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Tensor-Completion-Enabled Stealthy False Data
Injection Attacks on IoT-Based Smart Grid

Bo Liu

Abstract—False data injection (FDI) attacks against power
system state estimation through manipulating measurements can
result in economic losses and grid operating security issues. FDI
attacks are stealthy to the traditional bad data detector. However,
existing FDM construction methods fail to consider the stealthiness
of attacks against machine-learning (ML) detectors. Since the
historical measorement patterns are generally utilized by ML
detectors, we apply the tensor completion (TC) technigue in
the FDM construction to manipulate compromised measurements
matching the historical measurement patterns. We propose a
novel convex TC-based FDI (TC-FDI) attack algorithm that
1) minimizes the nuclear norm of the compromised measurement
tensor to make the compromised measurements consistent with
the historical ones and 2) maximizes the Ll-norm of the
incremental voltage to ensure a sufficient negative impact on
the power system operation. Further, the reactance perturbation
strategy (RPS) is wutilized to detect the TC-FDI attacks hy
breaking the spatial and temporal corvelation of the compromised
measurements. Nomerical results on the IEEE 14-bus system
show the stealthiness of the proposed attacks to the statistic-hased
detectors and ML detectors. The efficacy of the RPS in detecting
TC-FDI attacks is also demonstrated.

Index Terms—False data injection (FDI), machine learning
(ML), reactance perturbation strategy (RPS), state estimation
(SE}), tensor completion (TC).

I. INTRODUCTION

HE SMART grid is experiencing a significant transfor-

mation as advanced Internet of Things (10T) technologies
become integrated in electricity facilities. Existing SCADA
communication standards, such as the TEEE C37.118 and TEC-
61850 frameworks, are known to have insufficient security
features {e.g., lack of encryption, etc.) [1]. Due to vulnerabili-
ties in ToT devices and communication protocols, cyberattacks
pose a threat to normal control and operation of the smart
grid. The state-of-the-art smart grid research has identified
the power system applications vulnerable to cyberattacks,
including state estimation (SE), wide-area damping control,
and automatic generation control. False data injection (FDI)
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attack is one of the most dangerous cyberattacks against
the SE in the smart grids, which results in the system
operator’s incorrect voltage estimation [2]. The attack manip-
ulates the output of SE by targeting loT devices, such as
PMUs and smart meters. As multiple operational applica-
lions use the voltage estimated by the SE in the operator’s
control room, the consequences of FDI attacks may include
economic loss, unstable system states, and even voltage
collapse [3].

Reactance perturbation strategy (RPS) has been utilized to
detect FDI attacks. The RPS frequently and actively changes
the transmission line reactance using the D-FACTS devices
to invalidate the attacker’s knowledge of the power system.
Multiple attack detection effectiveness metrics have been
proposed, and operation methods are accordingly proposed to
improve the RPS performance. In the simplified de model,
the rank of the composite matrix is widely used to measure
the detection effectiveness [4]. Lakshminarayana and Yau [3]
used the smallest principal angle of the Jacobian matrices
before and after RPS as the detection effectiveness metric,
and investigated the relationship between the attack detection
effectiveness and the associated cost. In the aliernating current
(AC) power system model, Lin et al. [6] derived explicit
approximations of measurement residuals to quantify the
effectiveness and hiddenness of RPS. It adopted the sensitiv-
ity analysis around the optimum point and derived explicit
approximations of residuals, and further jointly optimized
the detection effectiveness and hiddenness. The placement
of D-FACTS devices in RPS was studied in [7] and [#].
Liu and Wu |7] proposed an optimal placement that uses
the minimum number of D-FACTS devices to achieve the
maximum rank of the composite matrix. Lin and Wu [8]
proposed a graph-based placement method, which simulta-
neously maximizes the rank of the composite matrix and
eliminates unprotected buses.

