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A B S T R A C T

Flood inundation mapping is a critical task for responding to the increasing risk of flooding linked to global
warming. Significant advancements of deep learning in recent years have triggered its extensive applications,
including flood inundation mapping. To cope with the time-consuming and labor-intensive data labeling
process in supervised learning, deep active learning strategies are one of the feasible approaches. However,
there remains limited exploration into the interpretability of how deep active learning strategies operate, with a
specific focus on flood inundation mapping in the field of remote sensing. In this study, we introduce a novel
framework of Interpretable Deep Active Learning for Flood inundation Mapping (IDAL-FIM), specifically in
terms of class ambiguity of multi-spectral satellite images. In the experiments, we utilize Sen1Floods11 dataset,
and adopt U-Net with MC-dropout. In addition, we employ five acquisition functions, which are the random,
K-means, BALD, entropy, and margin acquisition functions. Based on the experimental results, we demonstrate
that two proposed class ambiguity indices are effective variables to interpret the deep active learning by
establishing statistically significant correlation with the predictive uncertainty of the deep learning model at
the tile level. Then, we illustrate the behaviors of deep active learning through visualizing two-dimensional
density plots and providing interpretations regarding the operation of deep active learning, in flood inundation

mapping.
1. Introduction

Flood inundation mapping, which determines the extent of the
flooded area including depth, velocity and uncertainty (Bentivoglio
et al., 2022; Merwade et al., 2008; Horritt, 2006), is increasingly im-
portant due to the intensification of extreme precipitation worldwide.
This intensification is anticipated due to global warming. Rising Earth’s
average temperatures lead to higher water vapor concentrations in the
atmosphere, consequently contributing to more extreme precipitation
occurrences (Tabari, 2020). Significantly, the extreme values, repre-
senting the 90th percentile value of precipitation duration for each
year globally, of long-duration flood events have exceeded 30 days in
the recent decade, whereas they were less than 20 days in the 1980s
and 1990s (Najibi and Devineni, 2018). In addition, between 2000 and
018, an estimated 255–290 million people were directly affected by
loods in areas observed by satellites (Tellman et al., 2021). Therefore,
to respond to the risks posed by floods, flood inundation mapping
plays a fundamental role in near real-time monitoring, damage as-
sessment, post-flood evacuation, and protection planning (Bentivoglio
et al., 2022; Iqbal et al., 2021).
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In the past decade, notable advancements have been made in deep
learning, particularly with the introduction of Convolutional Neural
Networks (CNNs; Jia et al., 2014). These advances have enabled au-
tomated and data-driven analysis of large imagery, and they have
also triggered extensive applications of deep learning in environmental
monitoring using remote sensing imagery (Li and Hsu, 2022; Li et al.,
2024). Furthermore, this research trend, coupled with advances in
Earth observation data and high-performance computing, has led to the
emergence of Geospatial Artificial Intelligence (GeoAI; Li, 2020), an in-
terdisciplinary research area that applies and extends AI for geospatial
problem solving.

Flood inundation mapping with remote sensing images, an impor-
tant application of GeoAI, is primarily focused on identifying flooded
areas from the given satellite images using deep learning models.
Therefore, research in this area has predominantly centered on se-
mantic segmentation which partitions an image into distinct regions
corresponding to predefined classes. Previous research have shown
that deep learning models, such as Fully Convolutional Neural Net-
work (FCN; Long et al., 2015), U-Net (Ronneberger et al., 2015),
vailable online 25 May 2024
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DeepLabV3+ (Chen et al., 2018), HRNet (Wang et al., 2020), outper-
ormed traditional methods including rule- and threshold-based ap-
roaches in flood mapping (Dong et al., 2021; Helleis et al., 2022).
dditionally, new learning strategies, such as dilated convolution (Yu
nd Koltun, 2015; Yu et al., 2017), were integrated into deep learning-
ased segmentation models to further improve the models’ predictive
erformance (Nogueira et al., 2018; Wang et al., 2022). Recently, new
eospatial foundation models such as Prithvi were applied to flood
apping to assess their generalizability (Li et al., 2023).
Despite these advances in AI model architecture for flood inunda-

ion mapping, the time-consuming and labor-intensive data annotation
rocess remains a bottleneck in enabling supervised learning (Bus-
ombe et al., 2022; Beluch et al., 2018; Takezoe et al., 2023). The data
abeling process can be divided into two stages: (1) selecting or sam-
ling image tiles, and (2) labeling the selected tiles in satellite images.
ctive learning, which aims to identify a small yet highly informative
et of data points for machine learning, is an effective approach to
ddress the selection of data samples to reduce labeling cost (Settles,
009; Cohn et al., 1996). In particular, active learning for deep learning
odels is referred to as deep active learning (Takezoe et al., 2023). In
he field of remote sensing, research has applied deep active learning
o satellite image segmentation and change detection (Rǔžička et al.,
020; Li et al., 2022). However, there remains limited exploration in
nterpreting how deep active learning operates, especially within the
ontext of flood inundation mapping. This paper aims to bridge the
nowledge gap by interpreting deep active learning in flood inundation
apping, with a specific focus on class ambiguity extracted from input
atellite images.
The main contributions of this study are:

(1) We introduce a novel framework of Interpretable Deep Active
Learning for Flood inundation Mapping (IDAL-FIM) to enhance
the interpretability of deep active learning operations.
(2) We demonstrate that the correlation between the two pro-
posed class ambiguity indices (boundary pixel ratio and Maha-
lanobis distance for flood-segmentation) and predictive uncer-
tainty of the deep learning model are statistically significant at
the tile level. This finding allows us to interpret the behavior of
deep active learning using the proposed indices.
(3) We illustrate that the behaviors of deep active learning can be
visually interpreted through two-dimensional density plots, which
show the distribution patterns of selected data points to be labeled
in the IDAL-FIM framework.

To achieve this research goal, the paper is structured as follows:
ection 2 provides a review of relevant literature; Section 3 describes
he IDAL-FIM framework, acquisition functions, and proposes two class
mbiguity indices; Section 4 explains the experimental setup; Section 5
resents the experimental results; Section 6 provides a discussion and
nterpretation about the behavior of deep active learning in the context
f flood mapping. Finally, in Section 7, we conclude the work, discuss
imitations and propose future research directions.

. Literature review

.1. Multi-spectral satellite image collection for deep learning-based flood
nundation mapping

There are two distinct approaches used to collect flood-observed
raining data for deep learning in flood inundation mapping: (1) region-
pecific satellite image collection and (2) global satellite image col-
ection. The collection of multi-spectral satellite images which were
aptured during flood events in a specific region is only feasible when
sufficient amount of data can be acquired. Therefore, this approach is
pplicable to study areas that experience recurrent flood damage over
he years and cover a relatively extensive geographical area. Examples
2

f such study areas are the Yangtze River Basin and Lake Poyang in
hina, as well as the Atlantic coast of the southeastern United States,
ncluding nearby urban areas frequently affected by hurricanes (Peng
t al., 2019; Muñoz et al., 2021; Wang et al., 2022; Zhang and Xia,
021).
On the other hand, flood events are infrequent hydrological phe-

omena; therefore, securing a sufficient amount of training samples in
specific region is almost infeasible, except for a few regions stated
bove. Instead, collecting training data containing flood events from
iverse global locations has become a feasible solution. This has espe-
ially benefited from the availability of cloud platforms such as Google
arth Engine, NASA Earth Exchange, and Sentinel Hub which facilitate
ccess to and processing of vast amounts of satellite imagery (Zhao
t al., 2022). During satellite image collection, researchers often ac-
uire images across diverse climates, atmospheric conditions, and land
ettings to ensure the generalizability of deep learning models (Wieland
t al., 2023; Shastry et al., 2023; Tellman et al., 2021; Bonafilia
t al., 2020; Wieland and Martinis, 2019). However, to the best of
ur knowledge, there have been very few studies (Popien et al., 2021)
nvestigating the impact of training data selection on the predictive
erformance of deep learning models in flood inundation mapping.

