.e., 𝑆 → 𝑆0 +
𝛿𝑆, and 𝐼 → 𝐼0 + 𝛿𝐼. Notably, to study the influence of noise
on the stability characteristics, we proceed beyond standard linear
stability analysis and consider the Taylor’s series expansion up to
the second order in the perturbation around (𝑆0, 𝐼0). To begin
with, we rewrite Eq. (2) in the following form:

𝜕𝑆 (𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝐹 (𝑆, 𝐼) + 𝐷∇2𝑆, (7a)

𝜕𝐼 (𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝐺 (𝑆, 𝐼) + ∇2𝐼 + 𝜉, (7b)

where

𝐹 (𝑆, 𝐼) = 𝑏 − 𝑑𝑆 − 𝛽0 𝑆𝐼2

1 + 𝛼𝐼2
(8a)

𝐺 (𝑆, 𝐼) = 𝛽0 𝑆𝐼2

1 + 𝛼𝐼2
− (𝛾 + 𝑑)𝐼 . (8b)

Next, we substitute the perturbations 𝑆 → 𝑆0 +𝛿𝑆, and 𝐼 → 𝐼0 +𝛿𝐼
into Eq. (2) and follow the steps similar to our previous work [13]

to obtain the time evolution of moments at an arbitrary grid point
in space with discrete correlation function

⟨𝜉 (𝑡1)𝑖 𝑗𝜉 (𝑡2)𝑘𝑙⟩ =
2𝐶𝐼

𝜏
𝑒−|𝑡1−𝑡2 |/𝜏𝛿𝑖𝑘𝛿𝑗𝑙 (9)

where 𝐶𝐼 =
𝜎2

4Δ𝑥Δ𝑦 for a step size of Δ𝑥 and Δ𝑦 along 𝑥 and 𝑦−axes.
Moreover, we simplify the correlators appearing in averaged equa-
tions of higher order moments [13] using Novikov’s theorem for
Gaussian noise process, i.e.,

⟨𝜉 (𝑡) 𝑓 (𝑢)⟩ =
∫ 𝑡

𝑠
⟨𝜉 (𝑡)𝜉 (𝑠)⟩

⟨︄
𝛿 𝑓 (𝑢)
𝛿𝜉 (𝑠)

⟩︄
𝑑𝑠, (10)

where 𝛿 𝑓 (𝑢)
𝛿 𝜉 (𝑠) is the functional derivative which needs to be calcu-

lated for non-Markovian noise with correlator defined in Eq. (9).
Under the assumption that the the correlation time (𝜏) is small, the
RHS of Eq. (10) can evaluated approximately [27,28].
Following [13], the system of coupled linear equations for the
moments may now be written in matrix form:

𝑋̇ = 𝐴𝑋, (11)

where 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)𝑇 , and 𝐴 is a 5 × 5 matrix. The
components 𝑥𝑖 are given as 𝑥1 = ⟨𝛿𝑆⟩, 𝑥2 = ⟨𝛿𝐼⟩, 𝑥3 = ⟨𝛿𝑆2⟩,
𝑥4 = ⟨𝛿𝐼2⟩, 𝑥5 = ⟨𝛿𝐼𝛿𝑆⟩. The matrix 𝐴 is obtained as

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝑏1 𝑏2 0 −𝑎4 −𝑎5
0 0 2𝑎1 0 2𝑎2
0 2𝐶𝐼

1+(𝛾+𝑑)𝜏 0 2𝑏2 2𝑏1
𝐶𝐼

1+𝜏𝑑 0 𝑏1 𝑎2 ℎ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where ℎ = 𝑎1 + 𝑏2, and the other matrix elements are defined as
follows:

𝑎1 = −
[︄
𝑘2𝐷 + 𝑑 +

𝛽0𝐼
2
0

1 + 𝛼𝐼20

]︄
, (13a)

𝑎2 = − 2𝛽0𝑆0𝐼0
(1 + 𝛼𝐼20 )

2
, 𝑎3 = 0, (13b)

𝑎4 = −
𝛽0𝑆0 (1 − 3𝛼𝐼20 )

(1 + 𝛼𝐼20 )
3

, (13c)