Since the transmission ling reactance changes affect the
parameters, such as the power transfer capacity, voltages,
and generation outputs, the grid frequency might not be
maintained. Zhang and Deng [9] analyzed the impact of
line reactance changes on frequency stability, in which an
analytical relationship between the frequency stability and
perturbation parameters is derived based on the theory of
eigenvalue sensitivity. Zhang et al. [10] investigated the
impact of line reactance changes on small-signal stability
considering the system dynamics and presented a sufficient
condition for maintaining the stability of the power system
with RPS. Zhang et al. [11] proposed a novel RPS framework
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that explicitly considers system voltage stability by using
continuation power flow and voltage stability indices. The
limitation of RPS was discussed in [12]. In addition, a novel
parameter-estimate-first (PEF)-FDI attack was proposed to
remain stealthy to RPS, in which the power network parameter
estimation (NPE) is conducted first and then FDI attacks are
constructed using the estimated parameters [13].

Machine-learning (ML) methods have been extensively
applied to detect FDI attacks as a classification problem.
ML detectors have high detection capability and require no
extra defense costs, compared with the traditional defense
methods using protected meters [14]. Supervised ML-based
binary classifiers were presented to check the distance between
normal and compromised measurements [2]. Ozay et al. [15]
applied multple supervised methods, including perceptron,
k-nearest neighbor (k-NN), support vector machine (SVM),
and sparse logistic regression (SLR) to detect FDI attacks.
Esmalifalak et al. [16] first applied dimension reduction
to the measurements and then utilized distributed SVM to
classify the compromised measurements. Sakhnini et al. [17]
tested three classification techniques using different heuristic
feature selection techniques and concluded that the SVM and
the k-NN algorithms overperform artificial neural networks
in detecting FDI attacks. Semisupervised leaming methods
were also applied to detect FDI attacks, and the information
obtained from the unlabeled test samples was used for the
learning models. The basic idea is to cluster the normal and
compromised measurements into distinet regions in the feature
spaces. Esmalifalak et al. [16] proposed a Gaussian abnormal
detector (GAD) to detect the deviation in measurements,
and the outliers were identified as FDI attacks. However,
traditional FDI (TFDI) attacks do not consider the pattern
of the historical measurements in the attack construction,
Since the historical measurements are learned by the ML
detectors, ML detectors effectively detect the TFDI attacks
that are significantly different from the pattern of the historical
measuremenis.

To the best knowledge of the authors, the only work
considering the spatial and temporal limitations in FDI attack
construction is [18]. Du et al. [18] presented a single mixed-
integer linear programming (MILP) model for high-stealth FDI
attacks that aim to overload a set of lines. The attack model
minimizes the distance between the compromised measure-
ments and the center of the normal historical measurements.
Consequently, the attack (the compromised measurement) is
spatially well concealed among normal measurements. In this
case, the attack cannot be recognized as an outlier and remains
stealthy to advanced anomaly detection methods.

This article is motivated to resolve this drawback of the
TFDI attacks by proposing novel FDI attack algorithms that
utilize the tensor completion (TC) technique [19], [20]. We
propose a TC-based FDI (TC-FDI) attack algorithm, which
minimizes the nuclear norm of the historical measurement
tensor and maximizes the Ll-norm of the incremental volt-
age. The minimized nuclear norm enables the compromised
measurements to follow the patterns of the historical measure-
ments, and the maximized Ll-norm aims (o ensure a sufficient
negative impact. In addition, the proposed attack takes the
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attack equation of TFDI as a constraint to ensure the spatial
relationship of the compromised measurements for remaining
stealthy to the Chi-square detector.

Different from [18], the proposed TC-FDI attack neither
utilizes the objective function to force the compromised
measurements close to the center of normal data nor utilizes
constraints (o keep the compromised measurements inside the
boundary of the normal data. TC-FDI attacks take advantage
of the TC technique to resolve the drawback of the TFDI.
Since the TC technique can learn the spatial and temporal
correlation of normal historical measurements in the ensor,
the proposed attack utilizes the TC technique to fill in the
compromised measurements. Thus, the attacks remain stealthy
to anomaly detection methods.

The contributions of this article are summarized as follows.

1) We propose a defense—attack framework consisting of
a hybrid defense model and novel FDI attack algo-
rithms. The hybrid defense framework is composed of
a statistic-based attack detector and ML-based attack
detectors. To the best of our knowledge, the proposed
framework is the first of its kind in constructing stealthy
attacks to a hybrid defense model.

