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Training nonlinear parametrizations such as deep neural networks to numerically
approximate solutions of partial differential equations is often based on minimizing a
loss that includes the residual, which is analytically available in limited settings only.
At the same time, empirically estimating the training loss is challenging because
residuals and related quantities can have high variance, especially for transport-
dominated and high-dimensional problems that exhibit local features such as waves
and coherent structures. Thus, estimators based on data samples from un-informed,
uniform distributions are inefficient. This work introduces Neural Galerkin schemes
that estimate the training loss with data from adaptive distributions, which are em-
pirically represented via ensembles of particles. The ensembles are actively adapted
by evolving the particles with dynamics coupled to the nonlinear parametrizations of
the solution fields so that the ensembles remain informative for estimating the train-
ing loss. Numerical experiments indicate that few dynamic particles are sufficient for
obtaining accurate empirical estimates of the training loss, even for problems with
local features and with high-dimensional spatial domains.

1 Introduction

Nonlinear parametrizations (discretizations) that approximate solution fields of partial differ-
ential equations (PDEs) on manifolds can achieve faster error decays than traditional, linear
parametrizations that are restricted to approximations in vector spaces. A widely used approach
for numerically fitting nonlinear parametrizations is minimizing the norm of the PDE residual,
oftentimes even globally over the time interval of interest; see [7, 29, 41, 49, 63, 70] and the early
works [20, 64, 65]. However, obtaining an estimate of the norm of the residual—the empirical
risk—to find parameters that minimize it can be challenging [11, 24, 67]. For example, consider a
PDE that describes the transport of localized features such as phase transitions, waves, or other
coherent structures across the spatial domain. For such transport-dominated problems it has
been shown that the faster error decay of nonlinear parametrizations can be beneficial compared
to linear approximations from an approximation-theoretic perspective [15, 16, 36, 54, 58, 60].
However, precisely for such problems, an un-informed, passive sampling with a uniform distribu-
tion over the spatial domain leads to estimators of the residual norm with high variance because
the local features of the solution fields typically lead to localized residuals so that few samples
fall in regions of the spatial domain where the magnitude of this residual is large and, thereby,
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informative. Equations formulated over high-dimensional spatial domains lead to similar chal-
lenges of estimating residual norms and training losses in general. The described sampling issue
is a special case of the pervasive challenge in machine learning of estimating the population loss
with the empirical loss from data [73].

The challenge of accurately estimating the training loss when fitting nonlinear parametriza-
tions has been recognized in a range of works. For certain limited classes of PDEs and cor-
responding parametrizations, quantities that are needed for computing the training loss can
be derived analytically [2, 53] and special structure can be exploited [3]. In model reduction
[6, 62, 68], sampling via empirical interpolation [4, 12, 22, 30, 56, 61] is an important component
of reduced models when they are formulated over nonlinear parametrizations that represent
latent manifolds rather than subspaces; see [60] for a survey. Various sampling methods for
empirical interpolation and related techniques are proposed in [10, 17, 18, 59] and the work [55]
investigates the sample complexity in the context of nonlinear model reduction. There also is
work on using deep autoencoders for dimensionality reduction, where sparse sampling methods
are proposed for efficient computations [42, 66]. However, these sampling schemes aim to find
an accurate set of samples in a pre-processing step, instead of actively adapting samples. In the
context of high-dimensional problems, many different active learning and active data acquisi-
tion approaches to adaptively sample the temporal and spatial domains have been developed.
There are works that generate a batch of uniform samples and sub-select and use the ones with
highest absolute residual values for training; see, e.g., [34, 44, 52] and the survey [74]. How-
ever, the initial batch of samples has to capture already the high-residual regions of the spatial
domain, which can be challenging for problems with local features in high-dimensional spatial
domains. The work [72] trains a separate normalizing flow for generating samples with high
residual values, which in turn requires informative training data. In [37], the time domain is
split into subdomains and samples in each subdomain are drawn proportionally to its residual
value, which is closely related to domain decomposition techniques. Other techniques leverage
certain structures in the class of PDEs and setups of interest, such as parameterizing the gradi-
ent of the PDE solution rather than directly the solution field [26, 38], approximating committor
functions [40, 47, 67], and connections to control problems [27, 46, 48]. Another line of work
builds on Gaussian process regression for approximating solution fields and offers strong error
analyses, which can be informative for data collection as well [5, 14].

In this work, we estimate the training loss with an ensemble of particles that we actively
adapt by imposing dynamics on the particles so that they stay informative for estimating the
training loss even as the PDE solution field evolves in time. The adaptation of the particles
leads to an active data acquisition in the sense that the training loss is measured in a dynamic
way so that few measurements and thus samples are sufficient for an accurate estimation. The
starting point for us is the Dirac-Frenkel variational principle [19, 33, 45, 53] that we build on
to formulate a Galerkin problem [11] that is solved sequentially in time; see also [2, 13, 23, 31,
39, 43, 69, 75]. Our sequential-in-time approach leads to a dynamical system for the parameters
and this dynamical system is integrated forward in time with standard time-integration schemes
to compute the parameters that represent the approximate solution field over time. Fitting the
parameters sequentially in time with a dynamical system is key for deriving a dynamical system
for the ensemble of particles so that it can be moved along in time and lead to an efficient training-
loss estimation. It is important to note that with our approach the particle dynamics can be
derived for a wide range of nonlinear parametrizations, which is in stark contrast to the previous
work [11] that also proposes an active learning scheme but one that is only applicable with a
limited class of nonlinear parametrizations, namely shallow neural networks with exponential
units. Numerical experiments indicate that integrating forward in time the coupled parameter
and particle dynamics circumvent the sampling issue even for problems with local features and
with high-dimensional spatial domains.

