
1

Reinforcement learning-guided control strategies for CAR T-cell

activation and expansion

Sakib Ferdous1, Ibne Farabi Shihab2 , Ratul Chowdhury1 and Nigel F. Reuel1*

1. Department of Chemical and Biological Engineering, Iowa State University

2. Department of Computer Science, Iowa State University

Corresponding Author – Nigel F Reuel

Email – *reuel@iastate.edu

Address –

3051 Sweeney

618 Bissell Rd.

Ames, IA 50011-1098

Phone: 515-294-4592

Sakib Ferdous – ferdous@iastate.edu

Ibne Farabi Shihab – ishihab@iastate.edu

Ratul Chowdhury – ratul@iastate.edu

Running Title - Reinforcement Learning guided CAR T-cell activation

mailto:*reuel@iastate.edu
tel:1-515-294-4592
mailto:ferdous@iastate.edu
mailto:ishihab@iastate.edu
mailto:ratul@iastate.edu

2

Abstract

Reinforcement learning (RL), a subset of machine learning (ML), could optimize and control

biomanufacturing processes, such as improved production of therapeutic cells. Here, the

process of CAR-T cell activation by antigen presenting beads and their subsequent expansion is

formulated in-silico. The simulation is used as an environment to train RL-agents to dynamically

control the number of beads in culture to maximize the population of robust effector cells at

the end of the culture. We make periodic decisions of incremental bead addition or complete

removal. The simulation is designed to operate in OpenAI Gym, enabling testing of different

environments, cell types, RL-agent algorithms, and state inputs to the RL-agent. RL-agent

training is demonstrated with three different algorithms (PPO, A2C and DQN), each sampling

three different state input types (tabular, image, mixed); PPO-tabular performs best for this

simulation environment. Using this approach, training of the RL-agent on different cell types is

demonstrated, resulting in unique control strategies for each type. Sensitivity to input-noise

(sensor performance), number of control step interventions, and advantages of pre-trained RL-

agents are also evaluated. Therefore, we present an RL framework to maximize the population

of robust effector cells in CAR-T cell therapy production.

Keywords

CAR T-cell, Reinforcement Learning, Autonomous Process Control, Cell Culture, Deep

Reinforcement Learning, T-cell Activation

3

Introduction

 CAR T-cell activation is a critical production step for therapeutic cells that is a prime

candidate for adaptive control strategies due to their stochastic behavior. As a brief review (Fig

1a), CAR-T cell therapeutics involve the collection and separation of naïve T cells from the

patient, transfecting them to produce Chimeric Antigen Receptors (CARs) and expanding them

to provide a suitable count of activated cells. These are then infused back into the patient,

where they efficiently attack the malignant cells (Finck et al., 2020). Activated T-cells proliferate

more rapidly than naïve, so CARs are more readily expressed (Watanabe et al., 2018). One

popular approach to activate the cells is by using artificial antigen-presenting beads (aAPC).

However, prolonged proximity to aAPCs can lead to cell exhaustion (Gattinoni et al., 2011;

Kouro et al., 2022; Piscopo et al., 2018; Wherry & Kurachi, 2015a). Exhausted cells consequently

lose reproductive and therapeutic capacity (Wherry & Kurachi, 2015b). The objective of an

activation and expansion campaign is to have the maximum number of robust active cells.

There is an optimal strategy for activation (bead addition) such that maximum cells remain

activated while the number of exhausted cells is minimized (Watanabe et al., 2018). However,

such optimal strategies are difficult to model and predict due to variable activation and

propagation rates of donor cells based on age and other genetic factors (J. Jiang & Ahuja, 2021;

Mehta et al., 2021).

Static recipes are the current standards for aAPC use in CAR T-cell activation with some

new attempts at model predictive control. In most cases, beads are added at the beginning of

the culture and removed at the end (Levine et al., 2017; Piscopo et al., 2018; Vormittag et al.,

2018). Prolonged signaling causes exhaustion, which can be mitigated by halting expression

4

early (Finck et al., 2020; Kouro et al., 2022). It has been observed, that intermittent exposure to

beads yields a greater number of robust effector cells; however, the underlying activation-

exhaustion mechanism to inform aAPC dosing patterns across all cell populations remains

elusive (Kagoya et al., 2017; Philipp et al., 2022). No monitoring or control is involved in the

activation process, which could partially explain the loss of potency of manufactured CAR T-

cells (Gumber & Wang, 2022).

Model predictive control (MPC) informed by process sensors have the potential to

optimize CAR T-cell manufacturing (Mc Laughlin et al., 2023); however, their application is

limited by the need of a fully developed process model (Rashedi et al., 2023; Sommeregger et

al., 2017). Population dynamic models can provide more cell level spatial and temporal

resolution than a mechanistic model (Prybutok et al., 2022). The stochastic nature of cells is

difficult to fully model in a predictive fashion, and therefore adaptive control strategies that can

update their control policy based on observed cell behavior are well suited. Model free RL

algorithms optimize a policy, or value function, instead of modeling the environment. It can

learn directly from continuous sensor data and is useful in situations where it is difficult to

model the environment.

Reinforcement learning (RL) is an adaptive control strategy for complex environments

that do not obey analytical models (Sutton & Barto, 2018). The RL agent discussed in this work

is a deep neural network. In the neural net, there is an input layer of neurons at the start, an

interconnected, hidden layer of neurons in the middle, and an output layer at the end. Each of

these neurons contain adjustable constants, or weights, which are initialized before training.

The input data array is multiplied with the weights of each layer in turn and produces an array

5

of numbers choosing either of the permitted action at the output layer. The environment

receives the action and responds to it. A reward or penalty is assigned to the RL-agent based on

progress towards a desired objective. In the training phase, the weights are adjusted iteratively

on basis of the reward it achieves in each training run. Through iterative rounds of training, the

neural net settles on weights which maximize likelihood of choosing the output action that

achieves the highest reward. RL has been widely used for other stochastic environments such

as chatbots (Miner et al., 2020), autonomous vehicles (‘Safe Driving Cars,’ 2022), robot

automation (Han et al., 2023), stock price prediction and projections (Meng & Khushi, 2019),

and manufacturing and supply chain control (Rolf et al., 2022). RL-agents can perform better in

an actual, physical environments after being trained on incrementally complex simulated

environments (Cutler & How, 2016).

Despite being a well-established field, the application of RL to optimize biological

systems (Neftci & Averbeck, 2019) is largely untapped. The main reason could be the lack of

suitable environments, or digital twin simulations, to train the RL agent and the confounding,

inherent variability in biological processes. To benchmark new RL algorithms, OpenAI has

established a test platform called Gym (Brockman et al., 2016), with several environments on

which new policy algorithms can be tested. There are different environments coded for specific

control tasks, for example robo-gym for robotic tasks (Lucchi et al., 2020), panda-gym for multi-

goal robotic task (Gallouédec et al., n.d.) and MACAD-gym (Palanisamy, 2019) for self-driving

bots. Biological processes have an added level of stochasticity over these physics-based

systems. Actions by the RL-agent on a biological environment will produce a stochastic

6

outcome rather than a deterministic one. The first step to testing this approach is to build a

suitable ‘digital twin’ test environment.

