Reinforcement learning-guided control strategies for CAR T-cell

activation and expansion

Sakib Ferdous?, Ibne Farabi Shihab?, Ratul Chowdhury! and Nigel F. Reuel**
1. Department of Chemical and Biological Engineering, lowa State University

2. Department of Computer Science, lowa State University

Corresponding Author — Nigel F Reuel

Email — *reuel@iastate.edu

Address —

3051 Sweeney

618 Bissell Rd.

Ames, |IA 50011-1098

Phone: 515-294-4592

Sakib Ferdous — ferdous@iastate.edu

Ibne Farabi Shihab —ishihab@iastate.edu

Ratul Chowdhury — ratul@iastate.edu

Running Title - Reinforcement Learning guided CAR T-cell activation

mailto:*reuel@iastate.edu
tel:1-515-294-4592
mailto:ferdous@iastate.edu
mailto:ishihab@iastate.edu
mailto:ratul@iastate.edu

Abstract

Reinforcement learning (RL), a subset of machine learning (ML), could optimize and control
biomanufacturing processes, such as improved production of therapeutic cells. Here, the
process of CAR-T cell activation by antigen presenting beads and their subsequent expansion is
formulated in-silico. The simulation is used as an environment to train RL-agents to dynamically
control the number of beads in culture to maximize the population of robust effector cells at
the end of the culture. We make periodic decisions of incremental bead addition or complete
removal. The simulation is designed to operate in OpenAl Gym, enabling testing of different
environments, cell types, RL-agent algorithms, and state inputs to the RL-agent. RL-agent
training is demonstrated with three different algorithms (PPO, A2C and DQN), each sampling
three different state input types (tabular, image, mixed); PPO-tabular performs best for this
simulation environment. Using this approach, training of the RL-agent on different cell types is
demonstrated, resulting in unique control strategies for each type. Sensitivity to input-noise
(sensor performance), number of control step interventions, and advantages of pre-trained RL-
agents are also evaluated. Therefore, we present an RL framework to maximize the population

of robust effector cells in CAR-T cell therapy production.

Keywords
CAR T-cell, Reinforcement Learning, Autonomous Process Control, Cell Culture, Deep

Reinforcement Learning, T-cell Activation

Introduction

CAR T-cell activation is a critical production step for therapeutic cells that is a prime
candidate for adaptive control strategies due to their stochastic behavior. As a brief review (Fig
1a), CAR-T cell therapeutics involve the collection and separation of naive T cells from the
patient, transfecting them to produce Chimeric Antigen Receptors (CARs) and expanding them
to provide a suitable count of activated cells. These are then infused back into the patient,
where they efficiently attack the malignant cells (Finck et al., 2020). Activated T-cells proliferate
more rapidly than naive, so CARs are more readily expressed (Watanabe et al., 2018). One
popular approach to activate the cells is by using artificial antigen-presenting beads (aAPC).
However, prolonged proximity to aAPCs can lead to cell exhaustion (Gattinoni et al., 2011;
Kouro et al., 2022; Piscopo et al., 2018; Wherry & Kurachi, 2015a). Exhausted cells consequently
lose reproductive and therapeutic capacity (Wherry & Kurachi, 2015b). The objective of an
activation and expansion campaign is to have the maximum number of robust active cells.
There is an optimal strategy for activation (bead addition) such that maximum cells remain
activated while the number of exhausted cells is minimized (Watanabe et al., 2018). However,
such optimal strategies are difficult to model and predict due to variable activation and
propagation rates of donor cells based on age and other genetic factors (J. Jiang & Ahuja, 2021;
Mehta et al., 2021).

Static recipes are the current standards for aAPC use in CAR T-cell activation with some
new attempts at model predictive control. In most cases, beads are added at the beginning of
the culture and removed at the end (Levine et al., 2017; Piscopo et al., 2018; Vormittag et al.,

2018). Prolonged signaling causes exhaustion, which can be mitigated by halting expression

early (Finck et al., 2020; Kouro et al., 2022). It has been observed, that intermittent exposure to
beads yields a greater number of robust effector cells; however, the underlying activation-
exhaustion mechanism to inform aAPC dosing patterns across all cell populations remains
elusive (Kagoya et al., 2017; Philipp et al., 2022). No monitoring or control is involved in the
activation process, which could partially explain the loss of potency of manufactured CAR T-
cells (Gumber & Wang, 2022).

Model predictive control (MPC) informed by process sensors have the potential to
optimize CAR T-cell manufacturing (Mc Laughlin et al., 2023); however, their application is
limited by the need of a fully developed process model (Rashedi et al., 2023; Sommeregger et
al., 2017). Population dynamic models can provide more cell level spatial and temporal
resolution than a mechanistic model (Prybutok et al., 2022). The stochastic nature of cells is
difficult to fully model in a predictive fashion, and therefore adaptive control strategies that can
update their control policy based on observed cell behavior are well suited. Model free RL
algorithms optimize a policy, or value function, instead of modeling the environment. It can
learn directly from continuous sensor data and is useful in situations where it is difficult to
model the environment.

Reinforcement learning (RL) is an adaptive control strategy for complex environments
that do not obey analytical models (Sutton & Barto, 2018). The RL agent discussed in this work
is a deep neural network. In the neural net, there is an input layer of neurons at the start, an
interconnected, hidden layer of neurons in the middle, and an output layer at the end. Each of
these neurons contain adjustable constants, or weights, which are initialized before training.

The input data array is multiplied with the weights of each layer in turn and produces an array

of numbers choosing either of the permitted action at the output layer. The environment
receives the action and responds to it. A reward or penalty is assigned to the RL-agent based on
progress towards a desired objective. In the training phase, the weights are adjusted iteratively
on basis of the reward it achieves in each training run. Through iterative rounds of training, the
neural net settles on weights which maximize likelihood of choosing the output action that
achieves the highest reward. RL has been widely used for other stochastic environments such
as chatbots (Miner et al., 2020), autonomous vehicles (‘Safe Driving Cars,” 2022), robot
automation (Han et al., 2023), stock price prediction and projections (Meng & Khushi, 2019),
and manufacturing and supply chain control (Rolf et al., 2022). RL-agents can perform better in
an actual, physical environments after being trained on incrementally complex simulated
environments (Cutler & How, 2016).

Despite being a well-established field, the application of RL to optimize biological
systems (Neftci & Averbeck, 2019) is largely untapped. The main reason could be the lack of
suitable environments, or digital twin simulations, to train the RL agent and the confounding,
inherent variability in biological processes. To benchmark new RL algorithms, OpenAl has
established a test platform called Gym (Brockman et al., 2016), with several environments on
which new policy algorithms can be tested. There are different environments coded for specific
control tasks, for example robo-gym for robotic tasks (Lucchi et al., 2020), panda-gym for multi-
goal robotic task (Gallouédec et al., n.d.) and MACAD-gym (Palanisamy, 2019) for self-driving
bots. Biological processes have an added level of stochasticity over these physics-based

systems. Actions by the RL-agent on a biological environment will produce a stochastic

outcome rather than a deterministic one. The first step to testing this approach is to build a
suitable ‘digital twin’ test environment.