2) We present a novel TC-FDI attack algorithm in the AC
power system model. TC-FDI attacks account for the
patterns of the historical measurements and ensure the
spatial relationship of the compromised measurements.
The umiqueness of the attack lies in its stralegic balance:
minimizing the nuclear norm while maximizing the L1-
norm, resulting in a significant impact that is challenging
to detect. The key mathematical advancement is the
introduction of an attacker preference vector to convex-
ity the nonconvex problem.

3) We apply the RPS to detect the proposed TC-FIM
attacks by actively perturbing system configuration
using distributed flexible AC transmission system (D-
FACTS) devices. Further, we use the analysis to
demonstrate that the RPS can break the temporal and
spatial correlation of compromised measurement by the
TC-FDI attacks.

The remainder of this article is organized as follows. We
provide preliminaries and related work in Section IL In
Section 1ll, we propose the TC-FDI attack algorithm in the
AC power system model. In Section TV, we show how the
RPS can be used to detect the TC-FDI attacks. Case studies
are conducted in Section V., and this work is concluded in
Section VT,

II. PRELIMINARIES
In this section, we provide background knowledge of tensor,
TC, SE, FDI attacks, and the ML-based attack detectors as
preliminaries for the follow-up sections.

A. Notation

WVariables frequently used are summarized in Table I, where
boldfaced lowercase letters stand for vectors, and uppercase
letters stand for matrices and tensors. From the allacker's
perspective, subscript 0 denotes variables before attacks. For
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TABLE I
MNOMENCLATURE

o
g

Definition
System state vector
FI attack vector

Measurement vector

Historical measurement tensor
Compromised measurement tensor
D measurement mainx in state cstimation
Susceptance of line i (hetween bus i and f)
Todal number of sysiem buses
Taotal number of measurements
Index vector of time instants
Index vector of buses

R 2o NNun W

example, zp and z; stand for uncompromised and compro-
mised measurement vectors, respectively. From the defender’s
perspective, subscript (0 denotes variables before RPSs. For
example, Hy represents the original measurement matrix
before an RPS, and H, stands for the one after implementation
of an RPS at time r. In addition, variables preceded by A
represent changes in the variables. For example, Ax and Az
represent the malicious incremental voltage and malicious
incremental measurement injected by the attacker, respectively.

B. Tensor and Tensor Completion

A tensor is a multidimensional array, whose order is the
number of dimensions. Let M e RI1*E2%5 pe a third-order
tensor with elements M, j, r), where i = {1,2,...,1}.f €
,2,....h)and t = {1, 2,..., [z]. Slabs are 2-D sections of
a tensor that is defined by fixing one index. For a third-
order tensor, there are three types of slabs: 1) horizontal
slabs M(i, 3, :); 2) vertical slabs M, j, :): and 3) frontal slabs
Mi:, :, ). Let My, denote the mode-i matricization of M.
Specifically, the unfold operation along the ith mode on a
third-order tensor M is defined as My; € RY*! where i, j,1 =
(1,23} and i £ 8, j&£ L P

TC is a tool for recovering missing or unobserved entries in
tensors based on the low-rank property. TC has been used in
image/video inpainting [20], computer vision [19], ML [21],
and the SE in distribution power systems [22]. TC can learn
the spatial and temporal correlation of available entries in
the tensor. The TC problem can be modeled as a convex
optimization problem by minimizing the nuclear norm [20]

3
min _Elﬂr' IMa |,

s Mo =Tg (1

where M is the third-order tensor o be recovered, and T is
the observation tensor, £2 18 the sel of known elements in T,
and E;?':, a;|Mg; ||+ is the tensor trace norm of a third-order
tensor, defined in [20], with Z?:I a; = 1 and a; = 0. Note
that the nuclear norm operator sums the singular values of a
given matrix to approximate the rank of the matrix, which is
the tightest convex envelope for the rank of the matrix [20].
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C. FIDM Antack Against Power System State Estimation

An FDI attack manipulates SCADA measurements to mis-
lead the system operator's estimated voltage states by injecting
an attack vector a, i.e., 2, = 2y + a. The FDI attack vector
is delicately constructed to remain stealthy to the Chi-square
detector in SE. In the AC-FDT attack, if an FDI attack vector
a can be calculated by (3), the estimation residual remains the
same before and after the FDI attack, i.e., yz = ||[(Zo +a) —
hix + Ax)|lz = |lzo — h(x)|[|2 [23]

a = hix + Ax) — hix). (2)

