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Interdiffusion-enhanced cation exchange for 
HgSe and HgCdSe nanocrystals with infrared 
bandgaps

Wonseok Lee    1,2 & Andrew M. Smith    1,2,3,4,5,6 

Colloidal semiconductor nanocrystals based on CdSe have been precisely 
optimized for photonic applications in the visible spectrum, with modern 
products exhibiting structural uniformity, near 100% quantum yield 
and linewidths narrower than 100 meV. Here we report homogeneous 
nanocrystals with tunable bandgaps in the infrared spectrum based on 
HgSe and HgxCd1−xSe alloys deriving from CdSe precursors. We find that 
Ag+ catalyses cation interdiffusion to reduce the CdSe–HgSe alloying 
temperature from 250 °C to 80 °C. Together with ligands that modulate 
surface cation exchange rates, interdiffusion-enhanced Hg2+ exchange of 
diverse CdSe nanocrystals proceeds homogeneously and completely. The 
products retain the size, shape and uniformity of the parent nanocrystals 
but exhibit enhanced absorption. After passivation with heteroepitaxial 
CdZnS shells, photoluminescence wavelengths are tunable in the shortwave 
infrared by composition without changing size, with 80–91% quantum 
yield and linewidths near 100 meV. These materials may find applications in 
infrared photonic devices and infrared bioimaging.
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Colloidal semiconductor nanocrystals (NCs) are solution-dispersed, 
solution-processed nanomaterials that provide a unique combination 
of photophysical properties for applications in photonic devices and 
bioimaging. With these materials, electronic energy levels and optical 
bandgaps are tunable by both size and composition with large absorb-
ance cross sections, high photoluminescence (PL) quantum yield (QY) 
and long-term photochemical and photophysical stability1. Follow-
ing the first syntheses of monodispersed and size-tunable cadmium 
chalcogenide NCs in 1993 (ref. 2), considerable developments have 
been made towards NCs with controllable shapes, crystal structures, 
compositional heterostructures and surface facets3. This structural 
control together with predictive models of quantized energy levels 
now allows the precise design of electronic transitions, dynamics and 
charge interactions4. Visible spectrum NCs, especially prototypical 
CdSe NCs and their core–shell CdSe–CdZnS 
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heterostructures, now 

are widely used light emitters with PL QY near 100%, bandwidths near 
100 meV and size distributions near 5% (refs. 5,6).
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NCs with optical bandgap energies in the infrared spectrum 
are being pursued for applications in infrared photonic devices and 
deep-tissue bioimaging7,8. The most developed binary NC materials 
with infrared bandgaps include InAs, PbS, PbSe, HgSe and HgTe, all 
of which are less advanced compared with their counterparts in the 
visible spectrum owing to distinct challenges in synthesis. III–V InAs 
NCs are challenging to prepare with homogeneous sizes, especially for 
larger sizes with narrower bandgaps, while PL QY is limited by interfa-
cial defects at heterovalent interfaces incorporating insulating II–VI 
shell compounds such as CdSe, CdS and ZnS9,10. IV–VI PbS and PbSe 
NCs can be synthesized with tunable bandgaps across a wide range of 
sizes with high monodispersity11,12, but shell deposition required to 
prevent oxidation13,14 broadens linewidths due to lattice mismatch with 
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CdSe and HgSe is smaller than 0.5% (aCdSe = 6.05 Å, aHgSe = 6.08 Å) 
such that there is only a small dependence of materials properties on 
composition15. These properties mirror those of HgxCd1−xTe, which is 
the most common photonic material for high-performance infrared 
photodetectors as thin films and bulk materials owing to strong infra-
red absorption20. Alloys further allow tunability of photophysical and 
electronic properties through composition, independently of NC size, 
a key design characteristic for modern applications in multispectral 
bioimaging21. However, while composition-tunable ternary II–VI NCs 
can be readily prepared with diverse compositions (such as CdxZn1−xSe, 
CdSexS1−x and CdSexTe1−x), homogeneous HgxCd1−xSe NCs cannot be 
prepared using standard methods owing to disparate reaction tem-
peratures required for mercury and cadmium precursors.

Cation exchange (CE) reactions allow the creation of ionic NCs that 
cannot be readily synthesized from elemental precursors by exchang-
ing ‘host’ cations of pre-formed NCs with ‘guest’ cations, with the prod-
ucts inheriting the structural framework and distribution of the parent 
NCs. Through CE, guest compositional domains form within the parent 
NC through different pathways depending on the crystal structures 
and lattice parameters of the parent and product NC22. When crystal 
structures are equivalent, CE reactions typically proceed through a 

II–VI shell materials and heterogeneity of shell thickness. In contrast, 
II–VI HgSe and HgTe NCs have homovalence and equivalent cubic zinc 
blende crystal structures as canonical II–VI CdS and ZnS shells that 
should enable homogeneous and low-defect core–shell heterostruc-
tures with high PL QY and flexible optical tunability through the HgSe or 
HgTe core size15,16. Nevertheless, telluride-based NCs have a propensity 
to oxidize even with shells, and synthetic challenges remain for HgSe 
NCs. Syntheses and processing of mercury chalcogenide NCs require 
low temperatures (typically 0–120 °C) to avoid NC degradation and 
reduction of Hg2+ precursors (Supplementary Table 1). This contrasts 
with other II–VI materials that are stable at high temperatures (typically 
200–380 °C) and compatible with coordinating ligands with diverse 
hard and soft basic groups such as carboxylates, amines and phospho-
nates. As a result, current HgSe NCs have wide size distributions (near 
10–20% (refs. 17–19)) and their maturity in terms of size, shape and 
heterostructure engineering lags well behind visible semiconductor 
NCs based on CdSe.

