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Abstract 

Reinforcement learning (RL), a subset of machine learning (ML), could optimize and control 

biomanufacturing processes, such as improved production of therapeutic cells. Here, the 

process of CAR-T cell activation by antigen presenting beads and their subsequent expansion is 

formulated in-silico. The simulation is used as an environment to train  RL-agents to dynamically 

control the number of beads in culture to maximize the population of robust effector cells at 

the end of the culture. We make periodic decisions of incremental bead addition or complete 

removal. The simulation is designed to operate in OpenAI Gym, enabling testing of different 

environments, cell types,  RL-agent algorithms, and state inputs to the  RL-agent.  RL-agent 

training is demonstrated with three different algorithms (PPO, A2C and DQN), each sampling 

three different state input types (tabular, image, mixed); PPO-tabular performs best for this 

simulation environment. Using this approach, training of the  RL-agent on different cell types is 

demonstrated, resulting in unique control strategies for each type. Sensitivity to input-noise 

(sensor performance), number of control step interventions, and advantages of pre-trained  RL-

agents are also evaluated. Therefore, we present an RL framework to maximize the population 

of robust effector cells in CAR-T cell therapy production. 
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Introduction 

 CAR T-cell activation is a critical production step for therapeutic cells that is a prime 

candidate for adaptive control strategies due to their stochastic behavior.  As a brief review (Fig 

1a), CAR-T cell therapeutics involve the collection and separation of naïve T cells from the 

patient, transfecting them to produce Chimeric Antigen Receptors (CARs) and expanding them 

to provide a suitable count of activated cells. These are then infused back into the patient, 

where they efficiently attack the malignant cells (Finck et al., 2020). Activated T-cells proliferate 

more rapidly than naïve, so CARs are more readily expressed (Watanabe et al., 2018). One 

popular approach to activate the cells is by using artificial antigen-presenting beads (aAPC). 

However, prolonged proximity to aAPCs can lead to cell exhaustion (Gattinoni et al., 2011; 

Kouro et al., 2022; Piscopo et al., 2018; Wherry & Kurachi, 2015a). Exhausted cells consequently 

lose reproductive and therapeutic capacity (Wherry & Kurachi, 2015b). The objective of an 

activation and expansion campaign is to have the maximum number of robust active cells. 

There is an optimal strategy for activation (bead addition) such that maximum cells remain 

activated while the number of exhausted cells is minimized (Watanabe et al., 2018). However, 

such optimal strategies are difficult to model and predict due to variable activation and 

propagation rates of donor cells based on age and other genetic factors (J. Jiang & Ahuja, 2021; 

Mehta et al., 2021).  

Static recipes are the current standards for aAPC use in CAR T-cell activation with some 

new attempts at model predictive control. In most cases, beads are added at the beginning of 

the culture and removed at the end (Levine et al., 2017; Piscopo et al., 2018; Vormittag et al., 

2018). Prolonged signaling causes exhaustion, which can be mitigated by halting expression 
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early (Finck et al., 2020; Kouro et al., 2022). It has been observed, that intermittent exposure to 

beads yields a greater number of robust effector cells; however, the underlying activation-

exhaustion mechanism to inform aAPC dosing patterns across all cell populations remains 

elusive (Kagoya et al., 2017; Philipp et al., 2022). No monitoring or control is involved in the 

activation process, which could partially explain the loss of potency of manufactured CAR T-

cells (Gumber & Wang, 2022).  

Model predictive control (MPC) informed by process sensors have the potential to 

optimize CAR T-cell manufacturing (Mc Laughlin et al., 2023); however, their application is 

limited by the need of a fully developed process model (Rashedi et al., 2023; Sommeregger et 

al., 2017). Population dynamic models can provide more cell level spatial and temporal 

resolution than a mechanistic model (Prybutok et al., 2022). The stochastic nature of cells is 

difficult to fully model in a predictive fashion, and therefore adaptive control strategies that can 

update their control policy based on observed cell behavior are well suited. Model free RL 

algorithms optimize a policy, or value function, instead of modeling the environment. It can 

learn directly from continuous sensor data and is useful in situations where it is difficult to 

model the environment. 

Reinforcement learning (RL) is an adaptive control strategy for complex environments 

that do not obey analytical models (Sutton & Barto, 2018). The RL agent discussed in this work 

is a deep neural network. In the neural net, there is an input layer of neurons at the start, an 

interconnected, hidden layer of neurons in the middle, and an output layer at the end. Each of 

these neurons contain adjustable constants, or weights, which are initialized before training. 

