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Abstract. This work focuses on the conservation of quantities such as Hamiltonians, mass, and
momentum when solution fields of partial differential equations are approximated with nonlinear
parametrizations such as deep networks. The proposed approach builds on Neural Galerkin schemes
that are based on the Dirac–Frenkel variational principle to train nonlinear parametrizations se-
quentially in time. We first show that only adding constraints that aim to conserve quantities in
continuous time can be insufficient because the nonlinear dependence on the parameters implies that
even quantities that are linear in the solution fields become nonlinear in the parameters and thus
are challenging to discretize in time. Instead, we propose Neural Galerkin schemes that compute at
each time step an explicit embedding onto the manifold of nonlinearly parametrized solution fields to
guarantee conservation of quantities. The embeddings can be combined with standard explicit and
implicit time integration schemes. Numerical experiments demonstrate that the proposed approach
conserves quantities up to machine precision.
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1. Introduction. Preserving structure and conserving quantities such as Hamil-
tonians, mass, and momentum in numerical approximations of solution fields governed
by time-dependent partial differential equations (PDEs) is important to guarantee
physical consistency and help interpretation. This work focuses on conservation of
quantities when discretizing solution fields with nonlinear parametrizations such as
deep neural networks. The challenge is that the nonlinear dependence on the param-
eters means that quantities that are linear in the solution fields of the PDEs become
nonlinear in the parameters, which leads to a loss of the linear vector-space structure
that numerical methods traditionally build on. We show that only adding constraints
in continuous-time formulations to keep quantities constant over time in the non-
linearly parametrized solution fields is insufficient. Instead, we propose to compute
explicit embeddings onto the manifold of nonlinearly parametrized fields that conserve
quantities. Numerical experiments demonstrate that the proposed approach conserves
quantities up to machine precision.

Preserving structure and conserving quantities is a mainstay in computational
science and engineering. There is a range of works that aim to learn models from data
while preserving structure, such as structure-preserving dynamic mode decomposition
[4, 47], operator inference [68, 52, 60, 56, 29], methods that learn from frequency-
domain data [63, 64, 55, 65, 27, 28], and methods based on deep learning [17, 50, 70].
Another line of work aims to preserve structure in reduced models [54, 16, 12, 24, 1,
22, 36, 39, 34], specifically in the setting of computational fluid dynamics [6, 58, 15,
5, 57, 2, 9, 42, 46, 59]. Closest to our work is [14] that introduces a modified Galerkin
system so that reduced solution fields conserve quantities. In all of these works, the
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parametrizations are linear.
We focus on nonlinear parametrizations such as neural networks [26], which pro-

vide one approach for efficiently constructing reduced models of transport-dominated
problems; see [53] for a brief survey. Besides model reduction, nonlinear parametriza-
tions can also help approximating high-dimensional problems [33]. Given that transport-
dominated as well as high-dimensional problems are important in science and engi-
neering applications, it is critical to develop numerical methods that can approximate
solutions of PDEs with nonlinear parametrizations.

Nonlinear parametrizations can be trained with the Dirac–Frenkel variational
principle [19, 23, 37, 43]; see [53] for an overview of nonlinear parametrizations in
model reduction. Under assumptions on the parametrization and the equation of in-
terest, structure is preserved in the special case when the parametrization is so rich
that the residual and thus the error vanishes, which is leveraged in, e.g., [40]. The work
[3] considers nonlinear parametrizations that are tuned towards the solution fields and
proposes to add constraints that help conserve quantities in continuous time. Another
line of work proposes dynamic low-rank approximations that are structure-preserving
such as [21, 20, 51, 35, 48]. The work [13] introduces nonlinear parametrizations that
penalize the deviation from symplecticity during training. The work [67] is a major
step forward and considers quadratic manifolds to achieve an offline/online decou-
pling but currently still incurs high online costs because no empirical interpolation is
considered.

The work closest to ours is [41], which considers deep autoencoders for parametriz-
ing the latent states and adds constraints in the time-discrete formulation to conserve
quantities; however, it requires solving a nonlinear and potentially non-convex opti-
mization problem at each time step with the number of unknowns scaling with the
latent state dimension and the number of conserved quantities. In fact, the costs of
computing the optimization objective and gradients grow in the dimension of the am-
bient space rather than the dimension of the latent space. In contrast, our approach is
applicable to explicit time integration schemes that lead to linear regression problems
in each time step. We also have to solve a system of nonlinear equations at each time
step but the number of unknowns grows with the number of conserved quantities only,
which typically is orders of magnitude lower than the state dimension. Additionally,
we leverage the results of the work [62] that achieves a preservation of the Hamilton-
ian via weighted schemes and specific nonlinear parametrizations, instead of explicitly
computing embeddings. We show that the same specific nonlinear parametrizations
lead to the preservation of the Hamiltonian in our setting too.

We build on the Neural Galerkin scheme introduced in [11], which is based on the
Dirac–Frenkel variational principle [19, 23, 37, 43] and applies to generic nonlinear
parametrizations such as deep networks. We first introduce Neural Galerkin schemes
with constraints that conserve quantities in continuous time. We also show that
Hamiltonians can be conserved in continuous time with weighted Neural Galerkin
schemes and specific nonlinear parametrizations that are separable, even without
adding constraints. While systems may conserve quantities in continuous time, the
time discretization is delicate because the nonlinear parametrization means that the
quantities depend nonlinearly on the parameters and thus no Runge-Kutta integra-
tion scheme can exist that conserves such quantities in general [31, Theorem IV.3.3].
Instead, we use nonlinear embeddings to find approximations that are close to the
Neural Galerkin solutions and at the same time conserve quantities in discrete time.
Importantly, the nonlinear embeddings can be combined with explicit time integration
schemes that can be more efficient in the context of nonlinear parametrizations than
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implicit schemes [11]. The nonlinear embeddings follow [31] and are numerically com-
puted via an iterative scheme that applies generically to nonlinear parametrizations
including deep networks but also to other nonlinear parametrizations used in, e.g.,
model reduction such as [62]. We stress that our approach conserves quantities but
not necessarily structure such as symplecticity. With Burgers’, acoustic wave, and
shallow water equations, we demonstrate that the proposed scheme conserves quan-
tities such as mass, energy, and Hamiltonians up to machine precision in numerical
experiments.

2. Preliminaries. We describe the setup of time-dependent PDEs with con-
served quantities and Hamiltonians, discuss Neural Galerkin schemes based on the
Dirac–Frenkel variational principle, and provide a problem formulation.

2.1. Setup of time-dependent PDEs. Consider the PDE

∂tu(t,x) = f(x,u(t, ·)) (t,x) ∈ [0,∞)×X ,(2.1)

u(0,x) = u0(x) x ∈ X ,(2.2)

with the solution field u : [0,∞) × X → Rm on the spatial domain X ⊆ Rd. At
each time t ∈ [0,∞), the solution field u(t, ·) : X → Rm is in a space U of functions
that allow point-wise evaluations. In the following, the space U is a subspace of the
space L2(X )m of square-integrable functions with m outputs with respect to a fully
supported measure ν. The right-hand side function f : X × U → Rm can include
partial derivatives of u in the spatial variable x. The initial condition is u0 ∈ U .
In the following, the boundary conditions for equation (2.1) are imposed by seeking
solutions in the space U so that (2.1) is well posed.

