Vertical lonization Energies, Generalized
Kohn-Sham Orbital Energies, and the Curious
Case of the Copper Oxide Anions

Chandra Shahi,**+ Rohan Maniar,t#Jinliang Ning,T G'abor I. Csonka,tJohn P.

Perdew,*Tand Adrienn Ruzsinszky*t

tDepartment of Physics and Engineering Physics, Tulane University, New Orleans, LA
70118

tThese authors contributed equally to this work.
E-mail: schandra@temple.edu; perdew@tulane.edu; aruzsin@tulane.edu

Abstract

Are the vertical ionization energies from a bound electronic system, initially in its ground
state, equal to minus the corresponding exact Kohn-Sham orbital energies of density
functional theory (DFT)? This is known to be true for the first or lowest vertical
ionization energy. We show that the correction from time-dependent DFT arises from the
continuum and need not vanish. Recent work compared the experimental photoemission
thresholds of the molecules Cu;0-, CuO-, CuO— , and CuOz- with minus the
corresponding orbital energies from a generalized gradient approximation (GGA) and its
global and range-separated hybrids with exact exchange, finding striking differences
which were attributed to self-interaction error, strong correlation, or both.

Here we extend that work to include the local spin density approximation (LSDA), its
Perdew-Zunger self-interaction correction with Fermi-L"owdin localized orbitals (LSDA-

SIC), a quasi-self-consistent locally scaled-down version of LSDA-SIC (QLSIC), and the



Quantum Theory Project QTP02 range-separated hybrid functional, all but LSDA
implemented in a generalized Kohn-Sham approach. QTP02 impressively yields a near
equality for many sp-bonded molecules. But, for the copper oxide anions studied here,

none of the tested methods reproduces the experimental photoemission thresholds.

Introduction

A vertical ionization energy is the work to move an electron from a bound system in its
ground state to the bottom of the energy continuum, without relaxation of the nuclear
positions.! If the system is a single atom, there is no distinction between vertical and
adiabatic ionization. The smallest vertical ionization energy is a ground-state energy
difference at fixed external potential for the electrons, while the others are single-hole
ionization (excitation) energies. The vertical ionization energies are measured in a
photoemission spectrum.? For a molecule

or solid, the spectral thresholds are broadened by the nuclear vibration.

Work done prior to and in 1984 established3#that the smallest vertical ionization energy
equals minus the exact Kohn-Sham?® energy eigenvalue for the highest-occupied orbital. (The
exact Kohn-Sham potential is an effective potential that, acting on non-interacting electrons,
reproduces the exact ground-state electron density of the real interacting system.) An early
numerical construction of nearly-exact Kohn-Sham potentials for the spherical atoms He, Be,
Ne, and Ar by Zhao, Morrison, and Parr® supported this theorem for the first ion-
ization energy. Computationally-efficient local or semi-local approximations to the density
functional for the exchange-correlation are far from satisfying this ionization potential the-
orem, due to spurious self-interaction,2’-2 but hybrid functionals that mix in a fraction of
exact exchange are capable of satisfying it approximately, especially with optimal
materialdependent tuning,10 in which a parameter in the functional is adjusted for each

system for



internal satisfaction of this first ionization potential theorem.
Are the other vertical ionization energies also equal to minus the corresponding exact

Kohn-Sham orbital energies?11-13 There is numerical evidence that, for normally correlated
atoms and molecules with only s and p electrons, there is at least an approximate equality.
Chong, Gritsenko, and Baerends!! have made numerical and theoretical arguments for an
approximate equality, that is closer for ionization from valence levels than from core levels.
Table 1 compares the results of refs 6 and 11 for He, Be, Ne, and Ar with each other and

with measured vertical ionization energies provided in refs 6, 11, 14, and 15.