The input data array is multiplied with the weights of each layer in turn and produces an array 
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of numbers choosing either of the permitted action at the output layer. The environment 

receives the action and responds to it. A reward or penalty is assigned to the RL-agent based on 

progress towards a desired objective. In the training phase, the weights are adjusted iteratively 

on basis of the reward it achieves in each training run. Through iterative rounds of training, the 

neural net settles on weights which maximize likelihood of choosing the output action that 

achieves the highest reward. RL has been widely used for other stochastic environments such 

as chatbots (Miner et al., 2020), autonomous vehicles (‘Safe Driving Cars,’ 2022), robot 

automation (Han et al., 2023), stock price prediction and projections (Meng & Khushi, 2019), 

and manufacturing and supply chain control (Rolf et al., 2022).  RL-agents can perform better in 

an actual, physical environments after being trained on incrementally complex simulated 

environments (Cutler & How, 2016).  

Despite being a well-established field, the application of RL to optimize biological 

systems (Neftci & Averbeck, 2019) is largely untapped. The main reason could be the lack of 

suitable environments, or digital twin simulations, to train the RL agent and the confounding, 

inherent variability in biological processes. To benchmark new RL algorithms, OpenAI has 

established a test platform called Gym (Brockman et al., 2016), with several environments on 

which new policy algorithms can be tested. There are different environments coded for specific 

control tasks, for example robo-gym for robotic tasks (Lucchi et al., 2020), panda-gym for multi-

goal robotic task (Gallouédec et al., n.d.) and MACAD-gym (Palanisamy, 2019) for self-driving 

bots. Biological processes have an added level of stochasticity over these physics-based 

systems.  Actions by the RL-agent on a biological environment will produce a stochastic 
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outcome rather than a deterministic one. The first step to testing this approach is to build a 

suitable ‘digital twin’ test environment. 

Multiple efforts have been made in modeling T-cell expansion and activation (Molina 

Paris & Lythe, 2021). Researchers have attempted defined, analytical models with systems of 

ordinary differential equations (Bidot et al., 2008). Stochastic approaches have also been 

proposed where each cell is an autonomous entity governed by its own dynamics (Neve-Oz et 

al., 2018). None of these models can account for system changes not built into the analytic 

model or covered by the range of modeled variability.  Moreover, thy do not provide an 

interactive process which can respond to intermittent changes and thus cannot be used to train 

a self-learning algorithm to develop control rules. Such a simulation framework is needed to 

train and test the RL agent approach. 

 



7 
 

 

Figure 1: (a) CAR T-cell manufacturing process- i. naïve T-cells (red) are taken out of the body by 

leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are 

applied to activate the naïve cells, iii. The naïve T-cells are activated (blue), over exposed cells 

undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic, 

intelligent process control of activation in a simulated cell culture to control real culture with 

trained policy. The state observation data is collected in tabular, image or combined format as 

an input to the deep neural network or RL-agent; the agent then selects either of the three 

permitted actions – add, skip, or remove beads in each control step. Through iterative rounds 
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of training, the RL-agent learns to map each state to an action which optimizes the end goal of 

maximum number of robust effector cells.  

In this paper, we construct a digital twin test environment for CAR T-cell expansion from 

individual cell properties and explore the ability of RL agents to determine optimal aAPC bead 

exposure for varying cell types. CAR T-cell activation and expansion is first coded as a 2D 

simulation where the RL-agent can decide to add, skip, or remove aAPC to a given population of 

T cells, with the objective of maximizing count of activated cells at simulation end. The 

simulation is then converted into a customized gym environment in OpenAI Gym, enabling the 

testing of several  RL algorithms to benchmark policies for this custom environment. An RL 

agent then settles on an optimized strategy by repeatedly interacting with the environment. 

Three model-free algorithms –proximal policy optimization (PPO) (Schulman et al., 2017), actor-

critic algorithm (A2C) (Mnih et al., 2016), and deep Q-learning network (DQN) (Cruz et al., 2023) 

are selected as candidate algorithms and are trained in this environment using three different 

observation space inputs: 1) list of cell counts and other measurable features, 2) image of 2D 

cell environment, and 3) a combined list-and-image approach (Supplement 5). Different cell 

types are then used to test how the policies adapt their control strategies of bead dosing. The 

effect of noise from poor measurement sensors on training efficiency is also tested with 

observation variables corrupted with Gaussian noise. Finally, the effects of changing the 

number of times the the  RL-agent is allowed to interact with the environment and effects of 

pre-training agents on control performance are also tested and discussed.  

 
 
Results 
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Design of CAR T-cell Simulation 

Before attempting to optimize and control a physical system, the bead-based CAR T-cell 

activation process is simulated as an RL environment in this work (Figure 1a, 2). The simulation 

is used as a training ground (‘environment’ in RL language) for the RL-agent algorithm. The 

objective of the training is to maximize the number of activated CAR T-cells through dynamic 

control of bead addition and removal. At specified sampling time points, measurable features 

(or the observation space) from environment are provided to the RL-agent. The observation 

space includes statistics of the environments (number of naïve or activated cells and robustness 

of cells from morphology) and process parameters (time elapsed and bead added and/or 

microscopic image of the culture). The agent policy maps the observations to preferred actions 

and is iteratively developed by the agent in the training steps. Using the observation space, the 

agent can decide to add more beads, take away all beads, or refrain from acting at that step 

(Figure 1b) based on its current policy. The RL-agent then receives a reward or penalty based on 

number of activated cells which is used to adjust the weights of the neural net underlying the 

policy.  