2.2. Conserved quantities. Consider now quantities of the form

Ii : U → R u(t, ·) 7→
∫
X
κi(u(t, ·))(x)dν(x),(2.3)

where κi : U → L1(X ) is continuously differentiable for i = 1, . . . , nI . We categorize
a quantity Ii as linear, quadratic or nonlinear depending on whether κi is a linear,
quadratic or nonlinear function in u, respectively. A quantity Ii is called a conserved
quantity of the solution field u of equation (2.1) if it remains constant in the sense
Ii(u(t, ·)) = Ii(u(0, ·)) for all t ∈ [0,∞) [31, Chapter IV]. The quantity Ii is also
called first integral, invariant, or constant of motion. Note that Ii can be modified to
account for inflow and outflow via a balance term; however, we will not pursue this
further here as it would make the quantity depend on time. If the integrals in the
conserved quantities (2.3) cannot be computed analytically, we numerically estimate
them via Monte Carlo from nM samples as

(2.4) Îi : U → R u(t, ·) 7→ 1

nM

nM∑
s=1

κi(u(t, ·))(ξs) , i = 1, . . . , nI ,

where ξ1, . . . , ξnM
∈ X . The following methodology extends in a straightforward way

to other quadrature schemes.

2.3. Hamiltonian systems. An important example of a conserved quantity
arises when the right-hand side f of (2.1) can be written in the Hamiltonian form,

(2.5) f(·,v) = J(v)
δH

δu
(v)
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for all t ∈ [0,∞) and v ∈ U , with the Hamiltonian H : U → R and the pointwise
skew-adjoint interconnection operator J : U → Hom(U ,Z), where Hom(U ,Z) denotes
the space of linear operators from U to Z. If J satisfies in addition the Jacobi iden-
tity, we call it a Hamiltonian operator, see [49, Ch. 7] for more details. The space
Z is a subspace of functions of L2(X )m that allow point-wise evaluations. Addition-
ally, the variational derivative δH

δu attains values in U . In the following, we consider
Hamiltonians H that can be written as

(2.6) H(v) =

∫
X
h(v)(x)dν(x) ,

with continuously differentiable h : U → L1(X ). Analogous to the sampled conserved

quantities (2.3), we also introduce the sampled Hamiltonian Ĥ. The interconnection
operator J is pointwise skew-adjoint in the sense that

(2.7) ⟨q1, J(v)q2⟩ν = −⟨J(v)q1, q2⟩ν

holds for all v, q1, q2 ∈ U , where ⟨·, ·⟩ν denotes the L2 inner product corresponding
to the measure ν. The pointwise skew-adjoint property implies in particular

(2.8) ⟨q, J(v)q⟩ν =
1

2
(⟨q, J(v)q⟩ν − ⟨J(v)q, q⟩ν) = 0

for all v, q ∈ U . The property (2.8) implies that the Hamiltonian is a conserved
quantity, which follows from the computation

dH(u(t, ·))
dt

(t) =
〈δH
δu

(u(t, ·)), ∂tu(t, ·)
〉
ν

=
〈δH
δu

(u(t, ·)), J(u(t, ·))δH
δu

(u(t, ·))
〉
ν
= 0.

One example of an equation that can be represented with the structure (2.5) is the
inviscid Burgers’ equation with periodic boundary conditions in one spatial dimension,

(2.9) J(v)q = −1

3
(∂x(vq) + v∂xq) , H(u) =

1

2
∥u∥2L2(X ) ,

which we will discuss in Section 6.2. Another example is the linear wave equation
with periodic boundary conditions,

(2.10) J = −
[
0 ∂x
∂x 0

]
, H(ρ, v) =

1

2

∫
X

c2

ρref
ρ(x)2 + ρrefv(x)

2 dx ,

which we will discuss in Section 6.3.

2.4. Neural Galerkin schemes based on the Dirac–Frenkel variational
principle. Consider now a parametrization û : Θ × X → Rm of a solution field u,
which may depend nonlinearly on a time-dependent parameter vector θ : [0,∞) →
Θ ⊆ Rnθ of dimension nθ. For example, the function û can be a deep network, where
the components of the parameter θ(t) ∈ Θ correspond to the weights and biases. We
only consider parametrizations that are continuously differentiable in the parameter.
Plugging û into (2.1) leads to the residual function

rt(θ(t), θ̇(t),x) = ∇θû(θ(t),x)
Tθ̇(t)− f(x, û(θ(t), ·)) .(2.11)
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û(θ(t), ·)
∂tû(θ(t), ·)

f(·, û(θ(t), ·))
tangent space at û(θ(t), ·)

M

Fig. 1. Neural Galerkin
schemes are based on the Dirac–
Frenkel variational principle [19,
23], which defines the time de-
rivative θ̇(t) of the parameter
θ(t) to be the orthogonal projec-
tion of the right-hand side func-
tion f(·, û(θ(t), ·)) onto the tan-
gent space of the manifold M at
the current solution field û(θ(t), ·).
The tangent space is spanned by
the component functions of the
gradient ∇θû(θ(t), ·).

The time derivative θ̇(t) is then determined by following the Dirac–Frenkel variational
principle [19, 23, 37, 43] such that〈

∂θiû(θ(t), ·), rt(θ(t), θ̇(t), ·)
〉
ν
= 0 , i = 1, . . . , nθ ,(2.12)

where ∂θiû is the i-th component function of the gradient ∇θû of û with respect to
the parameter θ. A note on the history of the Dirac–Frenkel variational principle can
be found in [40, Section 3.8]. The solution θ̇(t) can be interpreted as determining an
orthogonal projection ∇θû(θ(t), ·)Tθ̇(t) of the right-hand side function f(·, û(θ(t), ·))
evaluated at û(θ(t), ·) onto the tangent space Tû(θ(t),·)M at the point û(θ(t), ·) of the
parametrization manifold

M = {û(η, ·) |η ∈ Θ ⊆ Rnθ} ⊆ U ,(2.13)

which is illustrated in Figure 1. Note that we follow standard terminology in the con-
text of the the Dirac-Frenkel variational principle [43] and use the term manifold for
the set M. With tangent space, we refer to the space spanned by the partial deriva-
tives ∂θ1û(θ(t), ·), . . . , ∂θnθ

û(θ(t), ·) with respect to the components of the parameter
θ(t).

Conditions (2.12) can be rewritten in matrix form as

M(θ(t))θ̇(t) = F (θ(t)),(2.14)

with the matrix M(θ(t)) and vector F (θ(t)) having the following components

M ij(θ(t)) =
〈
∂θiû(θ(t), ·), ∂θj û(θ(t), ·)

〉
ν
, i, j = 1, . . . , nθ ,(2.15a)

F i(θ(t)) = ⟨∂θiû(θ(t), ·), f(·, û(θ(t), ·))⟩ν , i = 1, . . . , nθ .(2.15b)

Following [11], we refer to (2.14) as the Neural Galerkin system because the parametriza-
tions that we use in the following are all based on neural networks and (2.12) can be
interpreted as a Galerkin projection with the component functions of ∇θû as test
functions. If the matrix elements (2.15) are not analytically available, then they can
be numerically estimated via either quadrature or Monte Carlo methods. We denote
the sample-based estimates of M(θ(t)) and vector F (θ(t)) at the sampling points
x1, . . . ,xnS

∈ X as

M̂(θ(t)) =
1

nS

nS∑
i=1

∇θû(θ(t),xi)∇θû(θ(t),xi)
T,(2.16)
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F̂ (θ(t)) =
1

nS

nS∑
i=1

∇θû(θ(t),xi)f(·, û(θ(t), ·))(xi) ,(2.17)

which give rise to the sampled Neural Galerkin system

(2.18) M̂(θ(t))θ̇(t) = F̂ (θ(t)) .