𝑎5 = − 2𝛽0𝐼0
(1 + 𝛼𝐼20 )

2
, 𝑏1 =

𝛽0𝐼
2
0

(1 + 𝛼𝐼20 )
, (13d)

𝑏2 = −
[︄
𝑘2 + 𝛾 + 𝑑 − 2𝛽0𝑆0𝐼0

(1 + 𝛼𝐼20 )
2

]︄
. (13e)

We note that the equilibrium solution is stable in the absence of
diffusion and noise (𝑘 = 0.0, 𝜎 = 0.0). Interestingly, without
noise, we only need linear stability to discuss the stability behavior.
Therefore, using linear stability, we obtain the condition for Hopf
bifurcation as

𝛾 + 2𝑑 +
𝛽0𝐼

2
0

1 + 𝛼𝐼20
=

2𝛽0𝑆0𝐼0
(1 + 𝛼𝐼20 )

2
, (14)

where (𝑆0, 𝐼0) is the equilibrium solution. Without saturation, the
critical value of 𝛽0 at Hopf bifurcation is straightforward to obtain
as

𝛽𝐻 =
𝑑4 + 4𝛾𝑑3 + 6𝛾2𝑑2 + 4𝛾3𝑑 + 𝛾4

𝛾𝑏2 . (15)
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Furthermore, the condition for Turing bifurcation in the absence of
noise is obtained from 𝑑𝑒𝑡 (𝐴) = 0 and 𝜕

𝜕𝑘2 [𝑑𝑒𝑡 (𝐴)] = 0.

3 Results
The results are presented under two categories: (1) stability, and
(2) self-organization resulting in pattern formation in the steady
state. We obtain stability results by numerically solving for the
eigenvalues of 𝐴 in Eq. (12) and then plotting the maximal eigen-
value in the plane of the square of the wave number (𝑘2) and the
diffusion coefficient (𝐷). This maximal eigenvalue is the leading
Lyapunov exponent (local), positive values of which indicate un-
stable behavior in the neighborhood of the stationary and uniform
solutions (𝑆0, 𝐼0) [12,13,29]. Furthermore, we obtain the region
of instabilities in the parametric plane of the saturation parameter
(𝛼) and the correlation time (𝜏) of the O-U noise. In the shaded
regions in Figs. (1) and (2), the largest eigenvalue is positive in-
dicating Turing instability. Additionally, results on Turing patterns
are obtained by numerically solving the PDEs Eqs. (2) for station-
ary solutions and thence graphing contour plots. The numerical
method employed to solve Eq. (2) is a central difference scheme on
a grid size of 200 × 200, with a grid spacing Δ𝑥 = Δ𝑦 = 1.0 along
the 𝑥 and 𝑦 directions, along with a time step of size Δ𝑡 = 0.01.
Note that to capture the patterns, one often chooses a large grid
size to cover even larger wavelengths and smaller wave numbers in
the solution. Also, in the numerical scheme, no-flux (Neumann)
boundary conditions are imposed, i.e., 𝜕𝑆

𝜕𝑥
= 0, 𝜕𝑆

𝜕𝑦
= 0, 𝜕𝐼

𝜕𝑥
= 0,

𝜕𝐼
𝜕𝑦

= 0, on the boundary. Pattern formation is shown on the 𝑥 − 𝑦

plane for the range (10, 200) along each axis. The values of the
parameters used to obtain the results are defined in the figure cap-
tions [30]. We note that the critical parameters for Hopf and Turing
instabilities are 𝛽0 and 𝐷 respectively. The critical value of 𝛽0 is
obtained in Eq. (15). The diffusion coefficient 𝐷 is crucial for
diffusion-induced Turing instabilities that emerge above a certain
threshold value of 𝐷 termed as critical value. This critical value
for 𝐷 can be determined from the shaded region in Fig. (1). This
critical value is 𝐷𝑐 = 7.1.
To analyze the diffusion-driven instabilities, we choose parameter
values that stabilize the homogeneous stationary state (𝑆0, 𝐼0) in
the absence of diffusion (𝐷 = 0.0) and noise (𝐶𝐼 = 0.0). As
a result of spatial diffusion of the susceptible and infected popu-
lations, the existing stable homogeneous stationary state becomes
unstable for certain values of the diffusion constant 𝐷. Under
noise-free conditions, we present the range of the diffusion coef-
ficient and the wave number in Fig. (1). Over these finite ranges,
the largest eigenvalue (𝜆) is positive. These ranges depend on the
saturation parameter (𝛼) and the transmission rate (𝛽0). More-
over, the range decreases with increasing 𝛼. Correspondingly, this
diffusion-driven instability produces the distinct patterns shown in
Figs. (4)–(7) for 𝛼 = 0.5. In the deterministic case, the pattern
formation is shown in Fig. (4). Furthermore, we switch on the
noise (𝜏 = 0.0) and obtain the instability region in 𝑘2 − 𝐷 plane
in Fig. (2) showing that the ranges for 𝐷 and 𝑘 , over which 𝜆