HgSe can alloy with CdSe to form ternary HgxCd1−xSe alloys with 
wide, continuous tunability of photophysical properties, including 
bandgaps spanning 1.74 eV (CdSe) to −0.06 eV (HgSe), comprising the 
entire infrared spectrum15. Moreover, the lattice mismatch between 
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Fig. 1 | IE-CE of CdSe NCs with Hg2+. a, Schematic representation of CdSe NC 
exchange using either Hg2+ alone (CE) or in combination with Ag+  
(IE-CE), generating either core–shell CdSe–HgSe NCs or homogeneous alloy 
HgxCd1−xSe NC alloys, respectively. IE-CE proceeds to yield binary HgSe NCs.  
b, Photographs showing CdSe NC solution before and 5 s after the addition of 
Hg2+ at room temperature. c, The time course of spectral 1S–1S band energies for 
CE (orange) and IE-CE (purple), showing absorption (Abs) and PL. After 4 h of  

IE-CE (green-filled purple circle), the exchange of Cd2+ with Hg2+ is nearly 
complete (Supplementary Table 2). d, Absorption and PL spectra of 3.3 nm 
NCs during CE at 80 °C. The spectra are plotted in arbitrary units (AU), with 
absorption spectra normalized by NC concentration and PL spectra normalized 
by maximum intensity. e, Absorption and PL spectra during IE-CE at 80 °C. The 
spectra are normalized as in d.
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core–shell intermediate with a shell rich in guest cations, as the surface 
exchange rate is much faster than the rate of interdiffusion between 
cations within the NC23–25. This is the case for the reaction between 
CdSe NCs and Hg2+ cations which spontaneously displace Cd2+ cations 
to generate core–shell CdSe–HgSe NCs26. With the exception of very 
thin CdSe nanoplatelets (NPLs), these CE reactions do not approach 
completion to yield binary HgSe27, as the Hg2+–Cd2+ interdiffusion 
rate is much slower in CdSe domains forming the core compared with 
the HgSe shell domains, effectively trapping host cations within the 
NC at temperatures well below the CdSe–HgSe alloying temperature 
(~250 °C)28. The resulting CdSe–HgSe NCs have inferior optical proper-
ties. Homogeneous alloying through ion exchange reactions is rarely 
observed except in the case of perovskite anions24.

Here, we report interdiffusion-enhanced cation exchange (IE-CE) 
to generate homogeneous HgxCd1−xSe alloy NCs and binary HgSe NCs 
(Fig. 1a). The cation interdiffusion rate is boosted by several orders of 
magnitude using a monovalent silver dopant, while the intrinsically 
rapid surface exchange rate is tuned using alkylthiol ligands. Reactions 
occur at low temperatures (80 °C) that yield stable colloidal products. 
We characterize the reaction process using chemical, physical and 
optical methods to understand the reaction mechanism and compare 
the photophysical figures of merit relative to products of standard 
CE. We further grow insulating shells on the NC products towards 
generating high-QY and narrow-band emission at shortwave infrared 
(SWIR) wavelengths (photon wavelengths 1,000–1,700 nm or energies 
1.24–0.73 eV).

Results and discussion
Complete CE with interdiffusion enhancer
In prototypical CE and IE-CE reactions, quasi-spherical CdSe NCs with 
3.3 nm diameter and zinc blende crystal structure were dispersed in 
a solution containing alkylthiol and alkylamine ligands at 80 °C and 
treated with one of two reagents: Hg2+ alone or a mixture of Hg2+ and 
Ag+ (Hg+Ag). The colour of the NC solution changed from orange-red 
to black immediately after the addition of either reagent (Fig. 1b), indi-
cating rapid replacement of a large fraction of Cd2+ with Hg2+ in the 
NC. The reaction proceeded to a greater extent with the Hg+Ag rea-
gent. After 1 h with the Hg reagent, the lowest energy absorption band 
(1S–1S band transition) reduced in energy by 0.74 eV (from 2.24 eV to 
1.50 eV) (Fig. 1c,d), whereas the Hg+Ag reagent induced a larger reduc-
tion of 1.00 eV (to 1.24 eV; Fig. 1c,e), consistent with a reduction in the 

electronic bandgap. The emission band energy similarly decreased, 
with the Hg+Ag reagent yielding a shift from 2.21 eV in the middle of 
the visible spectrum to 1.13 eV in the SWIR. Conversion to HgSe was 
nearly complete in ~4 h with the Hg+Ag reagent by elemental analysis 
(Supplementary Table 2). With the Hg reagent, exchange remained 
incomplete even after >48 h (Supplementary Table 3) and could not 
be accelerated by further heating due to NC ripening and flocculation 
above 100 °C (Supplementary Fig. 1)29,30.

A size series of CdSe NCs (2.3–4.0 nm) completely converted to 
HgSe NCs after several hours of reaction with the Hg+Ag reagent (Fig. 2a 
and Supplementary Fig. 2), retaining both crystal structure (Fig. 2b) and 
uniform sizes (~6% relative standard deviation of diameter; Fig. 2c–e 
and Supplementary Fig. 3). Consistent with the greater degree of quan-
tum confinement in HgSe, the HgSe NC 1S–1S transition was enhanced 
~2.6-fold compared with the CdSe NCs and the dependence of spectral 
band energy on size was greater for HgSe across this size range (Sup-
plementary Fig. 4). The absorbance of HgSe NCs at 400 nm wavelength 
(3.1 eV) was proportional to the cube of diameter as 0.0317d 3 cm−1 µM−1 
(where d is the NC diameter), which is larger than that of other narrow 
bandgap semiconductor NCs including PbS (0.0233d3 cm−1 µM−1)31 
and PbSe (0.0277d3 cm−1 µM−1)32 (Supplementary Fig. 5) and greater 
than that of the parent CdSe NCs (0.0119d3 cm−1 µM−1 for 3.4 nm CdSe 
NCs). Strong absorbance at infrared wavelengths near the band edge 
as well as at higher energies are critical figures of merit for applications 
in infrared photovoltaics, photodetectors and PL applications33,34.