.2. Deep active learning

Active Learning (AL) is designed to improve the performance of
achine learning models by utilizing fewer training data (Settles, 2009;
ohn et al., 1996). The pool-based sampling scenario, employed in
his study, is one of the typical scenarios of active learning, which
ssumes a large pool of unlabeled data points along with a small initial
abeled data set. In each iteration, a model is trained using labeled data
n a supervised learning manner. An acquisition function prioritizes
nformative data points and guides the selection of unlabeled data
oints from a pool. Unlabeled data selected through the acquisition
unction are labeled by human experts and then integrated into the
xisting training data. This iterative process is repeated, wherein the
odel is trained from scratch using the newly incorporated labeled
ata, until a specific level of model performance is reached (Beluch
t al., 2018; Gal et al., 2017).
Deep Active Learning (DAL) combines the advantages of active

earning, which effectively reduces labeling costs by selecting infor-
ative data points for model training, with a deep learning model,
nown for exceptional high-dimensional data processing and automatic
eature extraction (Ren et al., 2021). In DAL, the acquisition functions
re mainly categorized into uncertainty-based and density-based ac-
uisition functions (Takezoe et al., 2023; Beluch et al., 2018). Both
ategories of acquisition functions are relying on specific assumptions
o select informative data points.
The uncertainty-based acquisition function evaluates the informa-

iveness of unlabeled data under the assumption that data points with
igher uncertainty provide more information for model training (Set-
les, 2009). In the context of flood mapping, high uncertainty data
oints include satellite images capturing complex boundary patterns in
looded areas, as well as areas exhibiting spectral reflectance similar to
looded areas, such as non-flooded vegetated areas or cloud shadows.
eep learning models encounter more difficulty in classifying pixels in
hese satellite images into the correct classes. Therefore, by training
n data points with high uncertainty, the model improves its ability
o identify between classes in flood mapping, which can eventually
nhance the model’s performance (Takezoe et al., 2023).
Regarding uncertainty estimation in deep learning, recent research

as pointed out that deep learning models often exhibit overconfidence
n their predictions, especially when making misclassifications (Guo
t al., 2017). To enhance the reliability of predictions, uncertainty
stimation methods focus on calibrating the predictions instead of
elying solely on a single prediction (Wang et al., 2023). For this reason,
rior studies on DAL (Rǔžička et al., 2020; Beluch et al., 2018; Gal
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et al., 2017) employed uncertainty estimation methods to measure
more reliable predictions for relevant acquisition functions.

Particularly, in previous studies on the segmentation of remote
sensing imagery, three uncertainty estimation methods were utilized
to obtain uncertainty from deep learning models at the pixel-level:
(1) Monte-Carlo dropout (MC-dropout; Gal and Ghahramani, 2016),
2) deep ensembles (Lakshminarayanan et al., 2017), and (3) fully-
ayesian CNN (LaBonte et al., 2019). The MC-dropout method derives
ncertainty estimates by regarding dropout training in deep neural
etworks as an approximation of Bayesian inference within deep Gaus-
ian processes (Gal and Ghahramani, 2016). In practice, approximate
ayesian inference in deep learning models makes use of multiple
nferences with different dropout masks. In remote sensing studies,
he MC-dropout method was employed to enhance prediction per-
ormance and provide uncertainty estimation, in Land Use and Land
over (LULC) tasks (Kampffmeyer et al., 2016; Dechesne et al., 2021).
n the other hand, deep ensembles utilize an ensemble of multiple
eep learning models to estimate uncertainty, and the final output
f deep ensembles is generally the averaged softmax vectors of each
nsemble model (Beluch et al., 2018). In previous deep learning-based
oads segmentation, deep ensembles were shown to outperform MC-
ropout in pixel-level prediction, despite their significant computa-
ional cost (Haas and Rabus, 2021). More recently, another study
ompared the reliability of uncertainty estimation methods between
C-dropout and fully-Bayesian CNN (LaBonte et al., 2019) in water
egmentation (Hertel et al., 2023). The fully-Bayesian CNNs learn the
istribution of the weight space instead of a single value. For imple-
entation of the fully-Bayesian CNNs, the authors utilized the Bayesian
ayers library (Tran et al., 2019) in TensorFlow Probability (Dillon
et al., 2017). Their conclusion was that fully-Bayesian CNNs were
more reliable than MC-dropout in estimating pixel-level predictive
uncertainty (Hertel et al., 2023). However, the implementation of full-
Bayesian CNNs requires specific libraries and additional training time
to determine weight distributions, compared to MC-dropout.

In contrast to uncertainty-based acquisition, density-based acquisi-
tion functions leverage the feature space of the input data (Takezoe
et al., 2023). This type of acquisition function is grounded in the
assumption that data points maximizing the diversity of data features
are informative (Xie et al., 2020). However, while density-based acqui-
sition functions have been primarily studied for classification tasks in
computer vision, no relevant research on the segmentation of remote
sensing images could be found.

Uncertainty measures in deep active learning are categorized
into predictive uncertainty measures and model uncertainty measures.
Predictive uncertainty is mainly estimated using a measure of en-
tropy (Shannon, 1948) or margin (Scheffer et al., 2001), which is
based on the class probability assigned to each pixel by the model.
On the other hand, model uncertainty is commonly quantified by
measuring the variance in predictions resulting from averaging over
multiple models trained on consistent training data (Lakshminarayanan
et al., 2017; Gal et al., 2017), such as Bayesian Active Learning by
Disagreement (BALD; Houlsby et al., 2011).

2.3. Deep active learning in the field of remote sensing

Flood inundation mapping mainly utilizes deep learning models
for semantic segmentation to extract the distribution of water bodies
along with detailed boundaries. However, most research on DAL in
the field of remote sensing had focused on pixel classification, which
focuses on predicting predefined classes by considering properties of
a single pixel. Such work does not consider partitioning image scenes
into semantically meaningful areas, known as the task of semantic
segmentation. Even before deep active learning research, a substantial
number of studies have investigated active learning for pixel classifica-
tion, utilizing machine learning algorithms, including Support Vector
3

Machine (SVM), Random Forest (RF), and Artificial Neural Network
(ANN), across both multi-spectral and hyper-spectral imagery (Thoreau
et al., 2022; Ruiz et al., 2013; Stumpf et al., 2013; Pasolli et al.,
2013; Crawford et al., 2013; Li et al., 2011; Tuia et al., 2011a,b,
2009; Rajan et al., 2008; Mitra et al., 2004). Recently, there has been
research on deep active learning for pixel classification using remote
sensing imagery (Patel and Patel, 2023; Di et al., 2023; Cao et al.,
2020). In particular, various DAL studies have been conducted for pixel
classification based on hyper-spectral satellite images. Liu et al. (2016)
introduced a DAL scheme that utilizes the Deep Belief Network (DBN),
and Haut et al. (2018) presented a DAL framework using CNNs with
MC-dropout. In addition, Lei et al. (2021) proposed a DAL framework
that includes an auxiliary light network, which is responsible for the
uncertainty prediction of unlabeled samples.

Unlike studies focused on pixel classification, research on DAL for
semantic segmentation using remote sensing images is limited, with
only a few studies in the field of remote sensing. Rǔžička et al. (2020)
investigated deep active learning, employing deep ensembles and the
Monte Carlo Batch Normalization (MCBN) method for change detection
and map updating. The authors demonstrated that their proposed DAL
framework not only identifies highly informative samples but also
automatically balances classes in the training data within the specific
number of samples, even in the presence of an extreme class imbalance
in the pool of unlabeled data. In addition, Li et al. (2022) proposed a
DAL framework for building mapping to reduce the effort of data label-
ing. Their framework integrates two deep learning models, U-Net and
DeepLabV3+, along with uncertainty-based acquisition functions. Fur-
thermore, the authors utilized landscape metrics to provide a summary
of the preliminary suggestions for data labeling. However, they only
used landscape metrics to describe the characteristics of the selected
data points in active learning, without quantifying the relationship
between these indices and the operation of active learning. Thus far,
based on our comprehensive review, there is a notable absence of
studies interpreting the behavior of deep active learning in the field
of remote sensing.