There are several approaches for obtaining efficient Monte Carlo estimates [11, 69],
which goes beyond the scope of the present work. In the following, we assume that
the system of ordinary differential equations (ODEs) given by the Neural Galerkin
system (2.14) and the corresponding sampled system (2.18) have a solution on the
whole time interval [0,∞).

2.5. Problem formulation. Conserving quantities in solutions obtained with
Neural Galerkin schemes based on nonlinear parametrizations leads to two challenges.
First, a quantity Ii is not necessarily conserved by a Neural Galerkin solution û(θ(t), ·)
with parameter θ(t) satisfying (2.14), even in continuous time and without sampling.
The reason is that the Galerkin projection formulated in (2.12) only seeks to set the
residual orthogonal to a tangent space of M but ignores any additional constraints
given by the quantities I1, . . . , InI

.
Second, only adding constraints to the continuous-time Neural Galerkin equa-

tions (2.14) or their sampled counterparts (2.18) is insufficient to conserve quantities
because of the nonlinear parametrization of the solution field. While linear quantities
can be conserved by implicit and explicit Runge-Kutta integrators [66] and quadratic
quantities can be conserved by Runge-Kutta integrators if the coefficients satisfy con-
ditions described in [18], arbitrary higher-order polynomial or nonlinear quantities
are not conserved by any Runge-Kutta integrators in general; see also the discussion
in [31, Chapter IV]. This is important in the context of Neural Galerkin schemes and
related methods because the parameter θ(t) can enter nonlinearly in the parametri-
zation û(θ(t), ·). This means that conserved quantities that are linear in the solution
field u of the PDE formulation (2.1) (e.g., the integral in Burgers’ equation) depend
through the parametrization û(θ(t), ·) nonlinearly on the parameter θ(t), which is the
state of the Neural Galerkin system (2.14) and (2.18). Thus, even if the continuous-
time Neural Galerkin projection is constrained so that θ̇(t) conserves the quantities
I1, . . . , InI

, the conservation is lost after discretizing in time with common integrators
such as Runge-Kutta integrators because they typically only conserve linear quan-
tities. In fact, there is no Runge-Kutta method that can conserve all polynomial
quantities of degree greater than two [31, Theorem IV.3.3].

3. Conserving quantities in continuous-time Neural Galerkin schemes.
We pursue two options for conserving quantities in continuous time. First, in Sec-
tion 3.1, we conserve quantities via constraints by building on previous work and
introducing constrained Neural Galerkin schemes that conserve quantities in contin-
uous time for generic nonlinear parametrizations. Second, in Section 3.2, we enforce
conservation via structure in the nonlinear parametrization. In particular, we con-
struct nonlinear parametrizations so that weighted Neural Galerkin schemes preserve
Hamiltonians without the need of explicitly adding constraints.

3.1. Adding constraints to Neural Galerkin schemes for conserving
quantities in continuous time. The Neural Galerkin scheme is based on pro-
jecting the right-hand side onto tangent spaces of the parametrization manifold; see
Section 2.4. If the image of the right-hand side function is a subset of the tangent
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f(·, û(θ(t), ·))

M

MI

M

û(θk, ·)û(θ̃k+1, ·)

û(θk+1, ·)

MI

(a) adding constraints to Neural Galerkin schemes (b) Neural Galerkin with embeddings

Fig. 2. Only adding constraints to the continuous-time Neural Galerkin system is insufficient
to conserve quantities because the constraint can be violated in discrete time due to the nonlinear
parametrization of the solution field. In contrast, the proposed Neural Galerkin scheme combines
constraints with nonlinear projections to obtain embeddings onto manifolds of functions that conserve
quantities in discrete time.

space, then the residual is zero and thus all quantities that are conserved by the PDE
solution field u are also conserved by the continuous-time Neural Galerkin solution
û(θ(t), ·). This relation between residual and conserving quantities has been, for in-
stance, used in the context of the Schrödinger equation in [40, Sec. 3] to establish
energy and norm conservation when using a Gaussian wave packet for the parame-
trization. We now consider more general cases where the residual is not necessarily
zero and add constraints to the time-continuous Neural Galerkin system (2.14) and
its sampled counterpart (2.18) to conserve quantities in continuous time; similar to
other methods based on nonlinear parametrizations [41, 3].

3.1.1. Constrained manifolds. Recall the interpretation that θ̇(t) corresponds
to an orthogonal projection of the right-hand side function f onto a tangent space of
M. By adding a constraint to the Neural Galerkin system, we restrict the manifold
M of parametrized functions û(η, ·) defined in (2.13) to the manifold MI of functions
that conserve quantities

Ii(û(η, ·)) = ci , i = 1, . . . , nI ,(3.1)

for a given vector of constants c = [c1, . . . , cnI
]. Thus, we obtain MI as

MI = {û(η, ·) : η ∈ Θ and Ii(û(η, ·)) = ci for i = 1, . . . , nI}.(3.2)

3.1.2. Constrained Neural Galerkin schemes. We now apply the Dirac–
Frenkel variational principle with respect to the constrained manifold MI instead of
M to determine θ̇(t); see Figure 2a. The projection onto a tangent space of MI is
analogous to the projection onto a tangent space of M and leads to the constrained
Neural Galerkin system[

M(θ(t)) g(θ(t))
g(θ(t))T 0

] [
θ̇(t)
λ(t)

]
=

[
F (θ(t))

0

]
,(3.3)

where g(θ(t)) is

(3.4) g(θ(t)) =
[
∇θI1(û(θ(t), ·)), . . . ,∇θInI

(û(θ(t), ·))
]
.
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System (3.3) is analogous to the system introduced in [3]. The vector λ(t) contains the
Lagrange multipliers at time t. The system (3.3) has a unique solution (θ̇(t),λ(t)) if
M(θ(t)) is regular and g(θ(t)) has full column rank [8, Chapter 5]. Moreover, by ver-
ifying that the requirements of [38, Thm. 4.13] are satisfied, the initial value problem
associated with the system of differential-algebraic equations (3.3) has locally a unique
solution, provided that M is pointwise invertible, g has pointwise full column rank,
and M , g,F are continuously differentiable. If the constant in the definition (3.2) of
the manifold MI is set to c =

[
I1(û(θ(0), ·), . . . , InI

(û(θ(0), ·)
]
, then a continuous-

time Neural Galerkin solution û(θ(t), ·) with θ(t) satisfying the constrained Neural
Galerkin system (3.3) conserves the quantities I1, . . . , InI

.