The paper is organized as follows. In Section 2 we briefly review nonlinear approximations
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methods based on the Dirac-Frenkel variational principle such as Neural Galerkin schemes and
mathematically formulate the challenge of sampling to compute residual-based quantities for
training. In Section 3, we derive Neural Galerkin schemes with coupled parameter and particle
dynamics. Numerical results are reported in Section 4 and conclusions are drawn in Section 5.

2 Preliminaries

We briefly describe the need for nonlinear parametrizations for approximating efficiently solu-
tions of certain classes of PDEs in Section 2.1 and discuss Neural Galerkin schemes based on
the Dirac-Frenkel variational principle in Section 2.2 for numerically solving PDEs with nonlin-
ear parametrizations. The problem formulation is given in Section 2.3, where we describe that
training nonlinear parametrizations is challenging because solutions of precisely those classes of
PDEs where nonlinear parametrizations are beneficial in terms of approximation theory often
exhibit features that are local in the spatial domain.

2.1 The need for nonlinear parametrizations

Consider the following PDE

∂tu(t,x) = f(x, u), (t,x) ∈ [0,∞)×X , (1)
u(0,x) = u0(x), x ∈ X ,

where u : [0,∞)×X → R is a time-dependent field in a space U over the spatial domain X ⊆ Rd

and u0 : X → R is the initial condition. The right-hand side function f : X × U → R can
include partial derivatives of u in the spatial coordinate x. Note that f could depend on time
t and it is only for ease of exposition that we skip the time dependence in the following. We
consider either Dirichlet or periodic boundary conditions to make the problem (1) well posed,
which means that the boundary conditions can be imposed with a suitable choice of the space
U so that all functions in U satisfy the boundary conditions. As an alternative and for other
boundary conditions, they can be imposed via penalty terms, as we demonstrate with numerical
experiments in Section 4.

A typical approach in scientific computing to numerical solve PDEs such as (1) is to com-
pute an approximate solution ũ in a finite-dimensional subspace UN of U . The subspace UN
is spanned by N basis functions ϕ1, . . . , ϕN and the approximation ũ is a linear combination
of the basis functions with N coefficients θ1(t), . . . , θN (t) ∈ R. Such an approximation is lin-
ear in the parameter θ(t) = [θ1(t), . . . , θN (t)]T ∈ RN . There are classes of PDEs where it is
known that such linear approximations in subspaces can require high dimensions N . Often
such problems are transport-dominated in the sense that a coherent structure such as a wave
is traveling through the spatial domain. Notice that adaptive mesh refinement was introduced
for efficiently approximating such problems [8, 9]. We refer to the notion of Kolmogorov N -
width [15, 16, 32, 36, 54, 57, 58] and nonlinear model reduction [60] for more details about such
problems. Another class of PDEs for which approximations in subspaces as described above
becomes challenging is given by PDEs with high-dimensional spatial domains X . Discretizing
even moderately high-dimensional spatial domains X with regular grid-based techniques based
on linear approximations as described above becomes intractable quickly because of the curse
of dimensionality.

2.2 Nonlinear parametrizations and the Dirac-Frenkel variational principle

In cases where linear approximations in subspaces lead to slow error decay, one can resort to
parametrizations û : X × Θ → R that are nonlinear in the sense that the parameter θ(t) ∈
Θ ⊆ RN enters nonlinearly in the second argument of û. One example of such a nonlinear
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parametrization is given by deep neural networks that have time-dependent weights θ(t). In the
following, we restrict ourselves to parametrizations û that also impose the boundary conditions
that accompany the PDE in (1).

We now follow [11] and build on the Dirac-Frenkel variational principle [19, 33, 53] to derive
a dynamical system for θ(t) such that the corresponding parametrization û(·;θ(t)) numerically
solves the PDE in (1) over time; see also [2, 23, 43, 45, 69] for related work. The process is
analogous to the classical method of lines approach for numerically solving PDEs: The PDE (1)
is first discretized in space, which results in a dynamical system—system of ordinary differential
equations—that is then discretized and integrated forward in time to compute a numerical
solution of the PDE. Let us start with the residual of the PDE (1) at time t

rt(x;θ(t), θ̇(t)) = ∇θû(x;θ(t)) · θ̇(t)− f(x, û(·;θ(t))),

where θ̇(t) is the result of applying the chain rule to the time derivative of û(·;θ(t)). Define
Tθ(t) to be the space spanned by the component functions of ∇θû(·;θ(t)),

Tθ(t) = span{∂θ1(t)û(·;θ(t)), . . . , ∂θN (t)û(·;θ(t))} .

The space Tθ(t) is the tangent space of the manifold induced by the parameterization û at
parameter θ(t); we refer to [53] for details. We then seek θ̇(t) such that it leads to a residual
that is orthogonal in the following sense

⟨∂θi(t)û(·;θ(t)), rt(·;θ(t), θ̇(t))⟩ν = 0 , i = 1, . . . , N , (2)

where ν is a measure that is fully supported on X and ⟨·, ·⟩ν denotes the corresponding L2 inner
product. After transformations, the system of equations (2) can be represented as

M(θ(t))θ̇(t) = F (θ(t)) , (3)

with the operators defined as

[M(θ(t))]ij = ⟨∇θi(t)û(·;θ(t)),∇θj(t)û(·;θ(t))⟩ν , i, j = 1, . . . , N ,

and
[F (θ(t))]i = ⟨∇θi(t)û(·;θ(t)), f(·; û(·;θ(t)))⟩ν , i = 1, . . . , N .