Bartlett, Lotrich, and Schweigert1213 have given a formal argument for an equality, based
on a time-dependent density functional theory (TDDFT):1¢ Let the electron be removed from
an initially occupied orbital i and moved to an initially unoccupied orbital a. Then, as a
approaches the top of the Rydberg series (€2= 0), the matrix elements that additively correct
the orbital energy difference e —€itend to zero. In the Appendix, we argue that, in a careful
treatment of the correction from continuum or unbound Kohn-Sham orbitals, the
correction itself need not vanish.

In 2018, Shi, Weissman, Bruneval, Kronik, and Ogut!” made some comparisons of ap-

proximations with the measured photo-electron spectral81? of the molecular anions Cuz20-,
Cu0-, CuO-2, and CuO-3. The first three had been studied earlier by the sophisticated

equation of motion coupled-cluster (EOM-CC) method,2%21 which reasonably matched the
experimental spectra for at least the first two strongly correlated molecules. Ref 17 computed
Kohn-Sham orbital energies with the PBE generalized gradient approximation to the
exchange-correlation energy, the PBEO global hybrid of PBE with 25% of exact exchange, two
optimally tuned range-separated hybrids (OT-RSH) with full exact exchange at long range,
and the GoWo quasi-particle corrections to PBEO and BHLYP. Because PBE orbital energies
can actually be positive for small negative ions (bound only by the use of a localized basis set

for the orbitals), ref 17 shifted the first PBE peak to match the PBE change of ground-state



total energy. None of these approaches agreed with experiment very well, a result that the
authors suggested might arise from self-interaction error’-%22 (partly corrected by the hybrid

functionals) and strong correlation (uncorrected by the hybrids).

Table 1: Comparison of numerical “exact” Kohn-Sham orbital energies for spherical atoms
from ref 6 (ZMP) and ref 11 (CGB), which agree well with one another and with experimental
vertical ionization energies cited in those articles or in refs 14 or 15. The agreement with
experiment is very close for valence orbitals, and not so close for 1s core electrons.
Relativistic effects are included in the experimental values, but are expected to be very small
for these atoms and orbitals. All energies in eV. (The experimental values for Ne 1s are
properly gas phase. The experimental value for Be 1s from ref 14 is for excitation to the Fermi
level of solid Be. Our value in parentheses approximately corrects that value by twice the
work function of Be (3.9 eV), a procedure that gives a useful correction for 1s removal from
Ne implanted?> in solid Cu, Ag, and Au).

Atom orbital i —€ZMP; —€CGB; Expt
He Ls 24.6 - 24.6°
Be 25 9.2 9.3 9.36:11
1s 114.7 122.3 111.84(119.6)
Ne 2p 21.5 21.6 21.6%
2s 44.7 44.8 -
1s 838.4 838.5 870.3,'* 870.4%°
Ar 3p 15.2 - 15.86

In this work, we extend their results to several more functionals: the local spin den-

sity approximation (LSDA),523 two self-interaction corrections to LSDA,%?425 and Bartlett’s
QTPO2 long-range-corrected hybrid.13

LSDA was the first approximation to the density functional for the exchange-correlation
energy. The Perdew-Zunger self-interaction correction?? to LSDA (LSDA-SIC), using
FermiLo"wdin localized orbitals24 that minimize the total energy, is exact for all one-electron
densities and has been applied here self-consistently. It is known to overcorrect LSDA in
regions where the electron density varies slowly over space, so we have also tried a locally-

scaleddown self-interaction correction (QLSIC),2> which is exact for all one-electron and all



uniform densities, and is implemented here quasi-self-consistently,26 using the same local

scale-down

factor for the SIC term in the effective potential as for the SIC term of the energy density. All
methods studied in our work except LSDA have been implemented in a generalized Kohn-
Sham approach, in which the effective potential for an orbital-dependent functional is not
constrained to be a function of position r alone. For LSDA, we have shifted the first peak of
the computed spectrum to agree with the corresponding difference of ground-state total
energies. This shift is strongly needed for LSDA, as for PBE. For the other tested functionals,
we put a vertical hash mark on the horizontal axis to show the corresponding
total energy difference for the first vertical ionization energy.