0. Statistic-Based Bad Data Detectors

The Chi-square detector is a widely used bad data detector
(BDD) to detect the bad data in measurements. BDD calculates
the score ¥ = 31, [(z —hirﬁz"]fjaf], where z; is the ith
measurement, h,-(i}is the fth estimated measurement, and r:F‘-I
is the variance of the error in z;. If ¥ < 4y holds where
Vih = X{m_my 15 the threshold to ensure BDD has a false
alarm rate at 1 — «, it infers that the system is free of bad
data.

The cumulative sum (CUSUM) detector, introduced by
Page [24], is a statistical technique used for the detection of
shifts or changes in a process or system over lime. Assume
that the stream is initially Gaussian distributed N, o), let 5;
denote the high CUSUM value to detect a positive anomaly,
and T; denote the low CUSUM value to detect a negative
anomaly. 5; and T; can be updated by 5; = max(0, §;_; +
[(x; — w)/o] — k) and T; = max(0, T;_y — [(x; — ) /o] — k)
with S = 0 and Ty = 0, where x; is the ith stream data. A
change can then be detected if 5; = h or T; = h. Nole that
the bias k and the threshold f are control parameters, which
need to be chosen according to the application.

The largest normalized residual (LNR) detector is one of
the most widely used tools to identify the bad data, after
the bad data is detected. In the LNR detector, each residue
r=I— h.-(i“} is normalized with the diagonal elements of
the residual covariance matrix £ by (3). Then, the larpest
normalized residue is compared with a threshold value

i
,f-’ oy )
where r:" is the normalized residue of the ith measurement,
Qi = (1/Wy) — Hi®G;, G = [HT®WH! ®1-'H &), H;
i5 the fth row of Jacobian mairix H, W is a diagonal covariance
matrix W = diag{crl_z, crz_z. ...,ar,;z}, and o7 is the variance
of the error in the ith measurement z;.

E. Machine-Learning FDI Detectors

ML methods have been applied to detect FDI attacks based
on the fact that normal data and compromised data (due to
attacks) tend to be separated in a certain projected space.
In this article, multiple ML-based detectors are applied to
evaluate the stealthiness of the proposed attack, including
k-NN, SLR, 5VM, and GAD. Here, we briefly introduce
the SVM detector [16] since it supports the visualization of
the attack detection. The visualization can help highlight the
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Algorithm 1 TC-FDI Attack Algorithm
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Fig. 1. Framework of TC-FDI attack against the hybrid defense model,

characteristics of the proposed TC-FDI attacks in the simu-
lation. A principal component analysis (PCA) is first applied
to project the measurement data to a low-dimensional space.
The dimension reduction overcomes the challenge brought
by the high-dimensionality and redundancy of measurement
data in practical power systems, and it is also beneficial for
visualization. Then, the supervised classification method SVM
is proposed to detect stealthy FDI attacks [15], [16].

k-NN is widely used for classification problems as a non-
parametric supervised learning method. The & refers to the
number of closest neighbors to a given point, which serves
as the basis for predicting its label. SLR, a popular technique
for binary classification problems, extends the basic logistic
regression model by allowing for polynomial terms in the
input variables, making it capable of capturing nonlinear
relationships between the predictors and the response. The
GAD is one density-based anomaly detection method, which
builds a boundary around the training data and sets a threshold
on the estimated density. It is assumed that the training data
are normally distributed. GATD uses Gaussian density function
to estimate the probability of data points, and a threshold is
selected to identify the abnormal data.

IT1. TENSOR-COMPLETION-BASED FDI ATTACK

In this section, we present a defense—attack framework for
the TC-FDI attacks against a hybrid defense model. We first
define the capability and knowledge of the attacker in TC-FDI
attacks and then propose the mathematical model of TC-FDI
attacks in the AC power system model.

A, Defense-Attack Framework for TC-FIDN Attacks

We present a defense—attack framework consisting of a
hybrid defense model and a TC-FDI attacker in Fig. 1.