A 2D surface (Figure 2a) for cell growth is simulated as a continuous 𝑛 × 𝑛  grid with a 

spacing of 10 microns to match the approximate cell diameter (X. Jiang et al., 2020). In all the 

simulations, a 50×50 grid corresponding to a 500 by 500 sq-micron area is used. For better 

clarity in observing the cells (in Figure 2a), a 20 × 20 grid subset is shown for demonstration. 

The simulated expansion area is made continuous (periodic boundary) to decrease 

computational cost and approximate a larger area. If a cell exits the simulation grid through one 

end, it reappears on the opposite end.  
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All defined parameters for this simulation are described in Table 2. Although attempts 

were made to associate these parameters with literature values, some assumptions were made 

for cases where literature or experimental value are yet to be published. It is important to note, 

that the modular simulation and  RL training presented here can be readily updated as more 

measured values are determined through experiments. A fixed time method (Ruiz Barlett et al., 

2009) is used with a value of 6 min per step, derived from the approximate time a cell 

translates one diameter away or to the next grid spacing (velocity of the cell is ~2 microns per 

minute (Azarov et al., 2019)). Other factors affecting cellular migration, like media viscosity, age 

of the cell, size of the cell, etc., are neglected in this simplified model. The total simulation lasts 

for a 7-day expansion campaign, equivalent to 1600 simulation steps. Bead-to-cell contact, 

bead-to-cell ratio, and confluence are considered in the simulation rules, considering their role 

in the activation efficiency (Arman Aksoy et al., n.d.).  

 At the start of the simulation, the grid is randomly seeded (Figure 2a, n = 1) with a 

specified number of naïve T-cells indicated as red cells. The following steps are iterated for each 

cell in the simulation: Step 1. It can propagate to any of the eight adjacent cells if it satisfies 

movement conditions, namely vacancy at the chosen grid and probability of making a move at 

that step determined stochastically (Figure 2b and Supplement 2). Step 2:  If a naïve cell 

occupies a position where an activation bead (coupled to anti-CD3 and anti-CD28 antibodies) is 

present and if certain conditions (probability of activation at that step beyond a threshold 

determined stochastically, detailed in Supplement 2) are met, the naïve cell is activated and 

turns blue in the simulation (Figure 2b). Step 3: If an already activated cell gets in a position 

with a bead, it gets exhausted depending on the value of the specified exhaustion rate (Figure 
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2b and 2c). Step 4: At each timestep, the activated cell is exhausted as natural, transient 

exhaustion rate (Wherry, 2011) which is ( 
natural exhaustion 

total timesteps
 ) times smaller compared to 

accelerated exhaustion caused by overexposure and stimulation caused by beads (see Table 1 

and Figure 2c). Each cell has several attributes tracked through the simulation, such as activated 

potency, which starts at 0 with naïve cells and steps to the value of one when activated (Figure 

2c). Step 5: An activated cell can proliferate under conditions of matured age, potency, and 

stochastic probability (Figure 2b and detailed in Supplement 2).  
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Figure 2: Simulation replicating cell activation and expansion (a) Sample simulation trajectories 

for three control strategies – top to bottom row depicts optimum, sub-optimum, and random 

bead additions; the bar plot at left indicates the number of cells separated by type at each 

simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead 

addition, (-) refers to the removal and (o) refers to no action; the right three windows are 

simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each 

simulated step. (c) Simulated life trajectory of a naïve starting cell to activated with full potency 
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and natural exhaustion caused by aging. Also defined are two modes of division – symmetric 

and asymmetric. 

This work has two distinct parts: the CAR T-cell culture simulation (the environment) 

and the RL algorithm (agent), which updates its policy as it interacts with the environment. The 

RL-agent can add beads, take out beads, or skip taking any action at the time step. Literature 

and protocols show that the optimum bead-to-cell ratio varies widely from 3:1 to 9:1 

depending on bead and cell type (Trotman-Grant et al., 2021; Zhang et al., 2023). Considering 

that the system is seeded with 50 cells, ten beads are allowed to be added in each control step 

(beads can be added in consecutive steps). If a control step occurs every 3.2 or 8 hours, there 

are 32 and 80 timesteps between actions, and the agent can take a total of 50 and 20 control 

actions for each seven day simulation respectively. In the case of bead removal, a magnet 

removes all the beads at once (assuming the use of commercial paramagnetic beads). This is 

one important real-world constraint where the RL-agent does not have the choice to 

incrementally add or take out beads; it must add in a specified amount or take out everything 

at a single step. Based on the properties of the cell (such as regeneration rate, how much it 

exhausts over time, the chance of getting converted if encountering a bead), the sequence of 

actions chosen by the agent can be optimal (large population of robust effector cells marked 

with blue), or sub-optimal (low number of effector cells or low potency effector cells marked 

with yellow) at the end of all expansion steps (Figure 2b).  

