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ABSTRACT Load redistribution attacks (LRAs) are a type of false data injection attack that disrupts the
normal operation of the power grid by redistributing load. While most LRAs in the literature are based on the
DC model, this paper proposes an LRA in the AC model using incomplete network information. To defend
against the proposed LRA, the paper proposes using Moving Target Defense (MTD) to actively invalidate
the attackers’ knowledge. A zero-sum defense-attack game is formulated between MTD and LRA to select
an MTD operating range optimally, considering the trade-off between attack detection effectiveness and the
extra operation cost. The paper defines a new payoff function as an expected incremental operation cost,
consisting of the defense cost, attack cost, and attack mitigation capability. A Nash Equilibrium of the game
provides optimal strategies for selecting the MTD operating range. Simulation results on the modified IEEE
14-bus system demonstrate the effectiveness of MTD in detecting the proposed LRA. The paper shows
that MTD not only detects ongoing LRAs but also prevents the construction of such attacks by using the
proposed game theoretical framework. The proposed approach highlights the role of MTD in enhancing the
cybersecurity of power grids against LRAs.

INDEX TERMS AC load redistribution attacks, moving target defense, zero-sum game, optimal strategy.

I. INTRODUCTION
False data injection (FDI) attacks are a type of low-
probability, high-consequence cyberattacks against power
systems [1]. FDI attacks manipulate the measurements in
the Supervisory Control And Data Acquisition (SCADA)
system to mislead system operators into obtaining incorrect
state estimation. Load redistribution attacks (LRAs) are a
highly structured FDI attacks that restrictively manipulate
bus injection measurements to increase generation costs or
trigger load shedding. Yuan et al. formulated immediate and
delayed LRAs based on bi-level optimization [2] and also
provided a quantitative analysis of the LRA consequence
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on power system operations [3]. Liu and Li proposed a
stealthy local load redistribution attack using incomplete net-
work information [4] Zhang et al. proposed a novel LRA
model aiming to cause voltage violations in the distribution
system [5]. In [6], a DC LRA was proposed against the
power systems, considering the presence of insider threats.
A security resource allocation game is formulated, in which
the information leakage of the system operator’s defense
strategy by the insider to the external attacker is consid-
ered. The optimal strategies of both the system operator
and attacker can be calculated to maximize their own pay-
offs. Su et al. developed a defense strategy for the optimal
allocation of limited defensive resources to safeguard power
systems against LRA [7]. A trilevel optimization problem is
formulated, in which chance constraint is used to capture the
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possible variations in the attacker’s actions. However, most
LRA models are constructed in the DC model, and LRAs
aiming to trigger load shedding in the AC system is still
missing in the literature. Therefore, establishing an AC-LRA
model aiming to increase operation costs through involuntary
load shedding based on incomplete network information is
necessary to quantify the attack consequence, whereby the
interaction between such attacks and defense mechanisms
can be further studied.

Multiple defense methods have been proposed to detect,
identify, and mitigate FDI attacks, using protected sensors,
Phasor Measurement Unit (PMU), and machine learning
techniques. Since FDI attacks require the attacker’s knowl-
edge about the system measurements, one natural approach
is to strategically select and protect critical measurements
using protected sensors. Bi and Zhang proposed the opti-
mal protection problem as a variant Steiner tree problem
in a graph, which protects the state variables using the
minimum number of protected sensors [8]. PMUs are also
used to detect FDI attacks due to their ability to provide
measurement redundancy. Pei et al. first protected the most
vulnerable buses, and then proposed a greedy algorithm to
deploy other PMUs [9]. However, these two methods require
expensive hardware devices to improve the cybersecurity
of the power system. Machine learning methods have been
used to detect FDI attacks, in which the normal and com-
promised measurements are clustered into distinct regions
in the feature spaces. Esmalifalak et al. applied a support
vector machine (SVM) to classify the normal and compro-
mised measurements after the principal component analysis
dimension reduction [10]. Sakhnini et al. applied SVM, the
k-nearest neighbor algorithm (KNN), and the artificial neural
network (ANN) to detect FDI attacks [11]. However, the
ML-based algorithms are vulnerable to specifically designed
FDI attacks, which has been verified in recent studies [12],
[13], [14].

Moving target defense (MTD) is a proactive defense mech-
anism in computer engineering, that changes the system
configuration to reduce the attack surface and increase the
cost of attacks. MTD has been applied in the physical layer
of the power system by using distributed flexible AC trans-
mission system (D-FACTS) devices to change the impedance
of transmission lines. Originally, D-FACTS devices modify
the impedance of transmission lines to manage the power
flow and reduce the generation costs. In MTD, these installed
D-FACTS devices are utilized to change the line impedance
to invalidate the attacker’s knowledge of the configuration.

Multiple attack detection effectiveness metrics have been
proposed, and MTD operation methods are accordingly pro-
posed to improve the performance of MTD. In the simplified
DCmodel, the rank of the composite matrix is widely used to
measure the detection effectiveness [15]. Lakshminarayana
and Yau used the smallest principal angle of the Jacobian
matrices before and after MTD as the detection effective-
ness metric, and investigated the relationship between the

effectiveness of MTD and the associated cost [16]. In the AC
power system model, Liu et al. derived explicit approxima-
tions of measurement residuals to quantify the effectiveness
and hiddenness of MTD [17]. It adopted the sensitivity
analysis around the optimum point and derived explicit
approximations of residuals, and further designed explicit
residual-based MTD to jointly optimize the detection effec-
tiveness and hiddenness.