3.1.3. Sampled constrained Neural Galerkin schemes. Analogously, we
can introduce the manifold M̂I that is based on the sampled quantities (2.4),

(3.5) M̂I = {û(η, ·) : η ∈ Θ and Îi(û(η, ·)) = ci for i = 1, . . . , nI} ,

and derive the sampled constrained Neural Galerkin system as

(3.6)

[
M̂(θ(t)) ĝ(θ(t))
ĝ(θ(t))T 0

] [
θ̇(t)
λ(t)

]
=

[
F̂ (θ(t))

0

]
,

where M̂(θ(t)) and F̂ (θ(t)) are the sampled M(θ(t)) and F (θ(t)), respectively. In
ĝ(θ(t)), the sampled quantities (2.4) are used as

(3.7) ĝ(θ(t)) =
[
∇θ Î1(û(θ(t), ·)), . . . ,∇θ ÎnI

(û(θ(t), ·))
]
,

so that solutions of the sampled constrained system (3.6) conserve the sampled quan-
tities (2.4).

3.2. Structured nonlinear parametrizations and weighted Neural Galerkin
schemes to preserve Hamiltonians in continuous time. We now derive specific
nonlinear parametrizations and weighted schemes that preserve Hamiltonians without
having to resort to using constraints.

3.2.1. Separable nonlinear parametrizations. To preserve Hamiltonians in
time-continuous Neural Galerkin solutions, we consider separable parametrizations
that are of the form

(3.8) û(θ(t),x) =
∑nϕ

i=1
βi(t)ϕi(x,αi(t))

with βi : [0,∞) → Rm, αi : [0,∞) → Rqi , ϕi : X × Rqi → R. The parameters can be
combined into

(3.9) θ(t) = [α1(t)
T, . . . ,αnϕ

(t)T,β1(t)
T, . . . ,βnϕ

(t)T]
T ∈ Θ .

We have nθ = nϕm +
∑nϕ

i=1 qi and Θ = Rnθ . A parametrization of the form (3.8)
is separable because θ can be separated into the components α and β, where β
enters the parametrization linearly. A similar separable parametrization has been used
in the context of nonlinear model reduction for finite-dimensional port-Hamiltonian
systems in [62]. In the context of deep-network parametrizations, an architecture
(3.8) is obtained whenever the last (output) layer of the network is linear without
bias. In the following, it will be convenient to introduce the matrix function V : X ×
R

∑nϕ
i=1 qi → Rm×nϕm via V (x,α) = [ϕ1(x,α1), · · · , ϕnϕ

(x,αnϕ
)] ⊗ 1m, where ⊗

denotes the Kronecker product and 1m the m×m identity matrix.
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3.2.2. Hamiltonians with factorizable structure. We call a Hamiltonian
H factorizable if there exist a continuously differentiable function h : Rm → R and
a point-wise symmetric and positive definite matrix function Q : Rm → Rm×m that
satisfy

H(v) =

∫
X
h(v(x))dν(x) , and(3.10) (

δH

δu
(v)

)
(x) = Q(v(x))v(x) for all (v,x) ∈ U × X ,(3.11)

where δH/δu denotes the variational derivative of H. Hamiltonians are factorizable
if they correspond to a squared norm of the state, which is, for instance, the case for
the Burgers’ and wave equation examples in (2.9)–(2.10). However, the Hamiltonian
considered for the shallow water equations in the later Section 6.4 is not factorizable in
the sense of (3.10)–(3.11) because it involves the gradient of one of the state variables.

3.2.3. Weighted Neural Galerkin schemes that preserve Hamiltonians
in continuous time. We now introduce a Neural Galerkin scheme that conserves
Hamiltonians that satisfy (3.11) with a matrix function Q. To this end, we follow
the Dirac–Frenkel approach as in (2.12) and perform the projection with respect to
the weighted inner product given by the function Q of (3.11); see also [62] for a
similar approach in the context of model reduction. Consider a separable nonlinear
parametrization (3.8) with the parameter θ(t) given in (3.9) and define MQ : Rnθ →
Rnθ×nθ and FQ : Rnθ → Rnθ as

(3.12) MQ(θ(t)) =

[
M (11)(θ(t)) M (12)(θ(t))

M (12)(θ(t))T M (22)(θ(t))

]
, FQ(θ(t)) =

[
F (1)(θ(t))

F (2)(θ(t))

]
,

with the blocks defined as
(3.13)

M
(11)
ij (θ(t)) = ⟨Q(û(θ(t), ·))∂αV (·,α(t))(ei)β(t), ∂αV (·,α(t))(ej)β(t)⟩ν ,

M
(12)
iℓ (θ(t)) = ⟨Q(û(θ(t), ·))∂αV (·,α(t))(ei)β(t), V (·,α(t))eℓ⟩ν ,

M
(22)
kℓ (θ(t)) = ⟨Q(û(θ(t), ·))V (·,α(t))ek, V (·,α(t))eℓ⟩ν ,

F
(1)
i (θ(t)) = ⟨Q(û(θ(t), ·))∂αV (·,α(t))(ei)β(t),

J(û(θ(t), ·))Q(û(θ(t), ·))û(θ(t), ·)⟩ν ,

F
(2)
k (θ(t)) = ⟨Q(û(θ(t), ·))V (·,α(t))ek, J(û(θ(t), ·))Q(û(θ(t), ·))û(θ(t), ·)⟩ν ,

for i, j = 1, . . . ,
∑nϕ

s=1 qs, k, ℓ = 1, . . . , nϕm, and the ith canonical unit vector ei. Here,

we use the notation ∂αV : X × R
∑nϕ

i=1 qi → Hom(R
∑nϕ

i=1 qi ,Rm×nϕm) for the (block)

partial derivative of V with respect to α. Hence, for given x ∈ X and v,w ∈ R
∑nϕ

i=1 qi ,

∂αV (x,v) is a linear mapping from R
∑nϕ

i=1 qi to Rm×nϕm and ∂αV (x,v)(w) is in
Rm×nϕm.

The matrix functions MQ and FQ lead to the weighted time-continuous Neural
Galerkin system

(3.14) MQ(θ(t))θ̇(t) = FQ(θ(t)) .

The following proposition states that H is indeed a conserved quantity of (3.14).
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Proposition 3.1. Consider a Hamiltonian PDE of the form (2.1) with right-
hand side satisfying (2.5)–(2.7) and let the Hamiltonian be factorizable. Then, any
solution of the corresponding time-continuous weighted Neural Galerkin system (3.14)
based on the separable parametrization (3.8) preserves the Hamiltonian H in the sense
of

dH(θ(t))

dt
(t) = 0 for all t ∈ [0,∞) ,

where we overload the notation to use H(θ(t)) as short-hand notation for H(û(θ(t), ·)).
Proof. First, we compute the partial derivatives of the Hamiltonian with respect

to the parameters in θ. Using the separable structure (3.8), the factorization (3.11),

and the definitions of M (12),M (22) in (3.13), we obtain

∇αH(η) = M (12)(η)η2, ∇βH(η) = M (22)(η)η2

for all η ∈ Rnθ , where η2 ∈ Rnϕm denotes the last block component of η. In total,
this yields

(3.15) ∇H(η) = MQ(η)

[
0 0
0 1nϕm

]
η = MQ(η)T

[
0 0
0 1nϕm

]
η.