 

Evaluating RL agent input strategies and algorithms 
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At each control step, the RL-agent-algorithm takes observational data from the 

environment and outputs a specified control action using the policy. There are many possible 

observation data formats that can be provided as input in a real environment. For example, 

bulk measurements could be made by impedimetric (Liu et al., 2023) (Agilent Xcelligence) or 

permittivity-based (D’alvia et al , 2022) sensors (Skroot Laboratory).  Real-time imaging systems 

(Espie & Donnadieu, 2023) (Sartorius Incucyte) coupled with Artificial Intelligence (AI) -

empowered cell classification tools can specify and quantify cell types based on morphology 

(Tamiev et al., 2020). Those tools can count naïve and activated cells and other cell properties 

such as age and robustness. Other data such as time elapsed, quantity of beads in the system 

and action history can be obtained from the instrument. All the data can be input as a list of 

measured values to the RL-agent. This method is termed the ‘tabular’ method in this work 

(Figure 3a). Another possible observation format can be in the form of an image obtained from 

high-precision microscopy. In this work, we also try to observe if a three-channel image of the 

simulation environment, like Figure 2a alone, is enough to provide the agent with enough 

information to adequately train (Figure 3a) the policy. The third input format tested is the 

fusion between the above two, where both tabular and image information are provided to the 

RL-agent (Figure 3a).  

Here, we refer t  ea   agent in ‘alg rit  -in  t’ f r at; f r e a  le,    -image refers 

to an RL-agent trained with PPO algorithm on image data. For three algorithms – PPO, A2C and 

DQN and three input schemes – tabular, image and combined, in total 9 combinations of 

‘alg rit  -in  t’ is discussed. This analysis aims to demonstrate how RL-agent training depends 

on algorithms and input schemes. 
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To improve the decision making of the RL-agent, a reward is tracked through each 

simulation. Design of a reward function is an empirical, iterative process. The reward function 

we found to work best is to assign a smaller initial reward to encourage activation by bead 

addition in the beginning and a large end reward based on number of robust activated cells at 

simulation end. The summed reward at the end of each episode is the episodic reward, and at 

each episode we plot the average of all previous episodic rewards, shown in red in Figure 3b. 

The rising trend of the average reward in the beginning indicates the  RL-agent is learning and 

constantly obtaining a better strategy whereas flattening of the average reward indicates that 

the RL-agent has settled for an optimized strategy (see PPO-tabular and DQN-tabular input in 

Figure 3b).  
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Figure 3. Schematic of three different observation space input strategies and learning curves 

with different RL algorithms used. (a) List of input schemes: tabular input, image input or 

combined input. (b) Learning curves obtained by training on 3 different reinforcement learning 

algorithms: PPO, A2C and DQN. 

A higher average reward with tight outcome distribution indicates a better-trained RL 

agent. The policy quality can be determined from the episodic reward distribution of a trained  

RL-agent. For example, with PPO-tabular and DQN-image (Figure 3b), the RL-agent adopted a 

stable strategy by 100,000 training episodes as observed from the episodic reward and 

flattened out average reward. But with PPO-tabular, the episodic reward distribution around 

the average is +/- 50, whereas it is +/- 250 for DQN-image. That indicates the PPO-tabular  RL-

agent is better trained, which has a tighter distribution of higher rewards, and the DQN-image 

is subjected to variability and chance events. The distribution is even tighter for A2C-combined, 

but the average reward is far less than PPO-combined or DQN-combined. More details on the 

algorithm are available on Supplement 3-6. 

With image input, we tested if it is possible to navigate the environment by simply 

getting an annotated snapshot of cells and beads with cell type, potency, and age determined 

from image analysis, and not sending any other data including temporal labels (probing 

whether the simulation strategy can be step independent).  We notice that context information 

is important. Performance for all algorithms was higher with context data (tabular and 

combined) than without context data (image only). In all three-input strategies, the nature of 

DQN was very similar. It settles for a sub-optimal strategy with broader reward distribution 

(details in Discussion). In this work, the default hyperparameters for each neural architecture 
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(Supplement 3,4,5), as reported in OpenAI Gym, were used without fine-tuning. How an 

untrained and trained  RL-agent navigates the environment is demonstrated in Supplement 

video 1 and 2 respectively. 