Multiple efforts have been made in modeling T-cell expansion and activation (Molina
Paris & Lythe, 2021). Researchers have attempted defined, analytical models with systems of
ordinary differential equations (Bidot et al., 2008). Stochastic approaches have also been
proposed where each cell is an autonomous entity governed by its own dynamics (Neve-Oz et
al., 2018). None of these models can account for system changes not built into the analytic
model or covered by the range of modeled variability. Moreover, thy do not provide an
interactive process which can respond to intermittent changes and thus cannot be used to train
a self-learning algorithm to develop control rules. Such a simulation framework is needed to

train and test the RL agent approach.

\

1
1
1
[@’ WA :<
1 7 9 1
O T
: 1 4 e |
\ Simulated Real 4
(b) State Action
.[]. (+) Add
00 g Ruagent (0) skip
@ O (-) Remove
|

Figure 1: (a) CAR T-cell manufacturing process- i. naive T-cells (red) are taken out of the body by
leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are
applied to activate the naive cells, iii. The naive T-cells are activated (blue), over exposed cells
undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic,
intelligent process control of activation in a simulated cell culture to control real culture with
trained policy. The state observation data is collected in tabular, image or combined format as
an input to the deep neural network or RL-agent; the agent then selects either of the three

permitted actions — add, skip, or remove beads in each control step. Through iterative rounds

of training, the RL-agent learns to map each state to an action which optimizes the end goal of
maximum number of robust effector cells.

In this paper, we construct a digital twin test environment for CAR T-cell expansion from
individual cell properties and explore the ability of RL agents to determine optimal aAPC bead
exposure for varying cell types. CAR T-cell activation and expansion is first coded as a 2D
simulation where the RL-agent can decide to add, skip, or remove aAPC to a given population of
T cells, with the objective of maximizing count of activated cells at simulation end. The
simulation is then converted into a customized gym environment in OpenAl Gym, enabling the
testing of several RL algorithms to benchmark policies for this custom environment. An RL
agent then settles on an optimized strategy by repeatedly interacting with the environment.
Three model-free algorithms —proximal policy optimization (PPO) (Schulman et al., 2017), actor-
critic algorithm (A2C) (Mnih et al., 2016), and deep Q-learning network (DQN) (Cruz et al., 2023)
are selected as candidate algorithms and are trained in this environment using three different
observation space inputs: 1) list of cell counts and other measurable features, 2) image of 2D
cell environment, and 3) a combined list-and-image approach (Supplement 5). Different cell
types are then used to test how the policies adapt their control strategies of bead dosing. The
effect of noise from poor measurement sensors on training efficiency is also tested with
observation variables corrupted with Gaussian noise. Finally, the effects of changing the
number of times the the RL-agent is allowed to interact with the environment and effects of

pre-training agents on control performance are also tested and discussed.

Results

Design of CAR T-cell Simulation

Before attempting to optimize and control a physical system, the bead-based CAR T-cell
activation process is simulated as an RL environment in this work (Figure 1a, 2). The simulation
is used as a training ground (‘environment’ in RL language) for the RL-agent algorithm. The
objective of the training is to maximize the number of activated CAR T-cells through dynamic
control of bead addition and removal. At specified sampling time points, measurable features
(or the observation space) from environment are provided to the RL-agent. The observation
space includes statistics of the environments (number of naive or activated cells and robustness
of cells from morphology) and process parameters (time elapsed and bead added and/or
microscopic image of the culture). The agent policy maps the observations to preferred actions
and is iteratively developed by the agent in the training steps. Using the observation space, the
agent can decide to add more beads, take away all beads, or refrain from acting at that step
(Figure 1b) based on its current policy. The RL-agent then receives a reward or penalty based on
number of activated cells which is used to adjust the weights of the neural net underlying the
policy.

A 2D surface (Figure 2a) for cell growth is simulated as a continuous n X n grid with a
spacing of 10 microns to match the approximate cell diameter (X. Jiang et al., 2020). In all the
simulations, a 50x50 grid corresponding to a 500 by 500 sg-micron area is used. For better
clarity in observing the cells (in Figure 2a), a 20 x 20 grid subset is shown for demonstration.
The simulated expansion area is made continuous (periodic boundary) to decrease
computational cost and approximate a larger area. If a cell exits the simulation grid through one

end, it reappears on the opposite end.

All defined parameters for this simulation are described in Table 2. Although attempts
were made to associate these parameters with literature values, some assumptions were made
for cases where literature or experimental value are yet to be published. It is important to note,
that the modular simulation and RL training presented here can be readily updated as more
measured values are determined through experiments. A fixed time method (Ruiz Barlett et al.,
2009) is used with a value of 6 min per step, derived from the approximate time a cell
translates one diameter away or to the next grid spacing (velocity of the cell is ~2 microns per
minute (Azarov et al., 2019)). Other factors affecting cellular migration, like media viscosity, age
of the cell, size of the cell, etc., are neglected in this simplified model. The total simulation lasts
for a 7-day expansion campaign, equivalent to 1600 simulation steps. Bead-to-cell contact,
bead-to-cell ratio, and confluence are considered in the simulation rules, considering their role
in the activation efficiency (Arman Aksoy et al., n.d.).

At the start of the simulation, the grid is randomly seeded (Figure 2a, n = 1) with a
specified number of naive T-cells indicated as red cells. The following steps are iterated for each
cell in the simulation: Step 1. It can propagate to any of the eight adjacent cells if it satisfies
movement conditions, namely vacancy at the chosen grid and probability of making a move at
that step determined stochastically (Figure 2b and Supplement 2). Step 2: If a naive cell
occupies a position where an activation bead (coupled to anti-CD3 and anti-CD28 antibodies) is
present and if certain conditions (probability of activation at that step beyond a threshold
determined stochastically, detailed in Supplement 2) are met, the naive cell is activated and
turns blue in the simulation (Figure 2b). Step 3: If an already activated cell gets in a position

with a bead, it gets exhausted depending on the value of the specified exhaustion rate (Figure

10

2b and 2c). Step 4: At each timestep, the activated cell is exhausted as natural, transient

natural exhaustion

exhaustion rate (Wherry, 2011) which is () times smaller compared to

total timesteps

accelerated exhaustion caused by overexposure and stimulation caused by beads (see Table 1
and Figure 2c). Each cell has several attributes tracked through the simulation, such as activated
potency, which starts at 0 with naive cells and steps to the value of one when activated (Figure
2c). Step 5: An activated cell can proliferate under conditions of matured age, potency, and

stochastic probability (Figure 2b and detailed in Supplement 2).