Dependence of absorption spectra on exchange mechanism
Spectral features in Fig. 1d,e indicate that the intermediate products 
of CE are core–shell CdSe–HgSe NCs, while the IE-CE intermediates 
are homogeneously alloyed HgxCd1−xSe NCs. Absorption spectra of 
intermediates with equivalent PL band energies collected during the 
reactions are superimposed in Fig. 3a and deconvolved into individual 
transitions in Fig. 3b–d. The shapes of the absorption spectra of the 
CdSe NC and the IE-CE intermediate are similar, whereas there is a 67% 
reduction in the intensity of the 1S–1S transition in the CE intermediate. 
Carrier wavefunctions simulated by the effective mass approximation 
(EMA; Fig. 3e,f) indicate that, for both CdSe and HgxCd1−xSe NCs, elec-
tron and hole wavefunctions strongly overlap across the NC, whereas 
for CdSe–HgSe NCs, a pseudo-type II band alignment is formed in which 
electrons are localized in the shell, while holes are delocalized through-
out the NC. For CdSe–HgSe NCs the electron–hole overlap decreases 
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with increasing mercury content (x) for compositions up to x = 0.4, 
which explains the reduction in 1S–1S transition strength (Fig. 3g). An 
increase in size from 2.3 nm to 4.0 nm enhances this charge separa-
tion, depleting up to 67% of the 1S–1S transition oscillator strength 
(Supplementary Fig. 6). For CdSe–HgSe NCs, there is also a substantial 
bowing of the 1S–1S band energy relative to the total composition x 
deriving from changes in the electron wavefunction shape and spatial 
delocalization (Supplementary Fig. 7). In contrast, for HgxCd1−xSe NCs, 
both EMA calculations and empirical results show a more linear rela-
tionship between composition and both the 1S–1S transition oscillator 
strength (Fig. 3g) and the 1S–1S band energy (Supplementary Fig. 7). 
These spectral differences with x are the best evidence for internal 
structure as the small sizes and spherical shapes of these NCs are not 
suitable for compositional mapping by scanning electron microscopy 
techniques. Previously, compositional contrast was possible using 
core–shell CdSe–HgSe nanoplatelets deriving from CE reactions that 
were vertically oriented on a substrate35. These results showed that 
two monolayers (MLs) of surface ions exchanged to HgSe on a CdSe 

nanoplatelet core, which matches well to the maximum two ML depth 
of exchange that we calculate by EMA for CE reactions on spherical 
CdSe NCs (Supplementary Fig. 7).

Dependence of PL on exchange mechanism
During the CE reaction, the PL full width at half maximum (FWHM) 
broadens relative to the CdSe NCs (Fig. 3h,i). The CE products consist-
ently exhibited broader FWHM (~167–196 meV) than those of IE-CE 
(~109–143 meV). These wider bandwidths for CE products are similar 
to those of previous CdSe–HgSe NCs29,36 and CdSe-based cores with 
epitaxial HgS shells37 and may result from scattering of strongly con-
fined electrons in the shell by surface states and surface phonons38 
or inhomogeneity in faceting39. After complete conversion to HgSe 
through IE-CE, broadening fully disappears and the FWHM of HgSe 
products are as narrow as those of CdSe (Supplementary Table 4). 
Homogeneous HgxCd1−xSe NCs exhibited a PL QY near 15–20% with 
a two-component exponential decay with half-times of 18.8 ns and 
67.8 ns (Fig. 3j). In contrast, the CdSe–HgSe NCs exhibited a PL QY 
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Fig. 3 | Dependence of photophysical properties on Hg2+ exchange 
mechanism in CdSe. a, Absorption spectra of 4 nm CdSe NCs (yellow), CdSe–
HgSe NCs produced by CE (orange) and HgxCd1−xSe NCs produced by IE-CE 
(purple). The spectra are plotted in arbitrary units (AU) and normalized by NC 
concentration. b–d, Absorption spectra in a reconstructed as a sum of Gaussian 
functions (dotted black lines) reflecting individual electronic transitions (grey 
lines). Filled red curves indicate 1S–1S band transitions. e,f, EMA calculations of 
electron and hole wavefunctions of 4 nm NCs with total mercury composition of 
0 ≤ x ≤ 0.6 for CdSe–HgSe NCs (e) and HgxCd1−xSe NCs (f). In CdSe–HgSe core–
shell NCs, electron wavefunction is localized to the shell. g, Wavefunction overlap 