In the literature, some works examined the interaction
between MTD and cyber-physical attacks in power sys-
tems via game theory. Lakshminarayana et al. investigated
the interaction between coordinated cyber-physical attacks
(CCPA) and MTD in a DC model to solve the placement of
D-FACTS devices [18]. In the game, the attacker’s action is
to select transmission lines to maliciously disconnect, while
the defender’s action is to select transmission lines to install
D-FACTS devices and detect attacks [18]. The Nash equi-
librium solution identifies the lines that are most likely to
be maliciously disconnected by the attacker. Based on this
Nash Equilibrium solution, Yu and Li proposed an algorithm
to place D-FACTS devices by taking these lines as protected
transmission lines [19].

However, these two works focus on the placement of
D-FACTS devices in MTD, rather than the operation of
D-FACTS devices. To operate MTD, a system operator
(defender) needs to preset the operating range of D-FACTS
devices, known as the MTDmagnitude, based on various fac-
tors, including the physical capability of D-FACTS devices.
MTD magnitude influences MTD detection performance in
noisy conditions. A small MTD magnitude can degrade the
attack detection capability [20], while a large MTD magni-
tude increases the system operation cost [21] and the gear cost
of D-FACTS devices [22]. The selection of a proper MTD
magnitude is crucial to strike a meaningful balance between
detection capability and defense cost. However, the selection
of MTD magnitude remains an unresolved issue for system
operators in the literature. To the best of our knowledge, there
is little work in the literature that has examined the intricate
interaction between MTD operation and LRA attacks using a
full AC model.

In this paper, we provide a novel perspective on the
complex interplay between MTD and FDI attacks that has
not been explored previously. Specifically, we formulate
a unique defense-attack game between MTD and LRAs
to address the trade-off in selecting the MTD magnitude
with a full AC model. Unlike existing literature that either
switches the D-FACTS placements [18] or suggests a fixed
MTD magnitude [15], [16], [20], [21], [23], [24], [25],
[26], [27], we propose a more realistic and mixed strat-
egy in which the MTD magnitude changes over time based
on a pre-designed probability. Additionally, we investigate
the detection effectiveness of MTDs in detecting AC-LRA,
a highly structured FDI attack. Since both the LRAs andMTD
affect the system operation cost, we integrate both the attack
detection effectiveness and system operation cost into the
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payoff function. The proposed D-A game can assist system
operators in optimally selecting MTD magnitudes to reduce
the system operation cost, including the defense cost and
attack consequence, while considering the attacker’s actions.
Furthermore, while previous research on MTDs in power
systems has focused primarily on assessing their effectiveness
in detecting attacks, little attention has been given to their
potential role in preventing attacks by varying the system’s
attack surface. As such, we believe it is essential to investigate
the prevention function of MTDs against LRAs and explore
their full potential for mitigating the impact of these attacks
on the system.

The contributions of this paper are summarized as
follows:

• We propose a novel approach for formulating a
defense-attack game between MTD and LRAs.
We define a new payoff function as the expected incre-
mental system operation cost, which includes both the
generation cost and the load-shedding cost. By solv-
ing the Nash Equilibrium, we obtain optimal strategies
for defenders and attackers, respectively, to select the
MTD magnitude and LRA attack magnitude. Moreover,
we suggest that defenders ought to update the MTD
magnitude based on load conditions.

• Through the proposed D-A game theoretical framework,
we have shown that the MTD not only detects ongoing
LRAs in the power system but also effectively prevents
the successful construction of highly structured attacks.
The feature of ‘‘prevention’’ is often overlooked in the
literature related to MTD applications in the power
system. As a result, we introduce a novelMTD effective-
ness metric to quantitatively measure the prevention and
detection benefits of MTD against LRAs in the game.
By changing the attack surfaces and preventing potential
attacks, MTD can play a crucial role in improving the
security of power systems.

The rest of this paper is organized as follows. Preliminaries
of MTD are presented in Section II. A novel AC-LRA is
proposed in Section III. A D-A game between MTD and
LRAs is formulated in Section V. Case studies are conducted,
and the results are analyzed in Section V. Conclusions are
drawn in Section VI.

II. MTD PRELIMINARIES
A. MTD PLANNING METHODS
There are multiple MTD planning methods, i.e., the place-
ment methods of D-FACTS devices, to determine the location
of D-FACTS devices in MTD, including arbitrary place-
ment [23], full placement [26], spanning-tree placement [27],
max-rank placement [21], hidden MTD placement [24], [25],
and graph-based placement [20]. It has been proved thatMTD
planning determines the effectiveness of MTD attack detec-
tion in DC noiseless conditions in the following two ways.
First, the rank of the composite matrix, an MTD detection
metric, is determined by the number of loops in GA, if there

exists no loop in GB:

r(M) = l − lp (1)

where GA and GB are the graphs composed of lines equipped
with and without D-FACTS devices, respectively, l is the
number of transmission lines in the system, and lp is the
number of loops in GB. Second, improper MTD planning
will result in unprotected buses, such that FDI attacks against
these buses are undetected by the MTD. Thus, the existence
of unprotected buses caused by the MTD planning degrades
the MTD detection effectiveness [20].
The approach taken in this paper involves using

graph-based placement to effectively detect LRAs. By adopt-
ing this method, we are able to ensure that the composite
matrix achieves its maximum rank while also eliminating
unprotected buses with only a limited number of D-FACTS
devices. Additionally, the use of graph-based placement
allows for maximum detection effectiveness in the DC
noiseless condition, regardless of the D-FACTS operation
setpoints.

