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ABSTRACT: In classic models of the tidally averaged gravitationally driven estuarine circulation, denser salty oceanic
water moves up the estuary near the bottom, while less dense riverine water flows toward the ocean near the surface. Tra-
ditionally, it is assumed that the associated pressure gradient forces and salt advection are balanced by vertical mixing. This
study, however, demonstrates that lateral (across the estuary width) transport processes are essential for maintaining the
estuarine circulation. This is because for realistic estuarine bathymetry, the depth-integrated salt transport up the estuary is
enhanced in the deeper estuary channel. A closed salt budget then requires the lateral transport of this excess salt in the
deeper channel toward the estuarine flanks. To understand how such lateral transport affects the estuarine salt and mo-
mentum balances, we devise an idealized model with explicit lateral transport focusing on tidally averaged lateral mixing
effects. Solutions for the along-estuary velocity and salinity are nondimensionalized to depend only on one single nondi-
mensional parameter, referred to as the Fischer number, which describes the relative importance of lateral to vertical tidal
mixing. For relatively strong lateral tidal mixing (greater Fischer number), salinity and velocity variations are predomi-
nantly vertical. For relatively weak lateral tidal mixing (smaller Fischer number), salinity and velocity variations are pre-
dominantly lateral. Overall, lateral transport greatly affects the estuarine circulation and controls the estuarine salinity

intrusion length, which is demonstrated to scale inversely with the Fischer number.
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1. Introduction

The estuarine circulation, also called the estuarine ex-
change flow, controls unique estuarine habitat and ecosystem
dynamics, drives land—ocean interactions, and transports sedi-
ments, nutrients, and organisms, as well as pollutants. The
cornerstone of the basic conceptual estuarine circulation the-
ory is the classic analysis of the tidally averaged circulation,
revealing the strength of the exchange flow and structure of
the salinity distribution (Hansen and Rattray 1965; MacCready
and Geyer 2010). The theory assumes that the along-channel
pressure gradient is balanced by a vertical turbulence stress di-
vergence in the presence of tidal mixing. The pressure gradient
arises from an oceanward down-sloping sea surface and an
along-channel salinity (density) gradient. This force balance
yields a circulation whereby saline ocean water moves land-
ward in the lower layer with a fresher seaward flow in the
upper layer. The along-estuary salt straining associated with
this circulation is assumed to be balanced entirely by verti-
cal turbulent mixing. Thus, the exchange flow acting on the
salinity stratification drives a landward salt flux that, in the
absence of a net salt flux due to tidal motion, is balanced by
a seaward salt flux due to the river discharge. While this in-
sightful conceptual framework is known to be oversimplified
for a host of reasons (e.g., Jay and Musiak 1994; Monismith
et al. 2002; Lerczak and Geyer 2004; Ralston et al. 2008;
Burchard et al. 2011; Aristizabal and Chant 2013; Geyer and
MacCready 2014), here, we demonstrate that lateral, i.e.,
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directed horizontally and across the estuary, transport pro-
cesses are essential in maintaining the tidally averaged grav-
itationally driven estuarine circulation focusing on lateral
tidal mixing effects.

To understand the need for lateral transport processes intu-
itively, it is instructive to consider the simplified classic salt
budget in which salt advection due to the exchange flow and
along-channel salinity gradients is balanced by the vertical di-
vergence of turbulent salt fluxes. Without salt fluxes through
the bottom and surface of the estuary, vertical turbulent mixing
of salt only redistributes salt vertically. However, the depth-
integrated salt advection is generally nonzero because the
along-estuary velocity varies laterally so that depth-averaged
along-estuary velocities are up-estuary near the deeper chan-
nel and toward the ocean near the flanks (e.g., Fischer 1972;
Wong 1994). Consequently, a closed salt budget requires the
lateral transport of excess salt close to the deeper channel to
regions with salt deficits near the flanks (more formal argu-
ments are presented in the next section).

In estuaries with a deeper channel and shallow flanks, ob-
servations show that both the exchange flows and the salinity
distribution develop strong lateral gradients (Wong 1994;
Valle-Levinson and Atkinson 1999; Valle-Levinson et al.
2000) and this lateral variability in momentum and density
drives lateral flows that result in lateral mixing (Nunes and
Simpson 1985; Huzzey and Brubaker 1988; Lacy et al. 2003;
Lerczak and Geyer 2004). It is important to distinguish be-
tween two different time scales of lateral advection processes:
1) lateral advection driven by tidally averaged lateral salinity
gradients (e.g., Smith 1976), which is not the focus of this
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paper, and 2) tidally averaged effects of tidally resolved
lateral advection, which is related to lateral tidal mixing
processes.