The QTPO2 functional from the Quantum Theory Project!3 is also a range-separated
hybrid with full exact exchange at long range. That feature is correct in atoms and small
molecules, but not in solids where the needed fraction of exact exchange at long range is the

inverse of the bulk dielectric function,?” a global material-dependent parameter (which

vanishes in a metal). The LYP correlation in QTPO02 is also incorrect for metals. The QTP02
parameters are not material-dependent but are determined using conditions that for a
hybrid functional are implied by a correct linear variation? of the total energy as a

function of fractional average electron number282° in the system between any two adjacent
integers (an effect observed for SIC-LSDA,22 but not for LSDA, before its exact derivation in
ref 3). Because the linear variation cannot be achieved exactly for all systems by a hybrid
functional with a finite number of parameters, two parameters were trained on a few small
molecules, including some that contain a 3d atom. Tests on eleven small organic molecules
have demonstrated that minus the occupied QTP02 orbital energies are impressively close
to reference vertical ionization energies with a mean absolute deviation of 0.36 eV in Table

IV of ref 13.



Computational details

The LSDA, LSDA-FLOSIC, and quasi-self-consistent LSIC calculations were performed us-
ing the UTEP-NRLMOL-based FLOSIC code.30-34 All calculations are spin-unrestricted and no

symmetry constraints are placed during FOD optimization. The FOD force tolerance is set to
5 x 10~ Hartree/Bohr and an energy convergence criterion of 10-¢ Hartree is chosen. To
better describe the diffuse valence electrons of the anionic molecules considered, the
standard NRLMOL basis set was supplemented with an additional s-type, p-type, and d-type
even-tempered bare Gaussian.3> QTP02 calculations were performed in the PySCF code.3¢
The energy tolerance was set to 10-7 Hartree and the aug-cc-pvqz basis set37 was used. Since
ref 17 found that the photoelectron spectra were insensitive to the difference between PBE
and PBEO bond lengths and bond angles (Fig. 1 of ref 17), we used the PBEO

geometries from ref 17.

Results and discussion

Figures 1-4 show our results for Cu20-, CuO-, CuO-2, and CuO-3, respectively. The
top panel is the experimental spectrum,17-19 with its natural vibrational broadening. The next
four panels are based on our calculated LSDA, LSDA-SIC, QLSIC, and QTPO02 orbital energies,
as explained in Section . The computed lines have been arbitrarily broadened by Gaussian
functions of width 0.1 eV, as in ref 17. The LSDA (but not the other) orbitalenergy spectra
have been shifted as described in Section . The upper limit of the plotted binding energy has
been extended beyond that in ref 17 to show more of the calculated spectra. We have used
the same total spin as in ref 17, whether or not it is a ground state for a given functional. For
example, for CuO-2, we use the triplet, which is the ground state

in LSDA and QTP02, although the singlet is the ground state in LSDA-SIC and QLSIC.

We do not see many consistent patterns in these figures. One is that, while the LSDA



highest-occupied orbital energy is positive in three of the four figures and negative but small
for CuO-2, which would put the first LSDA peak far too low compared to the experimental
one, the energy shift that brings the first peak into agreement with the LSDA energy
difference often places the LSDA first peak above the experimental one. This implies that a
full correction of the LSDA total energy would lower the ground-state energy of the neutral
more than it lowers the energy of the anion. The shifted LSDA spectra resemble the shifted
PBE spectrainref 17.