B. MTD-ENABLED ATTACK DETECTION AND ATTACK
PREVENTION
In previous research on MTD, the Attack Detection Probabil-
ity (ADP), which is the ratio of the number of detected attacks
to the total number of launched attacks, has been widely used
as an indicator of MTD’s detection effectiveness. Construct-
ing an LRA requires solving an optimization problem [3], [4],
[5], which presents a challenge for attackers when the MTD
is in place. Specifically, incorrect line parameters could ren-
der the optimization problem infeasible, preventing attackers
from successfully generating and launching LRAs. In this
paper, we see the failure of the attacker’s optimization prob-
lem as a benefit of the MTD’s attack prevention capabilities.
Conversely, if an attack is successfully generated by solving
the attacker’s optimization problem under the MTD, but the
estimation residual of the attack in the BDD system exceeds
the estimation threshold, we view this as a benefit of the
MTD’s attack detection capabilities.

The existing MTD detection effectiveness metrics (e.g.,
ADP) fail to consider the MTD attack prevention capability.
Therefore, we propose a novel MTD effectiveness, i.e., attack
mitigation probability (AMP), to simultaneously measure the
MTD attack prevention and detection capability as follows:

p = (nP + nD)/nA (2)

where nA is the number of total attacks the attacker intends
to launch; nP is the number of prevented attacks (diverged);
nD is the number of detected launched attacks (converged but
detected). Note that nA – (nP+nD) is the number of undetected
attacks (converged and stealthy). Thus, p ≤ 1 holds.

III. PROPOSED AC-LOAD REDISTRIBUTION ATTACK
MODEL
We propose an AC-LRA using the incomplete network infor-
mation from the perspective of the attacker. To account for
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the attacker’s incomplete network information, we simplify
the power system into a sub-system consisting of an attack
zone (A zone) and a tie-line zone (T zone). The A zone
includes all buses within the attack area and the transmission
lines between them. The T zone is composed of all buses
neighboring those in the A zone, but not included in the A
zone itself. Transmission lines between a bus in the A zone
and a bus in the T zone are considered as tie-lines. In our
proposed LRA, loads in the T zone are treated as fixed loads,
while loads in the A zone are considered dispatchable by
adversaries.

We propose an ACOPF-based LRA model, shown in (3),
to determine the dispatchable load in the A zone. In the pro-
posed model, complex generation (SG), voltage magnitude
(v), voltage angle (θ), and complex dispatchable load (SD)
are decision variables. Note that traditional LRA attack in
the DC system is a bi-level optimization problem, in which
the upper-level optimization problem represents the attacker’s
malicious objective (maximizing the system operation costs),
and the lower-level optimization problem simulates the
system response (minimizing the system operation costs).
However, it is challenging to solve an AC LRA attack mod-
eled by a bi-level optimization problem. To address this,
we simplify the bi-level LRA by ignoring the system response
(the lower-level optimization problem). Without modeling
the system response, the proposed attack cannot effectively
maximize the system operation costs. Thus, the proposed
model prioritizes the feasibility of the AC LRA over its
optimality to ensure the proposed attack is stealthy.

The objective function in (3) is to maximize a weighted
sum of the dispatchable loads, with the weight ω being
adjustable to the attacker based on the load conditions. The
sum of the dispatchable loads is constrained to be close to the
total load before attack in (3.12) and (3.13). The objective
function in the proposed LRA (3) maximizes a weighted sum
of the dispatchable loads. It doesn’t aim to achieve the maxi-
mum operation costs. Using the weighted sum, the attacker
can adjust the weights to find a feasible solution. Without
modeling the system response, the proposed attack intends
to trigger load shedding; nevertheless, this is not guaranteed.

The proposed AC-LRA follows the constraints of the
traditional DC-LRA model. The generator output measure-
ments are not allowed to be compromised by attackers in
the LRA. Constraints (3.1)-(3.5) are traditional ACOPF con-
straints. Constraints (3.6) and (3.7) are voltage angle and
magnitude constraints for the buses on the tie-line. These con-
straints enforce the voltage of the two end buses on tie-lines
to be unchanged after the LRA, implying the same flow
measurements on the tie-line after attacks. Constraints (3.8)
and (3.9) indicate the load in T zone remains unchanged
before and after LRA. The nodal load in the attack zone can
only be modified in a pre-prescribed range to avoid abnormal
alerts in the control room triggered by sudden significant
nodal load changes. Thus, nodal active and reactive dispatch-
able load in A zone is constrained by LRA magnitude a
in (3.10) and (3.11), respectively. Unlike the constraint on

a constant total load in the traditional DC-LRA model [2],
[3], Constraints (3.12) and (3.13) introduce a parameter λ to
allow but limit the change of total active and reactive power
load in the A zone. This is because the redistribution of load
can result in changes in the power loss in the AC model and
cause a power imbalance in the A zone. A small λ value (i.e.,
less than 1%) is therefore suggested in the ACmodel to avoid
infeasibility while keeping the total load after the attack close
to that before the attack.

max
SG,SD,v,θ

∑
i∈A

ωipd,i

s.t. SBus + SD − CgSG = 0 (3.1)

SD = pd + jqd (3.2)

SG = pg + jqg (3.3)

SBus = [v] · (Ybus · v)∗ (3.4)

vmin
i ≤ vi ≤ vmax

i i ∈ A (3.5)

θ0i − βθ ≤ θi ≤ θ0i + βθ i ∈ T (3.6)

v0i − βv ≤ vi ≤ v0i + βvi ∈ T (3.7)

pd,i = p0d,i i ∈ T (3.8)

qd,i = q0d,i i ∈ T (3.9)

(1− a)p0d,i ≤ pd,i ≤ (1+ a)p0d,i i ∈ A (3.10)

(1− a)q0d,i ≤ qd,i ≤ (1+ a)q0d,i i ∈ A (3.11)

(1− λ)
∑
i∈A

p0d,i ≤
∑
i∈A

pd,i ≤ (1+ λ)
∑
i∈A

p0d,i i ∈ A

(3.12)