As a first step, this study focuses on lateral tidal mixing
fluxes that are linked to processes due to tidally resolved
lateral flows (Lerczak and Geyer 2004; Scully et al. 2009;
Burchard et al. 2011; Li et al. 2014). For example, tidally vary-
ing axial convergence flows move saltier to fresher water (or
fresher to saltier water depending on the tidal phase and verti-
cal location), contributing to the increase of lateral mixing
(e.g., Nunes and Simpson 1985). The detailed physics of the
tidally averaged lateral mixing are complicated and expected
to be associated with complex bathymetry and shoreline irreg-
ularities (Fischer 1976) in conjunction with tidally resolved
processes, for example, related to strong lateral shears (Taylor
1953; Geyer et al. 2008) and secondary cellular flows (Majda
and Kramer 1999; Thoman et al. 2021). Fischer (1972) found
that lateral mixing critically influences the along-estuary dis-
persion of tracers, and Fischer (1976) suggested that lateral
mixing scales with tidal velocity and depth or estuary width.
In particular, Fischer (1972) emphasized that the relative im-
portance of vertical to lateral shear dispersion due to the
along-estuary velocity is controlled by a nondimensional pa-
rameter, here referred to as the Fischer number v, that can be
interpreted as the ratio of a vertical mixing time scale to lat-
eral mixing time scale. In this paper, we introduce a related
nondimensional mixing number <y that describes the relative
importance of lateral to vertical tidal mixing to demonstrate
that y determines the structure of the exchange flow, the sa-
linity distribution, and, ultimately, the landward flux of salt
for estuarine systems in which lateral tidal mixing fluxes are
important relative to tidally averaged advection.

The goal of this paper is to devise a simple conceptual
model that 1) extends the classic estuarine circulation frame-
work through the inclusion of lateral transport focusing on
lateral tidal mixing fluxes, 2) closes both the momentum and
salt mass budgets based on coupled conservation equations,
and 3) is intuitive to understand and analytically tractable. In
the next section (section 2), we introduce nondimensional bal-
ance equations with lateral fluxes and then present a theory
for tidal-mixing-flux-dominated regimes (section 3) before ex-
ploring an illustrative test case (section 4). Section 5 discusses
constraints and limitations of key model parameters. The con-
clusions (section 6) highlight that both the spatial structure
and magnitude of the tidally averaged estuarine circulation
and salinity distribution critically depend on estuarine lateral
transport processes affecting the estuarine salinity intrusion
length.

2. Theory: Estuarine gravitational circulation with
lateral transport

As a first step to shed light on lateral transport processes,
we will start from the classic theoretical framework of the tid-
ally averaged estuarine circulation (see review by MacCready
and Geyer 2010). Therefore, we neglect here explicit tidally
resolved effects, for example, related to tidally variable mix-
ing and tidally driven residual circulations (Jay and Musiak
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1994; see also the review by Geyer and MacCready 2014). For
simplicity, we also omit the Coriolis force which may play an
important role in driving lateral circulations (Valle-Levinson
2008).

Specifically, we consider the transport in an idealized estu-
ary with a constant cross section of the maximum width B and
the laterally varying depth A(y) both of which are assumed
constant along the estuary. The channel shall be mirror sym-
metric around its maximum depth /4, in the channel center.
We define the tidally averaged along-channel velocity ¢/ and
salinity S and assume that ¢/ and S are in steady state. Next,
we decompose variables into cross-sectionally averaged ones
and their corresponding deviations, denoted by uppercase
and lowercase, respectively, so that U = U(x) + u(x, y, z) and
S = S(x) + s(x, y, z). Here, x is the along-estuary coordinate
with x = 0 at the mouth so that x < 0 decreases up-estuary, y
is the lateral (horizontal and across the estuary) coordinate
with y = 0 in the channel center, and z is the vertical coordi-
nate with z = 0 at the air—water interface and z increases up-
ward. The depth and cross-sectional average of the lateral v
and vertical w velocities are, respectively, zero. Because U is
assumed to be constant, we have dU/dx = 0. As a first step,
we consider a two-dimensional problem so that we neglect u,
and s, (consistent with Burchard et al. 2011). We define an

overline as the horizontal average (-) = B’lfgz(-)dy and

angle brackets as y-dependent vertical integration over the
water column ((+)) = ﬁ) »(+)dz, so that the cross-sectional av-

erage is () "' (U) = U and (k) '(S) = S.

a. Momentum and salt mass balances with
lateral transport

Similar to Smith (1976), we first consider two lateral trans-
port processes due to 1) tidally averaged advection due to tid-
ally averaged lateral salinity gradients, which is neglected
later, and 2) lateral tidal mixing, which mix properties from
high to low concentrations and is the focus of this study.
We parameterize such lateral tidal mixing fluxes via a down-
gradient assumption and introduce lateral mixing coefficients
for momentum K,y and salt Ksy. The governing Reynolds-
averaged equations for u, v, and s are obtained by adding lat-
eral transport processes to the traditional one-dimensional
equations that govern only vertical variability (Smith 1976),
while the conservation equation for § is taken unchanged
from the traditional framework (see, e.g., Hansen and Rattray
1965; MacCready and Geyer 2010)

