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Abstract— Coordinating heterogeneous robots is essential for
autonomous multi-robot teaming. To execute a set of dependent
tasks as quickly as possible, and to complete tasks that cannot be
addressed by individual robots, it is necessary to form subteams
that can collaboratively finish the tasks. It is also advantageous
for robots to wait for teammates and tasks to become available in
order to form better subteams or reduce the overall completion
time. To enable both abilities, we introduce a new graph learning
approach that formulates heterogeneous collaborative scheduling
as a bipartite matching problem that maximizes a reward matrix
learned via imitation learning. We design a novel graph attention
transformer network (GATN) that represents the problem of
collaborative scheduling as a bipartite graph, and integrates
both local and global graph information to estimate the reward
matrix using graph attention networks and transformers. By
relaxing the constraint of one-to-one correspondence in bipartite
matching, our approach allows multiple robots to address the
same task as a subteam. Our approach also enables voluntary
waiting by introducing an idle task that the robots can select to
wait. Experimental results have shown that our approach well
addresses heterogeneous collaborative scheduling with dynamic
subteam formation and voluntary waiting, and outperforms the
previous and baseline methods.

I. INTRODUCTION

Collaborative multi-robot teaming has been widely studied
over the past decades to address a broad range of real-world
applications [1], [2], such as agriculture [3], search and rescue
[4], [5], space exploration [6], and assistance in hospitals [7]
and warehouses [8]. To efficiently and scalably deploy multi-
robot teams, collaborative scheduling is a fundamental ability
for the robots to autonomously allocate and collaboratively
complete complex tasks, typically with the goal of minimizing
the overall task completion time. Collaborative scheduling
must address the inherent heterogeneity in both robots and
tasks. Collaborative robots may be heterogeneous, equipped
with different sensors and actuators with varying payloads,
e.g., in the scenario of multi-robot assisted manufacturing in
Fig. 1. Each task to be scheduled may also have different
requirements on the robot’s capabilities (e.g., mobility and
manipulation) and capacities (e.g., payload).

Given its importance, various techniques were implemented
to address heterogeneous collaborative scheduling. Classical
methods are designed based on heuristics [9], [10]. However,
these techniques typically provide greedy solutions and cannot
always lead to optimal results. Several other techniques use
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Fig. 1. A motivating scenario for heterogeneous multi-robot collaborative
scheduling with dynamic subteaming and voluntary waiting in an assembly
application. Subteaming allows robots to dynamically build subteams to
address tasks that cannot be completed by individual robots, while voluntary
waiting enables robots to wait for additional robots and tasks to be available
in order to form better subteams or reduce the overall task completion time.

integer linear programming in collaborative scheduling to
optimize the overall time to complete all tasks [11], [12], [13].
However, these methods cannot run in real-time when solving
problems with complex constraints caused by robot/task
heterogeneity and task dependency. Recently, learning-based
methods have shown impressive promise to balance both
scheduling performance and algorithm runtime [14], [15],
[16]. However, there still exist several limitations to the
state-of-the-art learning-based algorithms for heterogeneous
collaborative scheduling. First, most existing learning-based
methods cannot build subteams to combine the strengths of
individual robots to complete the tasks that cannot be tackled
by each individual robot. Second, previous robot learning
approaches generally do not consider situations where a robot
voluntarily determines to wait in order to shorten the overall
task completion time. In particular, voluntary waiting and
subteam formation are interrelated, i.e., forming subteams
may require robots to voluntarily wait for other teammates to
become available. The interplay between subteam formation
and voluntary waiting has not been studied yet by existing
learning-based methods.