2.4. Uncertainty propagation theory and uncertainty descriptors in remote
sensing

Uncertainty propagation refers to quantifying how uncertainty in
input or model parameter values affects the uncertainty of model
predictions or computational procedure outputs (Wallach and Génard,
1998; Lee and Chen, 2009; Crosetto et al., 2001). Research on un-
certainty propagation in remote sensing has been conducted based
on the recognition of its importance in ensuring the reliability and
accuracy of high-level products essential for global change research and
environmental management decision-making (Crosetto et al., 2001). In
the case of the multi-spectral satellite imagery, the primary sources of
uncertainty are sub-pixel mixing, spatial mis-registration, and sensor
sampling bias (Bastin et al., 2002).

In the previous study, Zhang and Zhang (2019) introduced two
uncertainty descriptors, designed to quantitatively measure uncertainty
when classifying pixels in remote sensing, based on the uncertainty
propagation theory. The first descriptor, spatial distribution uncer-
tainty, addresses the impact of adjacency effects within remote sensing
images, while the second, semantic uncertainty, aims to quantify the
considerable intra-class variations. The rationale behind the two de-
scriptors is that, due to the spatial and spectral resolution limitations
of the sensors, ambiguity arises at the pixel level when classifying
objects. The main limitation of this study is that proposed uncertainty
descriptors can only be calculated based on the labeled data or results
of image segmentation prior to prediction.
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3. Method

3.1. The framework of interpretable deep active learning for flood inunda-
tion mapping

Deep active learning demonstrates strong predictive performance
improvement, but its process is opaque and interpretability is limited
due to the black-box nature of deep learning models (Goodchild and
Li, 2021; Hsu and Li, 2023). In this study, we introduce the framework
f Interpretable Deep Active Learning for Flood Inundation Mapping
IDAL-FIM). The main purpose of the IDAL-FIM framework is to provide
nterpretation for the deep active learning operation in flood inunda-
ion mapping. Fig. 1 illustrates the process of the IDAL-FIM framework.
Our proposed framework assumes a pool-based sampling scenario and,
accordingly, consists of five stages. In the first stage, satellite images
are collected globally to build an unlabeled data pool. The metadata
regarding flood events, such as observation period and geographic
coordinates, can be obtained from websites of agencies responsible for
flood monitoring, including the United Nations Satellite Centre (UN-
OSAT; https://unosat.org/products/, accessed on 23 April 2024), the
Copernicus Emergency Management Service (EMS; https://emergency.
copernicus.eu/, accessed on 23 April 2024) and the Dartmouth Flood
Observatory (https://floodobservatory.colorado.edu/, accessed on 23
April 2024) (Brakenridge, 2010). After that, a small number of satellite
images are selected from the unlabeled data pool and annotated to
create the initial training data. In addition, for validation and testing
purposes, labeled data is generated for satellite images that capture
occurrences of flooding in the target area. Then, the satellite images
and corresponding labeled data are split into training, validation, and
testing data.

After the initial stage, the following stages are briefly outlined in
this section, with a more in-depth explanation presented in separate
sections. In the second stage, a deep learning model for flood inun-
dation mapping is trained. In this study, as a deep learning model
for segmentation tasks, U-Net with MC-dropout was employed for
uncertainty estimation and performance evaluation. More details about
the U-Net with MC-dropout are provided in Section 3.3. In the third
stage, the performance of the trained deep learning model is evaluated
using test data based on the performance metric. Section 4.3 covers
detailed configuration for the iteration of deep learning model training
and evaluation in the IDAL-FIM framework. In the fourth stage, an
4

acquisition function selects most informative satellite images from an 𝑇
unlabeled data pool. Subsequently, human experts create labeled data
using the newly selected satellite images and then they are added to the
existing training data. Detailed explanations of the acquisition functions
utilized in this study can be found in Section 3.2. Moreover, we
emonstrate the statistical significance of the rank correlation between
lass ambiguity indices and the scores obtained from uncertainty-based
cquisition functions in Section 5.2. This statistical analysis aims to
upport the effectiveness and validity of the class ambiguity indices
n interpreting the behavior of active learning. In the final stage, the
haracteristics of newly labeled multi-spectral satellite images obtained
n the prior stage are visualized based on the class ambiguity indices.
wo class ambiguity indices, which are Boundary Pixel Ratio (BPR)
nd Mahalanobis Distance for Flood-segmentation (MDF), are further
xplained in Section 3.4.

.2. Acquisition functions in the IDAL-FIM framework

In the IDAL-FIM framework, the acquisition functions take on a
ivotal role in the selection of the informative data points, which
s associated with reducing the number of labeled data points and
mproving predictive performance. In this study, we utilized two types
f acquisition functions: (1) uncertainty-based and (2) density-based
cquisition functions. Specifically, regarding uncertainty-based acquisi-
ion function, we leverage the predictive uncertainty and model uncer-
ainty (Takezoe et al., 2023; Li et al., 2022; Rǔžička et al., 2020; Beluch
t al., 2018; Gal et al., 2017; Settles, 2009). For predictive uncertainty,
entropy (Shannon, 1948) and margin (Scheffer et al., 2001) acquisition
functions are employed. On the other hand, for model uncertainty,
Bayesian Active Learning by Disagreement (BALD; Houlsby et al., 2011)
acquisition function is utilized. Furthermore, we implement a density-
based acquisition function using Principal Component Analysis (PCA)
and K-Means algorithm and include the random acquisition function as
a baseline method.

3.2.1. Uncertainty-based acquisition function
In the IDAL-FIM framework, a deep learning model for segmentation

tasks is trained employing the dropout technique on training data
𝑡𝑟𝑎𝑖𝑛. During the inference stage, 𝑇 forward passes are performed.
At each pass, a new dropout mask is sampled, resulting in the model
weight 𝝎̂𝑡 at the 𝑡th forward pass. In Eq. (1), the calibrated probability
elonging to class 𝑐, located at (ℎ, 𝑤), is computed as the average of
predicted probabilities (Gal et al., 2017; Wang et al., 2023). The

https://unosat.org/products/
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://emergency.copernicus.eu/
https://floodobservatory.colorado.edu/
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notation 𝑦ℎ,𝑤 represents the target class at the pixel position (ℎ, 𝑤).
𝐱 denotes the input satellite tile image, and 𝑐 denotes the predefined
class.

𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱,𝑡𝑟𝑎𝑖𝑛) ≈
1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡) (1)

The uncertainty-based acquisition function for segmentation tasks
firstly calculates pixel-wise uncertainty by applying each of the uncer-
tainty measures. Then the average uncertainty of all pixels is computed
at the tile level. This output value becomes the score of the acquisition
function for segmentation tasks and is utilized to determine the priority
of data points to be labeled.