integrals of 4.0 nm CdSe–HgSe NCs and HgxCd1−xSe NCs calculated by the EMA.  
h, PL spectra of CdSe–HgSe NCs and HgxCd1−xSe NCs with similar PL band 
energies. Both NCs were generated from 3.3 nm CdSe NCs. Spectra are 
normalized by maximum intensities. i, PL FWHM of NCs showing data from 
three replicate CE and IE-CE reactions using 3.3 nm CdSe NCs. j, PL decay of 
3.3 nm CdSe–HgSe NCs and HgxCd1−xSe NCs from h. Intensity trends fit well to 
two-component exponential decays as A1exp(−t/τ1) + A2exp(−t/τ2) with A1 = 83.5%, 
τ1 = 3.8 ns, A2 = 16.5%, τ2 = 14.2 ns for CdSe–HgSe NCs, and A1 = 55.9%, τ1 = 18.8 ns, 
A2 = 44.1%, τ2 = 67.8 ns for HgxCd1−xSe NCs.
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below 1% and rapid PL decay. In addition, unlike HgxCd1−xSe NCs, 
CdSe–HgSe NCs exhibit reduced PL QY with increasing NC size 
(Supplementary Fig. 8), an effect consistent with greater electron 
trapping by surface states in CdSe–HgSe, as expected from EMA cal-
culations (Fig. 3e and Supplementary Fig. 9). As the NC size increases, 
the electron wavefunction in CdSe–HgSe becomes more localized 
to the shell, which reduces the 1S–1S electron–hole overlap integral 
(Supplementary Fig. 10) and is expected to reduce the absorption 
transition intensity and PL QY.

.

m

Mechanism of interdiffusion enhancement
The CE and IE-CE reactions differ primarily by the rates of Hg2+–Cd2+ 
interdiffusion, based on fittings of a Fickian diffusion model to the 
NC composition over time (Supplementary Note 1)40. At 80 °C, IE-CE 
reaction dynamics fit well with a single Hg2+ diffusion coefficient (D) 
near 10−22 m2 s−1 (Supplementary Fig. 11), indicating that the rate of 
surface CE and the interdiffusion rate are equivalent. However, the 
model fit was a poor match to experimental data for CE reactions, as 
the surface reaction rate is much faster than the interdiffusion rate. 
This was even the case when modelling Fickian diffusion only over the 
time course following rapid exchange of surface Cd2+ atoms, indicat-
ing that the exchange rate decreases with progressive replacement of 
Cd2+ with Hg2+, creating stable CdSe–HgSe structures, which is consist-
ent with a reaction occurring at temperatures well below the alloying 
temperature28. We could more precisely evaluate the time course of 
exchange with slower reactions at room temperature in the absence of 
alkylthiol ligands (Supplementary Fig. 12), conditions at which D was 
three orders of magnitude smaller, resulting in core–shell NCs both 
with and without the Ag enhancer. This allowed the observation that 
the initial burst of surface exchange was not impacted by Ag, which 
instead resulted in an approximately fourfold increase in D.

Role of Ag
Ag+ diffuses in a CdSe lattice and occupies either interstitial sites (Agi) 
or substitutional sites for cadmium (AgCd)26,41–43. Two Agi sites together 
with a cation vacancy can form a charge-balanced ‘Frenkel defect’ that 
rapidly diffuses to enhance the interdiffusion of Cd2+ and Hg2+ across 
vacancies. This mechanism predicts a dependence of exchange rate 
on Ag concentration44,45, which we found to be true up to an amount 
of 0.075 Ag per Cd in a 3.3 nm CdSe NC (Supplementary Fig. 13). For 
this NC, we measured a mean 6.8 Ag incorporated per NC in HgxCd1−xSe 
intermediates, accounting for ~27% of the amount added (the remainder 
probably remained bound by ligands in solution). By a consideration 
of Poisson statistics, a mean of 6.8 Ag per NC corresponds to an NC 
distribution for which the vast majority of NCs (>99%) contain at least 
2 Ag, the minimum number to form a Frenkel defect. This matches 
well to the expectation that fast, homogeneous exchange requires a 
Frenkel defect. Thus, when less Ag is added, a larger percentage of the 
NC population should contain fewer than 2 Ag, and experimentally, the 
exchange rate reduces and bands broadened (Supplementary Fig. 13), 
indicating a more heterogeneous reaction. With larger amounts of the 
Ag reagent, the CE rate also moderately decreased, PL bands broadened 
and low energy absorption tails appeared (Supplementary Fig. 14), an 
effect probably due to AgCd clusters that form mid-gap states46.

The capacity of Ag+ to catalyse Hg2+–Cd2+ interdiffusion was also 
consistent with experiments applying CdSe–HgSe NCs purified from 
excess ions after a CE reaction. When Ag was added to the CdSe–HgSe 
NCs at 80 °C, the absorption and emission spectra redshifted, the 
1S–1S absorption band sharpened and strengthened, and the PL band 
narrowed and increased in QY (Fig. 4). There was no change in the 
absorption spectral features at energies well above the bandgap. 
These changes are consistent with interdiffusion-based shifts from 
a core–shell NC to a homogeneously alloyed NC without a change in 
overall composition. Because the PL spectra narrowed during alloy-
ing, the broadening of CdSe–HgSe NC spectra must not be a result of 

Q9

population heterogeneity, indicating that CdSe–HgSe NCs intrinsically 
exhibit broader PL spectral bands than HgxCd1−xSe NCs.

This IE-CE reaction on pre-formed CdSe–HgSe NCs did not occur 
if the NCs contained only a small amount of mercury that was insuffi-
cient to form a complete HgSe ML (x ≈ 0.1; Supplementary Fig. 15). This 
may be because the diffusion coefficient of Ag in mercury cadmium 
chalcogenide ternary alloys is enhanced by orders of magnitude when 
the alloys are mercury-rich, potentially arising from inter-mercury 
ion percolation chains45,47. However, total Ag incorporation into NCs 
may also differ for NCs with different mercury content, as Ag content 
in the fully exchanged HgSe products was approximately half of that 
measured after partial exchange to HgxCd1−xSe NCs. This may partially 
explain why we were unable to use Ag-catalysed IE-CE to convert puri-
fied HgSe NCs to CdSe even in the presence of a large excess cadmium 
ions, although wider explorations of reaction conditions may make 
this possible. The chemical nature of the Ag dopant is thus complex 
and apparently changes as the NC transitions during IE-CE. X-ray spec-
troscopic methods may help to resolve these states42, although the 
extremely high Ag mobility45 makes this challenging at temperatures 
relevant to the reaction.