11

(a) Naive Activated Exhausted Activator
' beads

cells = cells I cells
n=1 n=>5 n=19

801 il = = e

= Optimum Policy

0 -

80 T [
= Sub-optimum Policy

*

Number of cells
o
L
L B
.I
£
3 h
*I N

80 =i = i
. s s |f MEesa||[dT
: = . . Random Policy
o otillll [T
Actions Game progression
(b) bead (C) Naive Activated Exhausted
Activator beads
Naive Activation b ”' Exhaustion by 9 1_. ®-0-0-0
cells v over exposure I I ¥
° contact o o 5 o-
e Gets @@ o0 ® Time
activated Cell exhaustion o ®
oo (blue cells) .’:o. (yellow cells) ‘ ‘
oo ©
o 00 e o o
[Proliferates in number . A .
Propagates in (blue cells) Symmetric symmet.rlc
pag regeneration regeneration

different direction

Figure 2: Simulation replicating cell activation and expansion (a) Sample simulation trajectories
for three control strategies — top to bottom row depicts optimum, sub-optimum, and random
bead additions; the bar plot at left indicates the number of cells separated by type at each
simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead
addition, (-) refers to the removal and (o) refers to no action; the right three windows are
simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each

simulated step. (c) Simulated life trajectory of a naive starting cell to activated with full potency

12

and natural exhaustion caused by aging. Also defined are two modes of division — symmetric
and asymmetric.

This work has two distinct parts: the CAR T-cell culture simulation (the environment)
and the RL algorithm (agent), which updates its policy as it interacts with the environment. The
RL-agent can add beads, take out beads, or skip taking any action at the time step. Literature
and protocols show that the optimum bead-to-cell ratio varies widely from 3:1 to 9:1
depending on bead and cell type (Trotman-Grant et al., 2021; Zhang et al., 2023). Considering
that the system is seeded with 50 cells, ten beads are allowed to be added in each control step
(beads can be added in consecutive steps). If a control step occurs every 3.2 or 8 hours, there
are 32 and 80 timesteps between actions, and the agent can take a total of 50 and 20 control
actions for each seven day simulation respectively. In the case of bead removal, a magnet
removes all the beads at once (assuming the use of commercial paramagnetic beads). This is
one important real-world constraint where the RL-agent does not have the choice to
incrementally add or take out beads; it must add in a specified amount or take out everything
at a single step. Based on the properties of the cell (such as regeneration rate, how much it
exhausts over time, the chance of getting converted if encountering a bead), the sequence of
actions chosen by the agent can be optimal (large population of robust effector cells marked
with blue), or sub-optimal (low number of effector cells or low potency effector cells marked

with yellow) at the end of all expansion steps (Figure 2b).

Evaluating RL agent input strategies and algorithms

13

At each control step, the RL-agent-algorithm takes observational data from the
environment and outputs a specified control action using the policy. There are many possible
observation data formats that can be provided as input in a real environment. For example,
bulk measurements could be made by impedimetric (Liu et al., 2023) (Agilent Xcelligence) or
permittivity-based (D’alvia et al., 2022) sensors (Skroot Laboratory). Real-time imaging systems
(Espie & Donnadieu, 2023) (Sartorius Incucyte) coupled with Artificial Intelligence (Al) -
empowered cell classification tools can specify and quantify cell types based on morphology
(Tamiev et al., 2020). Those tools can count naive and activated cells and other cell properties
such as age and robustness. Other data such as time elapsed, quantity of beads in the system
and action history can be obtained from the instrument. All the data can be input as a list of
measured values to the RL-agent. This method is termed the ‘tabular’ method in this work
(Figure 3a). Another possible observation format can be in the form of an image obtained from
high-precision microscopy. In this work, we also try to observe if a three-channel image of the
simulation environment, like Figure 2a alone, is enough to provide the agent with enough
information to adequately train (Figure 3a) the policy. The third input format tested is the
fusion between the above two, where both tabular and image information are provided to the
RL-agent (Figure 3a).

Here, we refer to each agent in ‘algorithm-input’ format; for example, PPO-image refers
to an RL-agent trained with PPO algorithm on image data. For three algorithms — PPO, A2C and
DQN and three input schemes — tabular, image and combined, in total 9 combinations of
‘algorithm-input’ is discussed. This analysis aims to demonstrate how RL-agent training depends

on algorithms and input schemes.

14

To improve the decision making of the RL-agent, a reward is tracked through each
simulation. Design of a reward function is an empirical, iterative process. The reward function
we found to work best is to assign a smaller initial reward to encourage activation by bead
addition in the beginning and a large end reward based on number of robust activated cells at
simulation end. The summed reward at the end of each episode is the episodic reward, and at
each episode we plot the average of all previous episodic rewards, shown in red in Figure 3b.
The rising trend of the average reward in the beginning indicates the RL-agent is learning and
constantly obtaining a better strategy whereas flattening of the average reward indicates that

the RL-agent has settled for an optimized strategy (see PPO-tabular and DQN-tabular input in

Figure 3b).
(a) (b)
Tabular input Input Hj Output
e p idden (Acﬁgn) PPO A2C DQN
6 Coverage .~ - 00
Rel. coverage mmmmm E oo 0 (+) Add 400 |]]
Avg. potency A ;OO (0) skip
Bead count 000 ... LR p () R 0 | r\/‘—— f/-F
Prev. action ##®M .-~ OO €MOVE 100 | |

Time left i [Avg. reward

. 3 Episodic reward
| t s OO
mage inpu \ - 8 e 0 (4) 31 400 ; :]
Channel 1 —.% () g

® 0 - a i W
Channel 2 "’ OO 2) = 10?_‘) LA :

Combined input

R

.. O...O
T (+) 400 |] |
Tabul g oL e
Nl T e
Image ﬂ@ ,"O oo © () _100:]]
o @ K 0 106 0 106 0 106
—_—
Episodes

15

Figure 3. Schematic of three different observation space input strategies and learning curves
with different RL algorithms used. (a) List of input schemes: tabular input, image input or
combined input. (b) Learning curves obtained by training on 3 different reinforcement learning
algorithms: PPO, A2C and DQN.

A higher average reward with tight outcome distribution indicates a better-trained RL
agent. The policy quality can be determined from the episodic reward distribution of a trained
RL-agent. For example, with PPO-tabular and DQN-image (Figure 3b), the RL-agent adopted a
stable strategy by 100,000 training episodes as observed from the episodic reward and
flattened out average reward. But with PPO-tabular, the episodic reward distribution around
the average is +/- 50, whereas it is +/- 250 for DQN-image. That indicates the PPO-tabular RL-
agent is better trained, which has a tighter distribution of higher rewards, and the DQN-image
is subjected to variability and chance events. The distribution is even tighter for A2C-combined,
but the average reward is far less than PPO-combined or DQN-combined. More details on the
algorithm are available on Supplement 3-6.

With image input, we tested if it is possible to navigate the environment by simply
getting an annotated snapshot of cells and beads with cell type, potency, and age determined
from image analysis, and not sending any other data including temporal labels (probing
whether the simulation strategy can be step independent). We notice that context information
is important. Performance for all algorithms was higher with context data (tabular and
combined) than without context data (image only). In all three-input strategies, the nature of
DQN was very similar. It settles for a sub-optimal strategy with broader reward distribution

(details in Discussion). In this work, the default hyperparameters for each neural architecture

16

(Supplement 3,4,5), as reported in OpenAl Gym, were used without fine-tuning. How an
untrained and trained RL-agent navigates the environment is demonstrated in Supplement

video 1 and 2 respectively.