(1− λ)
∑
i∈A

q0d,i ≤
∑
i∈A

qd,i ≤ (1+ λ)
∑
i∈A

q0d,i i ∈ A

(3.13)

where SBus is complex bus power injections; Ybus is the
system bus admittance matrix; [v] is a diagonal matrix with
vector v on the diagonal; the superscript ∗ is complex conju-
gate operator; pd and qd are active and reactive load vector;
pg and qg are active and reactive power generation vector; Cg
is the generator connection matrix, whose (i, j)th element is
1 if generator j is located at Bus i and 0 otherwise; a is LRA
magnitude, indicating the operating range of dispatchable
load; βθ and βv are the parameters, which are suggested to
be a very small number; i and j are the index of buses; active
and reactive power generation, active and reactive power load,
and voltage with superscript 0 are the measurements before
LRA.
The proposed LRA and the ACOPF problem are

non-convex and nonlinear optimization problems. Interior-
point methods are considered one of the most powerful
algorithms for solving large-scale nonlinear optimization
problems. It has been proven that interior-point methods are
efficient tools for resolving the traditional ACOPF prob-
lem [28], [29]. The proposed LRA is modeled based on the
ACOPF problem. Therefore, this work solves the proposed
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LRA model (3) using the MATLAB Interior Point Solver
(MIPS) provided in MATPOWER [30].
The nodal voltages obtained from (3) are used to calcu-

late all malicious measurements in the attack area. Then,
the attacker can replace all measurements needed to be
compromised in the attack area with calculated malicious
measurements. In such a case, the system operator con-
ducts state estimation using the compromised measurements
to estimate the voltage and nodal load. Consequently, the
compromised load condition will mislead the ACOPF model
run by the system operators to generate incorrect generation
dispatch and even load curtailment.

IV. DEFENSE-ATTACK GAME BETWEEN MTD AND LRA
This section presents a zero-sum defense-attack game
between MTD and LRA. We define the attack and defense
models and their respective action strategies, and propose the
expected incremental operation cost as the payoff function,
which includes MTD defense cost, LRA attack cost, and
MTD’s attack mitigation capability. We also provide a payoff
computation algorithm in this section.

In the defense-attack game between MTD and LRA, the
attacker’s action is to select the LRA magnitude, and the
defender’s action is to select the MTD magnitude. A Nash
Equilibrium of the defense-attack game can provide the opti-
mal strategy in selecting MTD and LRA magnitudes for the
defender and the attacker, respectively.

A. ATTACK MODEL AND STRATEGY
In the game, we use the AC-LRA proposed in the previous
section as the attack model. This is because traditional FDI
attacks target voltage magnitude or angle, whereas the impact
of such attacks on the system’s operation cost is unclear.
In contrast, the impact of LRA on the system’s operation cost
is quantifiable.

Before launching an LRA, the attacker must decide the
LRA magnitude. LRA magnitude is the value of a in (3.10)
and (3.11), indicating the operating range of dispatchable
load. For example, if the attacker selects a= 0.2, the attacker
can compromise the load of Bus i (pd,i) among the range[
0.8p0d,i, 1.2p

0
d,i

]
. In a LRAwith a larger LRAmagnitude, the

attacker can modify dispatchable loads in a wider range, indi-
cating the attacker has a better capability in compromising
dispatchable loads.

There is a trade-off in the LRA magnitude selection
between attack stealthy and attack consequence. A larger
LRA magnitude enables the attacker to modify the load in
a wider range, consequently resulting in a larger increase in
the system operation cost. However, a larger LRA magnitude
makes the attack more likely to be detected by the system
operators, therefore failing to increase the system operation
cost. From the perspective of the attacker, it is necessary to
balance the trade-off in the selection of attack magnitude.
Therefore, in the defense-attack game, the attacker’s action
strategies are the selection of LRA magnitude. Specifically,

we set five distinct LRAmagnitudes for the attacker, i.e., A=

{0.15, 0.2, 0.25, 0.3, 0.35}. These are proper magnitudes in
constructing LRA, avoiding the compromised measurements
being easily detected as an outlier.

B. DEFENSE MODEL AND STRATEGY
In this game, we adopt random MTD (RMTD) [23] as the
defense model because it is the most generalized method,
and its conclusion can be extended to other MTD operation
methods. Other methods such as hidden MTD (HMTD) [15],
OPF-based [16], [21], optimization-based [26], and voltage
stability constrained operation [31], [32] may bring extra
benefits to the system, but these benefits are either unquantifi-
able or unrelated to system operation costs. For instance, the
HMTDmethodmakes theMTDhidden to alert attackers [24],
[25], but its benefits are unquantifiable and do not contribute
to improving attack detection effectiveness.

The random MTD operation method randomly selects
setpoints for each D-FACTS device based on uniform distri-
bution within the given operation range as follows:

x ∼ U ((1− d)x0, (1+ d)x0) (4)

where d is the MTD magnitude that determines the MTD
operation range; x is the line reactancemodified byD-FACTS
devices; and x0 is the original line reactance.
MTD magnitude is the value of d in (4), indicating the

operating range of D-FACTS devices. The defender can
adjust the operating range of D-FACTS devices based on
the load condition within the physical limits of D-FACTS
device. For example, if the defender selects d = 0.2, the
D-FACTS devices can modify the impedance of i-th line
among the range

[
0.8x0i , 1.2x

0
i

]
. In the MTD with a larger

MTD magnitude, the defender can modify the impedance of
the transmission lines equipped with D-FACTS devices in a
larger range, indicating the defender has a better capability in
introducing uncertainties to attackers.