 

Learned control strategies for different cell types and the number of control steps  

 

Next, a PPO-combined  RL-agent is tested on each respective cell type, simulating the 

diversity of patient-derived cells, to assess how the  RL-agent can adapt its learned control 

strategy. The cell parameters are simulated by changing six cell types (Table 1). For each cell 

type, an RL-agent is first trained for 1M simulations and then used to navigate 1000 simulations 

on the same ‘envir n ent ’ The average number of beads in each control step is plotted with 

standard deviations to reveal the bead addition patterns (Figure 4). The variable actions taken 

in response to observations (presence of error bars) indicate that the policy is adaptive to 

navigate different spatial distributions of beads and does not simply memorize and repeat the 

same actions at each step. In a few instances, there was uniformity of actions (no error bars, 

same number of beads in all 1000 simulations). The learning curve is also included with the bar 

plot (insets) indicating that the RL-agent settled for a policy at the end of training (discussed 

above).  

Table 1  Simulated Cell Types 
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The learned control strategies correlate with intuition for these extreme edge cases. In the base 

case of Cell 1, to protect the cells from overexposure it removes the beads on the second step 

after adding the first. The intuitive strategy would be to add the beads in the initial steps and 

let most of the naïve cells convert and remove the beads when most cells are activated and let 

them proliferate and increase in number which is what the RL-agent executes with less beads 

after step 5. With Cell type 2, which has a lower rate of exhaustion than the base case, we 

observe the  RL-agent ramps up a number of beads quicker and maintains a near constant level 

of exposure until the end when there is another ramp to activate any remaining naïve cells  

(Figure 4b).  Interestingly, the first steps of the RL-agent (the initial ramp) are decisive, with no 

deviation amongst all runs. Afterwards there are variations in bead number with RL-agent 

deciding as required to convert the remaining naïve cells. In cell type 3, we simulate a cell with 

a higher rate of natural exhaustion and regeneration. As exhaustion only applies to active cells, 

the obvious strategy would be to deliberately delay adding the beads to convert the cells close 

to the end of the episode. However, as regeneration will be high, the whole region will be 
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crowded with activated cells, so it would be imperative to remove beads and wait for all of 

them to regenerate as soon as the optimal number of cells get activated. Considering both 

cases the best strategy would be to add beads in the middle steps and skip the beginning and 

end steps. This is reflected in the learned strategy of the RL-agent, it skips the first two steps, 

adds the beads in two repeated steps, then takes out all the beads and waits to make the cells 

increase in number. With cell type 4, asymmetric regeneration is simulated where an activated 

cell can produce activated and naïve cells. Beads are required to convert the newly produced 

naïve cells, but those same beads cause the activated cells to get exhausted. To navigate this 

system, the RL-agent alternately adds and removes beads, and the overall end score is lower 

than the other cell types.  

 

 

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a) 

Simulation process to obtain control strategy information (b) Strategy of the  RL-agent 

 n  t  ell  ara eters 

t  t e envi rn ent

 rain an agent f r    ste  

 n t e envi rn ent

 n t e sa e envir n ent 

navigate  000 inde endent 

si  la  ns wit  t e trained 
agent

 l t average n   er  f 

 eads  n ea   ste  

wit  standard devia  n

( ) (a) 

 20 0

 00

0

  00
0    

 0

 20 0

 00

0

  00
0    

 00

0

  00
0    

 0

 20 0

  00

 00

0

0    

 20 0

 0

 0

C nv   r   ( )
   a s  n rate ( )

 egenera  n 
rate ( )

 ss   etri  
regenra  n 

 at ral 
e  a s  n( )

Cell   

Cell  2

Cell  3

Cell     
a 
is
  
  
 
f 
 
ea
d
s

  a is   i este s



20 
 

visualized by average number of beads at each control step (y and x axes respectively). The 

error bar indicates the standard deviation of beads used at that control step – an indication of 

simulation variability or constancy (where no bars exist). The learning curve is also attached 

with each bar plot, axes same as in Figure 3b and snapshot of end stage of a simulation and 

sample bead and cell population curve is presented for each case at Supplement 9 and 

Supplement videos. Arrows between plots indicate the change in cell type (also see Table 1).  

  

To test the effect of an  RL-agent that has more control over the environment, we 

repeat the training process with 50 control steps (interacting with the growth vessel every 3.2 

hr instead of 8 hr – see justification in Supplement 7) for six cell types (Table 1). The base case 

behaved the same way, with more dosing of beads in the beginning and reduced in the end 

(Figure 5). But as it has more frequent control points, the RL-agent skips adding beads at the 

onset to account for small natural exhaustion, continuously adding beads for the second to the 

fifth step, then performing the add-remove-skip step depending on the simulated status, with a 

diminishing number of beads in subsequent steps. For cell type 2, it adds beads for more steps 

at the outset (Figure 5) than before (Figure 4b) and Cell types 3 and 4 also differ. Cell 5 is 

simulated with only regeneration increased from the base case, and the RL-agent removes 

beads in the second half to let the activated cells grow without exhaustion. In cell type 3, the 

natural exhaustion is increased. To evade the exhaustion the agent adds bead in the later steps 

and skipping the initial steps. Finally, for cell type 6, we increased the rate of natural exhaustion 

and added asymmetric regeneration. In this case, the  RL-agent alternately adds and removes 

beads for the first third of the control steps and then ramps the number of beads with 



21 
 

variability based on the current cell count; again, the expected outcome (average reward) for 

this unfortunate cell type is dependent on chance and lower than others.  