Multiple efforts have been made in modeling T-cell expansion and activation (Molina

Paris & Lythe, 2021). Researchers have attempted defined, analytical models with systems of

ordinary differential equations (Bidot et al., 2008). Stochastic approaches have also been

proposed where each cell is an autonomous entity governed by its own dynamics (Neve-Oz et

al., 2018). None of these models can account for system changes not built into the analytic

model or covered by the range of modeled variability. Moreover, thy do not provide an

interactive process which can respond to intermittent changes and thus cannot be used to train

a self-learning algorithm to develop control rules. Such a simulation framework is needed to

train and test the RL agent approach.

7

Figure 1: (a) CAR T-cell manufacturing process- i. naïve T-cells (red) are taken out of the body by

leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are

applied to activate the naïve cells, iii. The naïve T-cells are activated (blue), over exposed cells

undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic,

intelligent process control of activation in a simulated cell culture to control real culture with

trained policy. The state observation data is collected in tabular, image or combined format as

an input to the deep neural network or RL-agent; the agent then selects either of the three

permitted actions – add, skip, or remove beads in each control step. Through iterative rounds

State n

 e ve

 dd

S i

()

(0)

()

 agent

i

ii iii iv

v

 nvir n ent

Si lated eal

(a)

()

8

of training, the RL-agent learns to map each state to an action which optimizes the end goal of

maximum number of robust effector cells.

In this paper, we construct a digital twin test environment for CAR T-cell expansion from

individual cell properties and explore the ability of RL agents to determine optimal aAPC bead

exposure for varying cell types. CAR T-cell activation and expansion is first coded as a 2D

simulation where the RL-agent can decide to add, skip, or remove aAPC to a given population of

T cells, with the objective of maximizing count of activated cells at simulation end. The

simulation is then converted into a customized gym environment in OpenAI Gym, enabling the

testing of several RL algorithms to benchmark policies for this custom environment. An RL

agent then settles on an optimized strategy by repeatedly interacting with the environment.

Three model-free algorithms –proximal policy optimization (PPO) (Schulman et al., 2017), actor-

critic algorithm (A2C) (Mnih et al., 2016), and deep Q-learning network (DQN) (Cruz et al., 2023)

are selected as candidate algorithms and are trained in this environment using three different

observation space inputs: 1) list of cell counts and other measurable features, 2) image of 2D

cell environment, and 3) a combined list-and-image approach (Supplement 5). Different cell

types are then used to test how the policies adapt their control strategies of bead dosing. The

effect of noise from poor measurement sensors on training efficiency is also tested with

observation variables corrupted with Gaussian noise. Finally, the effects of changing the

number of times the the RL-agent is allowed to interact with the environment and effects of

pre-training agents on control performance are also tested and discussed.

Results

9

Design of CAR T-cell Simulation

Before attempting to optimize and control a physical system, the bead-based CAR T-cell

activation process is simulated as an RL environment in this work (Figure 1a, 2). The simulation

is used as a training ground (‘environment’ in RL language) for the RL-agent algorithm. The

objective of the training is to maximize the number of activated CAR T-cells through dynamic

control of bead addition and removal. At specified sampling time points, measurable features

(or the observation space) from environment are provided to the RL-agent. The observation

space includes statistics of the environments (number of naïve or activated cells and robustness

of cells from morphology) and process parameters (time elapsed and bead added and/or

microscopic image of the culture). The agent policy maps the observations to preferred actions

and is iteratively developed by the agent in the training steps. Using the observation space, the

agent can decide to add more beads, take away all beads, or refrain from acting at that step

(Figure 1b) based on its current policy. The RL-agent then receives a reward or penalty based on

number of activated cells which is used to adjust the weights of the neural net underlying the

policy.

A 2D surface (Figure 2a) for cell growth is simulated as a continuous 𝑛 × 𝑛 grid with a

spacing of 10 microns to match the approximate cell diameter (X. Jiang et al., 2020). In all the

simulations, a 50×50 grid corresponding to a 500 by 500 sq-micron area is used. For better

clarity in observing the cells (in Figure 2a), a 20 × 20 grid subset is shown for demonstration.

The simulated expansion area is made continuous (periodic boundary) to decrease

computational cost and approximate a larger area. If a cell exits the simulation grid through one

end, it reappears on the opposite end.

10

All defined parameters for this simulation are described in Table 2. Although attempts

were made to associate these parameters with literature values, some assumptions were made

for cases where literature or experimental value are yet to be published. It is important to note,

that the modular simulation and RL training presented here can be readily updated as more

measured values are determined through experiments. A fixed time method (Ruiz Barlett et al.,

2009) is used with a value of 6 min per step, derived from the approximate time a cell

translates one diameter away or to the next grid spacing (velocity of the cell is ~2 microns per

minute (Azarov et al., 2019)). Other factors affecting cellular migration, like media viscosity, age

of the cell, size of the cell, etc., are neglected in this simplified model. The total simulation lasts

for a 7-day expansion campaign, equivalent to 1600 simulation steps. Bead-to-cell contact,

bead-to-cell ratio, and confluence are considered in the simulation rules, considering their role

in the activation efficiency (Arman Aksoy et al., n.d.).

 At the start of the simulation, the grid is randomly seeded (Figure 2a, n = 1) with a

specified number of naïve T-cells indicated as red cells. The following steps are iterated for each

cell in the simulation: Step 1. It can propagate to any of the eight adjacent cells if it satisfies

movement conditions, namely vacancy at the chosen grid and probability of making a move at

that step determined stochastically (Figure 2b and Supplement 2). Step 2: If a naïve cell

occupies a position where an activation bead (coupled to anti-CD3 and anti-CD28 antibodies) is

present and if certain conditions (probability of activation at that step beyond a threshold

determined stochastically, detailed in Supplement 2) are met, the naïve cell is activated and

turns blue in the simulation (Figure 2b). Step 3: If an already activated cell gets in a position

with a bead, it gets exhausted depending on the value of the specified exhaustion rate (Figure

11

2b and 2c). Step 4: At each timestep, the activated cell is exhausted as natural, transient

exhaustion rate (Wherry, 2011) which is (
natural exhaustion

total timesteps
) times smaller compared to

accelerated exhaustion caused by overexposure and stimulation caused by beads (see Table 1

and Figure 2c). Each cell has several attributes tracked through the simulation, such as activated

potency, which starts at 0 with naïve cells and steps to the value of one when activated (Figure

2c). Step 5: An activated cell can proliferate under conditions of matured age, potency, and

stochastic probability (Figure 2b and detailed in Supplement 2).