Thus, to obtain a numerical solution û(·;θ(t)) of the equation (1), the dynamical system (3) is
integrated forward in time with a numerical time-integration scheme.

2.3 Problem formulation

For a limited class of PDEs and corresponding specific parametrizations, the operators M and
F of the dynamical system shown in (3) can be derived analytically, which is demonstrated in
[2, 45, 53] in the context of time-dependent nonlinear parametrizations. In many cases, however,
the operators M and F need to be estimated numerically. A common approach, especially if
the spatial domain X is higher dimensional, is to resort to Monte Carlo estimation from m
samples x(1), . . . ,x(m) ∈ X of the distribution ν. However, Monte Carlo estimators based on
un-informed sampling can have a high variance, for example if the solution u has local features
in the spatial domain and these local features are transported over time. Notice that this is a
problem where nonlinear parametrizations can achieve a drastically faster error decay than linear
parametrizations as discussed in the survey in [60] and the introduction in Section 1. To see the
sampling issue for such a problem, consider Figure 1a that shows an advecting wave governed
by the linear advection equation in one spatial dimension. By plotting the wave dynamics in the
time-space domain in Figure 1b, it can be seen that an un-informed sampling such as a uniform
sampling in the time-space domain is inefficient in the sense that only few samples will be in
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Figure 1: Features of solutions of transport-dominated problems are often local in the spatial
domain. The spatial locality makes un-informed sampling such as uniform sampling
inefficient for estimating the training loss of fitting nonlinear parametrizations, which
is analogous to the challenge of estimating the operators M and F of the system (3)
of our sequential-in-time approach.

regions where the solution is non-zero. While this is a toy example that is meant to demonstrate
the challenge of estimating the operators of the system (3), it is representative for a wide range
of transport-dominated problems that have local features in the spatial domain. We stress that
similar observations hold for global time-space collocation approaches, where an un-informed
sampling can require a large number of samples to accurately estimate the residual norm over
the time-space domain.

3 Neural Galerkin schemes with coupled parameter and particle
dynamics

We introduce Neural Galerkin schemes with dynamic particles. The particles empirically repre-
sent time-dependent measures that are coupled to the parameters θ(t) that represent numerical
approximations of the PDE solution fields. A coupled dynamical system integrates forward in
time particles and parameters together such that few particles are sufficient for accurately es-
timating the inner products with the residual in the Dirac-Frenkel variational problem (2) and
the parameters provide an approximation of the solution field in the Dirac-Frenkel variational
sense; see Figure 2.

This section is structured as follows. Section 3.1 and Section 3.2 introduce Neural Galerkin
schemes with projections that rely on time-dependent measures. The dynamics for the particles
that approximate the time-dependent measure are derived in Section 3.3, which then leads to
the computational procedure of Neural Galerkin schemes with dynamic particles in Section 3.4.
The computational procedure is summarized in algorithmic form in Section 3.5.

3.1 Projections with time-dependent inner products

Instead of projecting with respect to the inner product corresponding to a fixed measure ν as
in (2), we introduce a time-dependent inner product ⟨·, ·⟩µt that is adapted over time with the
time-dependent measure µt. The projection with respect to µt is

⟨∂θi(t)û(·;θ(t)), rt(·;θ(t), θ̇(t))⟩µt = 0 , i = 1, . . . , N , (4)
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Figure 2: The proposed Neural Galerkin schemes with dynamic particles couple the parameters
θ(t) given by the Dirac-Frenkel variational principle with the ensemble of particles
{x(i)

t }mi=1 so that few particles are sufficient for accurately estimating the operators Mt

and Ft of the system (5), even for problems with high-dimensional spatial domains and
when there are local features that travel over time such as waves and other coherent
structures.

with the corresponding Mt(θ(t)) and Ft(θ(t)) at time t given by

[Mt(θ(t))]i,j = ⟨∇θi(t)û(·;θ(t)),∇θj(t)û(·;θ(t))⟩µt , i, j = 1, . . . , N ,

and
[Ft(θ(t))]i = ⟨∇θi(t)û(·;θ(t)), f(·; û(·;θ(t)))⟩µt , i = 1, . . . , N .

Notice that Mt and Ft now depend on time and lead to the Neural Galerkin system

Mt(θ(t))θ̇(t) = Ft(θ(t)) . (5)

The aim is to adapt the measure µt over time t so that the inner product (4) can be numeri-
cally estimated efficiently. If the nonlinear parametrization û(·;θ(t)) is so expressive that the
component functions ∂θ1(t)û(·;θ(t)), . . . , ∂θN (t)û(·;θ(t)) of the gradient of û(·;θ(t)) span an N -
dimensional space and there exists θ(t) and θ̇(t) with norm |⟨rt(·;θ(t), θ̇(t)), rt(·;θ(t), θ̇(t))⟩µt | =
∥rt(·;θ(t), θ̇(t))∥2µt

= 0, then the corresponding θ(t) and θ̇(t) will lead to a zero residual norm
with respect to any other measure that has full support over X . Furthermore, under the expres-
siveness condition stated above, solving (4) for any measure µt implies that the residual norm
is zero for any other measure. Thus, under these idealized conditions, we are free to choose a
measure µt that is computationally convenient. In the following, we will select µt such that the
inner product (4) can be accurately estimated with few samples. Notice that even computing the
inner product in (4) with an approximation of µt is sufficient to obtain a zero residual norm with
respect to the actual µt. In numerical practice, the residual norm is typically not exactly zero;
however, as long as the residual norm is kept small, similar arguments hold at least heuristically
and provide a motivation for the following.