Furthermore, exploiting (3.13), we observe that the right-hand side of (3.14) may be
factorized

(3.16) FQ(η) = JQ(η)

[
0 0
0 1nϕm

]
η

for all η ∈ Rnθ , where JQ : Rnθ → Rnθ×nθ is defined via

JQ(θ(t)) :=

[
0 J (12)(θ(t))

−J (12)(θ(t))T J (22)(θ(t))

]
,

with the blocks

J
(12)
i,ℓ (θ(t)) = ⟨Q(û(θ(t), ·))∂αV (·,α(t))(ei)β(t),

J(û(θ(t), ·))Q(û(θ(t), ·))V (·,α(t))eℓ⟩ν ,
(3.17)

J
(22)
k,ℓ (θ(t)) = ⟨Q(û(θ(t), ·))V (·,α(t))ek,

J(û(θ(t), ·))Q(û(θ(t), ·))V (·,α(t))eℓ⟩ν ,
(3.18)

for i = 1, . . . ,
∑nϕ

s=1 qs and k, ℓ = 1, . . . , nϕm. By exploiting the pointwise skew-

adjointness of J , we conclude that J (22) and JQ are pointwise skew-symmetric. Hence,
in total we have shown that (3.12)–(3.14) has a port-Hamiltonian structure as in [45]
without dissipation or input/output ports. Following [45], we obtain the conservation
of the Hamiltonian from the calculation

dH(θ(t))

dt
(t) = ∇H(θ(t))Tθ̇(t) = θ(t)T

[
0 0
0 1nϕm

]
MQ(θ(t))θ̇(t)

= θ(t)T
[
0 0
0 1nϕm

]
FQ(θ(t))

= θ(t)T
[
0 0
0 1nϕm

]
JQ(θ(t))

[
0 0
0 1nϕm

]
θ(t) = 0.
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3.2.4. Weighted Neural Galerkin schemes with Monte Carlo approx-
imations. We now show that the sampled quantities are conserved with weighted
Neural Galerkin schemes in continuous time even if the integrals occurring in MQ

and FQ are replaced by corresponding Monte Carlo estimates. Replacing MQ with

its sampled counterpart M̂Q analogous to M̂ defined in (2.16) poses no problems
in terms of structure preservation. In contrast, the right-hand side term FQ needs
more careful treatment because applying Monte Carlo directly to FQ can destroy the
property (3.16) that is used in the proof of Proposition 3.1. To avoid loosing property
(3.16) in the sampled FQ, we first use (3.16) and the skew symmetry of J22 defined
in (3.18) and write FQ as

FQ(θ(t)) =

[
0 J (12)(θ(t))

−J (12)(θ(t))T 1
2 (J

(22)(θ(t))− J (22)(θ(t))T)

] [
0 0
0 1nϕm

]
θ(t)

=

[
J (12)(θ(t))β(t)

1
2J

(22)(θ(t))β(t)− 1
2J

(22)(θ(t))Tβ(t)

]
.

Instead of approximating FQ(θ(t)) directly via Monte Carlo estimates, we propose

to approximate J (12)(θ(t))β(t) as well as J (22)(θ(t))β(t) and J (22)(θ(t))Tβ(t) sep-

arately. The approximations can then be used to assemble the approximation F̂Q

of FQ that can be factorized analogous to (3.16). The sampled weighted Neural
Galerkin system is

(3.19) M̂Q(θ(t))θ̇(t) = ĴQ(θ(t))

[
0 0
0 1nϕm

]
θ(t) ,

where the Monte Carlo approximations ofMQ and JQ are denoted as M̂Q, ĴQ : Rnθ →
Rnθ×nθ , respectively, and defined as

(3.20)

M̂Q(θ(t)) =

[
M̂

(11)
(θ(t)) M̂

(12)
(θ(t))

M̂
(12)

(θ(t))T M̂
(22)

(θ(t))

]
,

ĴQ(θ(t)) =

[
0 Ĵ

(12)
(θ(t))

−Ĵ
(12)

(θ(t))T Ĵ
(22)

(θ(t))

]

with the blocks

M̂
(11)

ij (θ(t)) =
1

nS

nS∑
s=1

β(t)T (∂αV (xs,α(t))ei)
T
Q(û(θ(t),xs))

T

· ∂αV (xs,α(t))(ej)β(t),

M̂
(12)

iℓ (θ(t)) =
1

nS

nS∑
s=1

β(t)T (∂αV (xs,α(t))ei)
T
Q(û(θ(t),xs))

T

· V (xs,α(t))eℓ,

M̂
(22)

kℓ (θ(t)) =
1

nS

nS∑
s=1

eTkV (xs,α(t))TQ(û(θ(t),xs))
TV (xs,α(t))eℓ,

Ĵ
(12)

iℓ (θ(t)) =
1

nS

nS∑
s=1

β(t)T (∂αV (xs,α(t))ei)
T
Q(û(θ(t),xs))

T

· (J(û(θ(t), ·))Q(û(θ(t), ·))V (·,α(t))eℓ) (xs) ,
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Ĵ
(22)

kℓ (θ(t)) =
1

2nS

nS∑
s=1

eTkV (xs,α(t))TQ(û(θ(t),xs))
T

· (J(û(θ(t), ·))Q(û(θ(t), ·))V (·,α(t))eℓ) (xs)

− 1

2nS

nS∑
s=1

eTℓ V (xs,α(t))TQ(û(θ(t),xs))
T

· (J(û(θ(t), ·))Q(û(θ(t), ·))V (·,α(t))ek) (xs) ,

for i, j = 1, . . . ,
∑nϕ

s=1 qs, k, ℓ = 1, . . . , nϕm.

The following proposition states that the sampled Hamiltonian Ĥ is a conserved
quantity of the sampled weighted Neural Galerkin system (3.19).

Proposition 3.2. Let the assumptions of Proposition 3.1 be satisfied and con-
sider the sampled weighted Neural Galerkin system (3.19). Moreover, let the associated

Hamiltonian Ĥ be based on the same sampling points, i.e, nS = nM and xi = ξi for
i = 1, . . . , nS. Then, any solution of (3.19) satisfies

dĤ(θ(t))

dt
(t) = 0 for all t ∈ [0,∞) ,

where we again remind the reader that Ĥ(θ(t)) is short-hand notation for Ĥ(û(θ(t), ·)).
Proof. First, we note that the integral form (3.10) of H implies

δH

δu
(v) = ∇h ◦ v = Q(v)v

for all v ∈ U . Then, by straightforward calculations, we obtain that

∇Ĥ(η) = M̂Q(η)T
[
0 0
0 1nϕm

]
η

holds for all η ∈ Rnθ , which is the same structure as (3.15) in the proof of Proposi-

tion 3.1. Thus, the conservation of Ĥ follows from analogous arguments as the ones
of the proof of Proposition 3.1.

Remark 3.3. The matrix function Ĵ
(22)

is obtained by exploiting the pointwise

skew-symmetry of J (22) to ensure the pointwise skew-symmetry of Ĵ
(22)

. However,

this construction of Ĵ
(22)

cannot guarantee that (3.19) with given θ(t) and singular

M̂Q(θ(t)) can be satisfied for a θ̇(t). The same issue applies to the special case of
linear parametrizations.

