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Abstract: This paper reviews trends in GeoAI research and discusses cutting-edge ad-
vances in GeoAI and its roles in accelerating environmental and social sciences. It ad-
dresses ongoing attempts to improve the predictability of GeoAI models and recent re-
search aimed at increasing model explainability and reproducibility to ensure trustworthy
geospatial findings. The paper also provides reflections on the importance of defining the
“science” of GeoAI in terms of its fundamental principles, theories, and methods to ensure
scientific rigor, social responsibility, and lasting impacts.
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1 Introduction

Artificial Intelligence (AI), especially deep learning, has transformed many science and
engineering disciplines because of its outstanding ability to learn and reveal previously
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unknown patterns and knowledge in a data-driven manner. Geography is an ideal domain
to extensively apply and further boost AI research because of the availability of vast, di-
verse geospatial data, intriguing and complex human-environmental interactions, as well
as its central role in enabling location-based analysis. In less than a decade, we have wit-
nessed a rapidly growing interest and progress in Geospatial Artificial Intelligence (GeoAI)
research—the transdisciplinary expansion of AI in Geography and its sibling domains in
urban, environmental, and social sciences.

So, what is GeoAI? Li [34] defines it as a novel technological solution that integrates AI,
geospatial big data, and high-performance computing for solving data- and computation-
intensive geospatial problems. This field has gained continuous momentum, driven by
strong demands in geography and the rapid advancement of AI. On the one hand, the
sheer amount of available geospatial data, ranging from super-high-resolution satellite im-
agery (centimeter scale) to sensor observational data collected in real time, continues to
fuel the need for robust, scalable, and smart analytical capabilities. These capabilities are
essential for producing important datasets about the natural and built environment, as well
as human activities, which are critical to help us better understand ever-changing environ-
mental, ecological, and social systems and their interactions. On the other hand, the rapid
evolution of cutting-edge AI technology, the open science movement, and the seamless ex-
change and fusion of new (deep) learning strategies across subdomains of AI further offer
methodological guidance for strengthening GeoAI [9].

In a broader sense, GeoAI research primarily involves applying off-the-shelf AI mod-
els to solve geospatial problems. Indeed, much of this research falls into this category;
however, it also features a unique methodological core that sets it apart from general AI
research:

Spatially explicit modeling. The explicit incorporation of space and place into AI mod-
eling has become a desired property of GeoAI [13, 24]. Spatial data and processes possess
two unique properties: spatial autocorrelation and spatial heterogeneity. Spatial autocorre-
lation, defined in Tobler’s First Law of Geography, reflects the phenomenon that things
closer geographically tend to be more similar. This property has guided the design of
multiple spatial algorithms, such as spatial clustering and interpolation, as well as GeoAI
models. For example, guided by the principle of spatial autocorrelation, researchers [36]
developed a weakly supervised deep learning (WSDL) framework by converting a spatial
object detection problem into a sequence learning problem, relying on much less ground
truth information. This is achieved by serializing 2D data into a 1D sequence and max-
imizing the preservation of spatial continuity and therefore spatial autocorrelation in the
serialized data. Enabled by the WSDL, a significant amount of data annotation cost can
be reduced. Experiments on both Earth and Mars feature detection have shown that the
spatially explicit GeoAI model outperforms cutting-edge AI models.

Spatial heterogeneity refers to the uncontrolled locational variance and non-stationarity
of environmental and social processes on the Earth’s surface [1], and this property has been
increasingly embedded in the newer generation of GeoAI models [12, 60]. For example,
[60] developed a spatial-heterogeneity-aware deep learning framework for mining spatial
data. A multivariate scan statistic is applied to identify spatial heterogeneity in the input
data and guide the hierarchical spatial partitioning of the study area to train multiple deep
learning models. This approach results in stronger model predictions in both mobility
pattern analysis and land cover classification compared to other AI models.
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Such GeoAI models, integrating the above and other fundamental spatial principles (for
example, spatial interaction and the Third Law of Geography [65]), represent a deep fusion
of geography and AI and will continue to bring innovation to GeoAI research.