3.2 Selecting the time-dependent measure

The Neural Galerkin schemes proposed in this work adapt the space Tθ(t) over time following
the Dirac-Frenkel variational principle as discussed in Section 2.2 and additionally adapt the
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inner product ⟨·, ·⟩µt with respect to which the residual is set to zero.
To this end, we will consider schemes that use an inner-product with respect to evolving

measures µt which track Gibbs measures of the form

µG
t (dx) = Z−1

θ(t),θ̇(t)
exp

(
−Vθ(t),θ̇(t)(x)

)
dx, Zθ(t),θ̇(t) =

∫
X
exp

(
−Vθ(t),θ̇(t)(x)

)
dx , (6)

where the potential Vθ(t),θ̇(t) depends on the parameter θ(t) and its time derivative θ̇(t). These
Gibbs measures are general enough for our purpose.

There are multiple options for choosing µG
t . One option is setting

µG
t ∝ |rt(·;θ(t), θ̇(t))|2γν(·)γ , (7)

where γ > 0 is a tempering parameter. By construction, the samples from the measure µG
t

defined in (7) are concentrated where the squared residual is high and thus typically few samples
are sufficient to accurately estimate the inner products for the projections in (4).

Another option is
µG
t ∝ |û(·;θ(t))|γν(·)γ , (8)

with tempering parameter γ > 0, which means that samples are drawn in regions of the spatial
domain where the numerical solution û has large values. We will later consider the Fokker-
Planck equation where the solution û is approximating a probability density function and thus
sampling proportional to it leads to efficient estimators of the Neural Galerkin operators Mt

and Ft of (5).

3.3 Coupled system for the concurrent evolution of the parameters and the
time-dependent measure

There are several possibilities to concurrently evolve an approximation µt of the measure µG
t

and parameters θ(t) corresponding to the solution field evolve.

3.3.1 Langevin dynamics

A first option is to evolve the parameters θ(t) and measure µt concurrently via the system of
equations

Mt(θ(t))θ̇(t) = Ft(θ(t)) ,

∂tµt = α∇ · (∇µt + µt∇Vθ(t),θ̇(t)) ,
(9)

where α > 0 is a parameter that controls the separation of timescale between the evolution
of the parameters θ(t) and the measure µt. In the limit as α → ∞, the measure evolves
infinitely faster than the parameters, and since the equation for µt in (9) is the gradient flow
in Wasserstein-2 metric over the Kullback-Leibler divergence of µt from the Gibbs measure
associated with Vθ(t),θ̇(t), it realizes (6) at all times. However, it is important to note that (9)
leads to zero-residual dynamics for any α > 0, as long as the nonlinear parametrization of the
solution is expressive enough, as discussed at the end of Section 3.1. In practice, (9) can be
implemented by approximating the distribution µt by its empirical distribution over m particles
x(1)(t), . . . ,x(m)(t) as

µ̂t =
1

m

m∑
i=1

δx(i)(t) . (10)

This leads to the coupled system

M̂t(θ(t))θ̇(t) = F̂t(θ(t)) ,

dx(i)(t) = −α∇Vθ(t),θ̇(t)(x
(i)(t))dt+

√
2αdW (i)(t) , i = 1, . . . ,m ,

(11)
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where {W (i)(t)}mi=1 are m independent Wiener processes in Rd and the particles x(1)(t), . . . ,x(m)(t)
are used to estimate Mt and Ft as

[M̂t(θ(t))]l,j =
1

m

m∑
i=1

∇θl(t)û(x
(i)(t); θ(t))∇θj(t)û(x

(i)(t); θ(t)) , l, j = 1, . . . , N ,

[F̂t(θ(t))]j =
1

m

m∑
i=1

∇θj(t)û(x
(i)(t); θ(t))f(x(i)(t); û(·;θ(t))) , j = 1, . . . , N .

(12)

3.3.2 Stein variational gradient descent

We can also use Stein variational gradient descent (SVGD) [50] to derive dynamical systems
for the particles. The SVGD method deterministically approximates the gradient flow (9) in a
reproducing kernel Hilbert space with kernel K : Rd×Rd → R. Approximating the gradient flow
in an RKHS can be beneficial when the gradients of the potential V are noisy, which is typically
the case when taking the gradient of the potential involves differentiating a neural-network
approximation.

For using SVGD, we replace the equation for the measure µt in (9) with

∂tµt = α∇ ·
(
µtEx′∼µt [K(x′,x)∇Vθ(t),θ̇(t)(x

′)−∇1K(x′,x)]
)
, (13)

where we denote with ∇1K the gradient of K in its first argument. In practice, we approximate
µt with its empirical distribution as in (10) and obtain from (13) the particle dynamics

d

dt
x(i)(t) =

α

m

m∑
l=1

[∇1K(x(l)(t),x(i)(t))−K(x(l)(t),x(i)(t))∇Vθ(t),θ̇(t)(x
(l)(t))] , i = 1, . . . ,m .

(14)
The choice of the kernel K plays an important role in SVGD in theory and practice. In par-
ticular, a poor choice of the kernel can prevent convergence of (13) to the Gibbs measure (6)
with potential V [51] and even a failure of detecting non-convergence in practical settings [35].
However, as stated in Section 3.1, if the nonlinear parametrization is expressive enough, it is
sufficient in our case to compute the projections in (4) with respect to an approximation of the
measure µG

t .