0=—gn, +gBS.z+ K, u, + Ky, = (uw), — (uv)y,

Q)
0
0=—gn, + gBJ 5,(2)dz + Kyv. + Ky,
Z
= (ww), = (vv),, )
MSX = KSZszz + KSYsyy - (SW)Z - (Sv)y’ (3)
US + () {us) = KS,. 4)
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where g is the acceleration of gravity, m is the air—water inter-
facial displacement height, B = 7.7 X 10™* is the haline con-
traction coefficient, Ky is an along-channel eddy diffusivity
due to tidal mixing, and K, and Ky symbolize the vertical
eddy viscosity and diffusivity, respectively. Here, we assume
that mixing coefficients are constant. Subscripts of lowercase
variables indicate partial derivatives with respect to that vari-
able, e.g., u, = duldz. The vertical velocity w is determined
from the continuity equation 0 = v, + w_. The boundary con-
ditions are

u,=v, =0 w=0 at z=0,

z = —h(y), ©)

u=v=w=0 at

s,=0 at z=0,
K,s. + Ksysyhy =0 at z=-—h(y), and (6)

§=S8, at x=0, (7)
where Sy is the salinity at the estuarine mouth. The surface
boundary condition for u and v is a zero stress condition,
while w satisfies a zero volume flux condition. At the bottom,
u, v, and w satisfy the no-slip conditions. No flux conditions
are imposed for s at the vertical boundaries. Note that the
bottom boundary conditions can alternatively be formulated
at y = *(1/2)b(z), where b(z) is the z-dependent channel
width.

b. Nondimensional equations

To understand the behavior of solutions, we will first con-
sider key scales and nondimensional parameters. For the fol-
lowing analysis, we focus on the case for which the magnitude
of U is sufficiently small compared to that of u, so that the
river flow shall not be considered in the momentum balance
(1), which is a common assumption for process-based studies
(e.g., Burchard et al. 2011). We introduce the following nondi-
mensional variables:

’

u = us_lu, w = 6_1v5_1w,

7 = zhg!, (8)

s -1
v =gy,

y =yB™,

/o1
s =8g S,

where the along-estuary and the lateral scaling velocity ug and
vg and the salinity scaling sg are, respectively, given by

ug = gBS MKy,  vg = ugsg(S.B)”",

sg = gBS MKy Ksyh3S, = ugKs hiS. . )
Note that ug is the traditional velocity scale for the residual
circulation (Hansen and Rattray 1965; MacCready and Geyer
2010). The nondimensional along-estuary and across-estuary
slopes and depth scale, respectively, are
m, = n(BhS) ", m, = B(Bhesg) ', K = hhy!.
(10)

Note that this scaling assumes strong lateral variability be-
cause the depth and lateral changes of depth both scale as A.
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With this scaling, the following nondimensional parameters
arise

sl KKy
s M ) S ’
B Kyz K,
Bv Bv
— M — S
e [ (11)
M Kyz s K,

where & represents the depth-to-width aspect ratio and is the
only parameter that explicitly includes width B. After drop-
ping all primes, the nondimensional «, v, and s equations are,
respectively,

n—z=u, + KMﬁzuyy - ;LMéz(uw)z - p,MBZ(uv)y, (12)

0
m, ~ L sy(f)df =v, + KM52Uyy - [.LM52(UW)Z

- [.LM52(vv)y, (13)

(14)

u=s, + KSSZSyy - ptséz(sw)Z - uséz(sv)y.
These equations demonstrate that 8%k,, represents the rela-
tive importance of lateral to vertical tidal mixing fluxes, 6°wy,
represents the relative importance of advective to vertical tur-
bulent fluxes, and ky(wy) ' represents the relative impor-
tance of lateral tidal mixing to lateral advective fluxes (similar
applies for corresponding nondimensional ratios related to kg
and pg). The boundary conditions are

uz=vz=0 w=0 at z=0,

u=v=w=0 at z=-h(y), (15)
s,=0 at z=0, s +&ksh =0 at z=—h(y).

(16)

These governing equations highlight that for K¢ = Kj, the
problem is determined by two key nondimensional numbers,
namely, 8%k, and 8wy, It is insightful to vertically integrate
the salt balance over the water column to obtain after applying
the boundary conditions

(u) = kg8 (s,), — g8 ((sv),), 17)
where the last equation demonstrates the general need for lat-
eral transport terms to close the salt budget. In the remaining
part of this paper, we will focus on lateral transport that is
dominated by tidal mixing fluxes.