In this paper, we introduce a learning-based approach called
Learning for Voluntary Waiting and Subteaming (LVWS),
which enables robots to voluntarily wait and dynamically form
subteams in order to minimize the overall task completion
time in real-time heterogeneous collaborative scheduling. Our
approach uses an undirected graph to encode a team of
robots, whose nodes represent the heterogeneous robots with
different capabilities and payload capacities, and whose edges
represent the relationships of the robots (e.g., communication



connections). Similarly, our method represents tasks and their
dependencies using a directed graph. Then, we design a new
graph attention transformer network (GATN) to compute
feature embeddings of the robots and tasks, which uses an
attention mechanism for each node to fuse information from
its connected neighbors, and employs a transformer for each
node to encode contextual information (e.g., node position in
the graph). Heterogeneous collaborative scheduling is then
formulated as a deep bipartite graph matching problem, which
maximizes a reward matrix computed using the robot and
task embeddings. Our approach learns to group robots into a
subteam that receives increased rewards when the subteam
is assigned an available task. Our approach also implements
voluntary waiting by designing an idle task that each robot
can choose to wait for forming subteams and receiving better
rewards at a later time.

The main contribution of this work is the introduction of our
novel learning-based LVWS method to address heterogeneous
collaborative scheduling. Two specific novelties include:

• We propose a novel graph attention transformer network
to learn representations for collaborative scheduling from
graphs of heterogeneous robots and complex tasks. This
GATN can learn on graphs with arbitrary structures and
is agnostic to the number of robots and tasks.

• We enable two interrelated abilities for robot teammates
to dynamically form subteams and voluntarily wait under
a unified learning-based method. These abilities not only
allow a robot team to improve the overall task completion
time, but also enable subteams to tackle tasks that cannot
be completed by individual robots.

II. RELATED WORK

Collaborative multi-robot task scheduling is a family of
problems characterized by different robot and task constraints
[17], [18], [19]. Robot constraints can include whether the
robots can perform one or more tasks simultaneously (single-
task vs. multiple-task robots) and support one or more physi-
cal capabilities with varying payloads (heterogeneous robots).
Task constraints can include task durations, task capability
requirements, task order and precedence requirements, and
whether tasks are fixed or can change over time.

A. Single-Task Single-Robot (ST-SR) Scheduling

Several previous approaches addressed ST-SR scenarios for
single-task robots and single-robot tasks, which are usually
solved with heuristics [20], greedy methods [9], [21], search
algorithms [22], [23], and integer linear programming [24],
[25]. However, heuristic-based and greedy approaches are
not guaranteed to obtain an optimal solution. Also, integer
linear programming-based approaches have exponential time
complexity and cannot be used to address real-world large
collaborative scheduling problems in practice [26]. Recently,
there have been learning-based methods proposed to solve
multi-robot scheduling. These include reinforcement learning
(RL) [14], [27] and inverse RL [28], [29]. These approaches
perform better than the heuristic and greedy methods and run
faster than integer linear programming techniques. However,

these learning-based approaches generally cannot well address
the scenarios with complex heterogeneous robot capability
constraints and temporal task constraints.

B. Single-Task Multiple-Robot (ST-MR) Scheduling

Several methods were implemented to address the scenarios
with single-task robots and multiple-robot tasks where two or
more robots can complete tasks jointly. Most existing works
utilized homogeneous robots to complete tasks with larger
payloads cooperatively [18], [30]. In addition, several methods
were implemented for heterogeneous robot scheduling to
perform perception and action tasks [31], [32], and mitigate
unexpected failures [16], [33], [25]. However, they limit robot
subteam assignment to scenarios with short time horizons
or no temporal task dependencies. Recently, learning-based
methods were developed to encode tasks as directed graphs
[29], [34], which permits reasoning over longer time horizons
while respecting task prerequisites in the solution. Scheduling
delays were also implemented for multiple agents to improve
load management for reliability [35] and resource utilization
in ride-sharing scenarios [36]. However, the previous learning-
based methods cannot learn to form subteams [35], [36], or
use heuristics [16], [25] to select agents for subteam formation.
In heterogeneous collaborative scheduling, subteaming and
waiting are interrelated. However, the research problem of
unified learning to jointly enable subteaming and waiting has
not been well studied yet.

III. APPROACH

Notation. We denote matrices as boldface uppercase letters
(e.g., M = {Mi,j} ∈ Rn×m, an n×m matrix whose element
in the i-th row and j-th column is Mi,j), vectors as boldface
lowercase letters (e.g., v ∈ Rd, a d-dimensional vector whose
i-th element is vi), and scalars as lowercase letters (e.g., s).