 

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with 

different cell types. The strategy of the RL-agent visualized by the average number of beads per 

control step (y and x axes respectively). Error bars indicate one standard deviation, showing 

variability of steps or uniformity (no error bars). The learning curve is also attached with each 

bar plot. Arrows indicate the change in cell type; also see Table 1. 

 

Effect of measurement noise, number of control steps, and number of training runs 

The ability of an  RL-agent to learn unique control strategies for different cell types is a 

major finding; however, to put this into practice, it will be important to know how accurate the 

measurements (inputs to the RL-agent) must be as well as the required number of training runs 
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(as 106 experiments to determine a unique training regime is not tractable). Here, we explore 

both topics using the T-cell expansion simulator using the PPO algorithm with combined input. 

The observation space for tabular input would be obtained from cell monitoring sensors 

that distinguish between cell types and estimate potency (optical, impedance, etc.). These 

devices will not have complete precision. To observe the effect of noise, an RL-agent is trained 

with  40% of the initial cell number added as Gaussian noise in cell count and potency 

estimation to simulate measurement error. Interestingly, there is no observable change in the 

episodic and average reward of the training steps and reward distribution with and without 

noise (Figure 6a). There are two possible reasons: first, gaussian noise in a stochastic 

environment does not make a perceivable difference in mapping observation to action, and 

second, the  RL-agent either maps the noise along with the observations or totally disregards 

the noisy observations and builds its policy on more stable inputs such as time steps. A 

histogram is also drawn at three stages of training – the zeroth training run, where the RL-agent 

is fully random, and at 250k and 500k episodes. It is also observed that there is a clear 

difference in the reward distribution between the random RL-agent at the start and trained  RL-

agent at 250k runs, but the distribution of rewards at 250k and 500k episodes was 

indistinguishable.  

 These experiments (Figures 4 and 5) demonstrate that the RL-agent can perform better 

with increased interaction with the environment (50 control steps rather than 20). With more 

interaction, it has better control, and there is a higher reward with less fluctuation, whereas 

with fewer interactions, it is difficult to control the environment, just like a self-driving car 

allowed to turn the steering wheel a limited number of time. We investigated if this pattern 
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holds for even further interactions. An RL-agent could interact with a fully automated 

environment at every observation point. To observe the effect of increased control, we trained 

an  RL-agent with 400 control steps (adding, removing, or maintaining beads every 24 m). In this 

case, there are an overwhelming 3400 possible combinations of action sequences. With such a 

high number, the agent  RL-agent finds it difficult to settle on a control policy, and the learning 

curve fluctuates more than the 50-control point case (Figure 6b and Supplement 10). This 

finding indi ates t at ‘real-ti e’   ntr l is li el  n t as advantage  s as a   ntr l strateg  t at 

is still dynamic yet has a tractable number of possible actions. Agent response with different 

initial cell numbers is also mentioned in Supplement 11.  

In a realized clinical setting, there will likely be a limited number of experiments that can 

be performed on a new cell type (patient sample) for the RL-agent to self-learn an optimal bead 

addition strategy.  The average learning curve of cell 1 shows 90% of max average reward after 

29,000 training sessions for an RL-agent with 50 control steps (Figure 6c). We hypothesized that 

this number could be further reduced if an RL-agent trained on one cell type is then used as the 

start point for another cell (e.g., training the RL-agent on a stock cell, before testing with the 

patient cell sample). To test this approach, the RL-agent is trained on 500k training runs on a 

base case cell 1 and then used to subsequently train on Cell types 1-4. For cell 1 and cell 2 the 

optimum strategy is similar – to add beads in the beginning. In that case the RL-agent can adapt 

faster, and a smaller number of runs (1000 or one updated policy step) is required compared to 

training from scratch to reach the same level of accuracy. But the optimum strategy is different 

for cells 3 and 4 – to add beads at the end. In those cases, the RL-agent needs to unlearn the 

previous strategy and adapt a new strategy. With such a policy change, it takes longer to reach 
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the same level of accuracy rather than starting training from scratch.  An alternative or parallel 

approach to settling on an optimal control strategy would be taking patient cells and 

performing a series of tests to obtain growth parameters that would allow for building an 

accurate digital twin to do perform accurate simulation (Figure 1b). Then in silico tests, much 

like this, would augment the physical training data.  An in-silico test thus can guide if there is a 

change in policy and weight the choice of – retraining on another cell or training from scratch 

considering desired yield and resources.  
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Figure 6: (a) Learning curve for an RL-agent trained with and without noise and reward 

histogram for simulation conducted with an RL-agent trained on 0, 250k and 500k episodes (b) 