12

Figure 2: Simulation replicating cell activation and expansion (a) Sample simulation trajectories

for three control strategies – top to bottom row depicts optimum, sub-optimum, and random

bead additions; the bar plot at left indicates the number of cells separated by type at each

simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead

addition, (-) refers to the removal and (o) refers to no action; the right three windows are

simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each

simulated step. (c) Simulated life trajectory of a naïve starting cell to activated with full potency

(a)

() ()

 r agates in
di erent dire n

 ets
a vated
(l e ells)

Cell e a s n
(ell w ells)

 a ve
 ells

 r liferates in n er
(l e ells)

 vat r eads

 va n
 nta t

 a s n
 ver e s re

0

te
n

 i e

 a ve vated a sted

S etri
regenera n

 s etri
regenera n

er

f
 e
lls

 0

0

 0

0

 0

0

 ns a e r gressi n

n n n

 li

S li

 and li

 a ve
 ells

 vated
 ells

 a sted
 ells

 vat r
 eads

13

and natural exhaustion caused by aging. Also defined are two modes of division – symmetric

and asymmetric.

This work has two distinct parts: the CAR T-cell culture simulation (the environment)

and the RL algorithm (agent), which updates its policy as it interacts with the environment. The

RL-agent can add beads, take out beads, or skip taking any action at the time step. Literature

and protocols show that the optimum bead-to-cell ratio varies widely from 3:1 to 9:1

depending on bead and cell type (Trotman-Grant et al., 2021; Zhang et al., 2023). Considering

that the system is seeded with 50 cells, ten beads are allowed to be added in each control step

(beads can be added in consecutive steps). If a control step occurs every 3.2 or 8 hours, there

are 32 and 80 timesteps between actions, and the agent can take a total of 50 and 20 control

actions for each seven day simulation respectively. In the case of bead removal, a magnet

removes all the beads at once (assuming the use of commercial paramagnetic beads). This is

one important real-world constraint where the RL-agent does not have the choice to

incrementally add or take out beads; it must add in a specified amount or take out everything

at a single step. Based on the properties of the cell (such as regeneration rate, how much it

exhausts over time, the chance of getting converted if encountering a bead), the sequence of

actions chosen by the agent can be optimal (large population of robust effector cells marked

with blue), or sub-optimal (low number of effector cells or low potency effector cells marked

with yellow) at the end of all expansion steps (Figure 2b).

Evaluating RL agent input strategies and algorithms

14

At each control step, the RL-agent-algorithm takes observational data from the

environment and outputs a specified control action using the policy. There are many possible

observation data formats that can be provided as input in a real environment. For example,

bulk measurements could be made by impedimetric (Liu et al., 2023) (Agilent Xcelligence) or

permittivity-based (D’alvia et al , 2022) sensors (Skroot Laboratory). Real-time imaging systems

(Espie & Donnadieu, 2023) (Sartorius Incucyte) coupled with Artificial Intelligence (AI) -

empowered cell classification tools can specify and quantify cell types based on morphology

(Tamiev et al., 2020). Those tools can count naïve and activated cells and other cell properties

such as age and robustness. Other data such as time elapsed, quantity of beads in the system

and action history can be obtained from the instrument. All the data can be input as a list of

measured values to the RL-agent. This method is termed the ‘tabular’ method in this work

(Figure 3a). Another possible observation format can be in the form of an image obtained from

high-precision microscopy. In this work, we also try to observe if a three-channel image of the

simulation environment, like Figure 2a alone, is enough to provide the agent with enough

information to adequately train (Figure 3a) the policy. The third input format tested is the

fusion between the above two, where both tabular and image information are provided to the

RL-agent (Figure 3a).

Here, we refer t ea agent in ‘alg rit -in t’ f r at; f r e a le, -image refers

to an RL-agent trained with PPO algorithm on image data. For three algorithms – PPO, A2C and

DQN and three input schemes – tabular, image and combined, in total 9 combinations of

‘alg rit -in t’ is discussed. This analysis aims to demonstrate how RL-agent training depends

on algorithms and input schemes.

15

To improve the decision making of the RL-agent, a reward is tracked through each

simulation. Design of a reward function is an empirical, iterative process. The reward function

we found to work best is to assign a smaller initial reward to encourage activation by bead

addition in the beginning and a large end reward based on number of robust activated cells at

simulation end. The summed reward at the end of each episode is the episodic reward, and at

each episode we plot the average of all previous episodic rewards, shown in red in Figure 3b.

The rising trend of the average reward in the beginning indicates the RL-agent is learning and

constantly obtaining a better strategy whereas flattening of the average reward indicates that

the RL-agent has settled for an optimized strategy (see PPO-tabular and DQN-tabular input in

Figure 3b).

 el verage

 i e le

 vg ten
 ead nt
 rev a n

C annel

C annel 2

 a lar

 age

 C verage

 n t idden t t
(n)

 e ve

 dd

S i

 2C D

 00

0

 00

 00

0
 00

 00

0
 00

0

ew

ar
d
s

 is des

 vg reward

 is di reward

(a) ()

()

(0)

()

()

(0)
()

()

(0)

()

0 0

16

Figure 3. Schematic of three different observation space input strategies and learning curves

with different RL algorithms used. (a) List of input schemes: tabular input, image input or

combined input. (b) Learning curves obtained by training on 3 different reinforcement learning

algorithms: PPO, A2C and DQN.

A higher average reward with tight outcome distribution indicates a better-trained RL

agent. The policy quality can be determined from the episodic reward distribution of a trained

RL-agent. For example, with PPO-tabular and DQN-image (Figure 3b), the RL-agent adopted a

stable strategy by 100,000 training episodes as observed from the episodic reward and

flattened out average reward. But with PPO-tabular, the episodic reward distribution around

the average is +/- 50, whereas it is +/- 250 for DQN-image. That indicates the PPO-tabular RL-

agent is better trained, which has a tighter distribution of higher rewards, and the DQN-image

is subjected to variability and chance events. The distribution is even tighter for A2C-combined,

but the average reward is far less than PPO-combined or DQN-combined. More details on the

algorithm are available on Supplement 3-6.

With image input, we tested if it is possible to navigate the environment by simply

getting an annotated snapshot of cells and beads with cell type, potency, and age determined

from image analysis, and not sending any other data including temporal labels (probing

whether the simulation strategy can be step independent). We notice that context information

is important. Performance for all algorithms was higher with context data (tabular and

combined) than without context data (image only). In all three-input strategies, the nature of

DQN was very similar. It settles for a sub-optimal strategy with broader reward distribution

(details in Discussion). In this work, the default hyperparameters for each neural architecture

17

(Supplement 3,4,5), as reported in OpenAI Gym, were used without fine-tuning. How an

untrained and trained RL-agent navigates the environment is demonstrated in Supplement

video 1 and 2 respectively.