Learned control strategies for different cell types and the number of control steps

Next, a PPO-combined RL-agent is tested on each respective cell type, simulating the
diversity of patient-derived cells, to assess how the RL-agent can adapt its learned control
strategy. The cell parameters are simulated by changing six cell types (Table 1). For each cell
type, an RL-agent is first trained for 1M simulations and then used to navigate 1000 simulations
on the same ‘environment.” The average number of beads in each control step is plotted with
standard deviations to reveal the bead addition patterns (Figure 4). The variable actions taken
in response to observations (presence of error bars) indicate that the policy is adaptive to
navigate different spatial distributions of beads and does not simply memorize and repeat the
same actions at each step. In a few instances, there was uniformity of actions (no error bars,
same number of beads in all 1000 simulations). The learning curve is also included with the bar
plot (insets) indicating that the RL-agent settled for a policy at the end of training (discussed
above).

Table 1 Simulated Cell Types

Cell Type Exhaustion Activation Natural Reproduction Asymmetric

Rate Probability Exhaustion Rate Reproduction

17

Unit potency) (Activation) (Unit potency) (Regeneration) (yes/no)
100 x Collisions 100 x timesteps

100 collision 100 x timesteps

1(base 4 90 1 1 No
case)
2 1 45 1 1 No
3 4 90 10 5 No
4 4 90 10 5 Yes
5 4 90 1 5 No
6 4 90 1 1 Yes

The learned control strategies correlate with intuition for these extreme edge cases. In the base
case of Cell 1, to protect the cells from overexposure it removes the beads on the second step
after adding the first. The intuitive strategy would be to add the beads in the initial steps and
let most of the naive cells convert and remove the beads when most cells are activated and let
them proliferate and increase in number which is what the RL-agent executes with less beads
after step 5. With Cell type 2, which has a lower rate of exhaustion than the base case, we
observe the RL-agent ramps up a number of beads quicker and maintains a near constant level
of exposure until the end when there is another ramp to activate any remaining naive cells
(Figure 4b). Interestingly, the first steps of the RL-agent (the initial ramp) are decisive, with no
deviation amongst all runs. Afterwards there are variations in bead number with RL-agent
deciding as required to convert the remaining naive cells. In cell type 3, we simulate a cell with
a higher rate of natural exhaustion and regeneration. As exhaustion only applies to active cells,
the obvious strategy would be to deliberately delay adding the beads to convert the cells close

to the end of the episode. However, as regeneration will be high, the whole region will be

18

crowded with activated cells, so it would be imperative to remove beads and wait for all of

them to regenerate as soon as the optimal number of cells get activated. Considering both

cases the best strategy would be to add beads in the middle steps and skip the beginning and

end steps. This is reflected in the learned strategy of the RL-agent, it skips the first two steps,

adds the beads in two repeated steps, then takes out all the beads and waits to make the cells

increase in number. With cell type 4, asymmetric regeneration is simulated where an activated

cell can produce activated and naive cells. Beads are required to convert the newly produced

naive cells, but those same beads cause the activated cells to get exhausted. To navigate this

system, the RL-agent alternately adds and removes beads, and the overall end score is lower

than the other cell types.

Input cell parameters
to the enviornment

Train an agent for 1M step
on the enviornment

On the same environment
navigate 1000 independent

simulations with the trained
agent

Plot average number of

beads on each step

with standard deviation

(b)

Y-axis - # of beads

40]

400

Cell: 1

-100
0

40

Regeneration

rate (+)

40

10

Conv. prob (-)
Exhaustion rate (-)

Natural

| 20 exhaustion(+)

400 [Cell: 2|

0
-100
0

i

—

400

-100

1

Cell: 3

1

Assymmetric
regenration

400 Cell: 4

40|

X-axis - Timesteps

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a)

Simulation process to obtain control strategy information (b) Strategy of the RL-agent

19

visualized by average number of beads at each control step (y and x axes respectively). The
error bar indicates the standard deviation of beads used at that control step — an indication of
simulation variability or constancy (where no bars exist). The learning curve is also attached
with each bar plot, axes same as in Figure 3b and snapshot of end stage of a simulation and
sample bead and cell population curve is presented for each case at Supplement 9 and

Supplement videos. Arrows between plots indicate the change in cell type (also see Table 1).

To test the effect of an RL-agent that has more control over the environment, we
repeat the training process with 50 control steps (interacting with the growth vessel every 3.2
hr instead of 8 hr — see justification in Supplement 7) for six cell types (Table 1). The base case
behaved the same way, with more dosing of beads in the beginning and reduced in the end
(Figure 5). But as it has more frequent control points, the RL-agent skips adding beads at the
onset to account for small natural exhaustion, continuously adding beads for the second to the
fifth step, then performing the add-remove-skip step depending on the simulated status, with a
diminishing number of beads in subsequent steps. For cell type 2, it adds beads for more steps
at the outset (Figure 5) than before (Figure 4b) and Cell types 3 and 4 also differ. Cell 5 is
simulated with only regeneration increased from the base case, and the RL-agent removes
beads in the second half to let the activated cells grow without exhaustion. In cell type 3, the
natural exhaustion is increased. To evade the exhaustion the agent adds bead in the later steps
and skipping the initial steps. Finally, for cell type 6, we increased the rate of natural exhaustion
and added asymmetric regeneration. In this case, the RL-agent alternately adds and removes

beads for the first third of the control steps and then ramps the number of beads with

20

variability based on the current cell count; again, the expected outcome (average reward) for

this unfortunate cell type is dependent on chance and lower than others.

Cell: 1

Conwv. prob (-)

Exhaustion rate (—)l l—
Cell: 2

400
o |

Asymmetric

regenration Cell: 6

40 | H -100 .
| | ° >10 Regeneration
I .
9 ||| |H\IWUH\m\ﬂmmHMMHMMHMH I rate (+) | Cell: 5
©
8 1 25 50
5 40/
S
= Natural
2 exhaustion(+)
©
> cell: 3|
400
0
% Asymmetric
regenration
! 25 50 X-axis - Timesteps
—

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with
different cell types. The strategy of the RL-agent visualized by the average number of beads per
control step (y and x axes respectively). Error bars indicate one standard deviation, showing
variability of steps or uniformity (no error bars). The learning curve is also attached with each

bar plot. Arrows indicate the change in cell type; also see Table 1.

Effect of measurement noise, number of control steps, and number of training runs
The ability of an RL-agent to learn unique control strategies for different cell types is a
major finding; however, to put this into practice, it will be important to know how accurate the

measurements (inputs to the RL-agent) must be as well as the required number of training runs

21

(as 106 experiments to determine a unique training regime is not tractable). Here, we explore
both topics using the T-cell expansion simulator using the PPO algorithm with combined input.