The hybrid defense model is proposed to detect FDI
attacks using both statistic-based attack detectors and ML-
based detectors. The TC-FDI attacker utilizes the TC technigue
to maintain the attack stealthiness to the hybrid defense
model and ensure a sufficient negative impact on the system
operation,

We propose the TC-FDI attack algorithm in Algorithm 1.
The input of the algorithm is 1) the attacked buses idx™* for
maliciously manipulating their voltage; 2) the length of time
steps for cavesdropping SCADA measurements; and 3) the
system configuration (line impedance and system topology). In

Input: Length of the historical measurement T, attacked buses
Output: Compromised measurements z,
Initialization: A null historical measurement tensor £y = &
while (the number of frontal slab of 7y < T') /f/ Construct Zg
Eavesdrop SCADA measurements #; al ime {
Append vec2meai(z;) to tensor Ly as the last frontal slab
Wail for next SCADA measurements at time f 4+ 1
end while
Apply AC SE to estimate the voltage X7 at time 1
Ca]m.llalc Tacobian matrix Hi{Xy) to linearize the AC-FDI model
Run TC-FDI model (14} to calculate Ax™®
ll] Calculate the compromised measurement z; according to (5)
11: return z,

SEEmRanswRe

the first step of Algorithm 1, the attacker constructs a historical
measurement tensor Zy. Specifically, the attacker constructs
a third-order tensor Zp € B™/*7 that collects the SCADA
measurements for T time instants. The tensor takes the form
of MEASUREMENT xBUS=<TIME. The element Zg(i,j, 1}
represents the measurement § for Bus j eavesdropped at time 1.
The measurement type in the TC-FDI attacks could include
active and reactive power injection, active and reactive power
flow, and voltage magnitudes in the AC model. Since the
number of transmission lines attached to each bus is different,
it is challenging to formulate a tensor that integrates the power
flow of all lines. Since at least one transmission line can be
assigned to each bus, we can integrate the power flow of one
transmission line associated with cach bus into the lensor, as
shown in Fig. 2.

Assume the attacker collects measurements for T time
instants, and then launches attack. In order o utilize the TC
technique, the attacker constructs the compromised measure-
ment tensor 7, based on the vector-form equation z, = zy+a
which we introduced in Section TI-I). The following equations
haold:

Zal: o idx)) = Zol:, -, idx)) + A

Ll idxg) = Zof(:, @, idxg) (4)
where idx) = {7} and idxy = {1. 2,..., T — 1} A is the
matrix form of a, and a is the malicious measurements injected
by the attacker whose value is determined by the malicious
incremental voltage Ax according to (2).

The compromised tensor Z, and its frontal slab Z,,(:, :, idx})
are shown in Fig. 2, where it is assumed that the attacker
aims to compromise the voltage of Buses 3 and 4 (idx™®
= {3,4]) at time T (idx}, = {T]) in the IEEE 14-bus system.
Four transmission lines are connected to Bus 2, and any one
of these lines is selected as the power flow measurement Lo
construct the tensor. For example, we can take the power flow
of Line 2-5 for Bus 2, Line 3-2 for Bus 3, and Line 4-3
for Bus 4 to construct the tensor. The measurements related
to the attacked buses (Buses 3 and 4) and their neighbors
(Buses 2, 5, 7, and %) need to be compromised, according
o the construction rule of FDI attacks (3) in [23]. Note
that idx; and idxy are the index vectors of compromised and
uncompromised measurements in the frontal slab, respectively.
In Fig. 2, the compromised measurements, highlighted in red,
are the missing values from the attacker’s perspective.
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Fig. 2. Compromised tensor and its frontal slab at T time instant.

If an attack modifies the voltage of Buses 3 and 4 without
considering the historical measurement pattern, it is likely that
the compromised measurements can be outliers. In this case,
the attack can be easily detected by ML detectors. Since the
TC technigue can learn the spatial and temporal correlation
of normal historical measurements in the tensor, the proposed
attack utilizes the TC technique to fill in the compromised
measurements. Consequently, the completed compromised
measurements (the red area) can avoid significant distinct from
the patiern of historical measurements.