3. Application to tidal-mixing-dominated regimes

We first consider the scaling for a tidal-mixing-flux-dominated
regime and then discuss approximate solutions, before revealing
implications for the along-estuary salt balance.

a. Scaling lateral advection relative to tidal mixing fluxes

The nondimensional equations suggest that lateral tidal mix-
ing fluxes are dominant over advection for k M.S(;;,M,S)_l > 1,
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so that advection terms are small relative to lateral tidal mix-
ing flux terms. This condition, however, is generally too restric-
tive because lateral tidal mixing also reduces lateral salinity
gradients and, therefore, lateral advection. In addition, advec-
tion is inefficient for shallow water with § << 1. This can be
understood by considering that for § << 1, (12) and (13) sug-
gest that the pressure gradient terms on the left-hand side are
balanced by vertical turbulent fluxes, and lateral transport and
advection are negligible to leading order consistent with the
classic theory (Hansen and Rattray 1965; Smith 1976; Nunes
and Simpson 1985). For the salt balance [(14)], however, salt
advection cannot be balanced by vertical turbulent mixing
alone as (17) establishes. Therefore, to leading order, (14) can
only be satisfied for s,, = 0, so that s, = 0 because of the
boundary conditions [(16)]. This however implies with (v) = 0
that the advective term in (17) is inefficient in moving salt lat-
erally, so that advective terms are overall negligible for shal-
low-water systems with § << 1. These arguments will be
assessed and explored in detail in a follow-up study. Here, we
focus for the remaining paper on conditions for which
KM,S(,_LM,S)_' > 1 or 6 < 1 so that the resolved advection is
negligible relative to lateral tidal mixing fluxes.

After defining the two key nondimensional parameters
vu = 8k and ys = 8%k, the governing nondimensional
u and s equations become, respectively,

(18)

N =27 uzz + yMuyy’

U=5,,+ YS, 19)
with the same boundary conditions for « and s given by (15)
and (16). Equation (18) illustrates that u depends only on the
cross-sectional geometry 4(y) and the independent variables y
and z, as well as parametrically on +y,,, which controls the rel-
ative importance of lateral to vertical transport of u. Note
that B2K;;}, and h3K;,,, represent lateral and vertical mixing
time scales, respectively, so that vy,, is related to the ratio of
vertical to lateral mixing time scales. Equation (19) reveals
that solutions for s depend on both u and parametrically on
vs, describing the relative importance of lateral to vertical
tidal mixing salt fluxes.

This simple scaling analysis highlights that y,, and yg are
key model parameters that determine the solutions of u and s.
In this study, we refer to vy, or vys as the Fischer number (for
momentum and salt) because y,, was originally introduced by
Fischer (1972), suggesting that this parameter determines the
effects on longitudinal dispersion due to the lateral relative to
vertical shear of the along-channel gravitational circulations.

b. Approximate analytic solutions

To understand how lateral transport due to tidal mixing
and the Fischer parameter control u and s, we will first ex-
plore the small and large limits of y,, and ys.

1) WEAK LATERAL TIDAL MIXING (y,,, v << 1)

In the weak lateral mixing case 7y, ys << 1, friction is dom-
inated by vertical stresses and one may neglect lateral stresses

Brought to you by University of Delaware Library | Unauthenticated | Downloaded 07/31/24 01:23 PM UTC

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 54

to leading order in the momentum equation (so that narrow
lateral frictional boundary layers are neglected too), which is
consistent with the classic estuarine circulation theory and, by
vertically integrating (18) twice and applying the boundary
conditions, the solution is

uly, z) = %(371,;{12 = WD’} = (2% + [AYDPD. (20)

Note that generally this solution is characterized by significant
lateral variability if the depth varies sufficiently laterally. This
solution is consistent with the shallow-water asymptotic ex-
pansion solution from Smith (1976) and is a more general ver-
sion than the one for bilinear channel cross section (Fischer
1972; Wong 1994). Remember that 7, is determined here so
that the cross-sectionally averaged u vanishes (in a more gen-
eral approach, the cross-sectionally integrated u should be
equal to the river discharge). For example, for a bilinear
depth profile A(y), one finds m, = —3/10. For a flat bottom,
i.e., h = constant, the solution is consistent with the classic so-
lution (Hansen and Rattray 1965) and n, = —3/8.