Entropy. One of the most general uncertainty measures is entropy,
which is an information-theoretic measure representing the amount of
information needed to encode a distribution. Therefore, entropy is com-
monly perceived as a metric of uncertainty in machine learning (Settles,
2009; Beluch et al., 2018). In the entropy acquisition function, pixel-
level predictive uncertainty is quantified using entropy based on the
calibrated class probability in Eq. (1). Then, the predictive uncertainty
ocated at (ℎ, 𝑤), 𝑢𝐸𝑛𝑡𝑟𝑜𝑝𝑦

ℎ,𝑤 , is calculated as in Eq. (2):
𝐸𝑛𝑡𝑟𝑜𝑝𝑦
ℎ,𝑤 = [𝑦ℎ,𝑤|𝐱,𝑡𝑟𝑎𝑖𝑛]

= −
𝐶
∑

𝑐=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱,𝑡𝑟𝑎𝑖𝑛) ⋅ 𝑙𝑜𝑔 𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱,𝑡𝑟𝑎𝑖𝑛)

≈ −
𝐶
∑

𝑐=1
( 1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡)) ⋅ 𝑙𝑜𝑔(

1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡)) (2)

here  denotes entropy (Shannon, 1948). The score of the entropy
cquisition function for segmentation 𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 is the average of the pixel-
evel predictive uncertainties, and as the score becomes higher, the
riority of selecting the data points also increases.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1
𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝑢𝐸𝑛𝑡𝑟𝑜𝑝𝑦
ℎ,𝑤 (3)

Margin. The margin is defined as the difference between the proba-
bilities of the two most probable classes. A higher margin indicates
that the model’s prediction is more certain, with lower predictive
uncertainty, as the probabilities of the two most probable classes are
more distinct (Scheffer et al., 2001; Beluch et al., 2018). Notably, in the
binary classification setting, the margin function reduces to the entropy
function, as both are equivalent to querying the instance with a class
posterior closest to 0.5 (Settles, 2009). Therefore, the characteristics of
the margin acquisition function and the entropy acquisition function
become analogous in binary segmentation problems. The pixel-level
uncertainty measured by margin located at (ℎ, 𝑤), 𝑢𝑀𝑎𝑟𝑔𝑖𝑛

ℎ,𝑤 , is calculated
s in Eq. (4) where c1 and c2 are the first and second most probable
lass labels under the model, respectively.

𝑀𝑎𝑟𝑔𝑖𝑛
ℎ,𝑤 = 1

𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐1|𝐱, 𝝎̂𝑡) −

1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐2|𝐱, 𝝎̂𝑡) (4)

The score of the margin acquisition function for segmentation 𝑠𝑀𝑎𝑟𝑔𝑖𝑛 is
calculated according to Eq. (5). As the score of the margin acquisition
function decreases, those data points are prioritized for selection.

𝑠𝑀𝑎𝑟𝑔𝑖𝑛 = 1
𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝑢𝑀𝑎𝑟𝑔𝑖𝑛
ℎ,𝑤 (5)

BALD (Bayesian active learning by disagreement). BALD is defined as
the mutual information between predictions and model posterior. This
means that the value of BALD-based function is maximized when the
model generates uncertain predictions on average and also confidently
produces disagreeing predictions simultaneously (Gal et al., 2017).
onsequently, BALD was utilized as the measure of model uncertainty
n the previous study (Jesson et al., 2021) because it highlights the
5

ariability in class probabilities across different stochastic forward
passes (Gal et al., 2017). The pixel-level uncertainty using BALD located
at (ℎ, 𝑤), 𝑢𝐵𝐴𝐿𝐷ℎ,𝑤 , and the score of the BALD acquisition function for
egmentation, 𝑠𝐵𝐴𝐿𝐷, are calculated as in Eqs. (6) and (7).

𝑢𝐵𝐴𝐿𝐷ℎ,𝑤 = [𝑦ℎ,𝑤|𝐱,𝑡𝑟𝑎𝑖𝑛] − E𝑝(𝝎|𝑡𝑟𝑎𝑖𝑛)[[𝑦ℎ,𝑤|𝐱,𝝎]]

≈ −
𝐶
∑

𝑐=1
( 1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡)) ⋅ 𝑙𝑜𝑔(

1
𝑇

𝑇
∑

𝑡=1
𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡))

− 1
𝑇

𝑇
∑

𝑡=1

𝐶
∑

𝑐=1
−𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡) ⋅ 𝑙𝑜𝑔 𝑝(𝑦ℎ,𝑤 = 𝑐|𝐱, 𝝎̂𝑡) (6)

𝐵𝐴𝐿𝐷 = 1
𝐻𝑊

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝑢𝐵𝐴𝐿𝐷ℎ,𝑤 (7)

3.2.2. Density-based acquisition function
In order to compare characteristics with uncertainty-based acqui-

sition functions in the framework of IDAL-FIM, we implemented a
simple density-based acquisition function using Principal Component
Analysis (PCA) and K-Means under the assumption that data points
maximizing data feature diversity are informative for training deep
learning models (Xie et al., 2020; Takezoe et al., 2023). The density-
based acquisition function used in this study has two steps. First, PCA
was performed to reduce the dimensionality of the unlabeled multi-
spectral satellite images. Here, the output of PCA is considered to be
the features of the unlabeled data. Then, using the PCA output as input,
the K-means algorithm identified 𝑘 new samples closest to the centroid
of each cluster. The rationale behind selecting new samples closest to
the centroids formed by the K-means algorithm for each cluster is to
maximize the diversity of features. This is because the objective of the
K-means algorithm is to find clusters that are internally coherent but
maximally distinct from each other. We therefore name this acquisition
function as K-means acquisition function.

Algorithm 1: Pseudocode of density-based acquisition function
utilizing PCA and K-Means
Data: 𝑁𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑠, 𝐷𝑎𝑡𝑎𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑖𝑚, 𝐷𝑎𝑡𝑎𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑆𝑎𝑡, 𝑁𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑖𝑚,

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠
esult: 𝑁𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = [ ]
𝑎𝑡𝑎𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑖𝑚 = Perform PCA on 𝐷𝑎𝑡𝑎𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑆𝑎𝑡 to reduce its
dimension to 𝑁𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑖𝑚
𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = Apply the K-means algorithm to cluster 𝐷𝑎𝑡𝑎𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑖𝑚
or 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
Calculate the centroid of the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
Find the 𝑠𝑎𝑚𝑝𝑙𝑒 closest to the centroid within the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
𝑁𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ⟵ 𝑁𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ∪ 𝑠𝑎𝑚𝑝𝑙𝑒

nd

3.3. Deep learning model for segmentation task in the IDAL-FIM framework

The efficiency and effectiveness of the deep active learning frame-
work are closely linked to the choice of both a deep learning model
and an uncertainty estimation method due to the iterative nature of
active learning. We selected the U-Net as the deep learning model for
segmentation within the IDAL-FIM framework, which was utilized in
a recent uncertainty estimation study of water body mapping (Hertel
et al., 2023). Furthermore, we considered the following three fac-
tors to determine the uncertainty estimation method suitable for the
IDAL-FIM framework. First, the computational cost of uncertainty esti-
mation should be low since training and inference of the deep learning
model are repeatedly conducted within the IDAL-FIM framework. MC-
dropout achieves a lower computation cost by training a single deep
learning model and performing multiple inferences, compared to deep
ensembles and fully Bayesian CNNs. Second, as the uncertainty-based
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Fig. 2. The architecture of U-Net with MC-dropout. The input image assumes uniform width and height (I).
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cquisition function for semantic segmentation computes the average
ncertainty across all pixels, the higher reliability of uncertainty esti-
ation at a pixel-level holds relatively less importance in the IDAL-FIM
ramework. Lastly, the ease of incorporating other deep learning models
nto the proposed framework was also considered.
Fig. 2 illustrates the architecture of the U-Net with MC-dropout

utilized in this study. This model consists of two main components:
the encoder and the decoder. Same as the existing U-Net model, the
encoder utilizes a down-sampling process four times to extract fea-
tures and reduce computational cost. This down-sampling process is
composed of two convolutional layers that increase the number of
channels and a pooling layer that decreases the spatial resolution.
These extracted features are then forwarded to the decoder, which has
a symmetric structure to the encoder and employs a four times up-
sampling process to reconstruct the spatial information of the input.
U-Net with MC-dropout also integrates skip connections to capture
precise locations at each step of the decoder. These skip connections
include concatenating the output of the decoder layers with the cor-
responding feature maps from the encoder at the same level, thereby
enhancing the precision of pixel segmentation. Regarding MC-dropout,
instead of using regular dropout, spatial dropout is applied at the end of
the up-sampling process. Spatial dropout is a regularization technique
in deep learning where specific proportions of two-dimensional feature
maps are randomly set to zero on a per-channel basis during training
to enhance model robustness and prevent over-fitting (Tompson et al.,
2015).