Learning curve of RL-agent trained with 20, 50 and 400 timesteps (c) Number or training 

episodes required to reach an accuracy of 80%, 90%, and 95% by RL-agents pre-trained for 500k 

steps on cell one vs.  RL-agents trained on respective cell types from the beginning. Y axis shows 

the number of training runs required in log base ten scale.  

 
Discussion 
 

Here, we simulate and test an RL-based platform that would help automated cell 

systems to precisely deploy or remove activator molecules at specific time points during T-cell 

activation to ensure a maximum number of activated cells (i.e., peak therapeutic potential) 
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before administering them back to the patient. In this work, cell growth parameters were 

directly inferred from literature to simulate the spatial and temporal stochasticity of CAR T-cell 

activation and expansion with reasonable fidelity. These simulation parameters should be 

updated with accurate measurements from the target cell, thereby increasing the accuracy of 

the simulation. Then before deploying this neural engine (RL agent) for controlling expansion of 

a patient cell, it would pre-train on the simulated environment thereby reducing the number of 

training runs required on the physical environment. This work also highlights the utility of non-

destructive, continuous measurements from the physical environment (sensor or imaging data) 

that can be fed as inputs to the RL agent to determine the best dosing policy to maximize 

activated cells. Continued research on accurate, non-invasive, real-time measurement 

techniques to enumerate cell types during culture will provide faster training performance. The 

simulation can inform the type of sensors needed and can also show how much noise the RL-

agent can accommodate before it fails to learn anything. With a large amount of measurement 

noise, the RL-agent will likely (a) disregard the noisy observation parameters (e.g., cell number, 

cell type, and potency) and (b) fix a redundant policy based only on simulation step count.  

One possible reason for the RL-agent’s inability to learn solely from discrete image input 

(Figure 3b) is the lack of connection with the preceding and succeeding time-points. Thus, it 

becomes impossible to gauge whether a certain action (dosing) helped maximize the number of 

robust cells. To this end, we anticipate that instead of just providing one disembodied frame, if 

we exposed the model to short stacks of three to five consecutive frames, the learning rate and 

gains would improve – but we leave this as an exercise for future work. 
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 This cell-activation routine guided by RL can be used as a template for other model-free, 

stochastic biological applications. Apart from CAR T-cell activation, this bears promise to control 

other complex biological policies found in nature, such as the underlying optimization of cell 

differentiation and proliferation. Improved digital twins of cell culture environments will make 

this possible. As examples of improvements, this 2D simulation can be updated to a 3D 

environment representing more realistic growth conditions in static reactors (multilayer 

growth). Possible further experiments are listed in Supplement 8. In addition, this digital twin 

model provides a basis to benchmark other machine learning frameworks such as transformer 

(Vaswani et al., 2017) and DAL-e (Ramesh et al., 2022) based implementations which are finding 

increasing applicability in different domains of biology. It is foreseeable, that in the near future 

libraries of pre-trained models would be available to automated cell culturing systems for 

precision dosing of aAPC to match the range of cell types observed in clinic. Such an approach 

would de-risk production of therapeutic cells, providing more efficacious therapies to the 

patients in less time. 

 

Methods 

 

Simulation Design 

The simulator of cell expansion was made using the Pygame (Sweigart, 2012) module of Python 

and is hosted on Zenodo (Ferdous & Shihab, 2023) and GitHub - 

https://github.com/Sakib1418/Game-of-cells. The simulation was designed to integrate with 

OpenAI gym (Brockman et al., 2016), a collection of simulated environments and associated 

https://github.com/Sakib1418/Game-of-cells
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toolkits to test and compare RL-agent algorithms. As the new gym environment was made, the 

Stable Baselines3 module (Raffin et al., 2019) was used on top of the gym to explore current RL 

algorithms. The properties of the actors (cells) attempt to simulate actual CAR T-cells, for 

example, movement and regeneration rate. Due to the current lack of measured parameters, 

such as activation probability on encountering a bead, reasonable estimates are made in this 

initial work. All simulation values and cell parameters are listed in Table 2. To observe the RL-

agent response with different cells, new cell types are conceptualized by changing these cell 

properties (Table 1). How these parameters are formed into equations governing the fate of the 

cell and the culture environment or simulation trajectory overall is detailed in the game 

pseudocode (Supplement 2). The cell parameters could be updated in the script in the 

repository. The project GitHub repository details the installation of the simulation-game, data 

analysis, and reproduction of the plots and usage. Reward function design is discussed in 

Supplement 12.  
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Table 2: Parameters and their descriptions 

Variable Name Value Relevant Source 

Simulation Variable   

The initial number of beads 0 
(Kagoya et al., 
2017)  

Grid Number  2500  

Grid dimension 10 Micron  

Confluence 
Half of the total grid  
(1250) 

(Arman Aksoy et 
al., n.d.) 