In the second step of Algorithm 1, the attacker utilizes
the TC-FDI models proposed in the following section to
determine the optimal incremental vollage state Ax*. Note that
the attacker needs to estimate voltage at time T' before the
TC-FDI attacks. In the transmission system, the SE redundant
factor is usually around 2.5, It is likely that the voltage
magnitude, active power injection, and reactive power injection
of some buses have not been measured. Therefore, estimated
measurements by the SE also assist in filling the missing
entries in the defined tensor.

In the last step of the TC-FDI attack, the attacker can use the
TFDI model to calculate the malicious measurements at time
T using the optimal malicious incremental voltage determined
by the TC-FDI model. The compromised measurements in the
TC-FDI attack at time T can be expressed as follows:

zl =z} +h(%y + Ax*) — h(Ep). (5)

The estimation residual afier the attack is the same as the
estimation residual before the attack in the noiseless condition,
as shown in (8). Thus, the estimation residual of the attack is

less than the threshold, indicating stealthy to the Chi-square
detector

Ya = "?'-41 _h{?‘f &x*]ﬂz
= |z + A(X+ Ax*) — h(®) — h(X+ AxY)|,
= llzo — A2 < ik (6)

Since the SE residual after the attack is the same as the
estimation residual before the attack, there is no difference
between the averaged residual of normal measurements and
the averaged residual of compromised measurements. Since
the CUSUM detector is designed to detect the shift of
averaged estimation residual, the TC-FDI attacks are stealthy
to the CUSUM detector. Since each of the compromised
measurements follows Kirchhoff's circuit laws and power
injection balance, the compromised measurements should not
be identified as bad data by the LNR detector. In our case
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siudies, we will evaluate the stealiness of TC-FDI attacks
against the Chi-squared detector, LNR detector, and CUSUM
detector in noisy conditions.

B, TC-FII Attack Mathematical Model

In TFDI attacks, there is a tradeoff in selecting the value
of Ax. From the perspective of attack consequences, the FDI
attacks with large Ax lead to a sufficiently large negative
impact on the power system operation, whereas the FDI attacks
with small Ax may have a trivial negative impact. From the
perspective of attack detection, FDI attacks with large AX
value are more likely to be detected by the ML-based detectors
than those with small Ax. Thus, it is necessary to balance the
tradeofT to select an optimal incremental voltage value that
maintains a sufficient impact on the power system operation
while remaining stealthy to the ML-based detectors.

This article proposes a novel TC-FDI attack to calculate an
optimal malicious incremental voltage, which accounts for the
historical measurement pattern with sufficient impact on the
power system operation. The TC-FDI attack is proposed in (7),
which minimizes the nuclear norm of the compromised mea-
surement tensor and maximizes the L1-norm of the malicious
incremental voltage angle

3
min e |25 — AlAx], (N

iy Ey Ly Ax g LB
5.l a = h(Xr + Ax) — h(ET) (7.1}

vee(Zf, (idx;) ) = veo(Zf, (iax})) +a i =1,2.3(72)

vee(Zf, (idxp) ) = vee(Z, (idxj)) i=1,2,3  (7.3)
AX() =0 e idx)™ (7.4)
Axpif) = AX() = Axgp(f) je id}r.fj"s (7.5)

where the decision variable Ax is composed of the incremental
voltage magnitude and incremental voltage angle; o; is the
weight in the nuclear norm for the ith mode of tensor, and this
article sets a; = 1/3; & is the posilive weight parameter; idxg'“
and idx" are the index of buses free of attack and the index of
attacked buses, respectively; idx, € B™ and idxj, e RI*/*T—m
are the index vector of compromised and uncompromised
measurements in the ith mode of tensor Z7;. respectively.
vec is a vectorization operator that converts selected entities
in a matrix into a vector. For example, vcc{Z"ﬂ {idxf,}} is a
vector consisting of the entities in the matrix Z, selected by
idm_f,. and the dimension of vec{ij}{ide]}l is the same as the
dimension of idx’, ie., uﬁc{Z"”{idxf,}} e Bl Note that we
replace the voltage state xy with the attacker’s estimated state
X1, as the true state x7 is unknown.