The situation is different for the salt balance because of the no
salt flux through the bottom and surface boundary conditions:
A relatively strong vertical transport nearly homogenizes s verti-
cally, so that s, ~ 0 and 4~ '(s) ~ s. An approximate solution
may then be readily found for s through a double lateral integra-
tion of (17) (neglecting advective terms)

[yl y
50) = ¢ + v;‘joy %y)f (w)dydp. @1)

where ¢, is a constant of integration to satisfy (s) = 0. This
solution also yields the important scaling result s « yy!. Physi-
cally, this result states that for relatively small v, e.g., for rela-
tively small Ky and less efficient lateral transport, salinity
differences between the saltier channel center and fresher re-
gions closer to shore are relatively large as expected. Combin-
ing the last result with (20), we find that the salt flux in (4)
due to the estuarine residual circulation scales as

(us) = yg'. (22)
The last scaling illustrates that the cross-sectionally averaged
along-estuary salt flux increases with decreasing ygs (or Kgy).
This result is remarkable as lateral transport, although as-
sumed to be relatively small, still controls the along-estuary
salt flux. This is because the weaker lateral salt transport
enhances the lateral s variability, thereby increasing the
along-estuary salt flux as u remains unchanged. Further-
more, variability in the exchange flow is predominantly lat-
eral unlike the classic picture because s is approximately
constant with depth.

2) STRONG LATERAL TIDAL MIXING (7,,, s => 1)

Our study indicates that lateral tidal mixing fluxes are likely
a substantial process for many estuarine systems, and it is
therefore insightful to consider theoretically the system’s be-
havior and associated approximate solutions for strong lateral
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tidal mixing fluxes. Contrary to the previous case, for suffi-
ciently strong lateral transport, i.e., yy, vs => 1, momentum
fluxes are expected to be dominated by lateral stresses and
one may neglect vertical stresses to leading order in the mo-
mentum equation (so that narrow vertical frictional boundary
layers are neglected too) and the solution to (18) without tur-
bulent vertical fluxes is approximated by

2
uly, z) = %v;} (n, — Z){y2 - [@] }

where b(z) is the B-normalized z-dependent estuary width.
Thus, u is proportional to v;,!. Note that this solution differs
fundamentally from the traditional estuarine circulation the-
ory as driving along-channel pressure gradient forces are en-
tirely balanced by lateral friction.

Following analogous arguments as for the weak lateral mix-
ing case, a relatively strong lateral transport is expected to ho-
mogenize s laterally, so that s, =~ 0 and 5 ~s. This time, we
laterally integrate (19) to obtain after incorporation of the
boundary conditions [(16)]

(23)

b(z)2
J udy = (bs,).. (24)

—b(2)2

The last equation is readily integrated twice with respect to z

2 1 (0 b2
s(z)=c,, +| — udydZdz, 25
@ =6+ [ ] [y @

—b(2)2

where c,.. is a constant of integration to satisfy (s) = 0. This
solution yields the important scaling result s = v, because of
u = v} and with (23)

(us) = v/ (26)
Therefore, the salt flux is, with the quadratic dependence y;,z,
more strongly dependent on lateral mixing compared to the
weak lateral mixing case. Furthermore, the estuarine ex-
change flow is suppressed by greater Ky, similar to the sup-
pressed flow for greater K, in the classic estuarine circulation
theory (recall the dimensional u « ug and ug = K)/},). As in clas-
sic theory, the exchange flow is approximately vertical because s
mainly depends on z. Note, however, that salt is laterally homog-
enized by a relatively strong lateral salt transport, as (25) assumes
negligible lateral variability.

c. Implications for the along-estuary cross-sectionally
averaged salt balance

The along-channel salt balance (4) is nondimensionalized
following previous approaches (MacCready and Geyer 2010),
except that the exchange flow term now also depends on vy,
and Vs

S-T°Lis3=1L,S,, (27)

where L, = {[(gBR)/UIS(K3,K )1} and Ly, = K, /U
are the along-estuarine length scales associated with the
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exchange flow and along-estuarine tidal mixing, respec-
tively, and the nondimensional exchange flow parameter is
defined as

T (0 vs) = —(R) ' {us). (28)
Note that for classic estuarine circulation theories, I' = 0.024
(MacCready and Geyer 2010). For the weak and strong lat-
eral transport cases discussed above, | R ys’l and I « y;,,z,
respectively, and the salt intrusion length scales as L,y
and L v,/ respectively. The constant of proportionality can
be readily obtained for a specific lateral depth profile from the
approximate analytic or numeric solutions, as discussed below
(section 4). Note that yg = y,, for K,z = Ksz, Kyy = Ksy and
that g/, is related to turbulent Schmidt numbers. Thus, this
scaling predicts that a relatively strong lateral transport and rel-
atively narrow estuaries result in a substantial decrease in the
estuarine salt intrusion length.

Once I' is determined from the solutions of « and s, an exact
analytic solution for S, can be derived for constant eddy mixing
coefficients by differentiating (27) with respect to x and then in-
tegrating the resulting equation with respect to S, (i.e., swapping
the dependent and independent variables) to obtain

S
x = §F3L3E(s§ - 8%) + Ly Ingx,
2 S,

(29)

where S, is the salinity gradient at x = 0 obtained from (4)
with the boundary condition § = S,. Solution (29) is an im-
plicit solution for S, so that x(S,). Because of the inverse rela-
tion between I' and vy,ys, (29) suggests that the along-estuary
tidal mixing term becomes dominant over the exchange flow
term for a sufficiently strong lateral mixing. Focusing on the
estuarine exchange flow by the gravitational circulation, we
explore the Chatwin (1976) approximation and neglect the
along-estuary tidal mixing so that L;; = 0 and

172

2 -2
S =|——xx+ (TL,)>S¥ (30)
3 E) 0
3Ly
Note that S,(0) = S, is consistent with (27). Defining next
the estuary intrusion length x; where S, is zero, we find
3

— 2/3
XL = _EFLESU N

€Y
which highlights the importance of lateral transport in setting
the estuarine salt intrusion length.