The observation space for tabular input would be obtained from cell monitoring sensors
that distinguish between cell types and estimate potency (optical, impedance, etc.). These
devices will not have complete precision. To observe the effect of noise, an RL-agent is trained
with 40% of the initial cell number added as Gaussian noise in cell count and potency
estimation to simulate measurement error. Interestingly, there is no observable change in the
episodic and average reward of the training steps and reward distribution with and without
noise (Figure 6a). There are two possible reasons: first, gaussian noise in a stochastic
environment does not make a perceivable difference in mapping observation to action, and
second, the RL-agent either maps the noise along with the observations or totally disregards
the noisy observations and builds its policy on more stable inputs such as time steps. A
histogram is also drawn at three stages of training — the zeroth training run, where the RL-agent
is fully random, and at 250k and 500k episodes. It is also observed that there is a clear
difference in the reward distribution between the random RL-agent at the start and trained RL-
agent at 250k runs, but the distribution of rewards at 250k and 500k episodes was
indistinguishable.

These experiments (Figures 4 and 5) demonstrate that the RL-agent can perform better
with increased interaction with the environment (50 control steps rather than 20). With more
interaction, it has better control, and there is a higher reward with less fluctuation, whereas
with fewer interactions, it is difficult to control the environment, just like a self-driving car

allowed to turn the steering wheel a limited number of time. We investigated if this pattern

22

holds for even further interactions. An RL-agent could interact with a fully automated
environment at every observation point. To observe the effect of increased control, we trained
an RL-agent with 400 control steps (adding, removing, or maintaining beads every 24 m). In this
case, there are an overwhelming 3%% possible combinations of action sequences. With such a
high number, the agent RL-agent finds it difficult to settle on a control policy, and the learning
curve fluctuates more than the 50-control point case (Figure 6b and Supplement 10). This
finding indicates that ‘real-time’ control is likely not as advantageous as a control strategy that
is still dynamic yet has a tractable number of possible actions. Agent response with different
initial cell numbers is also mentioned in Supplement 11.

In a realized clinical setting, there will likely be a limited number of experiments that can
be performed on a new cell type (patient sample) for the RL-agent to self-learn an optimal bead
addition strategy. The average learning curve of cell 1 shows 90% of max average reward after
29,000 training sessions for an RL-agent with 50 control steps (Figure 6¢). We hypothesized that
this number could be further reduced if an RL-agent trained on one cell type is then used as the
start point for another cell (e.g., training the RL-agent on a stock cell, before testing with the
patient cell sample). To test this approach, the RL-agent is trained on 500k training runs on a
base case cell 1 and then used to subsequently train on Cell types 1-4. For cell 1 and cell 2 the
optimum strategy is similar — to add beads in the beginning. In that case the RL-agent can adapt
faster, and a smaller number of runs (1000 or one updated policy step) is required compared to
training from scratch to reach the same level of accuracy. But the optimum strategy is different
for cells 3 and 4 — to add beads at the end. In those cases, the RL-agent needs to unlearn the

previous strategy and adapt a new strategy. With such a policy change, it takes longer to reach

23

the same level of accuracy rather than starting training from scratch. An alternative or parallel
approach to settling on an optimal control strategy would be taking patient cells and
performing a series of tests to obtain growth parameters that would allow for building an
accurate digital twin to do perform accurate simulation (Figure 1b). Then in silico tests, much
like this, would augment the physical training data. An in-silico test thus can guide if there is a
change in policy and weight the choice of — retraining on another cell or training from scratch

considering desired yield and resources.

24

300 EpERERSS 20 Step 50 Step 400 Step
T ([Episodic reward 400
g] ‘ [Episodic reward (with noise) -g]] I
[) = .
[[Cumulative avg. Q 0
0 [Cumulative avg. (with noise) e 100]
501 ‘
T T T 6 6 6
0 ook =00k 0 10° 0 10° 0 10
Traini@?sodes I Avg. reward [Episodic reward

4001

oI S T

200] f 80% 90% 95%
g 100 i T 5 1 1
o
© 01 1] =
a h— | 1 ‘C’I
= =l 41
] a0
o o

4001 T 1 -

300 : 1 31 FHFHI‘H

2004 1 1 1 2 3 4 1 2 3 4 1 2 3 4

100] -

ol] | Cell ID

[Trained on cell 1 for 500k training episodes

— . [Trained on respective environment from beginning

Number of training episodes

Figure 6: (a) Learning curve for an RL-agent trained with and without noise and reward
histogram for simulation conducted with an RL-agent trained on 0, 250k and 500k episodes (b)
Learning curve of RL-agent trained with 20, 50 and 400 timesteps (c) Number or training
episodes required to reach an accuracy of 80%, 90%, and 95% by RL-agents pre-trained for 500k

steps on cell one vs. RL-agents trained on respective cell types from the beginning. Y axis shows

the number of training runs required in log base ten scale.

Discussion

Here, we simulate and test an RL-based platform that would help automated cell
systems to precisely deploy or remove activator molecules at specific time points during T-cell

activation to ensure a maximum number of activated cells (i.e., peak therapeutic potential)

25

before administering them back to the patient. In this work, cell growth parameters were
directly inferred from literature to simulate the spatial and temporal stochasticity of CAR T-cell
activation and expansion with reasonable fidelity. These simulation parameters should be
updated with accurate measurements from the target cell, thereby increasing the accuracy of
the simulation. Then before deploying this neural engine (RL agent) for controlling expansion of
a patient cell, it would pre-train on the simulated environment thereby reducing the number of
training runs required on the physical environment. This work also highlights the utility of non-
destructive, continuous measurements from the physical environment (sensor or imaging data)
that can be fed as inputs to the RL agent to determine the best dosing policy to maximize
activated cells. Continued research on accurate, non-invasive, real-time measurement
techniques to enumerate cell types during culture will provide faster training performance. The
simulation can inform the type of sensors needed and can also show how much noise the RL-
agent can accommodate before it fails to learn anything. With a large amount of measurement
noise, the RL-agent will likely (a) disregard the noisy observation parameters (e.g., cell number,
cell type, and potency) and (b) fix a redundant policy based only on simulation step count.

One possible reason for the RL-agent’s inability to learn solely from discrete image input
(Figure 3b) is the lack of connection with the preceding and succeeding time-points. Thus, it
becomes impossible to gauge whether a certain action (dosing) helped maximize the number of
robust cells. To this end, we anticipate that instead of just providing one disembodied frame, if
we exposed the model to short stacks of three to five consecutive frames, the learning rate and

gains would improve — but we leave this as an exercise for future work.