3.4. Class ambiguity indices in the IDAL-FIM framework

We present two class ambiguity indices to quantify the tile-level
binary inter-class ambiguity of the input satellite image. For calculation
of class ambiguity indices, pixel-wise labeled data is required, similar to
the uncertainty descriptors in previous study (Zhang and Zhang, 2019).
owever, our proposed indices are utilized after the labeling stage,
herefore, those limitations are not relevant to this study.
The two class ambiguity indices are designed to quantify the class

mbiguity between flood and non-flood class stemming from the spatial
nd spectral resolution constraints of the sensor in input satellite
mages. The proposed two class ambiguity indices are (1) Boundary
ixel Ratio (BPR) and (2) Mahalanobis Distance for Flood-segmentation
MDF). BPR is designed to represent ambiguity between flooded and
6

non-flooded classes due to spatial resolution constraints and is calcu-
lated as the proportion of boundary pixels within satellite images:

BPR = BPS
TPS (8)

where BPS is the total number of boundary pixels, and TPS is the total
number of pixels in a satellite image. Boundary pixel is defined as the
class of the center pixel that differs from at least one of its surrounding
eight pixels. Therefore, increasing BPR implies more pixels with higher
inter-class ambiguity due to the spatial resolution limitations inherent
in satellite imagery.

On the other hand, MDF is formulated to capture the semantic
ambiguity between flooded and non-flooded classes at the tile level.
This is calculated as the Mahalanobis distance of average pixel values
between flood and non-flood class. Mahalanobis distance (Mahalanobis,
1936) is a measure of the distance between points over a given distri-
bution. Therefore, we assumed that the pixel values of each class follow
a multivariate normal distribution. Additionally, decreasing MDF sug-
gests increased semantic ambiguity between flooded and non-flooded
areas at the tile level, attributed to the uncertainty in terms of spectral
similarity.

MDF =
√

(𝐩flood − 𝐩non-flood)𝑇𝛴−1(𝐩flood − 𝐩non-flood) (9)

here 𝐩flood and 𝐩non-flood is a vector of average pixel values in each
lass, which are flood and non-flood, and 𝛴 is positive-definite covari-
nce matrix with rows and columns matching the number of channels
n the input satellite images. In addition to the two class ambiguity
ndices, we employ the Flood Pixel Ratio (FPR) as a class imbalance
ndex to interpret the capability of mitigating class imbalance issues in
he IDAL-FIM framework:

PR = FPS
TPS (10)

where FPS is the number of flood pixels.

4. Experimental setup

4.1. Dataset and data preprocessing

Sen1Floods11, a georeferenced flood inundation mapping dataset
(Bonafilia et al., 2020), was utilized in this experiment. This dataset
includes 446 pairs of image data, consisting of satellite imagery from
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Fig. 3. Example images in Sen1Floods11. (left) Sentinel-2 false color composite image, and (right) corresponding labeled data with color codes: blue for flood, green for non-flood,
and gray for no data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Sentinel-1 and Sentinel-2, along with corresponding labeled data gen-
erated by experts for flood inundation mapping. Satellite imagery from
Sentinel-1 and Sentinel-2 in Sen1Floods11 captures 11 flood events
occurring across various countries worldwide between 2016 and 2019.
Each of the satellite images has a 10 meter resolution and dimensions
of 512 × 512 pixels. The satellite imagery observed by Sentinel-1
consists of SAR (Synthetic Aperture Radar) imagery, which is composed
of VH and VV bands. The imagery captured by Sentinel-2 comprises
multi-spectral imagery with 13 bands, including red, green, blue, Near
InfraRed (NIR), and Short-Wave Infrared (SWIR). All bands of the
multi-spectral images are linearly interpolated to 10 meters to ensure
uniform spatial resolution (see Fig. 3).

Sen1Floods11 has been utilized in several studies focusing on deep
learning models for flood inundation mapping (Konapala et al., 2021;
ai et al., 2021; Katiyar et al., 2021; Yadav et al., 2022). In particular,
we drew upon the findings of Konapala et al. (2021) for input bands
selection and data preprocessing. The authors investigated the optimal
input band combination in U-Net for flood inundation mapping based
on Sen1Floods11. The authors showed that utilizing multi-spectral
satellite imagery as input led to a higher F1-score compared to SAR
imagery. This result suggests that multi-spectral imagery provides more
advantages over SAR imagery in automating the process and diminish-
ing the necessity for expert corrections in flood inundation mapping,
especially in cases with minimal cloud cover. As a result, we employ
multi-spectral satellite imagery in Sen1Floods11 as input for this study.

Regarding data preprocessing, Konapala et al. (2021) reported that
HSV (Hue, Saturation, Value) conversion using the red, NIR, and SWIR2
bands is effective for flood inundation mapping through their experi-
ment. Hence, HSV transformed values based on red, NIR, and SWIR2
were employed as a data preprocessing for our experiments. In addi-
tion, the 512 × 512 multi-spectral satellite images in Sen1Floods11
were divided into four non-overlapping 256 × 256 pixel tiles for the
efficient GPU memory utilization.

4.2. Data splitting

Among the 11 regions in Sen1Floods11, multi-spectral satellite im-
ages from 8 regions (Ghana, India, Pakistan, Paraguay, Somalia, Spain,
Sri-Lanka, and USA) were used for the pool of unlabeled data, and the
remaining 3 regions (Bolivia, Nigeria, and Vietnam) were designated
for the target region. This split was taken into consideration of their
geographic locations, as depicted in Fig. 4. The experiment is designed
to carry out flood inundation mapping within the IDAL-FIM framework,
targeting the regions of Bolivia, Nigeria, and Vietnam, and using the
same unlabeled data pool. In each target region, the multi-spectral
satellite images and corresponding labeled data are randomly split,
with 50% allocated for validation and 50% for testing. Initial labeled
data were randomly selected using a fixed seed number in a single

).
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experiment (see Tables 1 and 2
4.3. The configurations for iterative training and evaluation

This section explains the detailed configurations for iterative train-
ing and evaluation within the IDAL-FIM framework. Table 3 shows
the components and parameters of the IDAL-FIM framework for ex-
periments. During experiments, labeled data in Sen1Floods11 are con-
sidered to be created by human experts in the data labeling stage of
the IDAL-FIM framework. For reproducibility, the settings related to
randomness (e.g. weight initialization, dataset shuffling, nondetermin-
istic algorithms, etc.) were configured to guarantee consistent outputs
using the same random seed. The number of initial training data,
newly acquired samples per iteration, and number of iterations were
determined considering the size of the unlabeled data pool used in the
experiment.

Furthermore, during each iteration, the U-Net with MC-dropout is
trained from scratch using the hyperparameters specified in Table 4.
Random flip was applied for data augmentation. Early stopping is
employed when the validation loss does not improve for the specified
number of epochs. For carrying out the experiment, PyTorch 1.8.1
and the following hardware was used for all processing: Intel Xeon E5
1.9 GHz (72 Cores), 64 GB 2666 MHz DDR4, 1.5 TB HD, Nvidia GeForce
GTX 980 Ti 24 GB.

To evaluate the performance in each iteration of the IDAL-FIM
framework, the F1-score is reported using a prediction probability
threshold of 0.5 (Wieland et al., 2023). Cross-validation is not taken
into consideration due to the computational overhead involved in
performing each iteration multiple times. The F1-score is calculated
using True Positive (TP), False Positive (FP), False Negative (FN) in a
confusion matrix. When calculating the confusion matrix for the flood
class, the no-data class in the input multi-spectral satellite image was
considered as a non-flood class.