4. Conserving quantities in time-discrete Neural Galerkin approxima-
tions. We now consider the time discretization of the constrained or weighted Neural
Galerkin systems, which is delicate because the nonlinear dependence of the parame-
trization û(θ(t), ·) on the parameter θ(t) means that quantities (2.3) become nonlinear
in θ(t) and thus are not conserved by just applying Runge-Kutta integrators; see also
the problem formulation in Section 2.5. Building on literature of ODE integrators
[30, Chapter VII.2], we propose to use a nonlinear projection method that computes
embeddings to conserve quantities in Neural Galerkin solutions in discrete time; see
Figure 2b. Importantly, the nonlinear projection approach is applicable with implicit
and explicit time integration schemes. Explicit schemes are of especially great interest
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in the context of nonlinear parametrizations with Neural Galerkin schemes because
they lead to linear least-squares regression problems at each time step whereas im-
plicit schemes lead to non-convex optimization problems at each time step [11, 7]. We
also discuss an alternative time discretization scheme which is implicit and based on
discrete gradients.

4.1. Neural Galerkin schemes with embeddings for conserving quan-
tities in discrete time. Consider a one-step time integrator applied to the con-
strained Neural Galerkin system (3.3) or the weighted Neural Galerkin system (3.14)
with time-step size δt > 0. Such an integrator gives rise to a map Φδt : Θ → Θ
that takes a parameter vector θk ∈ Θ at time step k and maps it onto θk+1 ∈ Θ
at time step k + 1. Let θ0 be the parameter of the initial condition û(θ0, ·) and let
θ1, . . . , θK ∈ Θ be the parameters obtained with the time integrator at time steps
k = 1, . . . ,K, which lead to the time-discrete Neural Galerkin solution trajectory
û(θ1, ·), û(θ2, ·), . . . , û(θK , ·). At each time step k, we want to ensure that the func-
tion û(θk+1, ·) at the next time step k + 1 is on the constrained manifold MI if the
approximate solution field function û(θk, ·) at the current time step k is on MI . To
achieve this, at each time step k = 0, . . . ,K − 1, we evaluate Φδt at θk to compute
θ̃k+1, which can correspond to a function û(θ̃k+1, ·) that is outside of MI . We then
follow [31, Chapter IV] and embed the function û(θ̃k+1, ·) corresponding to the pa-
rameter θ̃k+1 as a function with parameter θk+1 onto MI by solving for θk+1 via the
nonlinear least-squares problem

min
û(η,·)∈MI

1

2
∥η − θ̃k+1∥22 .(4.1)

The embedding step constrains the manifold on which we seek approximations to the
PDE solution to MI , where quantities are conserved. The analogous procedure can
be derived for embeddings onto M̂I defined in (3.5),

(4.2) min
û(η,·)∈M̂I

1

2
∥η − θ̃k+1∥22 .

Note that the operation performed by solving the nonlinear least-squares problem
(4.1) is sometimes referred to as nonlinear projection. We use the term embedding to
distinguish clearly from the linear projection of the right-hand side onto the tangent
space in the Dirac-Frenkel variational principle; see Section 2.4.

4.2. Implicit time discretizations with discrete gradients. Discretizing
the second block equation in (3.3) via discrete gradients also leads to Neural Galerkin
approximations that conserve quantities [25, 44]. The time integration via discrete
gradients is implicit in time and thus can be computationally expensive in the context
of Neural Galerkin schemes with nonlinear parametrizations because a potentially
non-convex optimization problem has to be solved at each step; see [11, 7]. A discrete
gradient [25, 44] of a continuously differentiable function H : Rn → R is given by a
continuous mapping ∇H : Rn × Rn → Rn which satisfies

(4.3) ∇H(η,η) = ∇H(η), ∇H(η,η′)T(η′ − η) = H(η′)−H(η)

for all η,η′ ∈ Rn. Based on discrete gradients, we discretize the second block equation
g(θ(t))Tθ̇(t) = 0 in (3.3) by replacing θ̇(t) by a finite difference approximation with
time-step size δt > 0 and the gradients in (3.4) by corresponding discrete gradients.
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For k = 0, . . . ,K − 1, the resulting time-discrete equation is

(4.4) g(θk,θk+1)
T θk+1 − θk

∆t
= 0,

with g(θk,θk+1) :=
[
∇I1(θk,θk+1), . . . ,∇InI

(θk,θk+1)
]
using the discrete gradients

∇Ii(θk,θk+1) for i = 1, . . . , nI . By using the second relation in (4.3), we infer that
the ith row of (4.4) is

0 = ∇Ii(θk,θk+1)
T θk+1 − θk

∆t
=

Ii(θk+1)− Ii(θk)

∆t

for i = 1, . . . , nI . Consequently, (4.4) is equivalent to

(4.5) I1(θk+1) = I1(θk), . . . , InI
(θk+1) = InI

(θk),

i.e., in this setting we do not have to construct the discrete gradients explicitly, but
we may directly use (4.5). The first equation in (3.3) can be discretized by any
time discretization scheme. Similarly, discrete gradients may be also used to ensure
conservation in the context of the weighted Neural Galerkin systems (3.14); see [61,
App. C] for more details.

5. Computational aspects of Neural Galerkin with embeddings. We now
describe computational aspects of constrained Neural Galerkin schemes with nonlinear
embeddings for conserving quantities. In particular, we use the specific iterations as
in [31] to efficiently perform the embedding onto the constrained manifold. While
we focus on constrained systems with embeddings, similar observation holds for the
weighted Neural Galerkin schemes and time discretizations with discrete gradients.

5.1. Constrained Neural Galerkin schemes represented as least-squares
problems. While the sampled Neural Galerkin system (2.18) introduced in Sec-
tion 2.4 can be numerically solved directly, the corresponding linear least-squares
problem is typically better conditioned. Recall that x1, . . . ,xnS

are the sample points
used to obtain the sampled Neural Galerkin system (2.18). If the solution field is
scalar valued so that m = 1 and we use explicit Euler to discretize time with time-
step size δt > 0, then the corresponding sampled least-squares problem at time steps
k = 0, . . . ,K − 1 is

(5.1) min
δθk∈Θ

∥Â(θk)δθk − b̂(θk)∥22 ,

where θk+1 = θk + δtδθk and Â(θk) ∈ RnS×nθ and b̂(θk) ∈ RnS are

(5.2) Â(θk) =

 ∇θû(θk,x1)
T

...
∇θû(θk,xnS

)T

 , b̂(θk) =

 f(·, û(θk, ·))(x1)
...

f(·, û(θk, ·))(xnS
)

 .

We use a singular value decomposition for solving the least-squares problem (5.1)
and truncate singular values smaller than a prescribed tolerance of 10−5, so that we
obtain the minimal-norm solution in case the matrix Â(θk) has a rank smaller than
nθ. The conservation constraints are added to (5.1) analogous to (3.3), which results
in a least-squares problem with equality constraints

(5.3) min
δθk∈Θ

∥∥∥Â(θk)δθk − b̂(θk)
∥∥∥2
2

s.t. ĝ(θk)
Tδθk = 0,
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Algorithm 5.1 Neural Galerkin scheme with embeddings

1: procedure NGEmbedding(f , δt, K, û, nS , θ0, I1, . . . , InI
, nM )

2: for k = 0, . . . ,K − 1 do
3: Estimate Â(θk) and b̂(θk) defined in (5.2) using nS sample points.
4: Estimate ĝ(θk) using nM sample points and quantities I1, . . . , InI

.
5: Compute δθk as solution of (5.3).
6: Set θ̃k+1 = θk + δtδθk.
7: Iterate (5.7) to compute θk+1.
8: end for
9: Return trajectory û(θ0, ·), û(θ1, ·), . . . , û(θK , ·)

10: end procedure

where ĝ is defined in (3.7). An analogous least-squares problem with equality con-
straints can be derived for solution fields with multiple outputs m > 1 and other
time-integration schemes.