Role of ligands
Strongly binding alkanethiol ligands (dodecanethiol, DDT) play an 
essential role in IE-CE as soft Lewis bases that coordinate soft Hg2+ and 
Ag+ cations on the NC surface and in solution. These ligands tune the 
surface exchange rate and are also required for the colloidal stability 
of HgxCd1−xSe NCs. An equivalent amount of ~0.6–1.5 thiol per Cd in the 
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NC is optimal for homogeneous alloying when applying equivalents of 
1.5 Hg and 0.075 Ag. This quantity of ligand is balanced to exceed the 
amount required to completely passivate the NC surface but is insuf-
ficient to coordinate Hg2+ as unreactive dithiolate complexes. With 
increasing amounts of thiol, the exchange reaction decreases and almost 
no exchange reaction occurs in the presence of a large excess of the 
ligand (Supplementary Fig. 16). With low amounts of thiols insufficient 
to coordinate the NC surface, the absorption spectrum exhibits a weak 
1S–1S transition and low PL QY similar to those of NCs exchanged without 
Ag, probably due to the fast surface reaction rate that yields a core–shell 
structure (Supplementary Fig. 16). However, after purification, the addi-
tion of thiol ligands increases the 1S–1S transition intensity and increases 
the PL QY more than 100-fold (Supplementary Fig. 17), indicating that 
thiols passivate the NC surface to prevent surface localized electrons 
from perturbation by surface states or surface phonons. Thiols further 
bind to Ag+ in solution and reduce its reactivity to prevent heavy doping 
by Ag+ (Supplementary Fig. 14). With the optimized amount of ligands, 
PL bandwidths are minimized and PL QY is maximized, and only a few 
Ag+ per NC remain after exchange and can be easily extracted by the 
addition of trialkylphosphines (Supplementary Table 2).

Homogeneous alloying across phase, shape and composition
The IE-CE reaction can be applied to CdSe NCs with diverse structures 
to generate uniform HgSe and HgxCd1−xSe alloys that have not been 
generated through standard synthetic methods. The hexagonal wurtz-
ite phase of CdSe NCs can be obtained through colloidal synthesis 
processes using ligands such as alkylphosphonic acids48. As with cubic 
phase CdSe NCs, CE reactions on wurtzite CdSe NCs halted after ~3 h 
and absorption features resembled those of cubic CdSe–HgSe NCs 
(Fig. 5a), consistent with previous exchange reports49. These prod-
ucts exhibited much broader PL bands than their cubic counterparts 
(Supplementary Fig. 18), which may originate from the diverse facet 

types on wurtzite NCs. In contrast, with IE-CE, complete conversion 
to HgSe occurred while the crystal structure was retained (Fig. 5b and 
Supplementary Table 5), yielding a non-natural crystal form that has 
not been synthesized in pure form previously to our knowledge. The 
bandgap energy of both cubic and wurtzite HgSe NCs with equal sizes 
were similar and both exhibited narrow PL bands.

Mercury exchange reactions with CdSe NPLs were performed at room 
temperature or below owing to the fragile morphology of these high sur-
face area-to-volume ratio particles. As shown in Fig. 5c, CE reactions of 
4.5-ML-thick CdSe NPLs resulted in an immediate redshift of absorption 
bands but with only small changes over the following 3 days. This has been 
observed previously27,35,50 and indicates that the diffusion of Hg2+ beyond 
2 ML is hindered at room temperature. In contrast, the IE-CE process activates 
the diffusion of Hg2+ below the surface layers such that the absorption spec-
trum at 30 min is more redshifted than that of the CE reaction after 3 days. 
As the reaction proceeds, two characteristic absorption peaks appear that 
are attributed to electronic transitions from heavy and light hole levels to 
the conduction band (Supplementary Fig. 19). Compared with the CdSe/
HgSe NPLs deriving from CE, absorption intensities of HgSe NPLs are sev-
eral times larger, with 4.6-fold larger molar extinction coefficients at 3.1 eV 
(400 nm) compared with CdSe NPLs (µ400 = 670,000 cm−1). Transmission 
electron microscopy revealed that the morphology was retained, and ele-
mental analysis revealed that exchange was ~98% complete and the original 
cation-to-anion ratio was maintained near 5:4 (Fig. 5d,e and Supplementary 
Table 6). CE reactions on CdSexS1−x and CdTe NCs also accelerated with the Ag 
enhancer (Fig. 5f and Supplementary Fig. 20) and resulted in nearly complete 
exchange based on elemental analysis (Supplementary Table 5). In both 
cases, the PL bands became as narrow as those of the parent NCs. Similarly 
to the CE and IE-CE reactions using CdSe NCs, core–shell CdSexS1−x–HgSexS1−x 
NCs from CE reactions exhibited a much lower PL QY (<0.01%) than the 
homogeneous CdyHg1–ySexS1−x and HgSexS1−x NCs that resulted from IE-CE 
(PL QY ~1–2%). From telluride to selenide to sulfide, the CE rate decreased in 
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accord with an increase in bond strength, probably slowing diffusion of Ag+. 
Complete conversion of CdTe NCs to HgTe NCs occurred through IE-CE at 
room temperature, whereas binary CdS NCs lacking selenium did not exhibit 
enhanced exchange with the Ag enhancer.