Constraint  (7.1) is  the rraditional AC-FDI model.
Constraints (7.2) and (7.3) define the st mode, Znd mode,
and 3rd mode of the tensor under attack Z7,. Specifically,
idx’, in (7.2) identifies all entities in the mode i of the tensor
E’fﬂ to be compromised. uﬁc{Z"i}{idx;}} is a vector of the
compromised measurements, which are equal to the sum of
the vector of original measurements vcc[Z?‘-J{ide]} and the
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attack injection a. In (7.3), idx{, identifies all entities in If!.}
free of attacks. vec{ZE'ﬂ{ide}} is a vector of the measurements
free of attack, which is equal to the original measurements
vcc{zgj{idxa}l}, Constraint {7.4) ensures that the voltage of
the uncompromised buses in idx™* remains unchanged. In
(7.5), lower bound Axy, and upper bound Ax, are introduced
to allow but limit the malicious incremental voltage for the
attacked buses. We want to highlight that Ax = 0 is a feasible
solution, but it is not the optimal solution since the ohjective
function aims to maximize the |Ax|, .

However, it is challenging to solve the TC-FDI attack in
{(7) due to the nonlinear constraints. To address this issue,
we apply the first-order Taylor series expression on h{-) to
linearize the relationship between the measurements and states,
ie, hixy + Ax) = hixr) + HixpiAx, where Hixy) =
dhix)/3%|x—x, is the Jacobian matrix of h(x) at x = x7. Note
that since the Jacobian matrix is also needed to estimate the
voltage in the traditional AC-FDI attacks, the calculation of
the Jacobian matrix is not an extra burden for the TC-FDI
attack.

In addition, since the objective function is a sum of a convex
function and a concave function, the optimization formulation
{71 is a nonconvex optimization problem. We transform the
concave term to a plane p’Ax. Specifically, we convexify the
problem by introducing an attacker preference vector p €
", The entries in p reflect the attacker’s intention for each
bus in the system. The attacker can set the entries of p as
1, —1, and 0 to decrease, increase, and retain the voltage,
respectively. Multiple open-source packages can be used to
solve the following convex problem (7). such as CVX [25]
and CVXPY [26]:

3

|| ra !
L A RS

s.t. a = HXrIAX
(7.2)—(7.5). (8)

In summary, there are two main steps in constructing TC-
FDI attacks. In the first step, the attacker solves the convex TC
completion optimization model (8) to determine the optimal
injected voltage Ax*, in which linearization is employed to
make the problem solvable. In the second step, the attacker
constructs the compromise measurements using Ax* according
to (5), in which the nonlinear relation A(x) is used to accurately
calculate the compromised measurement.

min,
20 Ehy 2,

IV. DETECTION OF TC-FDI ATTACKS UsSING RPS
A. RPS Model

Since the proposed TC-FDI attacks are designed to be
stealthy to both the statistic-based detectors and the ML-based
detectors, it is necessary to provide extra defense for the power
systems. We propose to apply the RPS in the physical layer of
power systems to detect TC-FDI attacks, as shown in Fig. 3.
This work adopts the graph-based placement method [] to
determine the allocation of D-FACTS devices in RPS, which
ensures the maximum attack detection effectiveness with a
limited number of D-FACTS devices.
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Fig. 3. Framework of RPS applied to detect TC-FDT attacks,

According to the smart wire company, D-FACTS devices
use SHA-256, one of the most secure hashing algorithms, to
ensure the cryptographic integrity of all messages [27], such
that the system operator can securely send the setpoints to
D-FACTS devices. In addition, RPS updates the impedances
of the lines, leaving a limited attack window for the attacker,
who applies data-driven methods [28] to learn the system
configuration by collecting SCADA measurements. Thus, the
attacker does not have access to the impedances of all lines
equipped with D-FACTS devices, which is widely adopted in
RPS work.