5.2. Computing embeddings onto the constrained manifold. To numer-
ically solve (4.1) with respect to the sampled manifold M̂I , we introduce the La-
grangian function

(5.4) (η,λ) 7→ 1

2
∥η − θ̃k+1∥22 + λ · m̂(η),

where · denotes the Euclidean inner product and the differentiable function m̂ : Rnθ →
RnI is defined as

m̂(η) = [Î1(û(η, ·))− Î1(û(θ(0), ·)), . . . , ÎnI
(û(η, ·))− ÎnI

(û(θ(0), ·))]T.(5.5)

Thus, m̂(η) = 0 implies that û(η, ·) ∈ M̂I . The first-order optimality condition leads
to the system of equations

η = θ̃k+1 + m̂′(η)Tλ,(5.6a)

0 = m̂(η).(5.6b)

We follow [31, Section IV.4] and solve (5.6a)–(5.6b) via the iterations

∆λ(i) = −(m̂′(θ̃k+1)m̂
′(θ̃k+1)

T)−1m̂(θ̃k+1 + m̂′(θ̃k+1)
Tλ(i)),(5.7a)

λ(i+1) = λ(i) +∆λ(i) ,(5.7b)

for i = 1, 2, 3, . . . . Notice that the iterations are over the quantity λ, which is of
dimension nI . The number of quantities nI is often much smaller than the number
of parameters nθ.

5.3. Neural Galerkin schemes with embeddings. Algorithm 5.1 summa-
rizes the Neural Galerkin schemes with embeddings when explicit Euler is used to
discretize time. We stress that other time integration schemes can be used in an
analogous way.

5.3.1. Description of algorithm. The inputs to Algorithm 5.1 are the right-
hand side function f of the PDE (2.1), time-step size δt, number of time steps K,
parametrization û, number of sampling points nS , parameter θ0 corresponding to the
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initial condition û(θ0, ·), the quantities I1, . . . , InI
and the number of sampling points

nM for the sampled quantities Î1, . . . , ÎnI
. The algorithm iterates over the time steps

k = 0, . . . ,K − 1. In each iteration, the least-squares problem (5.2) and the sampled
gradients (3.7) are assembled. Notice that the sampled ĝ is used, which is based
on the sampled quantities Î1, . . . , ÎnI

with nM sampling points. Then, the update
δθk is computed by solving the least-squares problem (5.3). In line 7, the vector
θ̃k+1 = θk + δtδθk is projected onto θk+1 so that the solution field û(θk+1, ·) lies
on the constrained manifold. After K time steps, the trajectory of Neural Galerkin
approximations û(θ0, ·), . . . , û(θK) is returned.

5.3.2. Computational costs. The costs of a time step of Algorithm 5.1 is
dominated by estimating the sampled Â(θk), b̂(θk), ĝ(θk) and subsequently solving
the least-squares problem (5.3) to obtain δθk. The costs of computing the sampled

Â(θk), b̂(θk) scale with the number of sampling points nS . For each sample, the
parametrization û, its gradient∇θû, and the right-hand side function f are evaluated.
The costs of these evaluations depend on the parametrization. If a fully connected
deep network with ℓ layers and p nodes is used, then the costs scale as O(ℓp2). The
costs of computing ĝ(θk) are dominated by the quadrature in (2.4), which depends on
the number of sampling points nM . The functions κ1, . . . , κnI

that define I1, . . . , InI

as shown in (2.4) are typically cheap to evaluate. The costs of solving the least-
squares problem (5.3) scales as O(nSnθ

2). In summary, the dominating costs of a
time step scale as O(nSℓp

2 + nM + nSnθ
2), which provides only a crude estimate as

these costs critically depend on the right-hand side function f . We refer to [7] for
work on reducing the costs per time step. The projection (5.7) computed in line 7 of
Algorithm 5.1 typically requires only few iterations and thus incurs negligible costs
in our numerical experiments.

6. Numerical experiments. We now demonstrate Neural Galerkin with em-
beddings with numerical experiments. First, we consider the inviscid Burgers’ equa-
tion (2.9) to demonstrate the interplay between the constrained Neural Galerkin sys-
tem and the nonlinear embedding. Second, we illustrate with the acoustic wave equa-
tion (2.10) how the number of sampling points nM influences the preservation of
the Hamiltonian (2.10). Third, we consider the shallow water equations in a two-
dimensional spatial domain with the total energy as conserved quantity. The imple-
mentation is based on jax, which is a Python library for automatic differentiation [10].
All floating point computations are carried out in double precision. The implementa-
tion is available online github.com/Algopaul/ng embeddings.

6.1. Experimental setup. In each experiment, we compare approximations to
reference solutions uref obtained with spectral methods. Time is discretized in all
examples with the explicit fourth-order Runge-Kutta method [32, Table 1.2, l]. For
a solution trajectory with parameters {θk}Kk=0, K ∈ N, at time step {tk}Kk=0, we
compute the relative error of the solution field as

(6.1) Er(tk) =

nE∑
i=1

∥û(θk,x
test
i )− uref(tk,x

test
i )∥

/ nE∑
i=1

∥uref(tk,x
test
i )∥,

using nE equidistantly sampled test points xtest
1 , . . . ,xtest

nE
in the respective domains.

We also report the error in conserving the quantities of interest t 7→ ∥Îtest(t)−Îtest(0)∥
for the different solution trajectories, where we use nE equidistantly sampled test
points in the respective domain to estimate the quantity, which we denote as Îtest.

github.com/Algopaul/ng_embeddings
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Fig. 3. Burgers’ equation: Nonlinear parametrization such as deep networks used in Neural
Galerkin schemes imply that even linear quantities become nonlinear in the parameters. Thus,
adding a constraint to the Neural Galerkin scheme is insufficient for conserving quantities with
explicit Runge-Kutta schemes. In contrast, the proposed Neural Galerkin scheme with embeddings
computes projections onto constrained manifolds at each time step to conserve quantities even in
discrete time.

We ensure that the nE points used during the evaluation are different from the nS

points used to construct the least-squares problem (5.2) and the nM points used to
estimate the quantities during time integration.

6.2. Burger’s equation with conservation of mass. We consider the in-
viscid Burgers’ equation (2.9) in the spatial domain [−1, 1) with periodic boundary

conditions and conserved quantity Imass =
∫ 1

−1
u dx in the time interval [0, 1]. We

parametrize the solution field with a fully connected feed-forward deep network that
has three hidden layers of width ten with sinusoidal activation functions, which leads
to nθ = 241 network weights. The first layer imposes periodicity as in [7]. The
output layer is linear. It is important to note that the conserved quantity is linear
in the solution function u but nonlinear in the parameter θ(t) of the parametriza-
tion. We use nS = 200 equidistant sample points to construct the least-squares
problem (5.1) and nM = 200 equidistant points to estimate the conserved quantity
and its derivative (3.7). The time-step size is δt = 5 · 10−3. We now compare Neu-
ral Galerkin without constraints (2.18), Neural Galerkin with constraints (3.6) that
conserves quantities in continuous time, and Neural Galerkin with embeddings that
is described in Algorithm 5.1 and that combines (3.6) with the embeddings (4.2) to
conserve quantities also in discrete time. Figure 3a shows the error in conserving the
quantity Îtestmass, estimated with nE = 400, which we define as

EB(t) = |Îtestmass(t)− Îtestmass(0)|.(6.2)

Because we use a deep network which is a nonlinear parametrization, the quantity
is not conserved when just adding a constraint. In contrast, the proposed Neural
Galerkin scheme with embeddings conserves the sampled quantity because it per-
forms an explicit embedding after each time step. Figure 3b shows the relative error
computed using (6.1) with nE = 400. For the reference solution, we have used 200
Fourier modes and a time step size of 10−3.
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Fig. 4. Acoustic wave equation: The proposed Neural Galerkin scheme with embeddings pre-
serves the Hamiltonian at test points to machine precision.