Infrared emitting core–shell NCs
Towards the generation of high-QY emitters with PL in the infrared, 
we optimized the growth of insulating homovalent CdZnS shells on 

HgSe and HgxCd1−xSe NCs prepared by IE-CE (Fig. 6a). As anticipated 
with the similar crystalline lattices of CdSe and HgSe, similar benefits 
of PL QY enhancement and PL bandwidth narrowing were observed for 
HgSe and HgxCd1−xSe cores as for CdSe cores after deposition of CdZnS 
shells38. Before shell growth, trioctylphosphine extraction of residual 
Ag+ was needed to prevent the diffusion of Hg2+ into the shell, which 
resulted in irreversible spectral blueshifts and broadening at elevated 
temperatures required for ZnS deposition (Supplementary Fig. 21). 
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Fig. 23. c, Absorption spectra of four NCs with indicated 

structures. 1S–1S band energies are tuned by different degrees of CE. All cores 
are 3.2 nm, and shells are composed of 0.8 ML CdS, 2.4 ML Cd0.5Zn0.5S and 0.8 ML 
of ZnS. QDs are named by their PL band peak wavelength (such as 1,270 nm for 

QD1270). d, PL spectra of four NCs with indicated structures. e, PL spectra of 
commercial visible spectrum CdSe–CdZnS NCs (Invitrogen) for comparison 
of bandwidths. f, PL FWHM values for HgxCd1−xSe, HgSe, HgSe–CdZnS and 
HgxCd1−xSe–CdZnS NCs (stars) in comparison with other core and core–shell NCs 
with PL between 700 and 1,700 nm wavelength reported in the literature. g, PL 
QY values for HgSe–CdZnS and HgxCd1−xSe–CdZnS NCs (stars) in comparison 
with other NCs with PL between 700 and 1,700 nm wavelength reported in the 
literature. The data are compiled in Supplementary Table 7. Open symbols in f 
and g indicate core NCs, and filled symbols indicate core–shell NCs.
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With Ag+ extraction, shell growth temperatures below ~200 °C resulted 
in core–shell NCs with optical bandgaps slightly redshifted from those 
of the core (Fig. 6b,c and Supplementary Fig. 22), which similarly occurs 
for CdSe-based cores. After shell growth, the NC size increased from 
3.2 nm to 6.0 nm (Fig. 6d and Supplementary Fig. 23) in agreement with 
the amount of shell precursors added. PL QY increased above 80%, and 
up to 91%, in the SWIR and the PL band narrowed to 102–139 meV FWHM 
(Fig. 6e, Supplementary Fig. 21 and Supplementary Table 5). Core–shell 
NCs based on HgSe NC cores exhibited the narrowest PL FWHMs, com-
parable to the most homogeneous PbS or PbSe NC cores and with com-
parable photophysical figures of merit as the commercial standards of 
visible spectrum NCs based on CdSe–CdZnS (Fig. 6e). PL energy bands 
were tuned by composition while keeping the NC core size fixed. PL 
FWHM and QY values are summarized in Fig. 6f,g in comparison with 
other infrared NCs reported so far (Supplementary Table 7)9,11,29,36,51–76.

Conclusion
In summary, we described a strategy to generate high-quality homo-
geneous binary and ternary NCs with infrared bandgaps. Using Ag 
enhancers with alkylthiol ligands, the cation interdiffusion rate and 
surface reaction rates can be balanced to achieve homogeneous mix-
ing of cations across the NC. Unlike products with core–shell struc-
tures, the homogeneous alloys have enhanced exciton wavefunction 
overlap, which results in enhanced band edge absorbance and 1S–1S 
oscillator strength, high PL QY and narrow PL linewidths. After deposi-
tion of CdZnS shells, the NCs exhibited both brighter and narrower PL 
than previous mercury chalcogenide-based NCs and other colloidal 
semiconductor NCs in the SWIR window, which can be explained by 
the enhanced confinement of electron and hole wavefunctions in the 
NC core and matching lattice structure to the CdZnS shell. With the 
diversity of crystal phases, shapes and compositions now available in 
cadmium chalcogenides for applications in the visible spectrum, similar 
diversification of homogeneous and composition-tunable materials 
may now be readily obtainable in the infrared through IE-CE.

Methods
Chemicals
Cadmium acetate dihydrate (Cd(Ac)2·2H2O, 98%), cadmium oxide (CdO, 
≥99.99%), mercury acetate (Hg(Ac)2, ≥99.0%), silver nitrate (AgNO3, 
>99%), sulfur (S, 99.98%), selenium (Se, 99.99%), tellurium (Te, 99.8%), 
selenium dioxide (SeO2, ≥99.9%), 1-octadecene (ODE, 90%), oleic acid 
(OLAc, 90%), oleylamine (OLAm, 70%) tetramethylammonium hydrox-
ide (TMAH, 25 wt% in methanol), stearic acid (95%), trioctylphosphine 
oxide (TOPO, 99%), 1,2-hexadecanediol (HDD, 90%), diphenylphos-
phine (DPP, 98%), DDT (≥98%) and sodium hydroxide (NaOH, ≥98%) 
were purchased from Sigma-Aldrich. N-tetradecylphosphonic acid 
(TDPA, >99%) was purchased from PCI Chemicals. Trioctylphosphine 
(TOP, 97%) was purchased from Strem Chemicals. Methanol (MeOH, 
≥99.8%) was purchased from Macron Fine Chemicals. Acetone (99.5%), 
chloroform (CHCl3, 99.8%), ethanol (EtOH, >95%), hexanes (98.5%), 
acetonitrile (99.9%) and toluene (99.5%) were purchased from Fisher 
Chemical. Myristic acid (99%) was purchased from Acros. Cadmium 
nitrate tetrahydrate (Cd(NO3)2·4H2O, 99.99%), zinc acetate (Zn(Ac)2, 
99.98%), tetrachloroethylene (TCE, 99+%) and octadecylphosphonic 
acid (ODPA, 97%) were purchased from Alfa Aesar. All chemicals were 
used without further purification.