A. Problem Definition

Given a team of N heterogeneous robots, we represent the
team as an undirected graph Gr = (R,Q), where R = {ri}N
represents the set of vertices, and Q ∈ {0, 1}N×N is a matrix
denoting the edges to represent the network connection among
the robots. The vertex ri = [ari , c

r
i , w

r
i ] represents the states

of the i-th robot, which includes three variables to indicate
the i-th robot’s availability, heterogeneous capabilities (e.g.,
manipulation and mobility), and payload capacity, respectively.
For example, [ari = 1, cri = [1, 1], wr

i = 20] indicates that the
i-th robot is available, can both manipulate and move, and
has a payload capacity of 20 units. In this work, we assume
that all robots in the team are connected, i.e., Q is a matrix
of ones.

Similarly, in order to represent a set of M dependent tasks,
we implement a directed acyclic graph Gt = (T ,P). The set
of the graph’s vertices T = {tj}M denotes the tasks, and each
tj = [stj , c

t
j , w

t
j ] includes three elements, where stj ∈ {0, 1}3

encodes if the j-th task is ready, assigned, and incomplete, stj
is an indicator vector encoding the required robot capabilities,
and wt

j indicates the minimum payload required to complete
the task. For example, stj = [1, 0, 1] indicates that the j-th task



is queued, but not assigned or completed; ctj = [1, 1] indicates
that the task requires a robot or subteam to have both the
manipulation and mobility capabilities; and wt

j = 25 indicates
that the task requires the robot or subteam to have a minimum
payload of 25 units. Task dependencies are represented by
the directed edges PM×M , where Pi,j = 1 represents that
the i-th task is a dependency of the j-th task. The j-th task
is considered ready, i.e., (stj)1 = 1, if all its dependent tasks
have been completed.

Then, we formally represent the problem of heterogeneous
multi-robot collaborative scheduling using a bipartite graph
G = {Gr,Gt,A}, and mathematically formulate it as a deep
bipartite graph matching problem that sequentially allocates
tasks sti to individual and subteams of robots in the team
R, where the allocation is encoded by the scheduling matrix
A = {Ai,j}N×M with Ai,j = 1 indicating that the j-th task
tj ∈ T is allocated to robot ri ∈ R at a timestep. Given this
problem formulation, our proposed LVWS approach aims to
achieve the following objectives under a unified deep learning
framework:

• Learn to estimate the scheduling matrix Ai,j as a policy
to schedule tasks to not only individual robots but also
subteams of robots in order to minimize the overall task
completion time. For example, in the case of allocating
the j-th task to a subteam that includes robots i and k,
we have Ai,j = Ak,j = 1.

• Learn for each robot to voluntarily wait for other robots
and tasks to become available, in order to form subteams
to reduce the overall task completion time and/or address
tasks that cannot be completed by individual robots.

B. LVWS for Heterogeneous Collaborative Scheduling

We develop our novel LVWS approach, as demonstrated in
Fig. 2, to enable voluntary waiting and dynamic subteaming
for heterogeneous collaborative scheduling. Specifically, we
design a graph attention transformer network that integrates
graph networks (to encode local graph structure) and trans-
formers (to encode contextual information). Given a graph,
a graph attention network (GAT) [37], denoted as Ψ(·), is
used to compute the embedding of a node by the l-th layer
of the GAT, as follows:

h
(l+1)
i = αi,iWh

(l)
i + LeakyReLU

 ∑
Pi,j ̸=0

αi,jWh
(l)
j


(1)

where W denote the parameters of Ψ(·), and αi,j is the GAT
attention function that can be computed by:

αi,j =
exp

(
LeakyReLU(Wh

(l)
i ∥ Wh

(l)
j )
)

∑
Pi,j ̸=0 exp

(
LeakyReLU(Wh

(l)
i ∥ Wh

(l)
j )
) (2)

where ∥ denotes a concatenation operator, and LeakyReLU(·)
is a leaky rectified linear unit. Given the robot team graph
Gr = (R,Q), the GAT Ψr(·) calculates node embeddings for
the robots, where Hr = Ψr(Gr) = {hr

i }N . Moreover, given
the task graph Gt = (T ,P), the GAT Ψt(·) computes node
embeddings for the tasks, where Ht = Ψt(Gt) = {ht

j}M .
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Fig. 2. Overview of our LVWS approach. By maximizing a scheduling
reward matrix R that is estimated using imitation learning, LVWS integrates
GATs and transformers to learn a policy to determine robot-task assignments.
LVWS enables subteaming by grouping multiple robots that collectively
meet a task’s requirements on capabilities and payload capacities. LVWS
enables voluntary waiting by allowing robots to select the idle task tM+1.