Learned control strategies for different cell types and the number of control steps

Next, a PPO-combined RL-agent is tested on each respective cell type, simulating the

diversity of patient-derived cells, to assess how the RL-agent can adapt its learned control

strategy. The cell parameters are simulated by changing six cell types (Table 1). For each cell

type, an RL-agent is first trained for 1M simulations and then used to navigate 1000 simulations

on the same ‘envir n ent ’ The average number of beads in each control step is plotted with

standard deviations to reveal the bead addition patterns (Figure 4). The variable actions taken

in response to observations (presence of error bars) indicate that the policy is adaptive to

navigate different spatial distributions of beads and does not simply memorize and repeat the

same actions at each step. In a few instances, there was uniformity of actions (no error bars,

same number of beads in all 1000 simulations). The learning curve is also included with the bar

plot (insets) indicating that the RL-agent settled for a policy at the end of training (discussed

above).

Table 1 Simulated Cell Types

 y Exh s

R

Ac v

P y

N

Exh s

R c

R

Asy c

R c

18

The learned control strategies correlate with intuition for these extreme edge cases. In the base

case of Cell 1, to protect the cells from overexposure it removes the beads on the second step

after adding the first. The intuitive strategy would be to add the beads in the initial steps and

let most of the naïve cells convert and remove the beads when most cells are activated and let

them proliferate and increase in number which is what the RL-agent executes with less beads

after step 5. With Cell type 2, which has a lower rate of exhaustion than the base case, we

observe the RL-agent ramps up a number of beads quicker and maintains a near constant level

of exposure until the end when there is another ramp to activate any remaining naïve cells

(Figure 4b). Interestingly, the first steps of the RL-agent (the initial ramp) are decisive, with no

deviation amongst all runs. Afterwards there are variations in bead number with RL-agent

deciding as required to convert the remaining naïve cells. In cell type 3, we simulate a cell with

a higher rate of natural exhaustion and regeneration. As exhaustion only applies to active cells,

the obvious strategy would be to deliberately delay adding the beads to convert the cells close

to the end of the episode. However, as regeneration will be high, the whole region will be

Unit potency

100 collision
)

(
Activation

100 × Collisions
)

(
Unit potency

100 × timesteps
)

(
Regeneration

100 × timesteps
)

(es/n)

 (ase

 ase)

 0 No

2 No

3 0 0 No

 0 0 Yes

 0 No

6 0 Yes

19

crowded with activated cells, so it would be imperative to remove beads and wait for all of

them to regenerate as soon as the optimal number of cells get activated. Considering both

cases the best strategy would be to add beads in the middle steps and skip the beginning and

end steps. This is reflected in the learned strategy of the RL-agent, it skips the first two steps,

adds the beads in two repeated steps, then takes out all the beads and waits to make the cells

increase in number. With cell type 4, asymmetric regeneration is simulated where an activated

cell can produce activated and naïve cells. Beads are required to convert the newly produced

naïve cells, but those same beads cause the activated cells to get exhausted. To navigate this

system, the RL-agent alternately adds and removes beads, and the overall end score is lower

than the other cell types.

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a)

Simulation process to obtain control strategy information (b) Strategy of the RL-agent

 n t ell ara eters

t t e envi rn ent

 rain an agent f r ste

 n t e envi rn ent

 n t e sa e envir n ent

navigate 000 inde endent

si la ns wit t e trained
agent

 l t average n er f

 eads n ea ste

wit standard devia n

() (a)

 20 0

 00

0

 00
0

 0

 20 0

 00

0

 00
0

 00

0

 00
0

 0

 20 0

 00

 00

0

0

 20 0

 0

 0

C nv r ()
 a s n rate ()

 egenera n
rate ()

 ss etri
regenra n

 at ral
e a s n()

Cell

Cell 2

Cell 3

Cell
a
is

f

ea
d
s

 a is i este s

20

visualized by average number of beads at each control step (y and x axes respectively). The

error bar indicates the standard deviation of beads used at that control step – an indication of

simulation variability or constancy (where no bars exist). The learning curve is also attached

with each bar plot, axes same as in Figure 3b and snapshot of end stage of a simulation and

sample bead and cell population curve is presented for each case at Supplement 9 and

Supplement videos. Arrows between plots indicate the change in cell type (also see Table 1).

To test the effect of an RL-agent that has more control over the environment, we

repeat the training process with 50 control steps (interacting with the growth vessel every 3.2

hr instead of 8 hr – see justification in Supplement 7) for six cell types (Table 1). The base case

behaved the same way, with more dosing of beads in the beginning and reduced in the end

(Figure 5). But as it has more frequent control points, the RL-agent skips adding beads at the

onset to account for small natural exhaustion, continuously adding beads for the second to the

fifth step, then performing the add-remove-skip step depending on the simulated status, with a

diminishing number of beads in subsequent steps. For cell type 2, it adds beads for more steps

at the outset (Figure 5) than before (Figure 4b) and Cell types 3 and 4 also differ. Cell 5 is

simulated with only regeneration increased from the base case, and the RL-agent removes

beads in the second half to let the activated cells grow without exhaustion. In cell type 3, the

natural exhaustion is increased. To evade the exhaustion the agent adds bead in the later steps

and skipping the initial steps. Finally, for cell type 6, we increased the rate of natural exhaustion

and added asymmetric regeneration. In this case, the RL-agent alternately adds and removes

beads for the first third of the control steps and then ramps the number of beads with

21

variability based on the current cell count; again, the expected outcome (average reward) for

this unfortunate cell type is dependent on chance and lower than others.

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with

different cell types. The strategy of the RL-agent visualized by the average number of beads per

control step (y and x axes respectively). Error bars indicate one standard deviation, showing

variability of steps or uniformity (no error bars). The learning curve is also attached with each

bar plot. Arrows indicate the change in cell type; also see Table 1.

Effect of measurement noise, number of control steps, and number of training runs

The ability of an RL-agent to learn unique control strategies for different cell types is a

major finding; however, to put this into practice, it will be important to know how accurate the

measurements (inputs to the RL-agent) must be as well as the required number of training runs

 0
 00

0

 00
0

 2 0

 0

 00

0

 00
0

 2 0

 00

0
 00

0

2 0

 00

0
 00

0

2 0

 00

0

 00
0

2 0

C nv r ()
 a s n rate ()

 egenera n
rate ()

 s etri
regenra n

 at ral
e a s n()

 s etri
regenra n

 0

 0

 0

Cell

Cell 6
Cell 2

Cell

Cell

a
is

f

ea
d
s

 a is i este s

 00

0

 00
0

2 0

 0

 ell 3

22

(as 106 experiments to determine a unique training regime is not tractable). Here, we explore

both topics using the T-cell expansion simulator using the PPO algorithm with combined input.