Synthesis of precursors
For cadmium stearate (CdSt2), Cd(Ac)2·2H2O (5 mmol) was dissolved 
in MeOH (250 ml) in a 1 l beaker. In a second 1 l beaker, stearic acid 
(12.5 mmol) was dissolved in a mixture of 350 ml MeOH, 37.5 ml CHCl3 and 
5.25 ml of TMAH solution. The cadmium solution is added dropwise to the 
stearic acid solution using a dropping funnel. The product was isolated 
by vacuum filtration and washed several times with MeOH. For cadmium 
myristate (CdMy2)77, in a 1 l beaker, NaOH (15 mmol) and myristic acid 

(15 mmol) were dissolved in MeOH (0.5 l). In a 100 ml beaker, CdNO3·4H2O 
(5 mmol) was dissolved MeOH (50 ml). The cadmium solution was then 
added dropwise to the myristic acid solution with continuous stirring. 
The product was isolated by vacuum filtration and washed several times 
with MeOH. For Cd and Zn precursors for shell growth, Cd(Ac)2 or Zn(Ac)2 
(1 mmol) was dissolved in OLAm (10 ml) at 100 °C. For S precursor for 
shell growth, S powder (1 mmol) was dissolved in ODE (10 ml) at 150 °C.

Synthesis of zinc blende CdSe NCs
In a 50 ml three-neck flask, CdSt2 (0.6 mmol), SeO2 (0.6 mmol), HDD 
(0.6 mmol) and ODE (15 ml) were added and dried under vacuum at 
100 °C for 1 h. The solution was then rapidly heated to 230 °C under 
nitrogen at a rate of 20 °C min−1 (to yield 3.2 nm CdSe NCs). The tem-
perature was maintained for 15 min, and the reaction mixture was 
rapidly cooled by removing the heating mantle. At ~110 °C, 3 ml of OLAc 
was injected to prevent precipitation of the NCs. The size was selected 
by controlling the reaction temperature and growth time. For purifi-
cation, the crude solution is diluted with an equal volume of hexanes, 
and 1.5 ml of this solution is mixed with 35 ml MeOH and 5 ml acetone. 
After centrifugation, precipitates were dissolved in 1.5 ml hexanes. 
Precipitation with MeOH–acetone is repeated two more times before 
the products are finally dispersed in hexanes48.

Synthesis of wurtzite CdSe
CdO (60 mg), ODPA (280 mg) and TOPO (3.0 g) were added to a three- 
necked flask and heated to 300 °C under nitrogen until the solution 
became colourless and transparent. Then, TOP (1.5 g) was injected 
and the solution was heated to 380 °C. A selenium solution prepared 
by dissolving Se powder (58 mg) in TOP (360 mg) was injected into the 
cadmium solution, and the heating mantle was immediately removed. 
The NCs were diluted with toluene, precipitated twice with MeOH and 
finally dissolved in toluene.

Synthesis of CdSe0.51S0.49 NCs
CdO (0.2 mmol), stearic acid (0.6 mmol) and ODE (10 ml) were added 
to a three-necked flask and heated to 270 °C under nitrogen until the 
solution become coloirless and transparent. Then, a mixture of ODE-S 
(0.1 M, 0.5 ml) and Se suspended in ODE (0.1 M, 0.5 ml) was injected. 
After the injection, the temperature was set at 260 °C for 5 min. The NCs 
were purified using the same process used for zinc blende CdSe NCs.

Synthesis of CdTe NCs
CdO (12.8 mg, 0.1 mmol), TDPA (61 mg, 0.22 mmol) and ODE (5 ml) were 
added to a three-necked flask and heated under nitrogen to 300 °C 
until the solution became colourless and transparent. After cooling 
to room temperature, OLAm (0.5 ml) was added and the solution was 
heated to 300 °C under nitrogen. A tellurium solution was prepared 
by dissolving Te powder (12.76 mg, 0.1 mmol) in ODE (5 ml) and TOP 
(1 ml) at ~280 °C. After cooling to room temperature, DPP (5 µl) in 
OLAm (45 µl) was added to the tellurium solution. The tellurium solu-
tion (3 ml) was then injected into the cadmium solution, and the tem-
perature was set to 250 °C for 10 min. The reaction mixture was then 
cooled to room temperature, diluted with an equal volume of hexanes 
and centrifuged to remove unreacted white precursors. The NCs were 
purified by repeated extraction with hexane MeOH and finally dissolved 
in hexanes and stored at 4 °C under an inert 

.

m
atmosphere.

Synthesis of 4.5 ML CdSe NPLs
In a 50 ml three-neck flask, Cd(My)2 (340 mg), Se (24 mg) and ODE 
(25 ml) were degassed for 30 min at room temperature. Under nitrogen 
flow, the temperature was then raised to 240 °C. When the mixture 
reached 220 °C, Cd(Ac)2·2H2O (100 mg) was added and the reaction 
was stopped after 10 min at 240 °C. The NPLs were diluted with hex-
anes (30 ml) and precipitated with EtOH (30 ml). The NPLs were finally 
suspended in hexanes (10 ml).
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Mercury CE
In a typical reaction, zinc blende CdSe NCs (100 nmol) dispersed in ODE 
(8 ml) were mixed with 100 equivalents of OLAm and 0.6–1.5 equiva-
lents of DDT relative to the number of Cd ions in the NCs. A mercury 
precursor solution (0.1 M) was prepared by dissolving Hg(Ac2) in OLAm 
at 50 °C for 1 h. A silver precursor solution (0.02 M) was prepared by 
dissolving AgNO3 in OLAm by sonication at room temperature. The 
CdSe solution was heated to 80 °C, and a mixture of Hg and Ag precur-
sor solutions was rapidly injected. Typically, 1.5 equivalents of Hg ions 
and 0.075 equivalents of Ag ions per Cd ions was used. The CE reaction 
was monitored by ultraviolet–visible–near-infrared absorption spec-
troscopy. The NCs were purified using the same process used for zinc 
blende CdSe NCs.The same protocol was used for CE of wurtzite CdSe 
NCs, CdSe0.51S0.49 NCs, CdTe NCs and CdSe NPLs with the exception 
that CdTe NCs and CdSe NPLs were reacted at room temperature and 
no thiol ligands were applied.