4. Illustrative example: Wong’s (1994) model revisited

To provide an illustrative example, we revisit the estuarine
circulation model for a bilinear depth profile for which A(y)
decreases linearly from s = laty =0toh =0aty = £1/2
(Fig. 1) (Fischer 1972; Wong 1994). We solve (18) and (19) us-
ing an iterative, conservative second-order finite-difference
approach. We employ a nested iteration approach for the de-
termination of the barotropic pressure gradient coefficient ),

to satisfy (u) = 0. Through trial and error, we found that a
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0 (a) u, appr. for y << 1 0 (b) u, y =0.001
- = 0.03 - — 0.03
ww woow
0.02 0.02
0.2 0.2
0.01 0.01 0.005
-0.4 ] -0.4
N i }\I 0 \ 0 0
-0.6 \ ‘ -0.6
w 0.01 i -0.01 -0.005
08 -0.02 08 -0.02 001
-1 -0.03 -1 -0.03
-0.5 0 0.5 0.5 0 0.5
(e) u,y=100 ><21O'4 (f()J u, ¥ =100 appr. for v >> 1 x21o'4
-0.2 -0.2
1 1
0.4 i 0.4 flit
H\\““I\i! ]Wl\ﬂl\l”“\'m‘
N i 0 i 0
0.6 -0.6
-1 -1
-0.8 -0.8
-1 2 -1 -2
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FIG. 1. Nondimensional solutions of u(y, z). (b)-(e) Numeric solutions for representative y values and analytic approximation for
(a)y=0(y<<1)and (f) y =100 (y > 1).

maximum number of 151 lateral and 75 vertical grid points re-
solves sufficiently accurately u and s. For all computations, we
set Ksz = Kyz and Kgy = Kjy so that we define for simplic-
ity a single y = ys = 7. Note that solutions for u and s only
depend parametrically on vy so that solutions can be rescaled
by ug and sg from (9) to any arbitrary choice of the other free
model parameters B, hgy, Ky;z, and S,. We compute solutions
of u and s for a wide range of y from y = 0.001 to y = 100 to
explore the full range of possible solutions from weak to
strong lateral tidal mixing transport.

a. Numeric solutions of u and s

Figure 1 shows numeric solutions of nondimensional u for
representative +y values (Figs. 1b—e) and the approximations
for weak lateral transport with y << 1 [(20)] (Fig. 1a) and for
strong lateral transport with y >> 1 [(23)] (Fig. 1f). Note that
the approximation for y << 1 is the same solution as pre-
sented in Wong (1994). The good agreement confirms the va-
lidity of the weak and strong lateral mixing approximation
and their physical assumptions. For smaller vy, u is character-
ized by up-estuary velocities in the channel and flows toward
the ocean closer to shore as expected (Wong 1994). As vy in-
creases, the two-dimensional flow structure transitions from
being predominantly lateral to including substantial vertical
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variability. Only for greater y does the flow resemble the one
expected from classic theory with deeper flows up the estuary
and more near-surface flows toward the ocean. However, the
flow dynamics are entirely different from classic theory as ver-
tical momentum fluxes are negligible over most parts of the
channel for sufficiently large .

Figure 2 shows numeric solutions of nondimensional s for
representative y values (Figs. 2b—e). Fig. 2a presents the ap-
proximate solution of the normalized depth-integrated s based
on (21) for weak lateral transport with y << 1 and a comparison
to the result obtained from the full two-dimensional (2D) nu-
meric solution. Figure 2f shows the other extreme comparing
the approximate solution of the normalized laterally inte-
grated s based on (25) for strong lateral transport with y >> 1
to the full 2D numeric solution. These approximations agree
well, both quantitatively and qualitatively, with the 2D nu-
meric solutions, suggesting that the approximations capture
well the leading-order dynamics. In particular, for small v, the
structure of s is characterized by substantial lateral variability
with saltier water in the channel center. When lateral tidal
mixing fluxes are weaker, such lateral salinity variability may
drive lateral density currents to set up a negative feedback
limiting lateral variability, which is explored in a follow-up
study. Therefore, it is important to keep in mind that solutions
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FIG. 2. Nondimensional salinity distributions. (b)—(e) Numeric 2D solution salinity s(y, z) and comparison of analytic and numeric solutions
for (a) depth-averaged integrated s, (s), with y = 0.001 and (f) laterally integrated s with y = 100.