Multi-source, multimodal GeoAI modeling. One distinctive feature of geospatial data
is that they are geographically framed [50]. This enables geospatial data collected from
different sources to be spatially (and temporally) aligned and integrated to provide a more
comprehensive view of a study area. Hence, multi-source GeoAI [56] has become a unique
research topic that leverages complementary spatial data to achieve high-accuracy data
analysis and spatial modeling. Meanwhile, because geospatial data often include multiple
modalities, such as raster, vector, and text, processing them into a coherent representation
through techniques such as location embedding [29,41] will further improve the utilization
of these multimodal data.

Spatiotemporal and multi-scale joint learning. A shared characteristic among many
geophysical and social phenomena, such as hurricanes or a spreading pandemic, is that
they are evolving spatial processes. Hence, it is important to consider their spatial and tem-
poral properties simultaneously when modeling such phenomena. Recent efforts [5, 32] to
develop large transformer models that can capture the spatial and temporal dependencies
within a huge amount of data over long ranges have set an exemplar for GeoAI research.
The inherent integration of multi-scale learning in this process captures the spatial hierar-
chy and compositionality of many spatial features and processes, shedding new light on
complex forecasting tasks, such as weather forecasting and climate projections. These tasks
are traditionally accomplished with physics-based models, which require massive com-
puting power and long simulation times. Additionally, coupling physical process models
with multi-scale deep learning improves process understanding in spatial and Earth sci-
ences [46].

Geography-informed model training and validation. In addition to helping develop
spatially explicit models, geography also plays important roles in informing and improv-
ing model training and evaluation. For example, existing research has leveraged map
projections and cartographic principles to automatically generate training data for map
image recognition [20]. Researchers have also utilized OpenStreetMap data to create
AI-ready training data to identify buildings and roads from aerial images [17, 26]. For
model evaluation, GeoAI research can use different strategies depending on whether the
goal of the trained models is to predict within the same geographic area or to predict into
new areas. Random cross-validation may be used for predictions without considering
the geographical context, whereas spatial cross-validation may be adopted to better
assess model performance when the goal is to predict outcomes in untested geographic
areas [15, 47, 49].

In the following, we describe use cases showcasing the power of GeoAI over traditional
GIS methods in advancing spatial sciences.
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2 GeoAI for Science

GeoAI has contributed to a wide range of scientific domains, such as climate modeling [32],
environmental epidemiology [53], health care [27], human dynamics tracking [57], remote
sensing image analysis [35], land cover and land use change detection [62], sustainable
agricultural practices [10], urban planning [43], infectious disease analysis [30], disaster
response [66], and supply chain management [25]. This section discusses two recent ini-
tiatives where GeoAI plays a crucial role in supporting spatial science. The first use case
examines a geospatial AI foundation model that primarily deals with field data (raster
data). The second focuses on building an intelligent National Map, emphasizing object-
based modeling of space.

2.1 The development of a new geospatial foundation model Prithvi

An exciting development in GeoAI is the move toward building foundation models—
models trained on massive geospatial data of various kinds to gain strong capabilities in
knowledge representation [22]. Rather than being task-specific, foundation models are de-
signed to be adaptable to a wide range of downstream tasks, from image analysis to ques-
tion answering in natural language text [61]. As the community witnesses considerable
success in large language models (LLMs), such as ChatGPT, developing vision foundation
models tailored to detect important phenomena from images and other structured data
has fallen behind [38]. First, it is difficult to generalize a fine-grained image analysis task
in an image-to-image learning framework, as the output of such tasks varies substantially
due to different application needs. The second challenge is the lack of data and computing
infrastructure for academic research groups to conduct national- to global-scale analysis of
ever-expanding earth observation data. Big-tech companies, which have such a scale of
resources, are more equipped to develop foundation models to address problems of com-
mercial value rather than their value to open science.

Fortunately, the National Aeronautics and Space Administration (NASA) and Interna-
tional Business Machines (IBM), along with other partnering research organizations, are
spearheading the development of a geospatial foundation model—Prithvi—to transform
the management and analysis of geospatial big data. The Prithvi model is built upon an
advanced AI architecture called a vision transformer and uses self-supervised learning to
reduce labeling costs and scale up the amount of data the model can utilize. A distinctive
feature of Prithvi is its geospatial focus—the model is trained on Harmonized Landsat and
Sentinel-2 (HLS) imagery in time series, and it has shown stronger domain adaptability and
transferability than other AI models for geospatial applications, including flood mapping
and wildfire prediction [22, 39]. Another advantage of this research is that both the data
and model under development are made open-source and publicly available, fostering the
growth of a community to collectively contribute to the advancement of GeoAI modeling
capability in this important area.