The LSDA (and PBE) spectra do not show large energy gaps between peaks. The self-
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Figure 1: Cu20- photoemission vertical ionization energies versus minus occupied orbital
energies computed from LSDA, LSDA-SIC, QLSIC, and QTPO02 density functionals, with
vibrational broadening for the experimental values and artificial broadening for the
computed values. The LSDA spectrum has been shifted to put its first peak at the
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical
hash mark shows the corresponding ground-state energy difference.

interaction corrections and the hybrid functionals tend to open gaps, which are sometimes
but not always present in the experimental spectra.
The LSDA-SIC results are unusually erratic, and especially in CuO-3, where Fig. 4 shows a

huge 4 eV difference between the first peak calculated from the orbital energy and from the

total energy difference. Figure 5 shows how the peaks for CuO- shift around as the global
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fraction of SIC is scaled up from 0% to 100%. In this figure, unlike the previous ones, all

calculated spectra have been rigidly shifted to make the first peak equal to the corresponding

total energy difference.

Binding Energy (eV)

Figure 2: CuO- photoemission vertical ionization energies versus minus occupied orbital
energies computed from LSDA, LSDA-SIC, QLSIC, and QTPO02 density functionals, with
vibrational broadening for the experimental values and artificial broadening for the
computed values. The LSDA spectrum has been shifted to put its first peak at the
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical
hash mark shows the corresponding ground-state energy difference. The very weak first
peakin the experimental spectrum has been interpreted recently as evidence for a long-lived
triplet excited state.38
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The first peak in QLSIC is far too low in Cu20-in comparison with the experimental first
peak. While QLSIC is rather accurate for many total energies and energy differences in sp
systems, it radically underestimates hydrogen and weak bonds.3° These results suggest the
need to find a better way to locally scale down the full self-interaction correction in many-

electron regions. A more correct local scaling is now under development.40

The QTPO02 range-separated hybrid, which predicts orbital energies in many organic

molecules in close agreement with measured vertical ionization energies, does not do the

Binding Energy (eV)

Figure 3: CuO—2 photoemission vertical ionization energies versus minus occupied orbital
energies computed from LSDA, LSDA-SIC, QLSIC, and QTPO02 density functionals, with
vibrational broadening for the experimental values and artificial broadening for the
computed values. The LSDA spectrum has been shifted to put its first peak at the
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical
hash mark shows the corresponding ground-state energy difference.
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same for the copper oxide anions. Although it is a range-separated hybrid with 100% of exact

exchange in the long range, like OT-RSH(a = 0.2) of ref 17, QTP02 gives rather different

results, and in CuO-and CuO-3its highest occupied orbital energy seems far too

negative.
To test the implementation of QTP02 in the libxc library and PySCF code that we used, we
computed the QTP02 highest occupied orbital energies for 16 small organic molecules (the

ones for which we could find reliable geometries) from Table S5 of Haiduke and Bartlett:13

H20, CO, HF, N2, F2, CH4, HCN, SiO, HCI, P2, CS, CCla, SiF4, CO2, NH3, and CFCls.

11
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Figure 4: CuO-s3 (isomer2, see Fig. 11 of ref 17) photoemission vertical ionization energies
versus minus occupied orbital energies computed from LSDA, LSDA-SIC, QLSIC, and QTP02
density functionals, with vibrational broadening for the experimental values and artificial
broadening for the computed values. The LSDA spectrum has been shifted to putits first peak
at the corresponding LSDA ground-state total energy difference. For the other functionals, a
vertical hash mark shows the corresponding ground-state energy difference.

The mean absolute deviation was 0.06 eV, and the mean absolute relative deviation was about

0.5%. Thus we believe that QTP02 has been implemented correctly.
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Figure 5: How the LSDA-SIC peaks for CuO- shift with the global fraction of full SIC, as it
increases gradually from 0% (the LSDA curve of Fig. 2) to 100%, Unlike in Figs. 1-4, all
calculated spectra have been rigidly shifted to position the first peak at the corresponding
total-energy difference.