Precision = TP
TP + FP (11)

ecall = TP
TP + FN (12)

1-score = 2 × Precision × Recall
Precision + Recall (13)

In addition, as the same experiment is repeated multiple times
or each acquisition function, the mean F1-score (mF1-score) and the
tandard deviation of F1-score (sdF1-score) is calculated as follows:

F1-score = 1
𝑁

𝑁
∑

𝑖=1
F1-score𝑖 (14)

sdF1-score =

√

√

√

√
1

𝑁
∑

(F1-score𝑖 −mF1-score)2 (15)

𝑁 − 1 𝑖=1
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Fig. 4. The geographical regions that make up the unlabeled data pool and the target regions. The target regions were selected, one from each of the continents of South America,
frica, and Asia. The remaining 8 regions were utilized for the unlabeled data pool.
Table 1
The number of multi-spectral satellite images in the unlabeled data pool.
Region Total Ghana India Pakistan Paraguay Somalia Spain Sri-Lanka USA

Count 1,532 212 272 112 268 104 120 168 276
Table 2
The number of multi-spectral satellite images in the target regions.
Region Total Bolivia Nigeria Vietnam

Count 252 60 72 120

5. Result

5.1. Evaluation on model performance with varying acquisition functions
and training data sizes

First, we conducted experiments to evaluate the impact of active
learning strategies on model performance. The F1-score of the model
was measured in the evaluation stage during the iterative process of
the IDAL-FIM framework. For the convenience of notation regarding
the model, ModelAF-N denotes the model trained on 𝑁 data points
selected by the acquisition function AF, and ModelFull refers to the
odel trained on the entire 1,532 data points in the unlabeled data
ool. We compared five acquisition functions for their effectiveness
n terms of the mean F1-score across ten experiments. As depicted in
ig. 5, we utilized one baseline and one upper bound mean F1-scores:
F1-scoreRandom-500, which is the mean F1-score of ModelRandom-500,
isplayed as a horizontal black dashed line as a baseline, and mF1-
coreFull, which is the mean F1-score of ModelFull, represented as a
orizontal blue dashed line as a upper bound performance.
Fig. 5 shows that the mean F1-score of the models, which are trained

n the data points acquired based on the predictive uncertainty such as
argin and entropy, consistently achieved the most comparable mean
1-scores to the mF1-scoreFull. This result shows that a model trained
on a subset of the entire dataset selected by the margin and entropy
acquisition function can achieve equivalent performance to a model
trained on the entire dataset. Additionally, the mean F1-score of models
trained on the data points selected by the margin acquisition function
outperformed that of the random acquisition function across the three
regions. In Bolivia, both the margin and BALD acquisition function
8

achieved a superior mean F1-score despite having 300 fewer training
data points. Similarly, in Nigeria, the margin and entropy acquisition
function outperformed the random acquisition function despite having
300 fewer training data points. In Vietnam, the margin acquisition func-
tion surpassed despite having 200 fewer training data points. In each
experiment, we used the same random seed to ensure the performance
evaluation in an identical environment. Therefore, the mean F1-score
of all five acquisition functions has the same value when the number
of training data is 100 in each of the three regions.

In this experiment, we expected that increasing the amount of
training data would lead to a gradual improvement in mean F1-scores.
However, we observed a degradation in mean F1-scores at specific
points in Fig. 5 when utilizing the random acquisition function. Degra-
dation was particularly observed with training data points of 200 in
Bolivia and Nigeria, and with training data points of 300 in Vietnam. To
investigate the cause of the decrease in the mean F1-score at a specific
iteration, we examined the standard deviation of the F1-score for each
iteration. As shown in Fig. 6, we observed a tendency for the mean
F1-score to not consistently increase when the standard deviation of
the F1-score becomes relatively higher compared to other acquisition
functions as each iteration progresses. Particularly, in the case of the
random acquisition function, the standard deviation of the F1-score
was larger than the other four acquisition functions when the number
of training data ranged from 200 to 400. On the contrary, in the
case of the margin acquisition function, which was the best-performing
acquisition function within the IDAL-FIM framework, it tended to show
a more rapid decrease in the standard deviation of the F1-score as the
number of training data points increases, compared to other acquisition
functions.

Following the overall performance assessment of acquisition func-
tions within the IDAL-FIM framework, in Fig. 7, we examined visual
examples of prediction results from each target region. In this visualiza-
tion, results from three models are compared: (1) ModelRandom-500, (2)
ModelMargin-500, and (3) ModelFull. ModelMargin-500, is the model train
on the data points selected by best-performed acquisition function in
the IDAL-FIM framework, and ModelRandom-500 is a baseline model.
ModelFull is a model representing upper bound performance. In Fig. 7,
prediction results of Model and Model are consistently
Margin-500, Full
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Table 3
Components and parameters of the IDAL-FIM framework.
Components/Parameters Value

Component Acquisition functions
(Section 3.2)

Baseline (Random), Uncertainty-based
(Entropy, Margin, BALD), Density-based (K-Means)

Deep learning model &
uncertainty estimation method
(Section 3.3)

U-Net/MC-dropout

Class ambiguity and imbalance
indices (Section 3.4)

BPR, MDF, FPR

Dataset
(Section 4.1)

Sen1Floods11 (Multi-spectral satellite imagery and its
corresponding labeled data)

Parameter Initial training data 100 (random selection)

Initial unlabeled data pool 1,532

Validation and testing data 50% of the data in the target region is allocated
for validation, and the other 50% is allocated for testing

Newly acquired samples
per iteration

100

Number of iterations 4

Number of total runs 10
Fig. 5. The comparison of the mean F1-score in different five acquisition functions: (left) Bolivia, (middle) Nigeria, (right) Vietnam. The horizontal blue dashed line (mF1-scoreFull)
represents the mean F1-score from models trained on the entire 1,532 data points in the pool. The horizontal black dashed line (mF1-scoreRandom-500) displays the mean F1-score
from models trained on a selection of 500 data points using the random acquisition function.
Fig. 6. The comparison on the standard deviation of F1-score in different five acquisition functions: (left) Bolivia, (middle) Nigeria, (right) Vietnam.
9
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Fig. 7. The comparison on prediction results of examples in each region: (a) Bolivia, (b) Nigeria, (c) Vietnam. ‘‘S2-FCC’’ is the false color composite of input sentinel-2 image using
red, NIR and SWIR. ‘‘Label’’ has flood (white) and non-flood (black) pixel information. ‘‘Random’’ and ‘‘Margin’’ are the prediction results from a ModelRandom-500 and ModelMargin-500,
respectively. ‘‘Entire dataset’’ represents the prediction results from a ModelFull. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 4
Hyperparameters for training U-Net with MC-dropout.
Hyperparameter Value

Loss function Binary Cross Entropy
Optimizer AdamW
Learning rate 5e−4
Weight decay 1e−2
Maximum epoch 300
Batch size 8
The number of inferences through MC-dropout 10
Spatial dropout rate 0.5
Early stopping (monitoring variable/delta/patience) Validation loss/5e−4/5

similar across three regions (a), (b), and (c) in terms of True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN).
On the other hand, the prediction result of ModelRandom-500 exhibited
more false positive pixels in Bolivia (Fig. 7(a)) and Nigeria (Fig. 7(b))
compared to ModelMargin-500 and ModelFull.

5.2. Relationship between class ambiguity indices and the score of
uncertainty-based acquisition functions

We investigated the relationship between class ambiguity indices
and the Uncertainty-based Acquisition Function (UAF) score, which
is directly associated with the average uncertainty of all pixels, by
calculating the correlation coefficient at each iteration within the IDAL-
FIM framework. In each iteration, at the stage of acquiring new labeled
data, we calculate the two class ambiguity indices, which are the BPR
and the MDF, as well as scores of the UAF, for all the data points in
the unlabeled pool. Then, we obtain the Spearman’s rank correlation
coefficient between the BPR and the UAF score, and between the
MDF and the UAF score. The reason we chose the Spearman’s rank
correlation coefficient is because the UAF scores determine the ranking
of selected data points.