is positive, have expanded. In this case, the pattern formation is
presented in Fig. (5). Additionally, we plot the regions of insta-
bilities in the 𝛼 − 𝜏 plane in Fig. (3), where nonzero 𝜏 indicates
the Ornstein–Uhlenbeck noise process. The white stripes in the
plane represent Hopf instabilities that are not diffusion-induced.
We show the corresponding patterns in Figs. (6) and (7) respec-
tively for 𝜏 = 1 × 10−3 and 𝜏 = 5 × 10−3.

4 Discussion and Concluding Remarks
We reiterate that higher-order perturbative stability analysis can
capture the effects of additive noise that may be latent under lower-
order analyses. Also, contributions from the nonlinear infection
force accounting for saturation effects could be more conspicu-
ous under nonlinear stability analysis. Our results indicate that
the largest eigenvalue first becomes positive at a certain threshold

Fig. 1 The region of instabilities in k2 − D plane in de-
terministic case. The values other of parameters are:
b = 1.0, d = 1.0, α = 0.0, β0 = 35.0, γ = 1.5, CI = 0.0
and τ = 0.0.

Fig. 2 The region of instabilities in k2 − D . The values
other of parameters are: b = 1.0, d = 1.0, α = 0.0, β0 =

35.0, γ = 1.5, CI = 5 × 10−2 and τ = 0.0.

value of diffusion coefficient, depending upon the saturation and
noise parameters. Moreover, the O-U noise correlation time has a
notable influence on the spatiotemporal dynamics of the infected
population density; precisely, the density shifts to the lower side
with an increase in correlation time. Also, notably, the patterns
corresponding to lower correlation time approach those obtained
for the white noise case (Fig. (5)). This offers validation for the
numerics since O-U noise, by definition, tends to white noise in the
limiting case of vanishing correlation time. Finally, we note that
the analysis presented is valid for smaller correlation times. This
limitation is related to the evaluation of functional derivatives for a
nonlinear system under a correlated noise using Novikov’s theorem
[27,28]. In light of these results, investigating the emergence of in-
stabilities for other, strongly nonlinear infection forces is a subject
of our ongoing research. Furthermore, since nonlinear, stochastic,
reaction-diffusion type PDEs arise in a variety of contexts, we ex-
pect these results to be significant well beyond epidemic dynamics.
Yet another important direction of further research is validation of
the O-U process as a representation of environmental uncertainties
influencing epidemic spread. Based on previous results, we expect
the methodology we previously used for validating a PDE epidemic
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Fig. 3 The region of instabilities in α −τ plane. The val-
ues other of parameters are: b = 1.0,d = 1.0, β0 = 35.0,
γ = 1.5, D = 10.0 and CI = 5 × 10−2.

Fig. 4 The pattern formation in infected population den-
sity in x − y plane in the deterministic case. The values
of parameters are: b = 1.0, d = 1.0, β0 = 35.0, γ = 1.5 and
D = 10.0.

model using COVID-19 spread data [2,3] to be effective in the case
of the O-U process as well. Specifically, numerical simulations of
spatiotemporal spread - obtained from the PDE epidemic model
driven by O-U noise - can be compared against actual infection
data in validation studies involving the O-U process. We intend
to investigate the aforementioned directions and conclude with the
hope that the presented results motivate further research.
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