To represent the global contextual information of the entire
team and all the tasks, we introduce a transformer encoder
[38], [39], denoted as Φ(·). For a graph G, given its vertex
embeddings H = {hj} computed from the GAT Ψ(G), the
transformer Φ(·) first integrates all the embeddings to update
the global embedding g at the l-th layer by:

ḡ(l) = LN

∑
j

(
βjU1h

(l)
j

)
+ g(l)

 (3)

where U1 are the parameters, LN(·) is the layer normalization
operation, and βj is the scaled self-attention function [38],
[40] that can be computed by:

βj = softmax

(
U2g ·U3hj√

dim(g)

)
(4)

where softmax(·) is the softmax function, U2 and U3 are its
parameters, and dim(g) is the dimensionality of g. Then, the
global embedding g is propagated across layers by:

g(l+1) = LN
(

MLP(ḡ(l)) + ḡ(l)
)

(5)

where MLP(·) is a multi-layer perceptron network. Given the
robot graph Gr, we compute its embedding gr = Ψ(Gr) to
encode the global team information. Similarly, given the task
graph Gt, we compute its embedding gt = Ψ(Gt) to encode
the status and dependencies of all tasks. Besides the global
graph embeddings, the same transformer layers in Eqs. (3-5)
are also applied to update the local node embeddings {hr

i }N
and {ht

j}M for each robot and task, respectively.
Given the bipartite graph G = {Gr,Gt,A} and the embed-

dings computed from our GATN, heterogeneous collaborative
scheduling can be formally formulated as a bipartite graph
matching problem, which determines the scheduling matrix A
by maximizing the rewards associated with the edges between
R and T in the bipartite graph G. In order to enable voluntary
waiting, we introduce a new idle task that can be selected
by each robot to wait without taking other tasks. This idle
task is modeled as a vertex tM+1 ∈ T that is not connected
with other vertices in T . Then, taking into account voluntary
waiting modeled by tM+1, we introduce the reward matrix
R = {Ri,j}N×(M+1) that is associated with the scheduling



matrix A = {Ai,j}N×(M+1) in G. Ri,j indicates the reward
when the i-th robot selects the j-th task, which is defined by:

Ri,j = ψ
(
hr
i ∥ ht

j ∥ gr ∥ gt
)

(6)

where ψ(·) is a MLP to calculate Ri,j from the embeddings.
Ri,j integrates not only the local information of the i-th robot
and j-th task (through hr

i ∥ ht
j), but also the global context

of the graphs R and T (through gr ∥ gt).
In addition to voluntary waiting, we enable the new capabil-

ity of dynamic subteaming. First, we relax the requirement of
one-to-one correspondence in classic bipartite graph matching
to allow that same task to be scheduled to multiple robots.
Second, we require that the multiple robots assigned to a task
must satisfy the task’s requirements on the capabilities, which
can be modeled by the constraint ∨

i
Ai,jc

r
i · (ctj)⊤ = ∥ctj∥1,

where ∨ denotes the disjunction operator that is a product of
ORs. Third, we require that the multiple robots assigned to
a task must satisfy its requirement on the payload capacity,
so that the subteam has sufficient resources to complete the
task, which can be mathematically modeled by the constraint∑

iAi,jw
r
i ≥ wt

j .
To enable the new capabilities of subteaming and voluntary

waiting, we formulate bipartite matching for heterogeneous
collaborative scheduling as a constrained optimization prob-
lem defined as:

A∗ = argmax
A

∑
i,j

Ai,jRi,j (7)