Ag extraction
HgSe or HgxCd1−xSe NCs (50 nmol) were dissolved in ODE (4 ml), OLAc 
(0.2 ml) and OLAm (0.1 ml). The solution was heated to 50 °C, and TOP 
(50 µl) was injected. After 2 h, NCs were purified twice and finally dis-
solved in hexanes. Before purification, the crude solution is diluted 
with an equal volume of hexanes and 1 ml of OLAc and OLAm is added 
to prevent the complete stripping of ligands during the purification. 
Then, 1.5 ml of this solution is mixed with 35 mL MeOH and 5 ml acetone 
for precipitation. After two times of precipitation, precipitates were 
dissolved in hexanes.

Shell growth
For a typical reaction, HgxCd1−xSe NCs (100 nmol) were dissolved in ODE 
(6 ml) and OLAm (2 ml) and heated to 50 °C. In all cases, shells were 
grown in 0.8 ML increments by dropwise addition of the S precursor 
followed by the Cd/Zn precursor. The growth of the first S layer was initi-
ated at 50 °C. After 10 min, the NC solution was heated to 120 °C, and the 
Cd precursor was added and allowed to react for 10 min. The reaction 
temperature was raised in 10 °C increments between each precursor 
addition until reaching a maximum of 200 °C. Typically, 0.8 ML of CdS, 
2.4 ML of Cd0.5Zn0.5S and 0.8 ML of ZnS were successively overcoated. 
After the reaction, NCs were purified by precipitation with MeOH and 
acetone three times and finally dispersed in hexanes.

Instrumentation
TEM images and EDS data were obtained using a JEOL JEM-2100F and 
JEOL 2010 LaB6. Powder X-ray diffraction patterns were obtained using 
a Bruker D8 ADVANCE. ICP-OES was performed using 

.

m
a PerkinElmer 

Optima 8300. Absorption spectra were obtained using an Agilent 
Cary 5000 UV-Vis-NIR spectrophotometer. PL spectra were obtained 
using a Horiba NanoLog fluorometer. PL lifetime was measured at room 
temperature with a home-built single-photon-counting spectroscopy 
setup at the Materials Research Laboratory at 

.

m
UIUC.

Spectral decomposition and oscillator strength calculations
A Gaussian mixture model was fit to 

.

m
energy-scaled absorption spectra, 

A (E)

, obtained from NC suspensions with experimentally measured 
concentration and diameter as previously described34, with
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the relative standard deviation of NC radius and E
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 is the bulk bandgap 
energy. To calculate E
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 for CdSe–HgSe and HgxCd1−xSe, a linear interpola-
tion between the bandgaps of CdSe (1.74 eV) and HgSe (−0.06 eV) was 
applied on the basis of the total NC composition x. The values °
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dW were fitting parameters with initial guesses for E
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 and the number of 
transitions ç determined from minima of the second derivative of A (E). 
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 values were fixed within ±50 meV of initial guesses, while °
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 and dW 
were unbounded. The models were fit using the least squares method 
in Matlab. The values of °

Õ

 were proportional to oscillator strength when 
the NC size is fixed34, and only relative values were determined.

EMA calculations
NCs were modelled as spherically symmetric concentric layers with finite 
potential energy for non-interacting electrons and holes by the method 
of Haus et al.78 and described further for the CdTe–HgTe and HgxCd1−xTe 
systems by Smith et al.34 The time-independent Schrödinger equation in 
three dimensions was solved to calculate the kinetic energies and nor-
malized wavefunctions of the electron (ő
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) and hole (ő
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), and the band-
gap energy was calculated with inclusion of a Coulombic term as a 
perturbation. For HgxCd1−xSe alloy domains, a linear interpolation 
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where r is the radial distance from the NC centre. The surface electronic 
wavefunction localization φe,surf was calculated as the integrated radial 
distribution function starting from approximately one atomic layer 
from the surface of a NC with radius ÷
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PL QY calculations
For QY measurements, NCs were dispersed in TCE and diluted so that 
the absorption was ~0.05 at 700 nm. Relative QY was measured with 
respect to indocyanine green (in DMSO, QY of 13%) under 700 nm 
excitation.

Absorption coefficient calculations
The molar absorption coefficients of CdSe NCs were calculated on the 
basis of the reported correlations between the size and 1S–1S band 
energy. The molar absorption coefficient of HgxCd1−xSe NCs and 
HgxCd1−xSe–CdZnS NCs were calculated by assuming the number of 
NCs did not change during the IE-CE reaction and shell overcoating 
process. The intrinsic absorption coefficient (Ł) was derived from the 
absorbance (A) of the NC solution as

Ł Ҳ

âç (1Š)A

Í

p

B

И (Ť)

where Í
p

 is the volume fraction of NCs in solution and B is the optical 
path length of the cuvette (1 cm).

Data availability
All relevant data are provided within this paper and Supplementary 
Information.
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