The observation space for tabular input would be obtained from cell monitoring sensors

that distinguish between cell types and estimate potency (optical, impedance, etc.). These

devices will not have complete precision. To observe the effect of noise, an RL-agent is trained

with 40% of the initial cell number added as Gaussian noise in cell count and potency

estimation to simulate measurement error. Interestingly, there is no observable change in the

episodic and average reward of the training steps and reward distribution with and without

noise (Figure 6a). There are two possible reasons: first, gaussian noise in a stochastic

environment does not make a perceivable difference in mapping observation to action, and

second, the RL-agent either maps the noise along with the observations or totally disregards

the noisy observations and builds its policy on more stable inputs such as time steps. A

histogram is also drawn at three stages of training – the zeroth training run, where the RL-agent

is fully random, and at 250k and 500k episodes. It is also observed that there is a clear

difference in the reward distribution between the random RL-agent at the start and trained RL-

agent at 250k runs, but the distribution of rewards at 250k and 500k episodes was

indistinguishable.

 These experiments (Figures 4 and 5) demonstrate that the RL-agent can perform better

with increased interaction with the environment (50 control steps rather than 20). With more

interaction, it has better control, and there is a higher reward with less fluctuation, whereas

with fewer interactions, it is difficult to control the environment, just like a self-driving car

allowed to turn the steering wheel a limited number of time. We investigated if this pattern

23

holds for even further interactions. An RL-agent could interact with a fully automated

environment at every observation point. To observe the effect of increased control, we trained

an RL-agent with 400 control steps (adding, removing, or maintaining beads every 24 m). In this

case, there are an overwhelming 3400 possible combinations of action sequences. With such a

high number, the agent RL-agent finds it difficult to settle on a control policy, and the learning

curve fluctuates more than the 50-control point case (Figure 6b and Supplement 10). This

finding indi ates t at ‘real-ti e’ ntr l is li el n t as advantage s as a ntr l strateg t at

is still dynamic yet has a tractable number of possible actions. Agent response with different

initial cell numbers is also mentioned in Supplement 11.

In a realized clinical setting, there will likely be a limited number of experiments that can

be performed on a new cell type (patient sample) for the RL-agent to self-learn an optimal bead

addition strategy. The average learning curve of cell 1 shows 90% of max average reward after

29,000 training sessions for an RL-agent with 50 control steps (Figure 6c). We hypothesized that

this number could be further reduced if an RL-agent trained on one cell type is then used as the

start point for another cell (e.g., training the RL-agent on a stock cell, before testing with the

patient cell sample). To test this approach, the RL-agent is trained on 500k training runs on a

base case cell 1 and then used to subsequently train on Cell types 1-4. For cell 1 and cell 2 the

optimum strategy is similar – to add beads in the beginning. In that case the RL-agent can adapt

faster, and a smaller number of runs (1000 or one updated policy step) is required compared to

training from scratch to reach the same level of accuracy. But the optimum strategy is different

for cells 3 and 4 – to add beads at the end. In those cases, the RL-agent needs to unlearn the

previous strategy and adapt a new strategy. With such a policy change, it takes longer to reach

24

the same level of accuracy rather than starting training from scratch. An alternative or parallel

approach to settling on an optimal control strategy would be taking patient cells and

performing a series of tests to obtain growth parameters that would allow for building an

accurate digital twin to do perform accurate simulation (Figure 1b). Then in silico tests, much

like this, would augment the physical training data. An in-silico test thus can guide if there is a

change in policy and weight the choice of – retraining on another cell or training from scratch

considering desired yield and resources.

25

Figure 6: (a) Learning curve for an RL-agent trained with and without noise and reward

histogram for simulation conducted with an RL-agent trained on 0, 250k and 500k episodes (b)

Learning curve of RL-agent trained with 20, 50 and 400 timesteps (c) Number or training

episodes required to reach an accuracy of 80%, 90%, and 95% by RL-agents pre-trained for 500k

steps on cell one vs. RL-agents trained on respective cell types from the beginning. Y axis shows

the number of training runs required in log base ten scale.

Discussion

Here, we simulate and test an RL-based platform that would help automated cell

systems to precisely deploy or remove activator molecules at specific time points during T-cell

activation to ensure a maximum number of activated cells (i.e., peak therapeutic potential)

 0

300

0

 00

200

300

 00

0

 00

200

300

 00

0 2 0 00

C la ve avg
C la ve avg (wit n ise)

ew

ar
d

ew

ar
d

in
s

 raining e is des

 er f training e is des

0

 is di reward

 is di reward (wit n ise)

(a) ()

()

 00
0

 00

 vg reward is di reward

0

20 Ste

0

 0 Ste

0

 00 Ste

ew

ar
d

 2 3 2 3 2 3

3

l
g

(n
)

Cell D

 0 0

 rained n ell f r 00 training e is des

 rained n res e ve envir n ent fr eginning

26

before administering them back to the patient. In this work, cell growth parameters were

directly inferred from literature to simulate the spatial and temporal stochasticity of CAR T-cell

activation and expansion with reasonable fidelity. These simulation parameters should be

updated with accurate measurements from the target cell, thereby increasing the accuracy of

the simulation. Then before deploying this neural engine (RL agent) for controlling expansion of

a patient cell, it would pre-train on the simulated environment thereby reducing the number of

training runs required on the physical environment. This work also highlights the utility of non-

destructive, continuous measurements from the physical environment (sensor or imaging data)

that can be fed as inputs to the RL agent to determine the best dosing policy to maximize

activated cells. Continued research on accurate, non-invasive, real-time measurement

techniques to enumerate cell types during culture will provide faster training performance. The

simulation can inform the type of sensors needed and can also show how much noise the RL-

agent can accommodate before it fails to learn anything. With a large amount of measurement

noise, the RL-agent will likely (a) disregard the noisy observation parameters (e.g., cell number,

cell type, and potency) and (b) fix a redundant policy based only on simulation step count.

One possible reason for the RL-agent’s inability to learn solely from discrete image input

(Figure 3b) is the lack of connection with the preceding and succeeding time-points. Thus, it

becomes impossible to gauge whether a certain action (dosing) helped maximize the number of

robust cells. To this end, we anticipate that instead of just providing one disembodied frame, if

we exposed the model to short stacks of three to five consecutive frames, the learning rate and

gains would improve – but we leave this as an exercise for future work.

27

 This cell-activation routine guided by RL can be used as a template for other model-free,

stochastic biological applications. Apart from CAR T-cell activation, this bears promise to control

other complex biological policies found in nature, such as the underlying optimization of cell

differentiation and proliferation. Improved digital twins of cell culture environments will make

this possible. As examples of improvements, this 2D simulation can be updated to a 3D

environment representing more realistic growth conditions in static reactors (multilayer

growth). Possible further experiments are listed in Supplement 8. In addition, this digital twin

model provides a basis to benchmark other machine learning frameworks such as transformer

(Vaswani et al., 2017) and DAL-e (Ramesh et al., 2022) based implementations which are finding

increasing applicability in different domains of biology. It is foreseeable, that in the near future

libraries of pre-trained models would be available to automated cell culturing systems for

precision dosing of aAPC to match the range of cell types observed in clinic. Such an approach

would de-risk production of therapeutic cells, providing more efficacious therapies to the

patients in less time.