Number of control-steps 20, 50, 400 (variable) Assumed 

Control Time interval 
8-hour, 
3.2-hour , 
24 minutes 

(Kagoya et al., 
2017) 

Number of beads that can 
be added at each control step 

10 

(Kagoya et al., 
2017; Polonsky 
et al., 2018; 
Szopa et al., 
2021) 

The initial number of naïve 
cells to begin within the control area 

20 Assumed 

Total time 
160 hours (weeklong 
growth) 

(Piscopo et al., 
2018) 

   

Cell Variable   

Mean value of 
Regeneration Age 

Two days Assumed 

Maximum age at which 
a cell can regenerate 

3.5 days Assumed 

Probability of activation 45, 90 ( 
Activation

100 × Collisions
 ) Assumed 

Exhaustion Rate 1,4 (
Unit potency

100 collision
) Assumed 

Natural Exhaustion 1, 10 ( 
Unit potency

 100 × timesteps 
 ) Assumed 

Regeneration Rate 1, 5 (
Regeneration

100 × timesteps
) Assumed 

Asymmetric  regeneration True/False Assumed 

Potency value above which a 
cell is considered robust 

0.8 Assumed 

Potency value below which a cell is 
considered exhausted 

0.2 Assumed 
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Figure Legends 
 
Figure 1: (a) CAR T-cell manufacturing process- i. naïve T-cells (red) are taken out of the body by 

leukapheresis process, ii. Antigen presenting beads (white spheres with black spikes) are 

applied to activate the naïve cells, iii. The naïve T-cells are activated (blue), over exposed cells 

undergo exhaustion (yellow), iv. The activated cells proliferate in number (b) Dynamic, 

intelligent process control of activation in a simulated cell culture to control real culture with 

trained policy. The state observation data is collected in tabular, image or combined format as 

an input to the deep neural network or RL-agent; the agent then selects either of the three 

permitted actions – add, skip, or remove beads in each control step. Through iterative rounds 

of training, the RL-agent learns to map each state to an action which optimizes the end goal of 

maximum number of robust effector cells.  

Figure 2: Proposed simulation replicating cell activation and expansion (a) Sample simulation 

trajectories for three control strategies – top to bottom row depicts optimum, sub-optimum, 

and random bead additions; the bar plot at left indicates the number of cells separated by type 

at each simulation step; the symbols at the x-axis represent the action taken: (+) refers to bead 

addition, (-) refers to the removal and (o) refers to no action; the right three windows are 

simulation screens at 1, 5 and 19 steps. (b) Process and permitted actions by the cells in each 

simulated step. (c) Simulated life trajectory of a naïve starting cell to activated with full potency 

and natural exhaustion caused by aging. Also defined are two modes of division – symmetric 

and asymmetric. 

Figure 3. Schematic of three different observation space input strategies and learning curve 

with different algorithms used. (a) List of input schemes –tabular or list input, image input or 
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combined input (b) learning curves obtained by training on 3 different reinforcement learning 

algorithms: PPO, A2C and DQN. 

Figure 4: Change of strategy by the RL-agent using 20 control steps for different cell types. (a) 

Simulation process to obtain control strategy information (b) Strategy of the  RL-agent 

visualized by average number of beads at each control step (y and x axes respectively). The 

error bar indicates the standard deviation of beads used at that control step – an indication of 

simulation variability or constancy (where no bars exist). The learning curve is also attached 

with each bar plot, axes same as in Figure 3b. Arrows between plots indicate the change in cell 

type (also see Table 1).  

Figure 5: Change of strategy by the RL-agent using 50 control steps learned from training with 

different cell types. The strategy of the the  RL-agent visualized by the average number of beads 

per control step (y and x axes respectively). Error bars indicate one standard deviation, showing 

variability of steps or uniformity (no error bars). The learning curve is also attached with each 

bar plot. Arrows indicate the change in cell type; also see Table 1. 

Figure 6: (a) Learning curve for  RL-agent trained with and without noise and reward histogram 

for simulation conducted with  RL-agent trained on 0, 250k and 500k episodes (b) RL-agent 

trained with 20, 50 and 400 control steps (c) Number or training episodes required to reach an 

accuracy of 80%, 90%, and 95% by  RL-agents pre-trained for 500k steps on cell one vs.  RL-

agents trained on respective cell types from the beginning. Y axis shows the number of training 

runs required in log base ten scale.  
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