3.4 Scheme for concurrently evolving parameter and particle dynamics

We now propose a numerical scheme to integrate the coupled system of parameter dynamics
(5) and particle dynamics given by, e.g., SVGD as in (14). Motivated by the heterogeneous
multiscale method [1, 25, 28], we propose to move forward the ensemble of particles {x(i)(t)}mi=1

with a faster time scale than the parameters θ(t) over time t given by the PDE (1).

3.4.1 Discretization in time

We discretize the dynamical system (5) of the parameters θ(t) in time. Let δtk > 0 be the
time-step size at time step k = 0, 1, 2, ... so that at time step k + 1 the time is tk+1 = tk + δtk.
Correspondingly, let ∆θk be the update that is applied at time step k to obtain θk+1 = θk +
δtk∆θk. The initial parameter is θ0, which is obtained by fitting û(·;θ0) to the initial condition
u0.

The update ∆θk at time step k is obtained by solving the time-discrete system

M̂k(θk,∆θk)∆θk = F̂k(θk,∆θk) , (15)

which is obtain after discretizing the time-continuous system (5) and estimating the operators
with Monte Carlo over the particles x

(1)
k , . . . ,x

(m)
k at time step k analogous to (12). Notice
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that (15) describes potentially nonlinear equations in ∆θk. For example, if the time-continuous
system (5) is discretized with implicit time integration schemes such as the backward Euler
method, then M̂k and F̂k can depend nonlinearly on ∆θk. In contrast, for explicit schemes,
system (15) is linear in ∆θk; we refer to [11] for more details.

To keep the notation manageable, we focus on the Runge-Kutta 4 (RK4) scheme [21] here.
The corresponding update is given by

∆θk =
1

6

(
∆θ

(1)
k + 2∆θ

(2)
k + 2∆θ

(3)
k +∆θ

(4)
k

)
,

where
M̂k

(
θk,∆θ

(1)
k

)
∆θ

(1)
k =F̂k

(
θk,∆θ

(1)
k

)
,

M̂k

(
θk +

δtk
2

∆θ
(1)
k ,∆θ

(2)
k

)
∆θ

(2)
k =F̂k

(
θk +

δtk
2

∆θ
(1)
k ,∆θ

(2)
k

)
,

M̂k

(
θk +

δtk
2

∆θ
(2)
k ,∆θ

(3)
k

)
∆θ

(3)
k =F̂k

(
θk +

δtk
2

∆θ
(2)
k ,∆θ

(3)
k

)
,

M̂k

(
θk + δtk∆θ

(3)
k ,∆θ

(4)
k

)
∆θ

(4)
k =F̂k

(
θk + δtk∆θ

(3)
k ,∆θ

(4)
k

)
.

(16)

The estimated matrices are

[M̂k(θ,∆θ)]l,j =
1

m

m∑
i=1

∇θl û(x
(i)
k ;θ)∇θi û(x

(i)
k ;θ) , l, j = 1, . . . , N ,

[F̂k(θ,∆θ)]j =
1

m

m∑
i=1

∇θj û(x
(i)
k ;θ)f(x

(i)
k , û(·;θ)) , j = 1, . . . , N ,

(17)

with the particles x
(1)
k , . . . ,x

(m)
k at time step k. Notice that ∆θ only formally enters in (17)

but does not change M̂k and F̂k and thus the four equations in (16) are linear in the updates
∆θ

(1)
k , . . . ,∆θ

(4)
k . This means that at each time step with RK4, four systems of linear equations

are solved.

3.4.2 Predictor-corrector scheme to update particles

To obtain the particles x(1)
k , . . . ,x

(n)
k for computing (17) at time step k, we first take a predictor

step because the potential Vθk,∆θk at time step k depends on θk and ∆θk, which is unavailable.
With a predictor step we compute ∆θ

(P )
k as an approximation of ∆θk to use in adapting the

particles. The predictor system is obtained with a forward Euler discretization of (5), so that

[M̂
(P )
k ]l,j =

1

m

m∑
i=1

∇θl û(x
(i)
k−1;θk)∇θj û(x

(i)
k−1;θk) , l, j = 1, . . . , N ,

[F̂
(P )
k ]j =

1

m

m∑
i=1

∇θj û(x
(i)
k−1;θk)f(x

(i)
k−1, û(·;θk)) , j = 1, . . . , N ,

(18)

which leads to a linear system of equations in ∆θ
(P )
k . Notice that the estimates M̂ (P )

k and F̂
(P )
k

are based on the particles x
(1)
k−1, . . . ,x

(m)
k−1 from time step k − 1.

We use the result of the predictor ∆θ
(P )
k to define the potential V

θk,∆θ
(P )
k

, which is then used
to update the particles as described in Section 3.3. The initial distribution is the empirical
measure µ̂k−1 from the previous time step k − 1. Integrating the particle dynamics forward in
time with a time-step size δτ > 0 until particle end time gives the particles at time step k,

x
(1)
k , . . . ,x

(m)
k .

9



Algorithm 1 Coupling parameter and particle dynamics in Neural Galerkin schemes

Input: {x(i)
0 }mi=1, θ0, K, δt

for k ← 1 to K do
∆θ

(P )
k ← predictor step (18) with the operators estimated with ensemble {x(i)

k−1}
m
i=1

{x(i)
k }

m
i=1← initialize with {x(i)

k−1}
m
i=1 from time step k−1 and then update as in Section 3.3

M̂k, F̂k ← Estimate the operators with ensemble {x(i)
k }

m
i=1

∆θk ← take a time step of system (15) with the estimated operators M̂k and F̂k

θk+1 ← θk + δt∆θk update parameters
end for

The time-step size δτ = δt/α with which the particles are integrated in time is controlled by the
parameter α of equations (11) and (14), respectively. The particles x

(1)
k , . . . ,x

(m)
k are then used

to compute (17) and solve for ∆θk to obtain θk+1. This process is repeated for all time steps
k = 1, 2, 3, . . . .