∀ri ∈ R|ari = 1,∀tj ∈ T |(stj)1 = 1 (8)

s.t.
∑
j

Ai,j ≤ 1 (9)(∨
i

Ai,jc
r
i

)
· (ctj)⊤ = ∥ctj∥1 (10)∑

i

Ai,jw
r
i ≥ wt

j (11)

The objective of this optimization problem in Eq. (7) is to
compute the scheduling matrix A∗ as a policy by maximizing
the overall reward in order to assign ready tasks (represented
by ∀tj ∈ T |(stj)1 = 1) to individual or a subteam of robots
that are available (represented by ∀ri ∈ R|ari = 1). Eq. (9) is
the constraint requiring that each robot can take at most one
task. Eqs. (10) and (11) are constraints on the capability and
payload capacity requirements in order to enable subteaming.

C. Training LVWS through Imitation Learning

Since LVWS is a deep graph learning approach, we need a
large amount of training data to learn all model parameters of
the network components, including GATs, transformers, and
MLPs. Since it is difficult to manually label the optimal task-
robot assignment for all possible scenarios, we adopt imitation
learning that uses an expert system to provide demonstrations
as our training data. Following previous methods on imitation
learning to generate scheduling demonstrations [41], [42], the
expert system is implemented using dynamic programming,
which divides the scheduling problem into multiple smaller

scheduling sub-problems by removing feasible robot/subteam-
task assignments. This expert system has an exponential time
complexity [16] and cannot be executed in real-time (thus, it
is not practical for real-time task scheduling).

With the scheduling demonstrations from the expert system
as the training data, the objective function of using imitation
learning to train LVWS can be defined as:

L = ∥(R−E) ◦X∥1 + λ∥R−E∥1 (12)

where the hyperparameter λ balances the two terms. The first
term is a loss that is designed to train LVWS to estimate a
reward R similar to the expert reward E = {Ei,j}N×(M+1).
Each Ei,j is an accumulated expert reward for scheduling
the j-th task to the i-th robot in the demonstrations, which
is computed as Si,j =

∑
k γ

kek, where ek is the immediate
expert reward for finishing the tasks at timestep k and γ is
a reward discount factor. X = {Xi,j}N×(M+1) is a mask to
enforce learning positive rewards from feasible assignment
demonstrations, where Xi,j = 1 if it is feasible to schedule
the j-th task to the i-th robot, and Xi,j = 0 otherwise. The
second term in Eq. (12) is developed for our approach not to
learn from the assignments that are not shown in the expert
demonstrations, by making our model receive zero rewards
for invalid robot-task assignments. In order to train our LVWS
approach using the objective function in Eq. (12), we adopt
gradient descent based on the ADAM optimizer [43], [44].

D. Time Complexity Analysis

We analyze the time complexity of LVWS with respect
to the number of robots N and the number of tasks M .
Constructing the robot and task graphs requires O(N2) and
O(M2) time complexity, respectively. If the GAT has Lg

layers and Kg attention heads, computing the embeddings
using the GATs takes O(N2LgKg) and O(M2LgKg) for
the robot and task graphs, respectively. Similarly, apply-
ing the transformer encoders requires O(N2LtrKtr) and
O(M2LtrKtr) time complexity, respectively, where Lt is
the number of layers and Kt is the number of attention heads
in the transformer encoder. Computing the reward matrix
has a complexity of O(NMLm), where Lm is the number
of layers of the MLP. Solving the optimization problem in
Eqs. (7-11) requires to iterate through all elements of R, and
sequentially select the robot-task assignment with maximum
reward, which has a time complexity of O(NM2).

Combining these together, the dominating term in the time
complexity per timestep is O(N2+NM2). At each timestep
where a decision on robot-task assignments must be made, R
must be dynamically computed using the graphs Gr and Gt

at the timestep. The number of timesteps T depends on how
many tasks can be completed simultaneously. In the worst
case, only one task can be completed at a time, which leads
to ⌈M/N⌉ ≤ T ≤M . Therefore, the overall worst-case time
complexity of our approach is O

(
(N2 +NM2)T

)
.

IV. EXPERIMENTS

In our experments, we evaluate the LVWS approach using
synthetic data and Gazebo simulations in the Robot Operating
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Fig. 3. Qualitative results from the robot-assisted manufacturing case study using Gazebo simulations to evaluate and demonstrate LVWS.

