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Abstract 

Are the vertical ionization energies from a bound electronic system, initially in its ground 

state, equal to minus the corresponding exact Kohn-Sham orbital energies of density 

functional theory (DFT)? This is known to be true for the first or lowest vertical 

ionization energy. We show that the correction from time-dependent DFT arises from the 

continuum and need not vanish. Recent work compared the experimental photoemission 

thresholds of the molecules Cu2O−, CuO−, CuO−2 , and CuO3− with minus the 

corresponding orbital energies from a generalized gradient approximation (GGA) and its 

global and range-separated hybrids with exact exchange, finding striking differences 

which were attributed to self-interaction error, strong correlation, or both. 

Here we extend that work to include the local spin density approximation (LSDA), its 

Perdew-Zunger self-interaction correction with Fermi-L¨owdin localized orbitals (LSDA- 

SIC), a quasi-self-consistent locally scaled-down version of LSDA-SIC (QLSIC), and the 
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Quantum Theory Project QTP02 range-separated hybrid functional, all but LSDA 

implemented in a generalized Kohn-Sham approach. QTP02 impressively yields a near 

equality for many sp-bonded molecules. But, for the copper oxide anions studied here, 

none of the tested methods reproduces the experimental photoemission thresholds. 

Introduction 

A vertical ionization energy is the work to move an electron from a bound system in its 

ground state to the bottom of the energy continuum, without relaxation of the nuclear 

positions.1 If the system is a single atom, there is no distinction between vertical and 

adiabatic ionization. The smallest vertical ionization energy is a ground-state energy 

difference at fixed external potential for the electrons, while the others are single-hole 

ionization (excitation) energies. The vertical ionization energies are measured in a 

photoemission spectrum.2 For a molecule 

or solid, the spectral thresholds are broadened by the nuclear vibration. 

Work done prior to and in 1984 established3,4 that the smallest vertical ionization energy 

equals minus the exact Kohn-Sham5 energy eigenvalue for the highest-occupied orbital. (The 

exact Kohn-Sham potential is an effective potential that, acting on non-interacting electrons, 

reproduces the exact ground-state electron density of the real interacting system.) An early 

numerical construction of nearly-exact Kohn-Sham potentials for the spherical atoms He, Be, 

Ne, and Ar by Zhao, Morrison, and Parr6 supported this theorem for the first ion- 

ization energy. Computationally-efficient local or semi-local approximations to the density 

functional for the exchange-correlation are far from satisfying this ionization potential the- 

orem, due to spurious self-interaction,2,7–9 but hybrid functionals that mix in a fraction of 

exact exchange are capable of satisfying it approximately, especially with optimal 

materialdependent tuning,10 in which a parameter in the functional is adjusted for each 

system for 
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internal satisfaction of this first ionization potential theorem. 

Are the other vertical ionization energies also equal to minus the corresponding exact 

Kohn-Sham orbital energies?11–13 There is numerical evidence that, for normally correlated 

atoms and molecules with only s and p electrons, there is at least an approximate equality. 

Chong, Gritsenko, and Baerends11 have made numerical and theoretical arguments for an 

approximate equality, that is closer for ionization from valence levels than from core levels. 

Table 1 compares the results of refs 6 and 11 for He, Be, Ne, and Ar with each other and 

with measured vertical ionization energies provided in refs 6, 11, 14, and 15. 

Bartlett, Lotrich, and Schweigert12,13 have given a formal argument for an equality, based 

on a time-dependent density functional theory (TDDFT):16 Let the electron be removed from 

an initially occupied orbital i and moved to an initially unoccupied orbital a. Then, as a 

approaches the top of the Rydberg series (ϵa = 0), the matrix elements that additively correct 

the orbital energy difference ϵa −ϵi tend to zero. In the Appendix, we argue that, in a careful 

treatment of the correction from continuum or unbound Kohn-Sham orbitals, the 

correction itself need not vanish. 