The defender should determine theMTDmagnitude before
implementing the MTD operation (4). There is a trade-off in
the selection of MTD magnitudes [8] between the operation
cost and attack detection capability. A largerMTDmagnitude
has a better attack detection capability, but it increases the
system’s operation costs by introducing more randomness.
A smaller MTD magnitude generally causes less system’s
operation costs. However, a smaller MTD magnitude may
result in low attack detection capability, leading to high
operation costs caused by undetected LRAs. Therefore, it is
crucial to investigate the optimal MTD magnitude selection
in the presence of cyberattacks. In the defense-attack game,
MTD magnitude d is selected as the defense action strategy
in RMTD operation with a fixed graph-based MTD planning
as a priori [20]. This allows the system operator to adjust the
defense strategy based on system conditions. Here, we set five
distinct MTD magnitudes, D = {0.15, 0.2, 0.25, 0.3, 0.35},
for the defender to choose from. These MTD magnitudes are
within the physical limits of D-FACTS devices, which are
widely used in MTD work [15], [21], [25], [26], [27]. The
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FIGURE 1. The framework of the D-A game between MTD and LRA.

Nash Equilibrium of the game can provide the defender with
the optimal MTD magnitude to balance operation cost and
attack detection capability.

C. DEFENSE-ATTACK GAME AND PAYOFF FUNCTION
The interaction between MTD and LRA can be simulated
through a two-player zero-sum game, where the attacker aims
to increase the operation cost while the defender aims to
reduce it. We define the payoff function based on the system
operation cost. The payoff for the defender is opposite to that
of the attacker, meaning the defender’s cost is a benefit for
the attacker.

Figure 1 shows the framework of the defense-attack game
between MTD and LRA. From the defender’s perspective,
the defender first selects MTD magnitude, i.e., the value
of d in (4), and then determines the specific setpoints of
D-FACTS devices using (4). From the attacker’s perspective,
the attacker first selects LRA magnitude, i.e., the value of
a in (3), and then determines the load by solving the attack
model (3). The power system operator (the defender) uses
the D-FACTS setpoints to implement MTD in the system and
receives the compromised measurements from the SCADA
system injected by the attacker. The system operator then
conducts SE under the MTD to determine whether the mea-
surements are compromised or not. AMP value represents
the attack mitigation probability of MTD against LRA. Then,
the system operator conducts ACOPF using the compro-
mised load to determine the operation costs. In the zero-sum
defense-attack game, the defender’s and attacker’s payoff
can be calculated by (7) and (8), respectively. It reflects the
increased power system operation costs, which are composed
of defense costs (the operating cost of MTD) and attack costs
(the consequence of undetected attacks). A Nash Equilibrium
of the game provides the defender with the optimal strategies
for the MTD magnitude selection, and the attacker with the
optimal strategies for the LRA magnitude selection.

Table 1 summarizes the system operation conditions and
associated costs for the game. In this paper, the system oper-
ation cost is the sum of generation costs and load-shedding

TABLE 1. System operation conditions and costs in the D-A game.

costs. Generation cost is a quadratic function of active
power generation, and shedding cost is a linear function of
active curtailed load. These two costs can be calculated by
solving the ACOPF model considering the load shedding
(ACOPF-LS) in [33]. We use d0 and di to denote the system
without the defense and with the i-th defense action, respec-
tively. Similarly, a0 and ai denote the system without attack
and with i-th attack action, respectively.
In the D-A game, the base case is the system free of defense

and attack. In this condition, the setpoints of D-FACTS
devices installed in the system are optimally dispatched by the
ACOPF model considering the D-FACTS devices (ACOPF-
DF) to minimize the operation cost [33]. Thus, the system
in the base case has the lowest operation cost in the D-A
game, denoted by opf(d∗0,i, a0), where the superscript ∗ indi-
cates the optimal D-FACTS setpoints, and subscript i implies
that the operation range of D-FACTS devices in ACOPF-DF
is the same as that in defense action di.
When MTDs with defense action di are deployed in the

system free of attacks, RMTD increases the operation cost
to opf(di, a0). When the system is under attack and MTD
is deployed in the system, there are two possible situations.
If the MTDs with defense action di successfully prevent or
detect the attack, the impact of the LRA on the operation cost
is negligible. Thus, the system operation cost is equal to the
cost in the systemwith the defense action di deployed without
attacks, i.e., opf(di, a0). If MTDs with the defense action
di fail to prevent or detect the attack with action aj, the system
can suffer from the increasing operation cost caused by the
attack. Then, we assume that the operation cost is opf(di, aj).

The payoff of the defender is defined as the expected
incremental system operation cost caused by the defense
action and attack action. If the LRA with attack action aj is
prevented or detected by the MTD with defense action di, the
incremental operation cost can be calculated as follows:

costD(di, aj) = opf(d∗0,i, a0)− opf(di, a0) (5)

If the LRA with attack action aj successfully passes the
MTD with defense action di, the incremental operation cost
can be calculated as follows:

costA(di, aj) = opf(d∗0,i, a0)− opf(di, aj) (6)

Here, costD(di, aj) merely reflects the operation cost spent
on the defense, denoted as defense cost hereafter, and
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costA(di, aj) mainly reflects the damage brought by LRA to
the operation cost, denoted as attack cost hereafter. Note that
costA(di, aj) also includes the cost spent on the defense, since
the impact of MTD on the operation cost is considered in
opf(di, aj).
It is necessary to integrate the capability ofMTD to prevent

and detect LRAs into the calculation of the incremental oper-
ation cost. Assume the attack mitigation probability of MTD
with defense action di against LRA with attack action aj is
p(di, aj). The paper defines a payoff function as an expected
incremental operation cost. Specifically, the payoff of the
defender, under the defense action di and attack action aj is
defined in (7).

uD(di, aj) = p(di, aj)× costD(di, aj)

+ (1− p(di, aj))× costA(di, aj) (7)

In the zero-sum game, the payoff of the attacker is the oppo-
site of the defender’s payoff:

uA(di, aj) = −uD(di, aj) (8)

The payoff is defined as the expected incremental oper-
ation cost, considering the defense cost costD(di, aj), attack
cost costA(di, aj), and attack mitigation probability p(di, aj).
Note that defense cost, calculated by (5), represents the incre-
mental operation cost caused by MTD when the LRA is
detected or prevented. Similarly, the attack cost, calculated
by (6), represents the incremental operation cost caused by
the stealthy LRA.