System (ROS). Model training and execution are performed
on a 14-core Intel Core i7 machine with 96 GB of RAM and
NVIDIA RTX Titan GPU. We compare our LVWS approach
with four baseline methods: (1) a randomized policy (RAND)
that randomly assigns each task to available individual robots
that meet the task’s requirements, (2) a randomized policy
with subteam formation (RAND w/ subteam) that randomly
assigns tasks to both individual robots and subteams that meet
the requirements, (3) a greedy heuristic-based policy (GRP)
that assigns each task to the robot or subteam that meets the
task’s requirements and has the minimum payload capacity,
and (4) the dynamic bipartite graph matching (DBGM) [16]
that uses graph attention networks to perform collaborative
scheduling. To quantitatively evaluate LVWS and compare
it with other methods, two metrics are used: (1) makespan
(MS) [29], [16], which is defined as the time (in seconds) that
is used to complete all the tasks and (2) suboptimality [45],
which is defined as the percent increase in the makespan of
a solution compared to the exact solution’s makespan. For
both metrics, smaller values indicate better performance.

TABLE I
QUANTITATIVE RESULTS OF LVWS AND COMPARISONS WITH OTHER

METHODS USING THE SUBOPTIMALITY METRIC ON DATASETS I AND II.

Method 6 Robots, 18 Tasks
(6r-18t)

3-8 Robots, 8-20 Tasks
(8r-20t-var)

RAND 23.00% –
RAND w/ subteams 11.80% 18.04%

GRP 15.80% 19.93%
DBGM 13.80% –

LVWS [Ours] 0.80% 13.81%

A. Quantitative Results on Collaborative Scheduling

We generate three synthetic datasets to train and evaluate
the approaches for heterogeneous collaborative scheduling.
Dataset I includes 1,000 problem instances with 6 robots and
18 tasks each (6r-18t). Dataset II contains 10,000 instances

TABLE II
QUANTITATIVE RESULTS USING THE METRIC OF MAKESPAN WHEN

SCALING THE METHODS WITH A LARGER NUMBER OF TASKS.

Method 6 Robots, 100 Tasks (6r-100t)
RAND 24.85

RAND w/ subteams 24.70
GRP 25.85

DBGM 23.05
LVWS [Ours] 22.00

with a varying number of 3-8 robots and 8-20 tasks (8r-20t-
var). Dataset III contains 20 instances with 6 robots and 100
tasks (6r-100t), which is collected to evaluate the approaches’
scalability to a large number of tasks. We set the number
of robot capabilities to be between 2-3, the robot payload
capacity to be between 1-30, and the task payload requirement
to be between 1-30 that is sampled from a Poisson distribution.
Moreover, we generate a randomized directed acyclic graph
for each instance to model task dependencies. 800 instances
in Dataset I and 8,000 instances in Dataset II are used for
training, and the remaining in Datasets I-III for testing.

The quantitative results over Datasets I and II are shown
in Table I. In the 6r-18t scenario, we can observe that RAND
performs the worst as expected, while GRP performs better
due to its objective of always assigning a task to the robot
with the minimum payload that can complete the task. DBGM
performs better than RAND and GRP but it performs worse
than RAND with subteam formation. This is because DBGM
only forms subteams as necessary for failure situations, while
RAND w/ subteams attempts to choose among all possible
subteams when assigning tasks. Our method LVWS optimizes
subteam formation together with voluntary waiting for specific
robot-task assignments when needed and achieves the lowest
suboptimality compared with the exact solution. In the 8r-20t-
var scenario, both RAND and DBGM cannot run because
these policies only work with a fixed number of robots and



tasks for the entire dataset. We observe similar results showing
LVWS outperforming the other methods.

We further evaluate the methods on Dataset III to study the
scalability of these methods to a larger number of tasks. The
quantitative results are shown in Table II. Because the exact
solution is intractable and cannot be computed reasonably,
we use the makespan metric to evaluate our approach and
compare it with other methods. It can be observed that LVWS
outperforms all the compared methods, demonstrating that
our LVWS approach can scale with larger number of tasks
even when trained with smaller datasets.