In 2018, Shi, Weissman, Bruneval, Kronik, and Ogut17 made some comparisons of ap- 

proximations with the measured photo-electron spectra18,19 of the molecular anions Cu2O−, 

CuO−, CuO−2 , and CuO−3 . The first three had been studied earlier by the sophisticated 

equation of motion coupled-cluster (EOM-CC) method,20,21 which reasonably matched the 

experimental spectra for at least the first two strongly correlated molecules. Ref 17 computed 

Kohn-Sham orbital energies with the PBE generalized gradient approximation to the 

exchange-correlation energy, the PBE0 global hybrid of PBE with 25% of exact exchange, two 

optimally tuned range-separated hybrids (OT-RSH) with full exact exchange at long range, 

and the G0W0 quasi-particle corrections to PBE0 and BHLYP. Because PBE orbital energies 

can actually be positive for small negative ions (bound only by the use of a localized basis set 

for the orbitals), ref 17 shifted the first PBE peak to match the PBE change of ground-state 
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total energy. None of these approaches agreed with experiment very well, a result that the 

authors suggested might arise from self-interaction error7–9,22 (partly corrected by the hybrid 

functionals) and strong correlation (uncorrected by the hybrids). 

Table 1: Comparison of numerical “exact” Kohn-Sham orbital energies for spherical atoms 
from ref 6 (ZMP) and ref 11 (CGB), which agree well with one another and with experimental 
vertical ionization energies cited in those articles or in refs 14 or 15. The agreement with 
experiment is very close for valence orbitals, and not so close for 1s core electrons. 
Relativistic effects are included in the experimental values, but are expected to be very small 
for these atoms and orbitals. All energies in eV. (The experimental values for Ne 1s are 
properly gas phase. The experimental value for Be 1s from ref 14 is for excitation to the Fermi 
level of solid Be. Our value in parentheses approximately corrects that value by twice the 
work function of Be (3.9 eV), a procedure that gives a useful correction for 1s removal from 
Ne implanted15 in solid Cu, Ag, and Au). 

 
Atom orbital i −ϵZMPi −ϵCGBi Expt 

 

 

In this work, we extend their results to several more functionals: the local spin den- 

sity approximation (LSDA),5,23 two self-interaction corrections to LSDA,24,25 and Bartlett’s 

QTP02 long-range-corrected hybrid.13 

LSDA was the first approximation to the density functional for the exchange-correlation 

energy. The Perdew-Zunger self-interaction correction22 to LSDA (LSDA-SIC), using 

FermiLo¨wdin localized orbitals24 that minimize the total energy, is exact for all one-electron 

densities and has been applied here self-consistently. It is known to overcorrect LSDA in 

regions where the electron density varies slowly over space, so we have also tried a locally-

scaleddown self-interaction correction (QLSIC),25 which is exact for all one-electron and all 
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uniform densities, and is implemented here quasi-self-consistently,26 using the same local 

scale-down 

factor for the SIC term in the effective potential as for the SIC term of the energy density. All 

methods studied in our work except LSDA have been implemented in a generalized Kohn-

Sham approach, in which the effective potential for an orbital-dependent functional is not 

constrained to be a function of position r alone. For LSDA, we have shifted the first peak of 

the computed spectrum to agree with the corresponding difference of ground-state total 

energies. This shift is strongly needed for LSDA, as for PBE. For the other tested functionals, 

we put a vertical hash mark on the horizontal axis to show the corresponding 

total energy difference for the first vertical ionization energy. 