Methods

Simulation Design

The simulator of cell expansion was made using the Pygame (Sweigart, 2012) module of Python

and is hosted on Zenodo (Ferdous & Shihab, 2023) and GitHub -

https://github.com/Sakib1418/Game-of-cells. The simulation was designed to integrate with

OpenAI gym (Brockman et al., 2016), a collection of simulated environments and associated

https://github.com/Sakib1418/Game-of-cells

28

toolkits to test and compare RL-agent algorithms. As the new gym environment was made, the

Stable Baselines3 module (Raffin et al., 2019) was used on top of the gym to explore current RL

algorithms. The properties of the actors (cells) attempt to simulate actual CAR T-cells, for

example, movement and regeneration rate. Due to the current lack of measured parameters,

such as activation probability on encountering a bead, reasonable estimates are made in this

initial work. All simulation values and cell parameters are listed in Table 2. To observe the RL-

agent response with different cells, new cell types are conceptualized by changing these cell

properties (Table 1). How these parameters are formed into equations governing the fate of the

cell and the culture environment or simulation trajectory overall is detailed in the game

pseudocode (Supplement 2). The cell parameters could be updated in the script in the

repository. The project GitHub repository details the installation of the simulation-game, data

analysis, and reproduction of the plots and usage. Reward function design is discussed in

Supplement 12.

29

Table 2: Parameters and their descriptions

Variable Name Value Relevant Source

Simulation Variable

The initial number of beads 0
(Kagoya et al.,
2017)

Grid Number 2500

Grid dimension 10 Micron

Confluence
Half of the total grid
(1250)

(Arman Aksoy et
al., n.d.)

Number of control-steps 20, 50, 400 (variable) Assumed

Control Time interval
8-hour,
3.2-hour ,
24 minutes

(Kagoya et al.,
2017)

Number of beads that can
be added at each control step

10

(Kagoya et al.,
2017; Polonsky
et al., 2018;
Szopa et al.,
2021)

The initial number of naïve
cells to begin within the control area

20 Assumed

Total time
160 hours (weeklong
growth)

(Piscopo et al.,
2018)

Cell Variable

Mean value of
Regeneration Age

Two days Assumed

Maximum age at which
a cell can regenerate

3.5 days Assumed

Probability of activation 45, 90 (
Activation

100 × Collisions
) Assumed

Exhaustion Rate 1,4 (
Unit potency

100 collision
) Assumed

Natural Exhaustion 1, 10 (
Unit potency

 100 × timesteps
) Assumed

Regeneration Rate 1, 5 (
Regeneration

100 × timesteps
) Assumed

Asymmetric regeneration True/False Assumed

Potency value above which a
cell is considered robust

0.8 Assumed

Potency value below which a cell is
considered exhausted

0.2 Assumed

30

Reference

Arman Aksoy, B., Czech, E., Paulos, C., & Hammerbacher, J. (n.d.). Computational and
experimental optimization of T cell activation. https://doi.org/10.1101/629857

Azarov, I., Peskov, K., Helmlinger, G., & Kosinsky, Y. (2019). Role of T Cell-To-Dendritic cell
chemoattraction in T Cell priming initiation in the lymph node: An agent-based
modeling study. Frontiers in Immunology, 10(JUN).
https://doi.org/10.3389/fimmu.2019.01289

Bidot, C., Gruy, F., Haudin, C. S., El Hentati, F., Guy, B., & Lambert, C. (2008).
Mathematical modeling of T-cell activation kinetic. Journal of Computational
Biology, 15(1), 105–128. https://doi.org/10.1089/cmb.2007.0125

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI Gym. CoRR, abs/1606.01540. http://arxiv.org/abs/1606.01540

Cruz, P. J., Vásconez, J. P., Romero, R., Chico, A., Benalcázar, M. E., Álvarez, R., Barona
López, L. I., & Valdivieso Caraguay, Á. L. (2023). A Deep Q-Network based hand
gesture recognition system for control of robotic platforms. Scientific Reports, 13(1),
7956. https://doi.org/10.1038/s41598-023-34540-x

Cutler, M., & How, J. P. (2016). Autonomous drifting using simulation-aided
reinforcement learning. Proceedings - IEEE International Conference on Robotics and
Automation, 2016-June, 5442–5448. https://doi.org/10.1109/ICRA.2016.7487756

D’alvia, L., Carraro, S., Peruzzi, B., Urciuoli, E., Palla, L., Prete, Z. Del, & Rizzuto, E. (2022).
A Novel Microwave Resonant Sensor for Measuring Cancer Cell Line Aggressiveness.
Sensors, 22(12). https://doi.org/10.3390/s22124383

Ferdous, S., & Shihab, I. F. (2023). CAR T-cell activation control environment in
Reinforcement Learning. https://doi.org/https://doi.org/10.5281/zenodo.7905320

Finck, A., Gill, S. I., & June, C. H. (2020). Cancer immunotherapy comes of age and looks
for maturity. In Nature Communications (Vol. 11, Issue 1). Nature Research.
https://doi.org/10.1038/s41467-020-17140-5

Gallouédec, Q., Cazin, N., Dellandréa, E., & Chen, L. (n.d.). panda-gym : Open-source
goal-conditioned environments for robotic learning. https://www.franka.de/

Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C. M., Quigley, M. F., Almeida, J. R., Gostick,
E., Yu, Z., Carpenito, C., Wang, E., Douek, D. C., Price, D. A., June, C. H., Marincola, F.
M., Roederer, M., & Restifo, N. P. (2011). A human memory T cell subset with stem
cell-like properties. Nature Medicine, 17(10), 1290–1297.
https://doi.org/10.1038/nm.2446

Gumber, D., & Wang, L. D. (2022). Improving CAR-T immunotherapy: Overcoming the
challenges of T cell exhaustion. https://doi.org/10.1016/j

Han, D., Mulyana, B., Stankovic, V., & Cheng, S. (2023). A Survey on Deep Reinforcement
Learning Algorithms for Robotic Manipulation. Sensors, 23(7), 3762.