for smaller y without advection are only applicable for suf-
ficiently shallow water so that § << 1 or y > BZMM,S. Simi-
lar to u, increasing vy shifts the salinity distribution from
predominantly lateral to vertical. Consistent with the dis-
cussion above, the salinity varies mainly vertically only for
sufficiently strong lateral tidal mixing fluxes.

b. Cross-sectionally averaged salt fluxes and S,

As expected from the solutions of u and s, the salt flux us
due to the exchange flow is characterized by lateral variability
for weaker lateral transport and by vertical variability for
stronger lateral transports (Fig. 3). The mechanism by which
the salt balance is maintained by the exchange flow differs for
weak and strong lateral mixing. For smaller lateral mixing,
saltier water in the channel center is mainly transported
up the estuary, while for greater lateral mixing, fresher
water is mainly transported toward the ocean closer to the
surface.

These solutions of us are next used to compute the cross-
sectionally averaged salt flux (7) ' (us) to then determine I’
for a range of vy, which is directly related to the dimensional
salt flux through (28) (Fig. 4). The dependency of I" on y
agrees well with the theoretical expectations for weak and
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strong lateral transports; see (22) and (26), respectively. Be-
cause |us| decreases with lateral mixing, so does I'.

Equipped with I'(ty) for the particular channel geometry (recall
here a bilinear depth profile), we next explore how lateral mixing
affects the cross-sectionally along-channel salinity distribution
S(x) or its gradient S,(x) through (30). As an example, we take
v=01({ ~0014) and y = 1 (I' = 0.007) and consider a range
of river discharge values from Q = (1101001 000) m*s~', which
is related to U through Q = UBhy/2 (Fig. 5). Note that the
v values are consistent with observations, as discussed below.
These results illustrate that increasing lateral mixing through
Ky by a factor of 10 (i.e., ), increases by a factor of 10) de-
creases the salinity intrusion length by half. This decrease is
comparable to the effect of decreasing the river discharge by a
factor of 10.

Because Lp scales inversely with vertical mixing as
(I(',ZMZKSZ)_U3 , it has been suggested that reduced vertical
mixing by increased river discharge has a compensating effect
on the salinity intrusion length (Monismith et al. 2002), consis-
tent with observations of a relatively weak salinity response to
river discharge (Garvine et al. 1992). In our study, this compen-
sating effect is weakened (assuming lateral mixing is relatively
unaffected by discharge) as for small y = yg, the salinity intru-
sion length scales as K2 K%, whereas for large y = vs, the
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FIG. 3. Nondimensional numeric solutions of the salt flux us for (a) y = 0.001, (b) y = 0.1, (¢) ¥ = 1, and (d) y = 100.
Black lines show us = 0.

salinity intrusion length scales as K }?KZ3. Thus, lateral
transport exerts a critical control on the along-estuary salinity
distribution.

5. Estimates of Fischer number y

In the following discussion, we attempt to estimate observa-
tionally y and assume again Ky;y = Kgy and Ky, = Kgz so
that y = vy, = vys. This is generally challenging because 1) ob-
servations of lateral dispersion in estuaries are limited and
2) tidally averaged lateral dispersion includes multiple tidally
resolved and averaged processes (see introduction). One of
the few studies that we are aware of that reports direct esti-
mates of both vertical and lateral mixing and related time
scales is that of Geyer et al. (2008). In particular, the observed
tidally averaged lateral dispersion estimates were consistent
with shear dispersion due to lateral currents sheared verti-
cally. Based on a series of dye releases, they report estimates
of lateral diffusivities in the range of 0.4-1.7 m* s~ ! and found
that this lateral mixing rate was consistent with dispersion due
to vertical shear of lateral velocities. These estimates of lateral
mixing correspond to lateral mixing times of 0.5-1.5 days. Inter-
estingly, little evidence of spring/neap variability in lateral mix-
ing was observed although mixing estimates may be limited by
geometric constraints of the channel. In contrast, vertical mixing
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was strongly influenced by the spring/neap cycle and increased
nearly an order of magnitude with estimates increasing from
4 X 107> m? s~ ! during neap to 2 X 10™* m? s~ during spring
tides, which represents estimates in the pycnocline and is, thus,
more representative of a minimum in diffusivity in the water col-
umn. These estimates correspond to vertical mixing time scales
of 6 days during neap and 16 h during spring tides. Note that a
more general approach needs to take into account the tidal time
scale relative to the mixing time scale (Geyer and MacCready
2014), which is beyond the scope of this study. Therefore, these
observations indicate that vy varies between 4 and 12 during neap
tides and 0.4-1 during spring tides. According to our results,
these estimates based on the Geyer et al. (2008) study result in
an increased lateral variability of salt and momentum during
spring tides, which is consistent with observations.