The QTP02 functional from the Quantum Theory Project13 is also a range-separated 

hybrid with full exact exchange at long range. That feature is correct in atoms and small 

molecules, but not in solids where the needed fraction of exact exchange at long range is the 

inverse of the bulk dielectric function,27 a global material-dependent parameter (which 

vanishes in a metal). The LYP correlation in QTP02 is also incorrect for metals. The QTP02 

parameters are not material-dependent but are determined using conditions that for a 

hybrid functional are implied by a correct linear variation3 of the total energy as a 

function of fractional average electron number28,29 in the system between any two adjacent 

integers (an effect observed for SIC-LSDA,22 but not for LSDA, before its exact derivation in 

ref 3). Because the linear variation cannot be achieved exactly for all systems by a hybrid 

functional with a finite number of parameters, two parameters were trained on a few small 

molecules, including some that contain a 3d atom. Tests on eleven small organic molecules 

have demonstrated that minus the occupied QTP02 orbital energies are impressively close 

to reference vertical ionization energies with a mean absolute deviation of 0.36 eV in Table 

IV of ref 13. 
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Computational details 

The LSDA, LSDA-FLOSIC, and quasi-self-consistent LSIC calculations were performed us- 

ing the UTEP-NRLMOL-based FLOSIC code.30–34 All calculations are spin-unrestricted and no 

symmetry constraints are placed during FOD optimization. The FOD force tolerance is set to 

5 × 10−4 Hartree/Bohr and an energy convergence criterion of 10−6 Hartree is chosen. To 

better describe the diffuse valence electrons of the anionic molecules considered, the 

standard NRLMOL basis set was supplemented with an additional s-type, p-type, and d-type 

even-tempered bare Gaussian.35 QTP02 calculations were performed in the PySCF code.36 

The energy tolerance was set to 10−7 Hartree and the aug-cc-pvqz basis set37 was used. Since 

ref 17 found that the photoelectron spectra were insensitive to the difference between PBE 

and PBE0 bond lengths and bond angles (Fig. 1 of ref 17), we used the PBE0 

geometries from ref 17. 

Results and discussion 

Figures 1−4 show our results for Cu2O−, CuO−, CuO−2 , and CuO−3 , respectively. The 

top panel is the experimental spectrum,17–19 with its natural vibrational broadening. The next 

four panels are based on our calculated LSDA, LSDA-SIC, QLSIC, and QTP02 orbital energies, 

as explained in Section . The computed lines have been arbitrarily broadened by Gaussian 

functions of width 0.1 eV, as in ref 17. The LSDA (but not the other) orbitalenergy spectra 

have been shifted as described in Section . The upper limit of the plotted binding energy has 

been extended beyond that in ref 17 to show more of the calculated spectra. We have used 

the same total spin as in ref 17, whether or not it is a ground state for a given functional. For 

example, for CuO−2 , we use the triplet, which is the ground state 

in LSDA and QTP02, although the singlet is the ground state in LSDA-SIC and QLSIC. 

We do not see many consistent patterns in these figures. One is that, while the LSDA 
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highest-occupied orbital energy is positive in three of the four figures and negative but small 

for CuO−2 , which would put the first LSDA peak far too low compared to the experimental 

one, the energy shift that brings the first peak into agreement with the LSDA energy 

difference often places the LSDA first peak above the experimental one. This implies that a 

full correction of the LSDA total energy would lower the ground-state energy of the neutral 

more than it lowers the energy of the anion. The shifted LSDA spectra resemble the shifted 

PBE spectra in ref 17. 

The LSDA (and PBE) spectra do not show large energy gaps between peaks. The self- 
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EXPT 

Binding Energy (eV) 

Figure 1: Cu2O− photoemission vertical ionization energies versus minus occupied orbital 
energies computed from LSDA, LSDA-SIC, QLSIC, and QTP02 density functionals, with 
vibrational broadening for the experimental values and artificial broadening for the 
computed values. The LSDA spectrum has been shifted to put its first peak at the 
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical 
hash mark shows the corresponding ground-state energy difference. 

interaction corrections and the hybrid functionals tend to open gaps, which are sometimes 

but not always present in the experimental spectra. 

The LSDA-SIC results are unusually erratic, and especially in CuO−3 , where Fig. 4 shows a 

huge 4 eV difference between the first peak calculated from the orbital energy and from the 

total energy difference. Figure 5 shows how the peaks for CuO− shift around as the global 
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fraction of SIC is scaled up from 0% to 100%. In this figure, unlike the previous ones, all 

calculated spectra have been rigidly shifted to make the first peak equal to the corresponding 

total energy difference. 