26

This cell-activation routine guided by RL can be used as a template for other model-free,
stochastic biological applications. Apart from CAR T-cell activation, this bears promise to control
other complex biological policies found in nature, such as the underlying optimization of cell
differentiation and proliferation. Improved digital twins of cell culture environments will make
this possible. As examples of improvements, this 2D simulation can be updated to a 3D
environment representing more realistic growth conditions in static reactors (multilayer
growth). Possible further experiments are listed in Supplement 8. In addition, this digital twin
model provides a basis to benchmark other machine learning frameworks such as transformer
(Vaswani et al., 2017) and DAL-e (Ramesh et al., 2022) based implementations which are finding
increasing applicability in different domains of biology. It is foreseeable, that in the near future
libraries of pre-trained models would be available to automated cell culturing systems for
precision dosing of aAPC to match the range of cell types observed in clinic. Such an approach
would de-risk production of therapeutic cells, providing more efficacious therapies to the

patients in less time.

Methods

Simulation Design
The simulator of cell expansion was made using the Pygame (Sweigart, 2012) module of Python
and is hosted on Zenodo (Ferdous & Shihab, 2023) and GitHub -

https://github.com/Sakib1418/Game-of-cells. The simulation was designed to integrate with

OpenAl gym (Brockman et al., 2016), a collection of simulated environments and associated

27

https://github.com/Sakib1418/Game-of-cells

toolkits to test and compare RL-agent algorithms. As the new gym environment was made, the
Stable Baselines3 module (Raffin et al., 2019) was used on top of the gym to explore current RL
algorithms. The properties of the actors (cells) attempt to simulate actual CAR T-cells, for
example, movement and regeneration rate. Due to the current lack of measured parameters,
such as activation probability on encountering a bead, reasonable estimates are made in this
initial work. All simulation values and cell parameters are listed in Table 2. To observe the RL-
agent response with different cells, new cell types are conceptualized by changing these cell
properties (Table 1). How these parameters are formed into equations governing the fate of the
cell and the culture environment or simulation trajectory overall is detailed in the game
pseudocode (Supplement 2). The cell parameters could be updated in the script in the
repository. The project GitHub repository details the installation of the simulation-game, data
analysis, and reproduction of the plots and usage. Reward function design is discussed in

Supplement 12.

28

Table 2: Parameters and their descriptions

Variable Name
Simulation Variable

The initial number of beads

Grid Number
Grid dimension

Confluence

Number of control-steps

Control Time interval

Number of beads that can
be added at each control step

The initial number of naive
cells to begin within the control area

Total time

Cell Variable

Mean value of
Regeneration Age

Maximum age at which
a cell can regenerate

Probability of activation
Exhaustion Rate
Natural Exhaustion

Regeneration Rate

Asymmetric regeneration
Potency value above which a

cell is considered robust

Potency value below which a cell is
considered exhausted

Value

0

2500
10 Micron

Half of the total grid
(1250)

20, 50, 400 (variable)

8-hour,
3.2-hour,
24 minutes

10

20

160 hours (weeklong
growth)

Two days

3.5 days

Activation
100 X Collisions
(Unit potency

45, 90 ()

1,4

100 collision
Unit potenc
1,10 (— P22
100 X timesteps
(Regeneration)

1,5

100 X timesteps
True/False

0.8

0.2

29

Relevant Source

(Kagoya et al.,
2017)

(Arman Aksoy et
al.,, n.d.)

Assumed

(Kagoya et al.,
2017)

(Kagoya et al.,
2017; Polonsky
et al., 2018;
Szopa et al.,
2021)

Assumed

(Piscopo et al.,
2018)

Assumed

Assumed

Assumed
Assumed

Assumed

Assumed

Assumed

Assumed

Assumed

Reference

Arman Aksoy, B., Czech, E., Paulos, C., & Hammerbacher, J. (n.d.). Computational and
experimental optimization of T cell activation. https://doi.org/10.1101/629857
Azarov, l., Peskov, K., Helmlinger, G., & Kosinsky, Y. (2019). Role of T Cell-To-Dendritic cell
chemoattraction in T Cell priming initiation in the lymph node: An agent-based
modeling study. Frontiers in Inmunology, 10(JUN).

https://doi.org/10.3389/fimmu.2019.01289

Bidot, C., Gruy, F., Haudin, C. S., El Hentati, F., Guy, B., & Lambert, C. (2008).
Mathematical modeling of T-cell activation kinetic. Journal of Computational
Biology, 15(1), 105-128. https://doi.org/10.1089/cmb.2007.0125

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAl Gym. CoRR, abs/1606.01540. http://arxiv.org/abs/1606.01540

Cruz, P.)., Vasconez, J. P., Romero, R., Chico, A., Benalcazar, M. E., Alvarez, R., Barona
Lépez, L. I., & Valdivieso Caraguay, A. L. (2023). A Deep Q-Network based hand
gesture recognition system for control of robotic platforms. Scientific Reports, 13(1),
7956. https://doi.org/10.1038/s41598-023-34540-x

Cutler, M., & How, J. P. (2016). Autonomous drifting using simulation-aided
reinforcement learning. Proceedings - IEEE International Conference on Robotics and
Automation, 2016-June, 5442—-5448. https://doi.org/10.1109/ICRA.2016.7487756

D’alvia, L., Carraro, S., Peruzzi, B., Urciuoli, E., Palla, L., Prete, Z. Del, & Rizzuto, E. (2022).
A Novel Microwave Resonant Sensor for Measuring Cancer Cell Line Aggressiveness.
Sensors, 22(12). https://doi.org/10.3390/s22124383

Ferdous, S., & Shihab, I. F. (2023). CAR T-cell activation control environment in
Reinforcement Learning. https://doi.org/https://doi.org/10.5281/zenodo.7905320

Finck, A., Gill, S. 1., & June, C. H. (2020). Cancer immunotherapy comes of age and looks
for maturity. In Nature Communications (Vol. 11, Issue 1). Nature Research.
https://doi.org/10.1038/s41467-020-17140-5

Gallouédec, Q., Cazin, N., Dellandréa, E., & Chen, L. (n.d.). panda-gym : Open-source
goal-conditioned environments for robotic learning. https://www.franka.de/

Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C. M., Quigley, M. F., Almeida, J. R., Gostick,
E., Yu, Z.,, Carpenito, C., Wang, E., Douek, D. C., Price, D. A., June, C. H., Marincola, F.
M., Roederer, M., & Restifo, N. P. (2011). A human memory T cell subset with stem
cell-like properties. Nature Medicine, 17(10), 1290-1297.
https://doi.org/10.1038/nm.2446

Gumber, D., & Wang, L. D. (2022). Improving CAR-T immunotherapy: Overcoming the
challenges of T cell exhaustion. https://doi.org/10.1016/]

Han, D., Mulyana, B., Stankovic, V., & Cheng, S. (2023). A Survey on Deep Reinforcement
Learning Algorithms for Robotic Manipulation. Sensors, 23(7), 3762.