Jiang, J., & Ahuja, S. (2021). Addressing Patient to Patient Variability for Autologous CAR
T Therapies. Journal of Pharmaceutical Sciences, 110(5), 1871–1876.
https://doi.org/https://doi.org/10.1016/j.xphs.2020.12.015

Jiang, X., Dudzinski, S., Beckermann, K. E., Young, K., McKinley, E., J McIntyre, O.,
Rathmell, J. C., Xu, J., & Gore, J. C. (2020). MRI of tumor T cell infiltration in response

31

to checkpoint inhibitor therapy. Journal for Immunotherapy of Cancer, 8(1).
https://doi.org/10.1136/jitc-2019-000328

Kagoya, Y., Nakatsugawa, M., Ochi, T., Cen, Y., Guo, T., Anczurowski, M., Saso, K., Butler,
M. O., & Hirano, N. (2017). Transient stimulation expands superior antitumor T cells
for adoptive therapy. JCI Insight, 2(2). https://doi.org/10.1172/jci.insight.89580

Kouro, T., Himuro, H., & Sasada, T. (2022). Exhaustion of CAR T cells: potential causes and
solutions. In Journal of Translational Medicine (Vol. 20, Issue 1). BioMed Central Ltd.
https://doi.org/10.1186/s12967-022-03442-3

Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2017). Global Manufacturing of CAR T
Cell Therapy. In Molecular Therapy - Methods and Clinical Development (Vol. 4, pp.
92–101). Elsevier Inc. https://doi.org/10.1016/j.omtm.2016.12.006

Liu, Z., Jiang, X., Li, S., Chen, J., Jiang, C., Wang, K., Zhang, C., & Wang, B. (2023). A
disposable impedance-based sensor for in-line cell growth monitoring in CAR-T cell
manufacturing. Bioelectrochemistry, 152, 108416.
https://doi.org/https://doi.org/10.1016/j.bioelechem.2023.108416

Lucchi, M., Zindler, F., Muhlbacher-Karrer, S., & Pichler, H. (2020). Robo-gym - An open
source toolkit for distributed deep reinforcement learning on real and simulated
robots. IEEE International Conference on Intelligent Robots and Systems, 5364–5371.
https://doi.org/10.1109/IROS45743.2020.9340956

Mc Laughlin, A. M., Milligan, P. A., Yee, C., & Bergstrand, M. (2023). Model-informed
drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T
cell exposure leveraging cell kinetic/dynamic modeling. In CPT: Pharmacometrics
and Systems Pharmacology (Vol. 12, Issue 11, pp. 1577–1590). American Society for
Clinical Pharmacology and Therapeutics. https://doi.org/10.1002/psp4.13011

Mehta, P. H., Fiorenza, S., Koldej, R. M., Jaworowski, A., Ritchie, D. S., & Quinn, K. M.
(2021). T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic
Malignancy. In Frontiers in Immunology (Vol. 12). Frontiers Media S.A.
https://doi.org/10.3389/fimmu.2021.780442

Meng, T. L., & Khushi, M. (2019). Reinforcement learning in financial markets. Data, 4(3),
110.

Miner, A. S., Laranjo, L., & Kocaballi, A. B. (2020). Chatbots in the fight against the COVID-
19 pandemic. In npj Digital Medicine (Vol. 3, Issue 1). Nature Research.
https://doi.org/10.1038/s41746-020-0280-0

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
CoRR, abs/1602.01783. http://arxiv.org/abs/1602.01783

molina-paris, C., & Lythe, G. (2021). Mathematical, Computational and Experimental T
Cell Immunology. https://doi.org/10.1007/978-3-030-57204-4

Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological
systems. Nature Machine Intelligence, 1(3), 133–143.
https://doi.org/10.1038/s42256-019-0025-4

Neve-Oz, Y., Sajman, J., Razvag, Y., & Sherman, E. (2018). InterCells: A Generic Monte-
Carlo simulation of intercellular interfaces captures nanoscale patterning at the

32

immune synapse. Frontiers in Immunology, 9(SEP).
https://doi.org/10.3389/fimmu.2018.02051

Palanisamy, P. (2019). Multi-Agent Connected Autonomous Driving using Deep
Reinforcement Learning. CoRR, abs/1911.04175. http://arxiv.org/abs/1911.04175

Philipp, N., Kazerani, M., Nicholls, A., Vick, B., Wulf, J., Straub, T., Scheurer, M., Muth, A.,
Hänel, G., Nixdorf, D., Sponheimer, M., Ohlmeyer, M., Lacher, S. M., Brauchle, B.,
 ar ine , , r a er, , e t e er, , ejes i, K , Weigert, , … S bklewe,
M. (2022). T-cell exhaustion induced by continuous bispecific molecule exposure is
ameliorated by treatment-free intervals. Blood, 140(10), 1104–1118.
https://doi.org/10.1182/blood.2022015956

Piscopo, N. J., Mueller, K. P., Das, A., Hematti, P., Murphy, W. L., Palecek, S. P., Capitini, C.
M., & Saha, K. (2018). Bioengineering Solutions for Manufacturing Challenges in CAR
T Cells. In Biotechnology Journal (Vol. 13, Issue 2). Wiley-VCH Verlag.
https://doi.org/10.1002/biot.201700095

Polonsky, M., Rimer, J., Kern-Perets, A., Zaretsky, I., Miller, S., Bornstein, C., David, E.,
Kopelman, N. M., Stelzer, G., Porat, Z., Chain, B., & Friedman, N. (2018). Induction of
CD4 T cell memory by local cellular collectivity. Science, 360(6394).
https://doi.org/10.1126/science.aaj1853

Prybutok, A. N., Yu, J. S., Leonard, J. N., & Bagheri, N. (2022). Mapping CAR T-Cell Design
Space Using Agent-Based Models. Frontiers in Molecular Biosciences, 9.
https://doi.org/10.3389/fmolb.2022.849363

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., & Dormann, N. (2019). Stable
baselines3.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-
Conditional Image Generation with CLIP Latents. http://arxiv.org/abs/2204.06125

Rashedi, M., Rafiei, M., Demers, M., Khodabandehlou, H., Wang, T., Tulsyan, A., Undey,
C., & Garvin, C. (2023). Machine learning-based model predictive controller design
for cell culture processes. Biotechnology and Bioengineering, 120(8), 2144–2159.
https://doi.org/10.1002/bit.28486

Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., & Ivanov, D. (2022). A review on
reinforcement learning algorithms and applications in supply chain management.
International Journal of Production Research, 1–29.

Ruiz Barlett, V., Bigeón, J. J., Hoyuelos, M., & Mártin, H. O. (2009). Differences between
fixed time step and kinetic Monte Carlo methods for biased diffusion. Journal of
Computational Physics, 228(16), 5740–5748.
https://doi.org/10.1016/j.jcp.2009.04.035

Safe driving cars. (2022). In Nature Machine Intelligence (Vol. 4, Issue 2, pp. 95–96).
Nature Research. https://doi.org/10.1038/s42256-022-00456-w

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347. http://arxiv.org/abs/1707.06347

Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M., & Striedner, G.
(2017). Quality by control: Towards model predictive control of mammalian cell
culture bioprocesses. In Biotechnology Journal (Vol. 12, Issue 7). Wiley-VCH Verlag.
https://doi.org/10.1002/biot.201600546

33

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed. In
Reinforcement learning: An introduction, 2nd ed. The MIT Press.