In Fig. 8, we observed an evident positive rank correlation between
the BPR, which reflects the ambiguity between classes at the tile
10
level due to spatial resolution limitations in satellite imagery, and the
score of the margin and entropy acquisition function, both of which
are acquisition functions based on predictive uncertainty. In addition,
across the three regions, the median correlation coefficients between
the BPR and the margin acquisition function score were consistently the
highest. In addition, the MDF, indicating tile-level ambiguity between
classes due to spectral resolution limitations, exhibits a statistically
significant negative correlation with the UAF score. Specifically, the
scores from the margin and entropy acquisition function show a notable
negative rank correlation with MDF. On the other hand, BALD, which
represents model uncertainty, shows weaker rank correlation compared
to the margin and entropy acquisition function, which utilize predictive
uncertainty, in terms of the two class ambiguity indices.

When interpreting our findings through the uncertainty propagation
theory, the experiment results suggest that class ambiguity arising
from spatial and spectral resolution limitations of sensor in satellite
imagery, as quantified by the BPR and MDF, significantly impacts
the scores of acquisition functions based on predictive uncertainty,
such as the margin and entropy acquisition functions. Consequently,
by synthesizing the experiment results in Sections 5.1 and 5.2, we
draw the conclusion that the BPR and MDF are effective indicators to
represent the informativeness of data points under the assumption of
uncertainty-based acquisition function.

5.3. Visualization of two-dimensional density plots using the class ambiguity
and class imbalance indices

5.3.1. The distribution of multi-spectral satellite images in the unlabeled
data pool

Examining the distribution of data points within the unlabeled
data pool is an important task for interpreting and understanding the
behavior of the acquisition functions within the IDAL-FIM framework.
Specifically, comparing the distribution of the unlabeled data pool with
that of newly acquired data points selected by the acquisition functions

helps clarify the behavior of the acquisition function. In this section,
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Fig. 8. The comparison on the Spearman’s rank correlation coefficient between class ambiguity indices and the score of the uncertainty-based acquisition functions: (left) Bolivia,
(middle) Nigeria, (right) Vietnam.
Fig. 9. 2D-density plots in the unlabeled data pool based on the class ambiguity and imbalance indices: (left) MDF-BPR density plot represents the data distribution in terms of
class ambiguity. This plot shows the diversity of data points from a class ambiguity perspective; (right) FPR-BPR density plot displays the relationship between FPR and BPR. In
each plot, 𝜇𝑥 denotes the average of 𝑥-axis values, and 𝜇𝑦 means the average of 𝑦-axis values.
ased on the established class ambiguity indices in Section 5.2, we
mployed two-dimensional (2D) density plots with the MDF on the 𝑥-
xis and the BPR on the 𝑦-axis, named the MDF-BPR density plot, to
isualize the distribution of data points in the IDAL-FIM framework.
urthermore, in order to interpret the behavior of the acquisition func-
ions from the perspective of mitigating the class imbalance problem
resented in the previous study (Rǔžička et al., 2020), we investigated
the correlation between the FPR and the BPR in terms of spatial
structure. Then, we visualized the distribution of data points in the
unlabeled data pool by utilizing the FPR-BPR density plot which is the
FPR on the 𝑥-axis and the BPR on the 𝑦-axis.

Regarding the spatial structural relationship between the FPR and
he BPR, we found a statistically significant correlation, indicating
hat BPR reaches its maximum value around an FPR of 0.5 in the
11
Table 5
Correlation coefficient between FPR and BPR in the unlabeled data pool.
Criteria n Proportion (%) Pearson’s correlation coefficient

FPR < 0.5 1,477 96.4 0.677
FPR >= 0.5 55 3.6 −0.584

given unlabeled dataset, using Pearson’s correlation coefficient. Table 5
displays Pearson’s correlation coefficient between the FPR and the BPR,
categorized by the FPR threshold of 0.5 for the unlabeled data points.
This result describes that when FPR is less than 0.5, FPR and BPR have
a positive correlation, and otherwise, FPR and BPR have a negative
correlation.



Remote Sensing of Environment 309 (2024) 114213H. Lee and W. Li
In both the MDF-BPR and the FPR-BPR plots, the contour lines were
estimated using the kernel density function, and they represent levels
that range from 0.05 to 0.95 at intervals of 0.05. These levels corre-
spond to iso-proportions of the density. For instance, the contour line
drawn for 0.05 is the outermost line on the two-dimensional density
plot. This contour line represents the area where 5% of the probability
mass lies outside the contour lines. The same color of contour line
represents an area at the same level. Fig. 9 displays the MDF-BPR and
the FPR-BPR density plots of data points in the unlabeled data pool. In
the MDF-BPR density plot, the average values of the 𝑥-axis (MDF) and
𝑦-axis (BPR) are 3.87 and 0.03, respectively, and the data points are
widely distributed along both axes. This shape of distribution density
means that the unlabeled data pool contains diverse data points from
the perspective of the class ambiguity indices. Lower MDF values and
higher BPR values indicate higher class ambiguity, whereas higher MDF
values and lower BPR values can be interpreted as data points with
lower class ambiguity. In the FPR-BPR density plot, the average values
of the 𝑥-axis (FPR) and 𝑦-axis (BPR) are 0.08 and 0.03, respectively.
This plot illustrates that the maximum value of BPR occurs when the
FPR is 0.5, aligned with the result in Table 5.

5.3.2. The distribution of newly acquired multi-spectral satellite images
within the IDAL-FIM framework

In the same visualization manner as in Section 5.3.1, we depicted
the distribution of the newly selected data points through acquisition
functions in each iteration within the IDAL-FIM framework using MDF-
BPR density plots and FPR-BPR density plots. Each figure consists of 20
2D-density plots representing five different acquisition functions during
four iterations. The visualization results in Nigeria and Vietnam are
similar to those in Bolivia; therefore, we present the Bolivia results
as the representative visualization in Figs. 10 and 11. One notable
observation in Figs. 10 and 11 is that the distribution of multi-spectral
satellite images, selected by the acquisition function, is dependent on
the distribution of the unlabeled data pool. In the case of the random
acquisition function, the averages of the 𝑥- and 𝑦-axes remain similar
over four iterations, and the shapes of the contour lines in the density
plot resemble those found in the unlabeled pool, as depicted in Fig. 9.
This observation apparently indicates that the multi-spectral satellite
images selected by the random acquisition function are affected by the
distribution of the unlabeled data pool.

In addition, the K-means acquisition function, which is the density-
based acquisition function utilized in this study, also exhibited similar
shape of contour line patterns as the random acquisition function. Con-
sidering the assumption of the density-based acquisition function that
data points maximizing the diversity of data features are informative, it
can be inferred that this function is sensitive to the distribution of the
unlabeled data pool. In addition, the experiment results support that
K-means acquisition function is influenced by the distribution of the
unlabeled data pool. Therefore, in scenarios where the distribution of
the unlabeled data pool is not uniform, the effectiveness of the density-
based acquisition function in selecting informative data points may be
compromised.

On the other hand, the margin and entropy acquisition function,
which are acquisition functions based on the predictive uncertainty,
showed distinct shapes of contour line patterns. In Fig. 10, the margin
and entropy acquisition function tend to select data points which have
higher BPR values and lower MDF values compared to the random and
K-means acquisition function. In particular, these characteristics were
most evident especially in the first iteration out of the four iterations.
This observation indicates that the margin and entropy acquisition
function are capable of selecting data points with higher levels of class
ambiguity in the input satellite image while minimizing dependence on
the distribution of the unlabeled pool. Additionally, in Fig. 11, when
the margin and entropy acquisition function select data points with
12

higher BPR values, this leads to the selection of data points with FPR
values around 0.5. This trend is particularly noticeable during the first
iteration.

However, as the number of iterations increases, the margin and
entropy acquisition functions progressively become influenced by the
data distribution within the unlabeled data pool. This influence is
illustrated by visualizing both the MDF-BPR and FPR-BPR density plots,
which depict a pattern where the point representing the average values
of each axis gradually moves toward the average of the corresponding
density plot for the unlabeled data pool. Moreover, the shape of contour
lines corresponding to the 95% probability mass was the largest in the
first of the four iterations and gradually decreased as the iterations
progressed in both the MDF-BPR and the FPR-BPR density plots.