Jiang, J., & Ahuja, S. (2021). Addressing Patient to Patient Variability for Autologous CAR
T Therapies. Journal of Pharmaceutical Sciences, 110(5), 1871-1876.
https://doi.org/https://doi.org/10.1016/j.xphs.2020.12.015

Jiang, X., Dudzinski, S., Beckermann, K. E., Young, K., McKinley, E.,] MclIntyre, O.,
Rathmell, J. C., Xu, J., & Gore, J. C. (2020). MRI of tumor T cell infiltration in response

30

to checkpoint inhibitor therapy. Journal for Inmunotherapy of Cancer, 8(1).
https://doi.org/10.1136/jitc-2019-000328

Kagoya, Y., Nakatsugawa, M., Ochi, T., Cen, Y., Guo, T., Anczurowski, M., Saso, K., Butler,
M. 0., & Hirano, N. (2017). Transient stimulation expands superior antitumor T cells
for adoptive therapy. JCI Insight, 2(2). https://doi.org/10.1172/jci.insight.89580

Kouro, T., Himuro, H., & Sasada, T. (2022). Exhaustion of CAR T cells: potential causes and
solutions. In Journal of Translational Medicine (Vol. 20, Issue 1). BioMed Central Ltd.
https://doi.org/10.1186/s12967-022-03442-3

Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2017). Global Manufacturing of CAR T
Cell Therapy. In Molecular Therapy - Methods and Clinical Development (Vol. 4, pp.
92-101). Elsevier Inc. https://doi.org/10.1016/j.omtm.2016.12.006

Liu, Z., Jiang, X,, Li, S., Chen, J., Jiang, C., Wang, K., Zhang, C., & Wang, B. (2023). A
disposable impedance-based sensor for in-line cell growth monitoring in CAR-T cell
manufacturing. Bioelectrochemistry, 152, 108416.
https://doi.org/https://doi.org/10.1016/].bioelechem.2023.108416

Lucchi, M., Zindler, F., Muhlbacher-Karrer, S., & Pichler, H. (2020). Robo-gym - An open
source toolkit for distributed deep reinforcement learning on real and simulated
robots. IEEE International Conference on Intelligent Robots and Systems, 5364-5371.
https://doi.org/10.1109/IR0S45743.2020.9340956

Mc Laughlin, A. M., Milligan, P. A., Yee, C., & Bergstrand, M. (2023). Model-informed
drug development of autologous CAR-T cell therapy: Strategies to optimize CAR-T
cell exposure leveraging cell kinetic/dynamic modeling. In CPT: Pharmacometrics
and Systems Pharmacology (Vol. 12, Issue 11, pp. 1577-1590). American Society for
Clinical Pharmacology and Therapeutics. https://doi.org/10.1002/psp4.13011

Mehta, P. H., Fiorenza, S., Koldej, R. M., Jaworowski, A., Ritchie, D. S., & Quinn, K. M.
(2021). T Cell Fitness and Autologous CAR T Cell Therapy in Haematologic
Malignancy. In Frontiers in Immunology (Vol. 12). Frontiers Media S.A.
https://doi.org/10.3389/fimmu.2021.780442

Meng, T. L., & Khushi, M. (2019). Reinforcement learning in financial markets. Data, 4(3),
110.

Miner, A. S., Laranjo, L., & Kocaballi, A. B. (2020). Chatbots in the fight against the COVID-
19 pandemic. In npj Digital Medicine (Vol. 3, Issue 1). Nature Research.
https://doi.org/10.1038/s41746-020-0280-0

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning.
CoRR, abs/1602.01783. http://arxiv.org/abs/1602.01783

molina-paris, C., & Lythe, G. (2021). Mathematical, Computational and Experimental T
Cell Immunology. https://doi.org/10.1007/978-3-030-57204-4

Neftci, E. O., & Averbeck, B. B. (2019). Reinforcement learning in artificial and biological
systems. Nature Machine Intelligence, 1(3), 133—143.
https://doi.org/10.1038/s42256-019-0025-4

Neve-Oz, Y., Sajman, J., Razvag, Y., & Sherman, E. (2018). InterCells: A Generic Monte-
Carlo simulation of intercellular interfaces captures nanoscale patterning at the

31

immune synapse. Frontiers in Immunology, 9(SEP).
https://doi.org/10.3389/fimmu.2018.02051

Palanisamy, P. (2019). Multi-Agent Connected Autonomous Driving using Deep
Reinforcement Learning. CoRR, abs/1911.04175. http://arxiv.org/abs/1911.04175

Philipp, N., Kazerani, M., Nicholls, A., Vick, B., Wulf, J., Straub, T., Scheurer, M., Muth, A.,
Hanel, G., Nixdorf, D., Sponheimer, M., Ohlmeyer, M., Lacher, S. M., Brauchle, B.,
Marcinek, A., Rohrbacher, L., Leutbecher, A., Rejeski, K., Weigert, O., ... Subklewe,
M. (2022). T-cell exhaustion induced by continuous bispecific molecule exposure is
ameliorated by treatment-free intervals. Blood, 140(10), 1104-1118.
https://doi.org/10.1182/blood.2022015956

Piscopo, N. J., Mueller, K. P., Das, A., Hematti, P., Murphy, W. L., Palecek, S. P., Capitini, C.
M., & Saha, K. (2018). Bioengineering Solutions for Manufacturing Challenges in CAR
T Cells. In Biotechnology Journal (Vol. 13, Issue 2). Wiley-VCH Verlag.
https://doi.org/10.1002/biot.201700095

Polonsky, M., Rimer, J., Kern-Perets, A., Zaretsky, I., Miller, S., Bornstein, C., David, E.,
Kopelman, N. M., Stelzer, G., Porat, Z., Chain, B., & Friedman, N. (2018). Induction of
CD4 T cell memory by local cellular collectivity. Science, 360(6394).
https://doi.org/10.1126/science.aaj1853

Prybutok, A. N., Yu, J. S., Leonard, J. N., & Bagheri, N. (2022). Mapping CAR T-Cell Design
Space Using Agent-Based Models. Frontiers in Molecular Biosciences, 9.
https://doi.org/10.3389/fmolb.2022.849363

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., & Dormann, N. (2019). Stable
baselines3.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-
Conditional Image Generation with CLIP Latents. http://arxiv.org/abs/2204.06125

Rashedi, M., Rafiei, M., Demers, M., Khodabandehlou, H., Wang, T., Tulsyan, A., Undey,
C., & Garvin, C. (2023). Machine learning-based model predictive controller design
for cell culture processes. Biotechnology and Bioengineering, 120(8), 2144-2159.
https://doi.org/10.1002/bit.28486

Rolf, B., Jackson, I., Miiller, M., Lang, S., Reggelin, T., & lvanov, D. (2022). A review on
reinforcement learning algorithms and applications in supply chain management.
International Journal of Production Research, 1-29.

Ruiz Barlett, V., Bigedn, J. J., Hoyuelos, M., & Martin, H. O. (2009). Differences between
fixed time step and kinetic Monte Carlo methods for biased diffusion. Journal of
Computational Physics, 228(16), 5740-5748.
https://doi.org/10.1016/].jcp.2009.04.035

Safe driving cars. (2022). In Nature Machine Intelligence (Vol. 4, Issue 2, pp. 95-96).
Nature Research. https://doi.org/10.1038/s42256-022-00456-w

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347. http://arxiv.org/abs/1707.06347

Sommeregger, W., Sissolak, B., Kandra, K., von Stosch, M., Mayer, M., & Striedner, G.
(2017). Quality by control: Towards model predictive control of mammalian cell
culture bioprocesses. In Biotechnology Journal (Vol. 12, Issue 7). Wiley-VCH Verlag.
https://doi.org/10.1002/biot.201600546

32

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction, 2nd ed. In
Reinforcement learning: An introduction, 2nd ed. The MIT Press.