2.2 GeoAI for building an intelligent National Map

At multiple mapping agencies, such as the United States Geological Survey (USGS) [16],
United Kingdom’s Ordnance Survey [44], Natural Resources Canada [7], and Geoscience
Australia [59], there has been a major effort to build a National Map. This map, or more
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precisely, a core collection of geospatial data about elevation, hydrography, orthoimagery,
geographical names, and more, is an essential element for building the National Spatial
Data Infrastructure and supporting a wide range of mapping and modeling applications
[2].

However, this process is very time-consuming and often lasts for decades. Taking the
USGS topographic map as an example, the original creation process of the Historical Map
Collection (HTMC) involved a few hundred cartographers, field scientists, geomorphol-
ogists, and managerial staff. They spent multiple years examining online maps to iden-
tify the extent of important topographic features, from mountain summits to valleys and
ridges, and to recognize the correct geographical extent and type of these features. This
effort also required extensive fieldwork and interviews with local and state communities
to ensure high accuracy and a semantically consistent definition of terrain features. The
Geographical Names Information System (GNIS) database captured many of these fea-
tures from the HTMC amid long-term efforts to build digital gazetteers detailing attributes
of important named features. Despite the database’s over one million named features, its
geolocation information remains a single point location for all features, regardless of size.
This incomplete information has limited the effective use of such data for geospatial anal-
ysis [4]. Additionally, the search and identification of important features on the surface of
Earth and other planets have also introduced significant challenges for AI in answering the
question of “where” [14].

GeoAI, with spatial methods developed specifically for processing many satellite im-
ages, historical maps, and other geospatial data, provides an unprecedented opportunity
to automate the process toward building an intelligent National Map [52]. Whereas tra-
ditional machine learning methods can support the processing of geospatial data or im-
ages, the analysis is often limited by geographical extent due to the need for manually
distilling important data attributes and rules for recognizing natural or manufactured fea-
tures. In comparison, large neural network models enable generalizability in pattern recog-
nition and extraction, contributing to much-advanced feature extraction capabilities and
the ability for large-scale intelligent analysis. Geospatial deep learning models have been
developed to harness high-accuracy LiDAR data from the USGS 3D Elevation Program
and airborne interferometric synthetic aperture radar (IfSAR) data for fine-scale hydrologic
streamline detection, producing desirable benefits for many scientific domains [48,63]. The
leverage and fusion of multi-source geospatial data, as well as the integration of geospatial
domain knowledge, are unique to GeoAI research [19]. Georeferencing and rescaling can
align and combine datasets of varying spatial resolutions and map projections to further
empower such intelligent analyses [3].

3 The Science of GeoAI

Although the propulsion of GeoAI into scientific research in both social and environmental
sciences is evident, the readiness to claim GeoAI as a new scientific discipline remains an
open question. Below, we discuss topics critical to GeoAI research and what may make it
a long-lasting and high-impact scientific discipline instead of a ’local hotspot’ in GIScience
research.

In terms of research objectives, the science of GeoAI may cover four fundamental pil-
lars: predictability, interpretability, reproducibility, and social responsibility (Figure 1). It
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The Science of GeoAI

Figure 1: The four pillars of the science of GeoAI

is worth noting that other frameworks, such as the FAIR principles—Findability, Accessi-
bility, Interoperability, and Reusability—as well as the field of data science, aim to address
similar issues. However, these pillars have unique interpretations within the GeoAI re-
search context. Advances in these areas within the scientific framework of GeoAI require
support and guidance from spatial theory and spatial sciences.

3.1 Predictability

The predictive performance of a model, measured by either accuracy, efficiency, or their
combination, is always a primary goal driving the development of new GeoAI methods.
A robust method is also an important lens through which we make sense of the geospa-
tial world and make new discoveries. Instead of merely applying AI to geospatial data, a
GeoAI model may explicitly incorporate spatial concepts and principles into the modeling
process. To assess the “Geo” capabilities in a GeoAI model, it may be worth asking: Are
spatial variables such as latitude, longitude, and distance captured in the model? Are the
findings differentiable by location and scale? From a spatial modeling perspective, will the
predictions or conclusions change when the inputs move to a different study area? The
four points discussed in the introduction—spatially explicit modeling, multi-source, mul-
timodal GeoAI modeling, spatiotemporal and multi-scale joint learning, and geography-
informed model training and validation—are along these lines advancing GeoAI as a dif-
ferentiator from general AI research. This not only involves feeding AI with important
geospatial problems to solve but also advancing AI modeling with a unique spatial lens.