Binding Energy (eV) 

Figure 2: CuO− photoemission vertical ionization energies versus minus occupied orbital 
energies computed from LSDA, LSDA-SIC, QLSIC, and QTP02 density functionals, with 
vibrational broadening for the experimental values and artificial broadening for the 
computed values. The LSDA spectrum has been shifted to put its first peak at the 
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical 
hash mark shows the corresponding ground-state energy difference. The very weak first 
peak in the experimental spectrum has been interpreted recently as evidence for a long-lived 
triplet excited state.38 
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The first peak in QLSIC is far too low in Cu2O− in comparison with the experimental first 

peak. While QLSIC is rather accurate for many total energies and energy differences in sp 

systems, it radically underestimates hydrogen and weak bonds.39 These results suggest the 

need to find a better way to locally scale down the full self-interaction correction in many-

electron regions. A more correct local scaling is now under development.40 

The QTP02 range-separated hybrid, which predicts orbital energies in many organic 

molecules in close agreement with measured vertical ionization energies, does not do the 

Binding Energy (eV) 

Figure 3: CuO−2 photoemission vertical ionization energies versus minus occupied orbital 
energies computed from LSDA, LSDA-SIC, QLSIC, and QTP02 density functionals, with 
vibrational broadening for the experimental values and artificial broadening for the 
computed values. The LSDA spectrum has been shifted to put its first peak at the 
corresponding LSDA ground-state total energy difference. For the other functionals, a vertical 
hash mark shows the corresponding ground-state energy difference. 
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same for the copper oxide anions. Although it is a range-separated hybrid with 100% of exact 

exchange in the long range, like OT-RSH(α = 0.2) of ref 17, QTP02 gives rather different 

results, and in CuO− and CuO−3 its highest occupied orbital energy seems far too 

negative. 

To test the implementation of QTP02 in the libxc library and PySCF code that we used, we 

computed the QTP02 highest occupied orbital energies for 16 small organic molecules (the 

ones for which we could find reliable geometries) from Table S5 of Haiduke and Bartlett:13 

H2O, CO, HF, N2, F2, CH4, HCN, SiO, HCl, P2, CS, CCl4, SiF4, CO2, NH3, and CFCl3. 
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EXPT 

Binding Energy (eV) 

Figure 4: CuO−3 (isomer2, see Fig. 11 of ref 17) photoemission vertical ionization energies 
versus minus occupied orbital energies computed from LSDA, LSDA-SIC, QLSIC, and QTP02 
density functionals, with vibrational broadening for the experimental values and artificial 
broadening for the computed values. The LSDA spectrum has been shifted to put its first peak 
at the corresponding LSDA ground-state total energy difference. For the other functionals, a 
vertical hash mark shows the corresponding ground-state energy difference. 

The mean absolute deviation was 0.06 eV, and the mean absolute relative deviation was about 

0.5%. Thus we believe that QTP02 has been implemented correctly. 
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EXPT 

 

Binding Energy (eV) 

Figure 5: How the LSDA-SIC peaks for CuO- shift with the global fraction of full SIC, as it 
increases gradually from 0% (the LSDA curve of Fig. 2) to 100%, Unlike in Figs. 1−4, all 
calculated spectra have been rigidly shifted to position the first peak at the corresponding 
total-energy difference. 

Conclusions 

The first vertical ionization energy equals minus the highest-occupied exact Kohn-Sham 

orbital energy, although this condition is poorly satisfied by LSDA and PBE and the 

improvement from SIC and hybrid functionals is not as reliable in the copper oxide anions as 

might have been hoped. The most consistent improvement in the satisfaction of this 

constraint comes from OT-RSH(α = 0.2), and then at the price of a material-dependent 
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parameter. 

For all vertical ionization energies, the total energy differences41 from good generalized 

gradient approximations (GGAs) and meta-GGAs are expected to be reasonably good 

approximations, and certainly much better than their orbital energies. For the functionals 

tested here, the most successful total energy differences were from LSDA. 