3.5 Computational procedure

We summarize the computational procedure of Neural Galerkin schemes with dynamic particles
in Algorithm 1. The procedure requires as inputs the parameter θ0 that is obtained by fitting
û(·;θ0) to the initial condition u0 of the PDE (1). Other inputs are the number of time steps K
and the time-step size δt. For simplicity, we use a fixed time step size δt = δtk for k = 1, . . . ,K.
Additionally, an initial ensemble of particles {x(i)

0 }mi=1 is required, which can be obtained by
sampling from the distribution that is proportional to the absolute initial condition |u0|.

The procedure consists of a loop over the time steps k = 1, . . . ,K corresponding to the
physical time t and a nested loop to integrate the particle dynamics over time τ as described in
Section 3.3. At each time step k = 1, . . . ,K, the predictor step gives ∆θ

(P )
k , which is then used

to compute the potential V
θk,∆θ

(P )
k

and its gradient for updating the particles. The particles

are initialized at time step k with the ensemble of particles {x(i)
k−1}

m
i=1 from the previous time

step k − 1 and then updated to the ensemble of particles {x(i)
k }

m
i=1 at time k. The particles

x
(1)
k , . . . ,x

(m)
k are then used to estimate M̂k and F̂k to assemble the system (15), which is then

integrated forward for one time step to obtain the update ∆θk and ultimately θk+1 = θk+∆θk.

4 Numerical experiments

In this section, we demonstrate Neural Galerkin schemes with coupled particles dynamics on
three numerical examples. We start with the one-dimensional Korteweg-de Vries (KdV) equa-
tion, for which we plot the particle dynamics for demonstration purposes. We then consider
transport equations and the Fokker-Planck equation in moderately high dimensions. We will
demonstrate the effectiveness of our adaptive sampling scheme with dynamic particles by com-
paring it to sampling from a measure ν that is fixed over time. In all three examples, ν is chosen
to be the uniform measure over the spatial domain X .

4.1 Korteweg-de Vries equation (KdV)

Consider the KdV equation

∂tu(t, x) + ∂3
xu(t, x) + 6u(t, x)∂xu(t, x) = 0 , (t, x) ∈ [0, 6]×X , (19)

over the spatial domain X = [−20, 40) and time range t ∈ [0, 6]. We consider the same initial
condition u0 as in [71] for which an analytic solution to (19) is available. The solution consists

10



of two solitons that approach each other, merge, and then separate again. We approximate the
solution by imposing Dirichlet boundary conditions on (19) via a penalty residual on the left
xl = −20 and right xr = 40 boundary point. Consider the residual at the boundary

r∂t (·;θ(t), θ̇(t)) = ∇θû(·;θ(t)) · θ̇(t)− g(·;θ(t)) ,

where the function g ≡ 0 is constant zero so that we penalize any deviation over time from the
value of initial condition at the boundary points. Then the residual that we project following
(4) is

r̄t(·;θ(t), θ̇(t)) = rt(·;θ(t), θ̇(t)) + ζ(r∂t (xl;θ(t), θ̇(t)) + r∂t (xr;θ(t), θ̇(t)))

where ζ > 0 is an adjustable weight we put on the boundary condition penalty. In this ex-
periment, we set it to ζ = 104 and note that in later examples we consider a different way
of imposing boundary conditions that does not require setting an adjustable weight. For the
nonlinear parameterization û, we use a fully connected feed-forward network with two hidden
layers, five nodes per layer, and sigmoid activation functions. The total number of parameters
is N = 45. We use the RK4 time integration scheme with a fixed time-step size δt = 10−4.

We compare our adaptive sampling scheme with dynamic particles to a static sampling that
keeps the distribution fixed as the uniform distribution over the spatial domain X . Our target
measure is set to µt ∝ |rt(·;θ(t), θ̇(t))|2ν(·) and the number of particles is m = 100, which is the
same number of samples drawn from the uniform measure at each time t. Particles dynamics
are imposed via SVGD as described in Section 3.3.2. The kernel is the Gaussian kernel with
bandwidth 0.05, the step size for SVGD is 0.05, and the number of SVGD steps is 500 at each
physical time t. The tempering parameter is set to γ = 0.25. SVGD particles are initialized
proportional to the fitted initial solution û(·;θ0) at t = 0.

Figure 3 compares the approximation of the solution obtained with Neural Galerkin schemes
with dynamic particles to the approximation obtained with static sampling. Dynamically moving
the particles leads to a good approximation of the solution that captures the local features
of this problem. In contrast, the accuracy of the approximation based on uniform samples
quickly deteriorates. A quantitative comparison between Neural Galerkin schemes with dynamic
particles versus static approaches is shown in Figure 4. The relative L2 error is computed with
respect to the analytic solution over the spatial domain X . As shown in Figure 4, Neural
Galerkin schemes with dynamic particles lead to orders of magnitude lower errors than static
sampling.

4.2 High-dimensional transport equations

Consider the advection equation

∂tu(t,x) + a(t) · ∇xu(t,x) = 0, u(0,x) = u0(x) ,

over the five-dimensional spatial domain X = [0, 10]5 for time range t ∈ [0, 1.2]. The time-
dependent transport coefficient is

a(t) = c⊙ (sin(πtad) + 5/4) ,

where c = [1, 2, ..., d]T , ad = 2 + 2
d [0, 1, ..., d − 1]T , and ⊙ denotes element-wise multiplication.