Sweigart, A. (2012). Making Games with Python & Pygame.
Sz a, , rani a, , ja , J K , Ła ędź, , łasz z , M., Paulos, C. M., &

Majchrzak-Kuligowska, K. (2021). Effective Activation and Expansion of Canine
Lymphocytes Using a Novel Nano-Sized Magnetic Beads Approach. Frontiers in
Immunology, 12. https://doi.org/10.3389/fimmu.2021.604066

Tamiev, D., Furman, P. E., & Reuel, N. F. (2020). Automated classification of bacterial cell
subpopulations with convolutional neural networks. PLoS ONE, 15(10).
https://doi.org/10.1371/journal.pone.0241200

Trotman-Grant, A. C., Mohtashami, M., De Sousa Casal, J., Martinez, E. C., Lee, D.,
Teichman, S., Brauer, P. M., Han, J., Anderson, M. K., & Zúñiga-Pflücker, J. C. (2021).
DL4-μ eads ind e ell lineage differentiati n fr ste ells in a str al ell-
free system. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-
25245-8

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention Is All You Need. https://arxiv.org/abs/1706.03762

Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing
CAR T cell therapies. In Current Opinion in Biotechnology (Vol. 53, pp. 164–181).
Elsevier Ltd. https://doi.org/10.1016/j.copbio.2018.01.025

Watanabe, K., Kuramitsu, S., Posey, A. D., & June, C. H. (2018). Expanding the therapeutic
window for CAR T cell therapy in solid tumors: The knowns and unknowns of CAR T
cell biology. In Frontiers in Immunology (Vol. 9, Issue OCT). Frontiers Media S.A.
https://doi.org/10.3389/fimmu.2018.02486

Wherry, E. J. (2011). T cell exhaustion. In Nature Immunology (Vol. 12, Issue 6, pp. 492–
499). https://doi.org/10.1038/ni.2035

Wherry, E. J., & Kurachi, M. (2015a). Molecular and cellular insights into T cell
exhaustion. In Nature Reviews Immunology (Vol. 15, Issue 8, pp. 486–499). Nature
Publishing Group. https://doi.org/10.1038/nri3862

Wherry, E. J., & Kurachi, M. (2015b). Molecular and cellular insights into T cell
exhaustion. In Nature Reviews Immunology (Vol. 15, Issue 8, pp. 486–499). Nature
Publishing Group. https://doi.org/10.1038/nri3862

Zhang, D. K. Y., Adu-Berchie, K., Iyer, S., Liu, Y., Cieri, N., Brockman, J. M., Neuberg, D.,
Wu, C. J., & Mooney, D. J. (2023). Enhancing CAR-T cell functionality in a patient-
specific manner. Nature Communications, 14(1). https://doi.org/10.1038/s41467-
023-36126-7

34

Figure Legends

Figure 1: (a) CAR T-cell manufacturing process- i. naïve T-cells (red) are taken out of the body by

leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are

applied to activate the naïve cells, iii. The naïve T-cells are activated (blue), over exposed cells

undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic,

intelligent process control of activation in a simulated cell culture to control real culture with

trained policy. The state observation data is collected in tabular, image or combined format as

an input to the deep neural network or RL-agent; the agent then selects either of the three

permitted actions – add, skip, or remove beads in each control step. Through iterative rounds

of training, the RL-agent learns to map each state to an action which optimizes the end goal of

maximum number of robust effector cells.

Figure 2: Proposed simulation replicating cell activation and expansion (a) Sample simulation

trajectories for three control strategies – top to bottom row depicts optimum, sub-optimum,

and random bead additions; the bar plot at left indicates the number of cells separated by type

at each simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead

addition, (-) refers to the removal and (o) refers to no action; the right three windows are

simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each

simulated step. (c) Simulated life trajectory of a naïve starting cell to activated with full potency

and natural exhaustion caused by aging. Also defined are two modes of division – symmetric

and asymmetric.

Figure 3. Schematic of three different observation space input strategies and learning curve

with different algorithms used. (a) List of input schemes –tabular or list input, image input or

35

combined input (b) learning curves obtained by training on 3 different reinforcement learning

algorithms: PPO, A2C and DQN.

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a)

Simulation process to obtain control strategy information (b) Strategy of the RL-agent

visualized by average number of beads at each control step (y and x axes respectively). The

error bar indicates the standard deviation of beads used at that control step – an indication of

simulation variability or constancy (where no bars exist). The learning curve is also attached

with each bar plot, axes same as in Figure 3b. Arrows between plots indicate the change in cell

type (also see Table 1).

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with

different cell types. The strategy of the the RL-agent visualized by the average number of beads

per control step (y and x axes respectively). Error bars indicate one standard deviation, showing

variability of steps or uniformity (no error bars). The learning curve is also attached with each

bar plot. Arrows indicate the change in cell type; also see Table 1.

Figure 6: (a) Learning curve for RL-agent trained with and without noise and reward histogram

for simulation conducted with RL-agent trained on 0, 250k and 500k episodes (b) RL-agent

trained with 20, 50 and 400 control steps (c) Number or training episodes required to reach an

accuracy of 80%, 90%, and 95% by RL-agents pre-trained for 500k steps on cell one vs. RL-

agents trained on respective cell types from the beginning. Y axis shows the number of training

runs required in log base ten scale.

36

Funding

This work was supported in part by NSF Award 2042503. Ratul Chowdhury is grateful for a Iowa

State University startup grant partially funding this work.

Acknowledgements

We thank Krishanu Saha and his group members at the University of Wisconsin, Madison for

useful discussions on CAR-T cell activation and expansion.

Author Contribution

SF performed the literature review, conceptualization, data acquisition, code and software

compilation, writing, and reviewing of the manuscript. IFS assisted in code compilation and

version control. RC contributed to writing, supervision, and revision. NFR contributed to

conceptualization, funding acquisition, writing, reviewing, and overall supervision.

Competing Interest

Nigel Reuel is the scientific founder of Skroot Laboratory Inc., focusing on non-destructive,

continuous measurement of cells, and has an equity interest in the company. In addition, Nigel

Reuel receives income from Skroot Laboratory Inc. for serving in a leadership role.

Correspondence

All the correspondence should be addressed to Nigel Forrest Reuel at reuel@iastate.edu

Code Availability

mailto:ratul@iastate.edu

37

Code is available in Zenodo at - https://doi.org/10.5281/zenodo.7905320 and at GitHub at -

https://github.com/Sakib1418/Game-of-cells with full details and instructions for reproduction.

https://doi.org/10.5281/zenodo.7905320
https://github.com/Sakib1418/Game-of-cells