The payoff computation of the game is proposed in
Algorithm 1. First, we generate N RMTDs to create a pool
of defense actions. Using the ACOPF-LS model, we cal-
culate the system operation cost of each RMTD, then take
the average of these costs with defense action di to obtain
the operation cost of the deployed defense opf(di, a0). Next,
we calculate the base operation cost without defense or
attack, i.e., opf(d∗0,i, a0), using the ACOPF-DF model and
dispatchingD-FACTS devices to onlyminimize the operation
cost [33]. We use Line 9 of Algorithm 1 to calculate the
defense cost under each defense action. To compute the attack
cost, we construct and launch LRAs on each RMTD in the
pool of defense actions. The average of the system operation
costs under all successful LRAs is considered as opf(di, aj).
Algorithm 1 computes the payoff for the defender and

attacker based on their respective actions in the game. The
Nash Equilibrium of the game provides the optimal solu-
tion for the defender’s choice of defense actions and the
attacker’s choice of attack actions. This equilibrium yields the
defender’s optimal probabilities for selecting each defense
action and the attacker’s optimal probabilities for selecting
each attack action.

V. NUMERICAL RESULTS
A. TEST SYSTEM AND SIMULATION SETTING
We simulate the D-A game in the modified IEEE 14-bus
system under both light and heavy load conditions. For each

Algorithm 1 Payoff Computation in the Proposed Game
Input: Defense action set D = {d1, d2, d3, d4, d5}

Attack action set A = {a1, a2, a3, a4, a5}

Output: Payoff uD(D, A) and uA(D, A)

1: Initialization: Suppose the graph-based D-FACTS placement
2: Generate N RMTDs in each defense actions di
3: for each defense action di
4: for k-th RMTD in defense action di
5: Run ACOPF-LS to get opf(k , di, a0)
6: end for
7: Calculate opf (di, a0) =

∑
k∈di

opf (k, di, a0)/N

8: Run ACOPF-DF to get opf(d∗0,i, a0)
9: Calculate defense cost costD(di, aj) according to (5)
10: end for
11: for each defense action di
12: for each attack action aj
13: for k-th RMTD in defense action di
14: Construct and launch LRA
15: SE and BDD using k-th RMTD to detect attack
16: if MTD fails to prevent and detect LRA
17: Run ACOPF-LS to get opf(k , di, aj)
18: end if
19: end for
20: Calculate AMP p(di, aj) according to (2)
21: Calculate opf(di, aj) using opf(k , di, aj)
22: Calculate attack cost costA(di, aj) according to (6)
23: Calculate uD(di, aj) and uA(di, aj) according to (7) and (8)
24: end for
25: end for
26: return uD(D, A) and uA(D, A)

defense action, we generate 100 RMTDs as a defense pool.
For each attack action, one LRA is constructed and launched
on each MTD in the defense pool. Therefore, there are
100 attack and defense simulations for each pair of defense
and attack actions, and there are 2,500 attack and defense sim-
ulations in total to calculate the payoff in the defense-attack
game considering five attack actions and five defense actions.
The Nash equilibria point of the proposed game can be cal-
culated by the enumeration technology [34]. The graph-based
MTD planning installs D-FACTS devices on Line {1, 3, 4, 8,
10, 11, 12, 13, 17, 18} in the IEEE 14-bus modified system.
In a noisy condition, the measurement noise is assumed to
be Gaussian distributed with zero mean and the standard
deviation as 1% of the actual measurement.

B. TEST SYSTEM AND SIMULATION SETTING
In this section, we construct and evaluate LRAs in the IEEE
14-bus modified system under light and heavy load con-
ditions, respectively, when there is no defense algorithm
deployed in the system. Assume that the attacker selects
Buses 9, 10, 11, and 14 as the attack area, as shown in
Fig. 2. We adopt βθ = 0.01%, βv = 0.01%, and λ =

0.1% in the LRA model. We set the load shedding cost
106 $/MWh and use the default quadratic generation cost in
the MATPOWER [35]. Under the heavy load condition, the

118066 VOLUME 12, 2024



B. Liu et al.: Countering AC LRAs in Smart Grids: The Role of MTD in a Defense-Attack Game

FIGURE 2. Attack area in the IEEE 14-bus system.

FIGURE 3. System operation condition before and after the LRA.

load values at Buses 1 to 14 is given as 10.1, 18.4, 80.1, 40.6,
9.2, 9.5, 8.8, 10.1, 25.1, 16.2, 9.2, 8.7, 11.5, 12.7. Under the
light load condition, each nodal load is half of that under the
heavy load condition. The power flow limits of all lines are
given as 135.1, 68.8, 57.1, 52.8, 39.3, 9.6, 58.1, 29.2, 18.1,
34.8, 19.3, 11.7, 23.5, 18.2, 36.1, 13.9, 7.9, 7.1, 5, 8.7 MW
following the order of transmission lines in MATPOWER.
Specifically, the power flow limits for Line 9-14, Line 9-10,
and Line 10-11 in the attack zone are 7.9 MW, 13.9 MW, and
7.1 MW, respectively.