Conclusions

The first vertical ionization energy equals minus the highest-occupied exact Kohn-Sham
orbital energy, although this condition is poorly satisfied by LSDA and PBE and the
improvement from SIC and hybrid functionals is not as reliable in the copper oxide anions as
might have been hoped. The most consistent improvement in the satisfaction of this

constraint comes from OT-RSH(a = 0.2), and then at the price of a material-dependent

13



parameter.
For all vertical ionization energies, the total energy differences*! from good generalized
gradient approximations (GGAs) and meta-GGAs are expected to be reasonably good
approximations, and certainly much better than their orbital energies. For the functionals
tested here, the most successful total energy differences were from LSDA.

The extension of the orbital-energy theorem to all vertical excitation energies neglects
the probably non-zero but possibly small correction of time-dependent DFT from the
continuum that we have found in the Appendix. The extension seems to be approximately
true in many sp atoms and molecules. It is not clear if it is even approximately true in the
copper oxide anions. One way to check this might be to compute an accurate electron density
for CuO- (38 electrons), and then make an accurate Kohn-Sham inversion (as in ref 42) to find
an
almost-exact Kohn-Sham potential and orbital energies.

No tested density functional approximation so far has produced even a good
approximation to this extension in the four copper oxide anions. ref 17 described the
transition-metal oxides as “stringent test cases for state-of-the-art computational methods”,
and for all we
know the copper oxide anions may be among the most stringent cases.

The disappointing performance of LSDA-SIC and LSIC is not without precedence, The
overcorrection of LSDA by SIC (with real Fermi-L"owdin localized orbitals) leads to unphys-
ical results in the Cu atom,*3 the Cr atom,#344 and the Cr dimer4* The way that LSIC scales

down the self-interaction correction in many-electron regions can lead to its own large
errors.39

This subject can be revisited as better self-interaction corrections*® and hybrid
functionals (both fully nonlocal functionals of the occupied Kohn-Sham orbitals) are

developed.
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Appendix: Vertical Ionization Energies in TDDFT

Suppose we have a ground-state of interacting electrons, and want to compute the excitation
frequency wiq from an occupied orbital 7 to an unoccupied orbital a. The frequency for a
noninteracting ground state of the same electron density is the Kohn-Sham orbital energy

difference wxsia = €q - €i (in atomic units). We must solve the Casida equations#>46

X 2
Qia,ia’(a)ia)\/ia’ = WiaVia (1)

.Q.ia,ia’(a)ia) =
(2)

w%{sméa.a’ + Q(MKSiawKSia.’)l/Q < ja|flla’c(wia)|';a" >

Here, the matrix element (between products of Kohn-Sham orbitals) of the Hartree

exchangecorrelation kernel fixc

<ia |foc((1)ia) |ia' > =

77 (3) d3r a3r' gi(r)p*a(r) fiaxc(r,r’, wia) p*i (r)pa(r’)
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of the interacting system provides the needed correction to wksia. Unless we neglect the
frequency dependence of the kernel (adiabatic approximation), the excitation frequency
must be found by iteration. All unoccupied states including the continuum+7:48 or unbound
states with €= 0 are included in principle. (In a practical calculation with localized basis
functions, this is achieved by using a large and flexible basis set.)

To find the vertical ionization energies, we let a approach the top of the Rydberg series or
the bottom of the continuum (e€z = 0). We can think about a limiting process in which the
system is confined near the center of a sphere whose volume V goes to infinity at the end of
the calculation. Since ¢a ~ V -/, the correction to wksia from each a’ tends to zero as V — oo,
but the continuum contribution need not tend to zero even though it also has ¢a ~ V -1/2,
since the sum over a’ up to any fixed positive continuum energy gives a contribution from the
Hxc kernel of order V (V-1/2)2= V0, The same effect is familiar in the calculation of the electron
density of a uniform noninteracting electron gas: Each occupied plane wave contributes a
term of order (V -1/%2)2) to the electron density, but the sum over plane waves up to the Fermi
energy gives a density of order V (V -1/2)2= V0, Thus in the vertical ionization energy from a
bound state i there is a correction to —€ifrom the continuum that need not vanish even for the

exact Kohn-Sham orbitals and orbital energies.
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