6.3. Acoustic wave equation with conservation of Hamiltonian. We pres-
ent results for the acoustic wave equation (2.10) with its Hamiltonian Hwave as
conserved quantity. We have periodic boundary conditions on the spatial domain
X = [−1, 1) with end time T = 8 and initial condition ρ(0, x) = e−9x2

, v(0, x) = 0.
We set ρref = c = 1. The parametrization is a fully connected feed-forward network
with two hidden layers of width ten followed by a hidden layer of width 20, each with
sinusoidal activation functions, a periodic input layer as in [7] of width ten, and a
linear output layer of width two to account for ρ and v, which leads to nθ = 392
network weights. We use nS = 256 sampling points distributed equidistantly in X to
assemble the least-squares problem (5.1) and the same nM = 256 sampling points to
estimate the Hamiltonian and its derivative (3.7). We discretize time using fourth-
order Runge-Kutta with a time-step size of 2−8 ≈ 4×10−3. For the reference solution,
we have used 256 Fourier modes and fourth-order explicit Runge-Kutta with a time-
step of 10−3. Figure 4a shows the error in conserving the Hamiltonian. We denote
the error in Ĥwave by

(6.3) EW (t) = |Ĥtest
wave(t)− Ĥtest

wave(0)|,

where we set nE = 512. The results show that our scheme based on embeddings
preserves the sampled Hamiltonian at test points whereas the other schemes lead
to solutions with large variations in the Hamiltonian. Figure 4b shows the relative
error (6.1) estimated with nE = 512 samples. The relative error of all three schemes
is comparable in this example. In Figure 5, we demonstrate that we can use fewer
samples nM for the estimation of Ĥwave during the time integration and still achieve
conservation at test points Ĥtest

wave to machine precision. In fact, in Figure 5, it is
shown the sampled Hamiltonian at the test points is conserved to machine precision
even when choosing nM = 64 and still to 10−10 for nM = 25.

6.4. Shallow water waves in two spatial dimensions with energy conser-
vation. We now consider the shallow water equations in a two-dimensional domain
with periodic boundary conditions. We follow a similar setup as the one introduced
in [35, Section 8].
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Fig. 5. Acoustic wave equation: The proposed Neural Galerkin scheme with embeddings pre-
serves the Hamiltonian at a fine grid of test points even when a low number of sampling points nM

is used.

6.4.1. Setup. The governing equations are

∂th+∇ · (h∇ϕ) = 0 in [0, 6]×X ,

∂tϕ+
1

2
∥∇ϕ∥2 + h = 0 in [0, 6]×X ,

(6.4)

with initial conditions

h(0,x) = 1 + 0.33e−1.7∥x∥2

in X ,

ϕ(0,x) = 0 in X ,
(6.5)

where X = [−4, 4)2, and h, ϕ : [0, 6] × X → R denote the height and the potential
field of the fluid. A conserved quantity of (6.4) is the energy

I(e)(h, ϕ) =
1

2

∫
X
h∥∇ϕ∥2 + h2dx.(6.6)

We scale the equations above such that h and ϕ are close in magnitude and centered
around 0 to avoid numerical issues,

∂th̃+∇ · ((h̃+ 1)∇ϕ) = 0, in [0, 6]×X ,

∂tϕ̃+
1

2

∥∥∥∇ϕ̃
∥∥∥2 + h̃ = 0, in [0, 6]×X .

(6.7)

The corresponding initial conditions are

h̃(0,x) = 0.33e−1.7∥x∥2

, in X ,

ϕ̃(0,x) = 0, in X ,
(6.8)

where h̃ = h− 1 and ϕ̃ = ϕ+ t. Note that in the second equation, we did not add the
constant 1 to prevent ϕ̃ from diverging numerically. Our reference solution is obtained
with a spectral method with 300 degrees of freedom in each spatial dimension and a
time-step size 10−3.
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6.4.2. Results. The parametrization is a deep network with the same structure
as in Section 6.3, which leads to nθ = 402 network weights for the two-dimensional
input domain. The time-step size is δt = 2× 10−3 and the time discretization scheme
is fourth-order explicit Runge-Kutta. We take 200 points in each spatial direction
to assemble the least-squares problem (5.1) and for estimating the conserved quan-
tity (6.6) and its derivative (3.7). We compare Neural Galerkin without constraints,
Neural Galerkin with constraints, and the proposed scheme with embeddings. Fig-
ure 6 and 7 show the solution field and the point-wise error of the fluid height h
at times t = 5 and t = 6, respectively. The approximation obtained with embed-
dings avoids the oscillations that are present in the approximations obtained with
other schemes that ignore conservation of quantities. The error in conserving the
energy is shown in Figure 8a, which we measure as ES(t) = |Îtest(e) (t) − Îtest(e) (0)|, for
nE = 90 000 equidistantly sampled test points. Figure 8b shows the relative error
(6.1) with nE = 90 000 test samples. The Neural Galerkin scheme with embeddings
achieves the lowest relative error in the solution fields, which is in agreement with the
plots shown in Figure 6 and 7 where the variants without energy conservation lead to
oscillations in the approximate solution fields. In Figure 9 we study the effect of the
the number of samples nM used to estimate the energy. The results show that with
100 points in each direction so that nM = 10 000, the Neural Galerkin scheme with
embeddings conserves the energy at the test points up to machine precision. The
error in the energy conservation grows to about 10−5 only when there are only 25
sampling points in each spatial direction, which corresponds to a total of nM = 625
points. Figure 9b shows how the relative error (6.1) in the solution fields depends
on the number of sampling points nM . It can be seen that conserving the energy
more accurately with more sampling points leads to lower relative errors in the solu-
tion fields in this example. If only 25 sampling points in each spatial dimension are
used, then the error increases by about one order of magnitude compared to when
the energy is conserved to machine precision.

7. Conclusions. Preserving structure and conserving quantities in nonlinear ap-
proximations of PDE solutions is delicate because the nonlinear dependence on the
parameter implies that even linear quantities in the solution fields can become nonlin-
ear in the parameters. Thus, just adding constraints to time-continuous formulations
is insufficient with standard Runge-Kutta time integrators. While one can resort to
implicit methods such as discrete gradients, it is desirable to have explicit time integra-
tion schemes when nonlinear parametrizations are used because they require solving
systems of linear equations at each time step in typical cases rather than systems
of nonlinear equations as with implicit integrators. The proposed Neural Galerkin
schemes compute explicit embeddings on manifolds of parametrizations that conserve
quantities, which can be computed efficiently and are applicable with explicit time
integrators and generic nonlinear parametrizations such as deep networks.
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