As GeoAI models are becoming huge and even more complex today, it is important
to seek a balance in our design principles between developing big, one-size-fits-all geo-
foundation models versus smaller but “smarter” models that excel at task-specific prob-
lems. It is also important to leverage spatial knowledge and principles such as spatial au-
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tocorrelation and spatial heterogeneity to reduce existing model complexity, helping them
‘lose weight’ while becoming more robust and effective at answering spatial questions.

3.2 Interpretability

Model interpretability also plays a critical role in GeoAI research. Interpretability is often
used interchangeably with explainability in the domain of X-GeoAI (Explainable GeoAI),
which aims to provide human-understandable explanations of how a GeoAI model arrives
at a decision. Achieving explainability in a GeoAI model is an important step toward build-
ing trust in AI-based systems, especially when leveraging them for high-stakes decision-
making, such as emergency management. An explainable GeoAI model also offers in-
creased transparency; it can assist researchers in verifying results and findings, identifying
new causal relationships, further contributing to the advancement of knowledge, and the
development of new theories.

It is worth mentioning that model interpretability and predictability are often compet-
ing goals for a GeoAI model. Achieving high model predictive performance often requires
the design of complex model architectures, making it difficult to explain the inner logic of
the model. This is known as the black box conundrum. Other methods, such as decision
trees or geographically weighted regressions (GWR) [6], are built upon simpler mecha-
nisms and are often self-interpretable by reviewing the model summary and the learned
model parameters. However, these models may not handle the same amount of big data as
do deep learning models; they can hardly achieve the same level of predictability due to a
limitation in extracting complex relationships within the data.

Compared to the extensive literature on developing GeoAI models and applications,
research on explainable GeoAI is relatively new and requires further investigation. Re-
cent studies have emerged that connect a GeoAI model’s prediction results through back-
propagation to the input data, identifying important image regions or features that con-
tributed most to the model’s decision [18]. There is also increasing research focused on us-
ing human-recognizable concepts [31] or class ambiguity indices [33] to understand deep
learning behaviors. However, these techniques are not unique to GeoAI. An intriguing
development in this field is GeoShapley [40], which employs a game theory approach and
treats location as a player in a model prediction game. This framework quantifies the im-
portance of location and its interactions with other variables in a machine-learning model,
thereby enhancing the explainability of statistical and black-box machine-learning models.
Combining GeoShapley concepts with deep learning models may provide the geospatial
community with a new opportunity to explain and enhance the trustworthiness of com-
plex, deep-learning-based GeoAI models.

3.3 Reproducibility

GeoAI model reproducibility concerns whether a piece of GeoAI research is reproducible
computationally. Reproducible research ensures that the methods and findings reported
in one study can be validated by other researchers. It also allows the data and method-
ological workflow to be easily leveraged to advance knowledge on the same scientific topic
or adapted to address a different research question. Toward this end, reproducibility ac-
celerates scientific research processes and enables researchers to develop new knowledge
based on existing findings. Today, reproducibility is often advanced through data and code
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sharing. However, this merely addresses the reproducibility challenge in GeoAI research.
On the one hand, the complexity of a GeoAI model architecture hinders its readability, and
even with code sharing, it can still be difficult to comprehend and reuse. On the other
hand, GeoAI research involves multiple complex and interconnected procedures, from
data preparation to model design, training, fine-tuning, and testing, further challenging
the reestablishment and reproduction of the workflow.

Addressing these challenges benefits from the movement toward ‘open science.’ Well-
documented data, workflows, openly shared design principles, and lessons learned are
critical for improving code and model comprehension and promoting reuse [28, 58]. How-
ever, when considering reproducibility from a spatial perspective, namely, whether re-
search findings derived from one study area can be reproduced in another, the issue of
replicability arises. Replicability concerns the inferential reproducibility or spatial gener-
alizability of a GeoAI model’s findings, which is a key goal in spatial science research.
Given the ubiquitous presence of spatial heterogeneity across geospatial data and pro-
cesses, GeoAI models exhibit only “weak replicability” [15]. That is, although the model
structure can remain general, the model parameters will vary when applied to different
geographical regions or geospatial datasets.