When an LRA with a = 0.4 is launched on the IEEE
14-bus system under the heavy load condition, the nodal
active power load in the attack area before the LRA (P0d)
and after the LRA (Pd), and load curtailment (Ps) in the
attack area are demonstrated in Fig. 3. It is observed that
redistributed loads vary in the range constrained by LRA
magnitude to avoid abnormal alerts. Due to the total load
constraints, the load on Buses 9 and 11 decreases while that
on Buses 10 and 14 increases. Specifically, the total active
load in the attack zone before and after the attack is 63.08MW
and 63.02 MW, respectively. Under the redistributed load,
the traditional ACOPF fails to converge, and the ACOPF-LS
model curtails 1.75 MW load on Bus 10. This is because
the LRA increases the load of Bus 10 from 16.15 MW to
22.61MW, which is beyond the line flow limit of Lines 10-11
and 9-10.

We study the impact of the LRA magnitude on the oper-
ation cost under the heavy load condition. When the LRA
magnitude is increased from 0 to 0.4, the system operation
conditions after the attacks are summarized in Table 2, includ-
ing the total active load in the attack area (Pd), the total
reactive load in the attack area (Qd), the generation cost of
the system (GC), the load shedding cost (LC) and the sys-
tem operation cost (OC). Without MTD deployed, OC under

TABLE 2. System operation conditions under different LRA magnitudes at
the heavy load.

TABLE 3. System operation conditions under different LRA magnitudes at
the light load.

attack can be denoted by opf(d0, aj), and it is equal to the sum
ofGC and LC. Note that the system operation condition under
zero LRAmagnitude refers to the condition free from attacks.
Firstly, as seen the active and reactive total loads under attack
are slightly different from those free of attack, which indi-
cates the total load constraints (3.12) and (3.13) are satisfied.
Secondly, it can be seen from the LC that the LRA doesn’t
trigger the load curtailment until the LRAmagnitude is larger
than 0.2. As the LRA magnitude increases, the amount of
load curtailment increases. A larger attack magnitude gives
the attacker more ability to redistribute the load, which in
turn increases the effectiveness of LRAs in driving up system
operation costs through load curtailments.

In addition, we evaluate the LRA’s performance under light
load conditions, as shown in Table 3, and find that even the
largest LRA magnitude (i.e., a = 0.4) fails to trigger load
curtailment. This occurs because the post-attack line power
flow is far below the line flow limit, which allows generators
to supply nodal loads within the attack zone. The above
results demonstrate the validity of the proposed LRA model.

C. DETECTION OF LRA UNDER MTD IN THE GAME
In this subsection, we evaluate the effectiveness of the MTD
methods in preventing and detecting the proposed LRA.
Specifically, we calculate the AMP of MTD for each pair of
defense and attack actions in the IEEE 14-bus system under
light and heavy load conditions, respectively. Note that the
i-th attack action refers to the i-th LRA magnitude in attack
action set A = {0.15, 0.2, 0.25, 0.3, 0.35}. Similarly, the i-th
defense action refers to the i-th MTD magnitude in set D.

Figures 4(a) and 4(b) demonstrate, respectively, the num-
ber of prevented attacks nP and the number of detected attacks
nD under each pair of defense and attack actions in the IEEE
14-bus system under the heavy load condition. From the
perspective of the defender, MTDs with a larger MTD mag-
nitude can prevent more LRAs, and are more likely to detect
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FIGURE 4. Performance of MTD in mitigating attacks at the heavy load.

TABLE 4. Defense costs versus defense actions.

FIGURE 5. Attack cost under the heavy load condition in the IEEE 14-bus
system.

attacks. From the attacker’s standpoint, LRAs with smaller
magnitudes are more likely to be prevented, but LRAs with
large magnitudes are more likely to be detected. The AMP
under each pair of the defense and attack actions, calculated
by (2), is shown in Fig. 4(c). AMP greatly increases with
an increase in MTD magnitude, suggesting setting the MTD
magnitude greater than defense action 3 for achieving a high
AMP.

FIGURE 6. The payoff of the attacker in the IEEE 14-bus system under the
heavy load condition.

TABLE 5. Nash Equilibrium under heavy load condition.

D. THE DEFENSE AND ATTACK COSTS IN THE GAME
In this subsection, we calculate the defense cost costD and
attack cost costA in the game. Table 4 summarizes the oper-
ation cost with and without the MTD defense, and defense
cost. The ACOPF-DF model optimally dispatches the set-
points of D-FACTS devices such that a larger operation range
can further reduce opf(d0, a0). But, the randomness in the
RMTD causes more extra operation cost such that a larger
operation range can further increase opf(di, a0). Therefore,
MTDs with a larger magnitude result in a higher defense cost.
Note that the defense cost is unrelated to the attack actions,
as it is assumed that attacks are successfully prevented or
detected in the calculation of defense cost.

Then, we calculate the attack cost costA(di, aj), as shown
in Fig. 5. It is observed that the attack cost is very low when
the LRA magnitude is low (less than 4), because the LRA
fails to trigger the load curtailment. In this case, the attack
cost is mainly caused by the extra operation cost due to the
MTD, i.e., the defense cost. When the LRA magnitude is
more than 3, the LRAs start to trigger the load curtailment,
and a larger LRAmagnitude results in a higher operation cost,
which is consistent with the attack performance in Table 2.

The simulation results suggest the attacker adopts a high
LRA magnitude to maximize the attack cost. We also calcu-
late the attack cost when the system operates under the light
load condition. As LRAs fail to trigger the load curtailment,
the attack cost under the light load condition is similar to its
defense cost, as shown in Table 3. Therefore, under the light
load condition, we neglect the attack cost and directly present
the payoff in the next section.