The extension of the orbital-energy theorem to all vertical excitation energies neglects 

the probably non-zero but possibly small correction of time-dependent DFT from the 

continuum that we have found in the Appendix. The extension seems to be approximately 

true in many sp atoms and molecules. It is not clear if it is even approximately true in the 

copper oxide anions. One way to check this might be to compute an accurate electron density 

for CuO− (38 electrons), and then make an accurate Kohn-Sham inversion (as in ref 42) to find 

an 

almost-exact Kohn-Sham potential and orbital energies. 

No tested density functional approximation so far has produced even a good 

approximation to this extension in the four copper oxide anions. ref 17 described the 

transition-metal oxides as “stringent test cases for state-of-the-art computational methods”, 

and for all we 

know the copper oxide anions may be among the most stringent cases. 

The disappointing performance of LSDA-SIC and LSIC is not without precedence, The 

overcorrection of LSDA by SIC (with real Fermi-L¨owdin localized orbitals) leads to unphys- 

ical results in the Cu atom,43 the Cr atom,43,44 and the Cr dimer44 The way that LSIC scales 

down the self-interaction correction in many-electron regions can lead to its own large 

errors.39 

This subject can be revisited as better self-interaction corrections40 and hybrid 

functionals (both fully nonlocal functionals of the occupied Kohn-Sham orbitals) are 

developed. 
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Appendix: Vertical Ionization Energies in TDDFT 

Suppose we have a ground-state of interacting electrons, and want to compute the excitation 

frequency ωia from an occupied orbital i to an unoccupied orbital a. The frequency for a 

noninteracting ground state of the same electron density is the Kohn-Sham orbital energy 

difference ωKSia = ϵa − ϵi (in atomic units). We must solve the Casida equations45,46 

 X 2 

 Ωia,ia′(ωia)νia′ = ωiaνia (1) 
a′ 

Ωia,ia′(ωia) = 
(2) 

 

Here, the matrix element (between products of Kohn-Sham orbitals) of the Hartree 

exchangecorrelation kernel fHxc 

< ia|fHxc(ωia)|ia′ > = 

Z Z (3) d3r d3r′ϕi(r)ϕ∗a(r)fHxc(r,r’,ωia)ϕ∗i (r’)ϕa′(r’) 
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of the interacting system provides the needed correction to ωKSia. Unless we neglect the 

frequency dependence of the kernel (adiabatic approximation), the excitation frequency 

must be found by iteration. All unoccupied states including the continuum47,48 or unbound 

states with ϵa′ ≥ 0 are included in principle. (In a practical calculation with localized basis 

functions, this is achieved by using a large and flexible basis set.) 

To find the vertical ionization energies, we let a approach the top of the Rydberg series or 

the bottom of the continuum (ϵa = 0). We can think about a limiting process in which the 

system is confined near the center of a sphere whose volume V goes to infinity at the end of 

the calculation. Since ϕa ∼ V −1/2, the correction to ωKSia from each a′ tends to zero as V → ∞, 

but the continuum contribution need not tend to zero even though it also has ϕa′ ∼ V −1/2, 

since the sum over a′ up to any fixed positive continuum energy gives a contribution from the 

Hxc kernel of order V (V −1/2)2 = V 0. The same effect is familiar in the calculation of the electron 

density of a uniform noninteracting electron gas: Each occupied plane wave contributes a 

term of order (V −1/2)2) to the electron density, but the sum over plane waves up to the Fermi 

energy gives a density of order V (V −1/2)2 = V 0. Thus in the vertical ionization energy from a 

bound state i there is a correction to −ϵi from the continuum that need not vanish even for the 

exact Kohn-Sham orbitals and orbital energies. 
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𝝐 𝒊 = − 𝝐 𝐊𝐒 𝒊 

𝝐 𝒂 = 𝟎 

− 𝝐 𝐊𝐒 𝒊 ? 