Recent GeoAI replicability research has developed a ‘replicability map’ to demonstrate
the location transferability of GeoAI model findings for global Mars crater detection [37].
This study uncovers statistically significant findings that the GeoAI model results are more
replicable along latitude, and the closer the distance is, the higher the degree of replicability
the model will achieve. In contrast, spatial heterogeneity is a dominant factor for experi-
mental results along longitudinal zones, with no strong spatial autocorrelation found in
zones that have close spatial proximity. Moving forward, it is worth investigating whether
such a finding on one set of data on one planet is replicable to another dataset on Earth or
another planet. It is also important to devote research to answer critical questions such as
the following: To what degree does spatial heterogeneity affect the replicability of GeoAI
models? How does this influence vary across space and time and different spatial pro-
cesses? Can we identify ways to quantify this influence through a universal mechanism
within GeoAI models?

3.4 Social responsibility

Socially responsible AI is another essential element in GeoAI research that complements its
scientific and technological facets, as social responsibility materializes GeoAI for the social
good. A GeoAI system is more socially responsible when its decisions are fair, transparent,
and robust while preserving user privacy, safety, security, and fostering social beneficence.

From a geospatial perspective, there is no doubt about the critical need to protect loca-
tion privacy in GeoAI research [45]. Interestingly, on one hand, we encourage the integra-
tion of location information in GeoAI models to take advantage of unique spatial dimen-
sions; on the other hand, it is important to preserve individual-level location data as they
are key to linking multi-source data, which can then be used to infer sensitive personal
information. These two aspects are not conflicting, as the former may emphasize large-
scale environmental research (over non-sensitive areas), whereas the latter describes stud-
ies on human movement and dynamics. Techniques such as obfuscation, anonymization,
synthetic data generation, and cryptography have been developed to protect data privacy
used in the GeoAI models [42]. Research on how location information can be best embed-
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ded and represented in future GeoAI modeling, which combines extensive environmental
data with fine-grained human-level information, will offer new insights into socially re-
sponsible GeoAI research.

Achieving social responsibility also requires designing GeoAI systems to follow ethical
guidelines [51], which govern the ethical use of AI data and algorithms to ensure the system
causes no harm to humankind and can, to the maximum extent, reduce bias and discrim-
ination, comply with laws, and protect human rights. Here, a co-design process will help
mitigate ethical concerns by involving the local communities in the GeoAI model design
and prediction process. By incorporating and adapting local knowledge and practices, the
cultural relevance and respectfulness of GeoAI tools can be enhanced. The tools’ accuracy
and usability can also be improved.

Environmental sustainability is also a critical aspect of social responsibility for GeoAI.
Today’s AI models, such as LLMs, require massive computational power and high energy
costs in their training processes, contributing to a significant carbon footprint and thus risk-
ing the planet’s environmental sustainability [23]. GeoAI models, especially those dealing
with high-resolution spatial data and simulations, can also be computationally intensive.
However, by leveraging the spatially explicit nature of GeoAI tasks and domain-specific
optimizations, GeoAI research could potentially reduce environmental impact compared
to general-purpose AI, thereby becoming more environmentally friendly and socially re-
sponsible.

As our research increasingly relies on commercial AI tools, such as ChatGPT, it is impor-
tant to provide proper training to the geospatial community. Unintentional disclosure of
geospatial data to these models may result in misuse and unexpected consequences. GeoAI
governance will play a key role in ensuring data privacy and accountability. Going beyond
general AI governance, GeoAI governance includes additional layers such as spatial data
accuracy, data representation, and the preservation of sensitive locations (e.g., indigenous
lands and military bases). As synthetic dataset becomes a valuable source for augment-
ing a GeoAI model’s learning capability, caution must be exercised in discerning deepfake
geospatial data [64] to prevent their use in critical spatial analysis and decision-making
tasks. Last but not least, it is important to develop clear agreements and licensing terms
to ensure explicit permission for the use of copyrighted geospatial data (e.g., proprietary
satellite imagery) in GeoAI models and the ownership of their derived products.