E. NASH EQUILIBRIUM OF THE GAME
In the IEEE 14-bus system under the heavy load condition,
we calculate the attacker’s payoff, which is shown in Fig. 6.
It is shown that the payoff increases with the increase of LRA
magnitude under the same MTD magnitude. This is because
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FIGURE 7. The payoff of the attacker in the IEEE 14-bus system under the
light load condition.

TABLE 6. Nash Equilibrium under the light load condition.

the cost of load shedding increases with the LRA magnitude,
but the AMP under the same MTD magnitude doesn’t obvi-
ously increase with LRA magnitude. When LRAs with low
magnitudes fail to trigger the load curtailment (attack action
less than 4), the payoff is mainly determined by the defense
cost such that the payoff slightly increaseswith the increase of
MTD magnitude. When LRAs with large magnitude trigger
the load curtailment, payoff obviously decreases with the
increase of MTDmagnitude under the same LRAmagnitude.
This is determined by two facts in the game. First, the payoff
is mainly determined by the attack cost since the defense cost
is rather small compared with the damage by LRA. Second,
MTD with a larger magnitude has better attack mitigation
capability against LRA, which can effectively reduce the
impact of attack cost.

Nash Equilibrium in Table 5 suggests attackers adopt
the largest LRA magnitude (attack action 5) to maximize
its payoff, as a larger LRA magnitude increases its benefit
regardless of defense actions adopted by the defender. The
Nash Equilibrium also suggests defenders adopt the largest
MTD magnitude (defense action 5) to minimize its payoff.
A large MTD magnitude can enhance the attack mitigation
capability, which is effective in reducing the payoff.

In the IEEE 14-bus system under the light load condition,
the payoff of the attacker is shown in Fig. 7. It is seen that
payoff almost remains the same under the sameMTDmagni-
tude with different LRA magnitudes. This is because LRAs
fail to cause the load shedding under the light load condition
with limited LRAmagnitude. Therefore, the payoff is mainly
composed of the operation cost spent on defense. As shown
in Table 6, Nash Equilibrium suggests that defenders adopt
the lowest MTD magnitude to reduce the defense cost, and
attackers adopt the largest LRA magnitude to have the most
negative impact on the grid operation.

We further simulate the D-A game in the IEEE 118-bus
system under light and heavy load conditions, respectively.

FIGURE 8. The payoff of the attacker in the IEEE 118-bus system under
the heavy load condition.

TABLE 7. Nash equilibrium under heavy load condition.

FIGURE 9. The payoff of the attacker in the IEEE 118-bus system under
the light load condition.

From the defender’s perspective, the graph-based MTD plan-
ning solution in the IEEE 118-bus system can be found
in [20]. From attacker’s perspective, it is assumed that the
attacker selects Buses 43, 44, and 45 as the attack area, and
Buses 34, 46, and 49 are buses on the tie-lines.

The payoff of the attacker and the Nash Equilibrium under
the heavy load condition are shown in Fig. 8 and Table 7,
respectively. As shown in Fig. 8, the attacker’s payoff sig-
nificantly increases under a given defense action when LRA
magnitude is more than attack action two due to the load
curtailment triggered by the LRA. Similar to the case in the
IEEE 14-bus system, the payoff decreases with the increase
of the defense action due to the attack prevention and detec-
tion when the load curtailment occurs in attack actions 3-5.
It is interesting to observe that attacker’s payoff significantly
increases when the defense action increases from 3 to 4 under
attack actions 1 and 2. A larger MTD magnitude leads to
a higher payoff under the same LRA magnitude because
certain RMTDs in the defense pool can drive the system to
operate in more stressful conditions under heavy load con-
dition. Consequently, LRAs with low magnitude can cause

VOLUME 12, 2024 118069



B. Liu et al.: Countering AC LRAs in Smart Grids: The Role of MTD in a Defense-Attack Game

TABLE 8. Nash Equilibrium under light load condition.

load curtailment in large-magnitude MTDs. This is an inher-
ent drawback of RMTDs. The Nash Equilibrium in Table 7
suggests the attackers adopt the largest attack magnitude to
maximize the attacker’s payoff, while defenders adopt the
largest defense action to minimize the defender’s payoff.

Under the light load condition, the payoff of the attacker
and the Nash Equilibrium are shown in Fig. 9 and Table 8,
respectively. The attacker’s payoff slightly increases with the
defense action due to the increasing defense cost. As the
LRAs fail to cause load shedding in any attack action under
the light load condition, the payoff under a given defense
action nearly remains the same. The Nash Equilibrium rec-
ommends that the attackers adopt the largest attackmagnitude
and the defenders should adopt the lowest defensemagnitude.

VI. CONCLUSION
This paper introduces a new AC-LRA, based on the ACOPF
model, to increase system operation costs by curtailing loads.
We then create a zero-sum defense-attack game between
MTD and LRA, where MTD magnitude is the defense action
and LRA magnitude is the attack action. We define a novel
payoff function that considers defense cost, attack cost, and
attackmitigation capability, which helps balance the trade-off
between operation cost and attack mitigation effectiveness.
The Nash Equilibrium of the game provides optimal action
strategies for defenders and attackers. We suggest using the
lowest MTD magnitude under light load conditions and the
largest MTD magnitude under heavy load conditions to min-
imize the expected incremental operation cost under LRAs.
The case studies on modified IEEE 14-bus system reveal the
benefits and drawbacks of RMTD against LRAs. RMTDs
can prevent and detect LRAs, but also increase system opera-
tion costs, especially with larger magnitudes. In some cases,
RMTDs can even cause more stressful conditions under
heavy load, leading to load curtailment by low-magnitude
LRAs. Future work will focus on more advanced MTD
operation methods (e.g., HMTD) integrated into the payoff
definition.
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