Lastly, the BALD acquisition function exhibited a different visual
pattern than the other four acquisition functions. As depicted in Fig. 10,
the BALD acquisition function demonstrated superior capability in se-
lecting data points with high BPR compared to the random and K-means
acquisition function, but it was not as proficient in identifying data
points with low MDF compared to the margin and entropy acquisition
function. Since BALD is a measure of model uncertainty, in situations
where predictive uncertainty is high but consistent predictions are
made, the score of the BALD acquisition function becomes low. There-
fore, this property could cause the BALD acquisition function to strug-
gle in identifying class ambiguity between flooded and non-flooded
areas in multi-spectral satellite images at the tile level, especially when
compared to the margin and entropy acquisition function.

6. Discussion

Through experiments in Section 5.1, we have shown that the margin
acquisition function consistently achieves the best performance and the
entropy acquisition function is the second-best performer within the
IDAL-FIM framework. Additionally, in Section 5.2, we demonstrated
that the two class ambiguity indices of input satellite images have
statistically significant rank correlation with the score of the margin
and entropy acquisition function. In Sections 5.1 and 5.2, both the
margin and entropy acquisition function, which are based on the pre-
dictive uncertainty, showed comparable performance and correlation
with class ambiguity indices. This can be explained by the fact that both
are equivalent to querying the instance with a class posterior closest to
0.5 in the binary classification setting (Settles, 2009). Therefore, when
combining our findings with the uncertainty propagation theory, the
observed statistically significant correlations strongly support a causal
relationship between the class ambiguity of the input satellite image
and the score of the predictive uncertainty-based acquisition functions,
such as the margin and entropy acquisition function. Consequently,
we conclude that two class ambiguity indices, the BPR and MDF,
are effective indicators to represent informative data points under the
assumption of uncertainty-based acquisition functions.

When comparing the margin and entropy acquisition functions with
other acquisition functions, Fig. 10 illustrates a noticeable shift in the
shape of the contour lines. This shift suggests that as the acquisi-
tion function becomes more capable of identifying informative data
points, the remaining informative data points in the unlabeled pool
are depleted more quickly. Consequently, it is crucial in practice to
continually add more data points into the unlabeled pool to improve
the diversity and representativeness of the training data. Our proposed
class ambiguity indices can effectively monitor the condition of the
unlabeled data pool, thereby facilitating an active learning strategy for
flood mapping by assisting decision-making in its updates.

When considering the depletion of informative data points, the
distribution patterns of the data points selected by different acquisition
functions tend to be more effectively highlighted in early iterations. For
this reason, we observed the most distinctive distribution of data points
selected by acquisition functions in the first iteration of Fig. 10. In the
first iteration of Fig. 10, the average BPR of the data points selected by
the margin acquisition function is 0.1. This value is more than twice the
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Fig. 10. The MDF-BPR density plots in Bolivia. In each plot, 𝜇𝑥 denotes the average of 𝑥-axis values, and 𝜇𝑦 means the average of 𝑦-axis values.
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verage BPR value of the random acquisition function, which is 0.03.
n the case of the MDF, the average value of the data points selected by
he margin acquisition function is 2.34, on the other hand, the average
alue of data points selected through the random acquisition function
s 3.89.
The interpretations through MDF and BPR not only help in under-

tanding how acquisition functions behave in terms of class ambiguity
ut also provide a summary of preliminary suggestions for data labeling
imilar to the previous study (Li et al., 2022). Based on these findings,
e suggest prioritizing the labeling of flood-observed satellite images
here there are more boundary pixels between flood and non-flood
lasses, and where there is a small difference in average pixel values
etween those two classes. In addition, given that labeled data is
ecessary to select data points based on class ambiguity indices, the
dvantage of deep active learning becomes more evident, as informa-
ive data points can be chosen within statistical significance based on
13

redictive uncertainty, even without labels.
Based on the spatial structural relationship between the BPR and the
PR, we demonstrate that the margin and entropy acquisition function
ave the capability to alleviate class imbalance issues. In Section 5.3.1,
we showed that the BPR tends to reach a maximum when the FPR is
0.5. This means that as data points with high BPR are selected by the
acquisition function, the FPR of selected data points tends to become
concentrated around 0.5. In Fig. 11, continuing with the concepts of the
informative data points depletion, during the first iteration, the margin
and entropy acquisition function exhibits a distinctive preference for
selecting higher BPR data points. This selection pattern is associated
with the ability to select data points near an FPR of 0.5. Therefore, the
first iteration of the margin and entropy acquisition function obviously
illustrates its capability to select in mitigating class imbalance issues.
This finding aligns with the conclusion in the previous study (Rǔžička
et al., 2020), where the DAL framework was able to automatically

balance classes in the training data, even when dealing with an extreme
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Fig. 11. The FPR-BPR density plots in Bolivia. In each plot, 𝜇𝑥 denotes the average of 𝑥-axis values, and 𝜇𝑦 means the average of 𝑦-axis values.
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class imbalance in the pool of unlabeled data. Rǔžička et al. (2020)
ere able to maintain class balance over the iterations by selecting up
o 950 pairs (1.1%) of training data, which is smaller than the 1,072
airs of ‘‘changed’’ class out of a total of 83,144 pairs. On the other
and, in our study, experiments were conducted using 500 samples
32.6%) out of a total of 1,532 samples. As a result, since the proportion
f selected data out of the total dataset is higher compared to the
revious study (Rǔžička et al., 2020), the depletion of informative data
oints is displayed more evidently in Fig. 11, as iterations progress.

. Conclusion

In this paper, we introduced a novel framework of Interpretable
eep Active Learning for Flood inundation Mapping (IDAL-FIM) by
everaging class ambiguity indices based on the uncertainty propa-
ation theory. In the experiments, we utilized Sen1Floods11 dataset,
14

s

nd adopted U-Net with MC-dropout as deep learning model for flood
nundation mapping. We employed five acquisition functions, which
re random, K-means, BALD, entropy, and margin acquisition function,
ithin the IDAL-FIM framework. Based on the experiment results, we
emonstrated the significance of two proposed class ambiguity indices
ithin the IDAL-FIM framework. This is achieved by establishing their
tatistically significant correlation with the predictive uncertainty of
he deep learning model at the tile level. Then, we illustrated that
he behaviors of deep active learning are effectively interpreted using
wo class ambiguity indices within the IDAL-FIM framework, through
isualizing two-dimensional density plots and providing explanations
egarding the operation of deep active learning.
The limitations of this study are as follows. In flood mapping,

ne of the notable challenges is the distinction between flooded and
on-flooded vegetated areas, as they generally exhibit comparable
pectral patterns. Based on this study, satellite image tiles that ob-
erve both flooded and non-flooded vegetated areas are expected to be
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selected with high priority due to the high class ambiguity between
those two classes. However, due to the absence of a distinct class for
non-flooded vegetated areas in Sen1Floods11, we were not able to
thoroughly explore the behavior of acquisition functions in terms of
flooded and non-flooded vegetated areas. Therefore, further research
is needed on the behavior of acquisition functions for such closely
resembling classes within the IDAL-FIM framework. In addition, the
labeling cost was only considered from the quantity point of view,
and each individual labeling difficulty was not taken into account.
Furthermore, as one of the characteristics of remote sensing data is
multi-modality, multi-modal data, such as multi-spectral images, SAR
(Synthetic Aperture Radar) images and DEM (Digital Elevation Model),
are valuable datasets for flood inundation mapping. However, in this
study, only multi-spectral images in the binary segmentation were
considered for the interpretation of deep active learning. As a research
direction for future studies, it is important to focus on an active learning
framework that incorporates the multi-modality of remote sensing data
and methods for their interpretation.
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