The initial condition u0 is a mixture of two non-isotropic Gaussian waves with means

µ1 =
11

10


1
1
...
1

 , µ2 =
3

4


1.5− (−1)1/(d+ 1)
1.5− (−1)2/(d+ 1)

...
1.5− (−1)d/(d+ 1)

 ,

11
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Figure 3: KdV: Neural Galerkin schemes with dynamic particles (left column) achieves an ac-
curate approximation of the solution field with only m = 100 particles, whereas static
sampling (right column) with m = 100 samples leads to inaccurate approximations
after only a few time steps.
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and covariance matrices

Σ1 =
1

200


2

4
. . .

2d

 , Σ2 =
1

200


d+ 1

d
. . .

2

 .

We enforce that the solution is zero at the origin with a penalty term that is applied similarly
as described in Section 4.1. The coefficient of the penalty term is ζ = 102 in this example.
The analytic solution of this equation can be derived via the method of characteristics; see [11]
for details. The analytic solution will serve as benchmark in this example. For the nonlinear
parameterization, we use a fully connected feed-forward network with two hidden layers, fifteen
nodes per layer, and sigmoid activation functions. The number of parameters is N = 345. We
use the RK4 time integration scheme with a fixed time-step size δt = 10−3.

We compare Neural Galerkin with dynamic particles to uniform sampling with m = 2500
samples over the five-dimensional domain X . The target measure µt is proportional to the
squared residual as in Section 4.1. In this example, we take 300 SVGD steps at each time t and
set the kernel bandwidth and the SVGD step size to 0.1. The tempering parameter is set to
γ = 0.25.

Figure 5 compares the analytic solution to the approximate solutions obtained with dynamic
particles and with static sampling and m = 2500 samples. The figure shows the marginals

umarg
i (t, x) =

∫ 10

0
· · ·

∫ 10

0
u(t, x1, . . . , xi−1, x, xi+1, . . . , xd)dx1 . . . dxi−1dxi+1 . . . dxd

for dimensions i = 1, . . . , d of the analytic solution, the numerical solution obtained with static
sampling, and the numerical solution obtained with Neural Galerkin and dynamic particles. The
results shown in Figure 5 indicate that 2500 uniform samples over the five-dimensional spatial
domain X are insufficient to capture the local features and so lead to a poor approximation of
the analytic solution. In contrast, if we dynamically adapt the particles over time, we obtain an
approximation that is in close agreement with the analytic solution in this example.

4.3 Non-Gaussian interaction systems described by the Fokker-Planck equation

We consider a system of d interacting physical particles in a bounded domain X = [−3, 11]d ⊂ Rd

with positions X1(t), ..., Xd(t) described by the stochastic differential equation (SDE)

dXi = fg(t,Xi)dt+
d∑

j=1

fK(Xi, Xj)dt+
√
2DdWi, for i = 1, ..., d, (20)

with one-body force fg : [0,∞) × R → R, a pairwise interaction term fK : R × R → R, the
diffusion coefficient D > 0, and independent Wiener processes Wi.
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Figure 5: High-dimensional advection: This figure shows the marginals of the analytic solution
(truth) and of the numerical solutions obtained with static sampling (uniform) and
dynamic particles (Neural Galerkin). With only m = 2500 samples, Neural Galerkin
with dynamic particles can predict well the local features of the solution in this mod-
erately high-dimensional example. In contrast, static sampling based on the uniform
distribution fails to provide meaningful predictions.

Fokker-Planck equation The joint density of the positions X1(t), ..., Xd(t) is governed by the
Fokker-Planck equation with homogeneous Dirichlet boundary conditions,

∂tu(t,x) =
d∑

i=1

−∂xi(u(t,x)hi(t,x)) +D∂2
xi
u(t,x) ,

with hi(t,x) = hi(t, x1, ..., xd) = fg(t, xi) +
∑d

j=1 fK(xi, xj). We consider this problem in

d = 8 dimensions, the one-body force fg(t,x) = 5×101/3

4 (sin(πt) + 3
2) − x, interacting term

fK(x,y) = 1
2d(y − x), and diffusion coefficient D = 0.5. The initial condition u0 is an isotropic

Gaussian density with mean 29
10 + 21

10(d−1) [0, 1, . . . , d− 1]T and variance σ2 = 0.1.

Parametrization and enforcing boundary conditions Since the solution u represents a proba-
bility density function, we parameterize the potential log u of u, instead of u directly. Addition-
ally, we enforce homogeneous Dirichlet boundary conditions via a product structure so that we
obtain the parametrization

û(x;θ(t)) = ûBC(x) exp(ûpotential(x;θ(t))) ,

where ûpotential is the parametrized potential and

ûBC(x) =

d∏
i=1

tanh

(
1

2
xi

)
tanh

(
1

2
(7− xi)

)
, x = [x1, . . . , xd]

T ,

such that ûBC(x) = 0 and û(x;θ(t)) = 0 at the boundary of the domain X . The parametrization
ûpotential of the potential is a two-layer fully connected network with sigmoid activation and 30
nodes per layer, with a total number of parameters N = 1230. As in previous examples, we use
the RK4 scheme with a fixed time step size δt = 10−3.