An alternative estimate for y can be derived for the homo-
geneous open channel flow following Fischer (1976), who ap-
proximated K¢, ~ 1.0u,h for some river systems, where i, is
an averaged bottom friction velocity due to tidal currents. In
particular, a dye release in Delaware Bay reported by Fischer
(1976) yielded a numeric value of Kgy consistent with that
from Geyer et al. (2008). Taking the Fischer (1976) estimate
K, ~ 0.07u,h for homogeneous open channel flows yields
vs ~ 1467, which is likely an underestimate because K can be
substantially reduced due to vertical stratification. Furthermore,
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value for classic estuarine circulation theories (solid gray;
MacCready and Geyer 2010).

Fischer (1976) discussed the potential role of shoreline irregulari-
ties and secondary circulations so that Kgy may scale with B,
rather than depth. Banas et al. (2004) suggest that Ky scales with
tidal excursion for wide channels. Therefore, both vertical and lat-
eral dispersion coefficients may scale with the tidal amplitude to
constrain the variability of +y. In this case, one may expect for
constant density flows that K, ~ u.B and K, ~ u.h;and y ~ 6.

In wider estuaries, such as Delaware Bay, one might expect
v to be smaller as the lateral mixing time could be large. Yet,
both Geyer et al. (2020) and Aristizabal and Chant (2013)
suggest that the effective width of the system is not much
wider than the main thalweg where most of the upstream salt
flux occurs. Thus, we suspect that y may also be related to the rel-
evant effective width. In addition, lateral salinity gradients will in-
crease with vertical mixing and potentially produce stronger
lateral flows and lateral mixing, thus limiting the variability of .
Similarly, weak vertical mixing yields stronger stratification which
reduces lateral flows and, thus, limits lateral mixing which again
limits the variability of y. The general dependence of the horizon-
tal and vertical exchange processes suggests that the range of vy is
constrained. Nevertheless, because vertical mixing varies over
multiple orders of magnitude, one may anticipate that y also
varies over several magnitudes. Our study suggests that it is criti-
cal to better understand the complex physics of lateral transport
in order to better characterize the estuarine exchange flow.

6. Conclusions

This study extends the classic model of the gravitationally
driven tidally averaged estuarine circulation, also referred to as
the residual circulation or exchange flow, by including lateral
(across the estuarine width) transport processes focusing on lat-
eral tidal mixing. We demonstrate that the lateral transport of
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FIG. 5. Analytic solutions S,(x) for I' = 0.007 (black) and
I' = 0.014 (red) and river discharges Q = [1, 10, 100, 1000] m> s,
which is related to U through Q = UBhy/2.

salt is essential for closing the steady-state salt budget and, thus,
for maintaining the residual circulation. In this study, we focus
on tidally averaged lateral tidal mixing fluxes that mix properties
from high to low concentrations.

To understand the influence of such lateral transport on the
residual circulation, we devise an idealized steady-state model
that conserves momentum and salt mass. For tidal-mixing-flux-
dominated regimes, we show that solutions for the along-estuary
velocity and salinity deviations from its cross-sectional average
can be nondimensionalized to depend on a key nondimensional
parameter that describes the relative importance of horizontal to
vertical tidal mixing, which is referred to as the Fischer number .
Analytic considerations demonstrate that for relatively weak lat-
eral tidal mixing (small +y), lateral tidal mixing can be neglected in
the momentum equation but is critical for the salt budget and
along-estuary salt fluxes due to the exchange flow scale inversely
with +y. For the other extreme of the relatively strong lateral tidal
mixing (large +y), lateral tidal mixing is dominant over vertical
mixing in the momentum equation and along-estuary salt fluxes
scale with the inverse squared v. It is shown that these results di-
rectly impact the cross-sectionally averaged salinity distribution
along the channel and that the estuarine salinity intrusion length
scales also inversely with .

Analytic predictions agree well with two-dimensional numeric
solutions for an idealized bilinear depth profile. Overall, these sol-
utions are characterized by substantial lateral transport due to
tidal mixing and variability that strongly depends on . For
greater lateral tidal mixing (greater vy), salinity predominantly
varies with depth. On the other hand, for relatively weak lateral
tidal mixing (smaller +y), salinity mainly depends on lateral loca-
tion, which sets up strong lateral density gradients. Because lateral
transport affects the estuarine residual circulation, it also exerts a
critical control on the along-estuary salinity distribution. Lateral
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density gradients furthermore result in sustained lateral flows
with surface convergence regions in the channel center in which
the buoyant material is expected to aggregate. If these lateral
flows are sufficiently strong, advection may become dynamically
important, which will be investigated in a follow-up investigation.
Overall, this study demonstrates that lateral transport controls
the estuarine residual circulation and needs to be considered in
more comprehensive concept models.
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