Sweigart, A. (2012). Making Games with Python & Pygame.

Szopa, I. M., Granica, M., Bujak, J. K., tabedz, A., Btaszczyk, M., Paulos, C. M., &
Majchrzak-Kuligowska, K. (2021). Effective Activation and Expansion of Canine
Lymphocytes Using a Novel Nano-Sized Magnetic Beads Approach. Frontiers in
Immunology, 12. https://doi.org/10.3389/fimmu.2021.604066

Tamiev, D., Furman, P. E., & Reuel, N. F. (2020). Automated classification of bacterial cell
subpopulations with convolutional neural networks. PLoS ONE, 15(10).
https://doi.org/10.1371/journal.pone.0241200

Trotman-Grant, A. C., Mohtashami, M., De Sousa Casal, J., Martinez, E. C., Lee, D.,
Teichman, S., Brauer, P. M., Han, J., Anderson, M. K., & Zuiiga-Pflucker, J. C. (2021).
DL4-pbeads induce T cell lineage differentiation from stem cells in a stromal cell-
free system. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-
25245-8

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention Is All You Need. https://arxiv.org/abs/1706.03762

Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing
CART cell therapies. In Current Opinion in Biotechnology (Vol. 53, pp. 164-181).
Elsevier Ltd. https://doi.org/10.1016/j.copbio.2018.01.025

Watanabe, K., Kuramitsu, S., Posey, A. D., & June, C. H. (2018). Expanding the therapeutic
window for CAR T cell therapy in solid tumors: The knowns and unknowns of CAR T
cell biology. In Frontiers in Immunology (Vol. 9, Issue OCT). Frontiers Media S.A.
https://doi.org/10.3389/fimmu.2018.02486

Wherry, E. J. (2011). T cell exhaustion. In Nature Immunology (Vol. 12, Issue 6, pp. 492—
499). https://doi.org/10.1038/ni.2035

Wherry, E. J., & Kurachi, M. (2015a). Molecular and cellular insights into T cell
exhaustion. In Nature Reviews Immunology (Vol. 15, Issue 8, pp. 486—499). Nature
Publishing Group. https://doi.org/10.1038/nri3862

Wherry, E. J., & Kurachi, M. (2015b). Molecular and cellular insights into T cell
exhaustion. In Nature Reviews Immunology (Vol. 15, Issue 8, pp. 486—-499). Nature
Publishing Group. https://doi.org/10.1038/nri3862

Zhang, D. K. Y., Adu-Berchie, K., lyer, S., Liu, Y., Cieri, N., Brockman, J. M., Neuberg, D.,
Wou, C. J., & Mooney, D. J. (2023). Enhancing CAR-T cell functionality in a patient-
specific manner. Nature Communications, 14(1). https://doi.org/10.1038/s41467-
023-36126-7

33

Figure Legends

Figure 1: (a) CAR T-cell manufacturing process- i. naive T-cells (red) are taken out of the body by
leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are
applied to activate the naive cells, iii. The naive T-cells are activated (blue), over exposed cells
undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic,
intelligent process control of activation in a simulated cell culture to control real culture with
trained policy. The state observation data is collected in tabular, image or combined format as
an input to the deep neural network or RL-agent; the agent then selects either of the three
permitted actions — add, skip, or remove beads in each control step. Through iterative rounds
of training, the RL-agent learns to map each state to an action which optimizes the end goal of
maximum number of robust effector cells.

Figure 2: Proposed simulation replicating cell activation and expansion (a) Sample simulation
trajectories for three control strategies — top to bottom row depicts optimum, sub-optimum,
and random bead additions; the bar plot at left indicates the number of cells separated by type
at each simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead
addition, (-) refers to the removal and (o) refers to no action; the right three windows are
simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each
simulated step. (c) Simulated life trajectory of a naive starting cell to activated with full potency
and natural exhaustion caused by aging. Also defined are two modes of division — symmetric
and asymmetric.

Figure 3. Schematic of three different observation space input strategies and learning curve

with different algorithms used. (a) List of input schemes —tabular or list input, image input or

34

combined input (b) learning curves obtained by training on 3 different reinforcement learning
algorithms: PPO, A2C and DQN.

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a)
Simulation process to obtain control strategy information (b) Strategy of the RL-agent
visualized by average number of beads at each control step (y and x axes respectively). The
error bar indicates the standard deviation of beads used at that control step — an indication of
simulation variability or constancy (where no bars exist). The learning curve is also attached
with each bar plot, axes same as in Figure 3b. Arrows between plots indicate the change in cell
type (also see Table 1).

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with
different cell types. The strategy of the the RL-agent visualized by the average number of beads
per control step (y and x axes respectively). Error bars indicate one standard deviation, showing
variability of steps or uniformity (no error bars). The learning curve is also attached with each
bar plot. Arrows indicate the change in cell type; also see Table 1.

Figure 6: (a) Learning curve for RL-agent trained with and without noise and reward histogram
for simulation conducted with RL-agent trained on 0, 250k and 500k episodes (b) RL-agent
trained with 20, 50 and 400 control steps (c) Number or training episodes required to reach an
accuracy of 80%, 90%, and 95% by RL-agents pre-trained for 500k steps on cell one vs. RL-
agents trained on respective cell types from the beginning. Y axis shows the number of training

runs required in log base ten scale.

35

Funding

This work was supported in part by NSF Award 2042503. Ratul Chowdhury is grateful for a lowa

State University startup grant partially funding this work.

Acknowledgements

We thank Krishanu Saha and his group members at the University of Wisconsin, Madison for

useful discussions on CAR-T cell activation and expansion.

Author Contribution

SF performed the literature review, conceptualization, data acquisition, code and software
compilation, writing, and reviewing of the manuscript. IFS assisted in code compilation and
version control. RC contributed to writing, supervision, and revision. NFR contributed to

conceptualization, funding acquisition, writing, reviewing, and overall supervision.

Competing Interest

Nigel Reuel is the scientific founder of Skroot Laboratory Inc., focusing on non-destructive,
continuous measurement of cells, and has an equity interest in the company. In addition, Nigel

Reuel receives income from Skroot Laboratory Inc. for serving in a leadership role.

Correspondence

All the correspondence should be addressed to Nigel Forrest Reuel at reuel@iastate.edu

Code Availability

36

mailto:ratul@iastate.edu

Code is available in Zenodo at - https://doi.org/10.5281/zen0do.7905320 and at GitHub at -

https://github.com/Sakib1418/Game-of-cells with full details and instructions for reproduction.

37

https://doi.org/10.5281/zenodo.7905320
https://github.com/Sakib1418/Game-of-cells