Monte Carlo mean and covariance Because no analytic solution is available but the mean and
covariance can be estimated with Monte Carlo sampling, we evaluate the quality of numerical
approximations by comparing their mean and covariance with those obtained with Monte Carlo
sampling. The benchmark mean and covariance are estimated with Monte Carlo with 105 paths
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Figure 6: The physical particles concentrate in the eight-dimensional domain over time, which
means that the density function u that is approximate by Neural Galerkin becomes
local in the spatial domain. However, the dynamic particles allow Neural Galerkin
schemes to adaptively keep track of the local behavior over time and give accurate
approximations, whereas uniformly sampling the spatial domain leads to large errors
in the predictions.

from the SDE given in (20). The mean and covariance of the Neural Galerkin approximations
û are estimated with self-normalized importance sampling, where the biasing density is the
Gaussian with the benchmark mean and covariance.

Quality of predicted mean and covariance We compare the proposed Neural Galerkin scheme
with dynamic particles to uniform sampling with m = 2500 samples over the eight-dimensional
domain X . We first consider the case where the target measure µt is proportional to the squared
residual. For the SVGD setup, we take 250 SVGD steps at each time step, with kernel bandwidth
0.05 and SVGD step size 0.5. The tempering parameter is set to γ = 0.5. As shown in
Figure 6, the mean of the positions of the physical particles described by (20) concentrate
over time so that the joint density u becomes local in the eight-dimensional spatial domain.
With m = 2500 samples from the static, uniform measure, mean positions cannot be well
approximated. In contrast, for the same number of m = 2500 samples, the proposed Neural
Galerkin scheme provides accurate predictions of the positions. We quantify the accuracy in
Figure 7 that shows the relative error in the mean and covariance with respect to the benchmark
Monte Carlo results. Plot (a) of Figure 7 shows the relative error of the mean, which is orders of
magnitude lower for Neural Galerkin approximations with dynamic particles than with uniform
sampling. Similarly, the relative error of the covariance estimate obtained with Neural Galerkin
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Figure 7: With dynamic particles, Neural Galerkin schemes achieve orders of magnitude higher
accuracy in predicting the mean and covariance of the positions X1(t), . . . , Xd(t). The
shaded region shows the minimum and maximum of the relative error over all dimen-
sions, while the bold line shows the average relative error. Because Neural Galerkin
schemes approximate the density, rather than providing sample paths as Monte Carlo
approaches, quantities of interest that involve the density function such as the entropy
can be computed.

and dynamic particles is also orders of magnitude lower than with uniform sampling. In fact,
for uniform sampling, the relative error of the covariance is larger than one, which means the
corresponding numerical solution is not predictive, which is in agreement with the results shown
in Figure 6. If we consider only the diagonal elements of the covariance matrix corresponding to
the Neural Galerkin solution with dynamic particles, then the relative error is about one order
of magnitude lower than the error averaged over all entries of the covariance matrix.

Computing the entropy with Neural Galerkin schemes In contrast to sampling paths of the
SDE (20) with Monte Carlo, we obtain an approximation of the density u of the positions
of X1(t), . . . , Xd(t) and thus can compute downstream quantities such as the entropy. For
comparison purposes, we estimate a density from Monte Carlo paths of the SDE (20) with kernel
density estimation (KDE) and use it to compute an approximation of the entropy. Figure 7(d)
compares the entropy approximation obtained with Neural Galerkin schemes and the entropy
obtained with KDE from Monte Carlo paths. For systems as the ones described by the SDE
(20), it is known that the entropy oscillates smoothly, which is captured well by the Neural
Galerkin approximation. The entropy approximation computed with Monte Carlo and KDE
also captures the oscillations but is less smooth and shows spurious jumps.
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Figure 8: This figure shows analogous results to Figure 7 except that in this figure the particle
dynamics are induced by the magnitude of the solution as in (8).

Sampling proportional to the magnitude of the numerical solution Now we impose dynamics
on the particles with the target measure being proportional to the magnitude of the solution,
as given in (8). In this case, we take 100 SVGD steps at each time step and set the kernel
bandwidth to 5.0 and the SVGD step size to 0.01. The rest of the setup is the same as above:
The tempering parameter is γ = 0.5 and the number of particles is m = 2500. Figure 8 shows
that the Neural Galerkin approximation with dynamic particles achieves a higher accuracy than
the approximation obtained via uniform sampling.

Capturing non-Gaussian behavior with Neural Galerkin schemes Because the solution u
represents a density, one may be inclined to just approximate it with a Gaussian density, with
mean and covariance that can be either estimated or computed via the solution of a system of
ordinary differential equations; see [11]. However, as we demonstrate in Figure 9, we consider
a configuration of the Fokker-Planck equation that leads to non-Gaussian distributions that are
captured well by the Neural Galerkin approximation. The results in Figure 9 demonstrate the
importance of approximating the density function rather than just the mean and covariance:
The Neural Galerkin solution approximates well the density in general, rather than only the
mean and covariance that would also be captured by a Gaussian approximation.

5 Conclusions

Nonlinear parametrizations such as deep neural networks can achieve a faster error decay than
traditional linear approximations from an approximation-theoretic perspective. However, numer-
ically fitting the parameters to realize the fast error decay is challenging and critically depends
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Figure 9: The density u given by the configuration of the Fokker-Planck equation that we con-
sider is slightly different from a Gaussian density. This plot shows that Neural Galerkin
approximations capture this difference well, which demonstrates the importance of
approximating the density function rather than just the mean and covariance of the
distribution.
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on the available training data for estimating the population risk with the empirical risk. The
results of this work indicate that actively adapting the measure that specifies where in the spatial
domain to collect data for training is essential for numerically approximating well solution fields
governed by evolution equations. The adaptive data collection is especially important when
solution fields have local features that move through the spatial domain over time, such as wave
fronts, phase transitions, and other coherent structures.
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