B. Qualitative Case Study in Gazebo Simulations

To intuitively demonstrate our LVWS approach, we perform
a case study of heterogeneous collaborative scheduling in an
assembly cell manufacturing environment using ROS Gazebo
simulations. We simulate a heterogeneous team of six robots
with different capabilities and payload capacities, including
three Panda robotic arms (from Franka Emika), two Jackal
mobile robots (from Clearpath), and one Husky mobile robot
(from Clearpath). In the case study illustrated in Fig. 4, the
environment includes three assembly cells. Each cell includes
one or more fixed robot arms with the manipulation capability
but have different payload capacities. The mobile robots have
the mobility capability to transport objects among the cells.
The assembly problem in the case study includes two types
of tasks. The first type of tasks pertains to inter-assembly cell
object transportation, where each distinct source-destination
pair identifies a unique task. The transportation tasks can be
defined by transitions between different steps during assembly,
where intermediate products must be moved to other locations
for further processing. The second type of tasks pertains to the
assembly cell tasks, which are performed on the objects during
assembly. Our case study contains four objects processed by
14 tasks across the three assembly cells.

The qualitative results obtained by our LVWS approach in
Gazebo on this case study are demonstrated in Fig. 3. We
can observe that LVWS successfully schedules all tasks to
individual robots and subteams to complete all the tasks. At
time 39.244s, the Jackal robot is waiting for the additional
task to become available while the other robots perform their
tasks. At time 155.446s, the Jackal and Husky mobile robots
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Fig. 4. Overview of the case study setup that includes 6 heterogeneous
robots to transport and manipulate 4 objects in 3 assembly cells. The assembly
process is divided into 14 tasks that must be completed by the robots.

form a subteam to jointly carry the large object Obj1 that has
a payload requirement of 7 units, which cannot be carried by
either a Jackal robot (with a payload capacity of 2-3 units)
or the Husky robot (with a capacity payload of 6 units). The
makespan (i.e., overall task completion time) obtained by our
LVWS approach is 258.804s for the heterogeneous team of
six robots to complete all 14 tasks in the Gazebo simulation.
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Fig. 5. Execution speed (left) and accumulated runtime (right) of our
LVWS approach given varying N and M .

C. Execution Speed and Accumulated Runtime Analysis

We experimentally analyze the execution speed and the
accumulated runtime of LVWS, as illustrated in Fig. 5. The
number of robots varies from 25 to 100, while the number of
tasks varies from 50 to 500. We observe that the execution
speed of LVWS at M = 50 is 36.26 Hz and decreases with
increasing M . At M = 500, the execution speed is 0.68 Hz.
This allows LVWS to be used in online scheduling scenarios
where the execution time of LVWS is faster than the rate at
which tasks are finished. We also investigated the accumulated
runtime, defined as the total time (in seconds) used for an
approach to compute the scheduling solution. Fig. 5 shows
that the accumulated runtime of LVWS quadratically increases
with respect to the number of tasks M . With 25 robots
and 50 tasks, LVWS can compute an optimal scheduling in
0.94 s. For a larger number of robots (N = 100) and tasks
(M = 500), LVWS computes an optimal schedule in 463.43
s. This growth rate is polynomial, approximately between
quadratic and cubic, which agrees with the theoretical time
complexity discussed in Section III-D.

V. CONCLUSION

In this paper, we have proposed a new deep graph learning
method for collaborative scheduling formulated as maximum
bipartite matching between robots and tasks. We introduced
a graph attention transformer network to generate a reward
matrix used for allocating tasks to robots. By introducing
dynamic subteaming and voluntary waiting, LVWS generates
schedules that can reduce the overall task completion time
and enable multiple robots to collaboratively address tasks
that cannot be handled by individual robots. We evaluated
our LVWS approach using three synthetic datasets and high-
fidelity simulations in ROS Gazebo. Experimental results
have shown that our approach well addresses heterogeneous
collaborative scheduling and enables subteaming and volun-
tary waiting, which outperforms the baseline and previous
methods across diverse numbers of robots and tasks.
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