3.5 The interconnectivity among the research pillars

Social responsibility is a key principle driving advances in GeoAI research’s three other pil-
lars. Improvements in model predictability, interpretability, and reproducibility enhance
GeoAI’s capabilities and benefits to society, making it more socially responsible. Fig-
ure 2 showcases the interconnected research dimensions falling in the science landscape
of GeoAI. Interpretability is fundamental—it makes a GeoAI model transparent and in-
herently more trustworthy. This transparency establishes a vital connection between the
model’s inner workings and user understanding, fostering reliability and accountability.
Reproducibility, another essential aspect of responsible GeoAI, is the foundation of relia-
bility and robustness. The robust nature of a reproducible GeoAI model further ensures
the consistency and dependability of its decision-making processes.

In applying these principles, a robust GeoAI model will not only excel in predicting
outcomes but will also be reliable and trustworthy. The combination of predictability, inter-
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Figure 2: Interconnected research dimensions in the science landscape of GeoAI

pretability, and reproducibility, integrated with social responsibility, makes a GeoAI model
extremely powerful for advancing both spatial sciences and practical applications. Models
with such capabilities maximize long-term societal impacts and contribute to the greater
good.

4 Concluding remarks

Recent growth in GeoAI motivates the present discussion of progress made in advanc-
ing spatial sciences through new analytical capabilities that address important data and
knowledge gaps in social and environmental research. By summarizing the milestone
development of GeoAI methods (for example, spatially explicit modeling, spatiotempo-
ral and multi-scale joint learning), this paper emphasizes the importance of integrating
key spatial principles into AI model design to enhance the methodological foundation of
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GeoAI. Subsequently, we discussed four interconnected research pillars that shape the sci-
ence landscape of GeoAI, including predictability, interpretability, reproducibility, and so-
cial responsibility.

As we look ahead, there is a critical need to advance GeoAI methods and techniques,
enhancing their predictive capabilities with greater reliability and transparency. The recent
rapid advancement in AI has been driven by the harnessing of big data and significant
computing power. In the same vein, the tremendous potential for advancing GeoAI is
likely dependent on and/or synergistic with frontiers in cyberGIS and spatial data science,
especially from scientific perspectives [54, 55]. Addressing large-scale and complex prob-
lems requires significant advances in theories, methods, and experiments, as well as team
science approaches to developing open data, benchmarks, and evaluation methodologies.

To further advance GeoAI, we should continue to embed spatial thinking and conver-
gent thinking into the design of GeoAI models while maintaining a commitment to social
responsibility. In light of the growing attention to large commercial AI models, such as
ChatGPT, the geospatial community must stay alert as the use of such models will pose
overwhelming challenges regarding their interpretability, reproducibility, and social re-
sponsibility. Rather than being mere users of these models, we should focus on identifying
fundamental geospatial research questions and solutions that leverage their strengths while
addressing potential negative spatial and societal impacts. It is important to develop new
ways to ingest geospatial knowledge into large models to regulate their reasoning process,
as the generative nature of some AI models may result in spatially or topographically in-
correct answers [8,21]. Meanwhile, a disclaimer for the use of AI in operational geographic
information systems is recommended to keep end users informed and comfortable with
their use. In addition, proper training for geospatial researchers on commercial AI models
is needed to ensure they do not unintentionally leak important research data to the models
or violate any privacy issues.

We should also be aware that many geospatial research projects and problems solved
using AI, such as Stanford University researchers’ groundbreaking work in using Street
View images to infer neighborhood-level social and demographic profiles [11] and Google
DeepMind’s cutting-edge AI model for medium-range weather forecasting [32], are devel-
oped by the general AI community. However, they present opportunities for the GeoAI
researchers to make substantial contributions. Hence, we need to remain open-minded
and continue conducting outreach to increase other AI researchers’ awareness of the value
of GeoAI. The national Institute for Geospatial Understanding through an Integrative Dis-
covery Environment (I-GUIDE, http://i-guide.io) supported by the National Science Foun-
dation offers an exemplary model for engaging research communities within and outside
the geospatial domains to gain visibility and enhance the impact of geospatial research.

We hope the perspectives presented in this paper will encourage the deepening of
GeoAI’s support for scientific discovery and contribute to the dialogue advancing the sci-
ence of GeoAI. Both endeavors clearly require a community effort. Continued collaboration
and critical evaluation within the community are essential to ensure that advancements in
GeoAI are both scientifically robust and ethically sound.
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