The system operator is responsible for operating RPS
(determine the setpoints of D-FACTS devices) based on load
conditions. This work proposes an operation model (9) to
modify the impedance of the transmission lines equipped with
D-FACTS devices with two benefits. First, the controllable line
impedance enables system operators o control power flow,
which can be used to reduce the generation costs and system
losses. Second, the varying system configuration introduced by
RPS can prevent attackers from knowing the true system con-
figuration and thus contributes to detecting FDI attacks. Thus,
we apply an ACOPF model considering D-FACTS devices
as an RPS operation method to achieve these two benefits
simultaneously. In the ACOPF model considering D-FACTS
devices, the reactance of transmission lines equipped with
D-FACTS devices is introduced as decision variables in the
traditional ACOPF. The objective of the ACOPF model is to
minimize the weighted sum of the generation costs and system
losses, formulated as follows:

m’{nom 1(X) + rloss{X) (3)
st gp(f, V., P,.r) =0 (9.1)
go(6.V. Q. r) =0 o
hi (8, V. 1) = 0 ©3)
h(8,V,1r) <0 O
o — 6 (9.5)
< SV, i1 05
P spisp™, i=lng 6.7
g Eqsqr, i=l....n 09
- sns+or. i=1l...o 99)

where the decision variables X = [# V P, Q, r] are voltage
angle, voltage magnitude, generator active generation, gen-
eralor reactive generation, and the reactance of D-FACTS
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lines, respectively: and ny, ny, B, and npg are the number of
buses, lines, generators, and D-FACTS devices, respectively.
cost(X) is generation cost with a quadratic function of active
generator generation, and loss(X) is system loss. « is a
positive weight parameter. In the proposed ACOPF model,
{9.1) and {%.2) are nonlinear equality constraints of the nodal
active and reactive power balance, respectively. Constraints
{9.3) and (9.4) are nonlinear incquality of line power flow
limits corresponding to lines starting from from-end and to-
end, respectively. Constraint (9.5) sets the reference for the
voltage angle of the slack-bus, and (9.6) is vollage magnitude
constraint of each bus. Constraints (9.7) and (9.8) represent
the constraints on the active and reactive of power generation.
In (9.9), v in % reflects the physical capacity of D-FACTS
devices.

The following sections show that the RPS is able to break
both the temporal and spatial comelation of compromised
measurement in TC-FDI attacks. The sensitivities of the esti-
mation residual against reactance changes are derived in [6],
which provides a pathway to design a more effective RPS
specific to TC-FDI attacks. However, designing RPS specific
to TC-FDI attacks is bevond the scope of this work and will
be investigated in our future work.

B. Impact of RPS on Temporal Correlation in TC-FDI

One objective of the proposed TC-FDI models is to min-
imize the nuclear norm of the compromised measurement
tensor. In the dc noiseless condition, the compromised mea-
surement tensor £, can be constructed by defining its frontal
slab as follows:

Ldiag(Hox)S t=<T)

Palie D= | Laiag(Ho( + Ax)S (1 =T)

(10)

where diag(.) is a diagonal matrix operator, Hy is the original
measurement matrix without RPS, and L. and S are constant
matrices that perform elementary column or row operations for
converting diag(Hux‘,:'} to the tensor £, based on the definition
of 7. The superscript of x_ indicates that the voltage is free
of RPS.

The RPS frequently changes the susceptance of the lines
equipped with D-FACTS devices according to (). As the H
malrix in the SE contains the information of line parameters,
the H matrix under RPS is time-variant. Assume that H; is
the measurement matrix under the RPS at time instant 7. In
RPS, it is reasonable to assume that the attacker utilizes Hy to
construct the TC-FDI attacks for the following reasons. First,
the attacker may not detect the existence of RPS deploved in
the field. Second, the attacker can fail to obtain or estimate
accurate knowledge of the current system configuration due to
the narrow attack window under RPS. Therefore, the frontal
slab of the compromised measurement tensor constructed by
the TC-FDI attack under the RPS can be expressed as follows:

| Ldiag((Hg + AH,)x,)8 (t<T)
| Ldiag((Hy + AH)x, + HoAx)S (1 =T).
(1)

ZMTO 6

a
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Comparing ZM™ and Z,, the RPS breaks the temporal
correlation of the measurements in the TC-FDI attacks in
the following two aspects. First, when the system is free
of attacks (f < T), RPS influences the temporal correlations
of historical measurements, since the changes in the system
configuration AH, can cause nodal voltage changes and the
measurement changes at each time instant. Second, when the
system is under the attacks (f = T), RPS makes the injected
measurement HyAx inconsistent with previous measurements
under different system configurations Hy + AH;. Therefore,
the optimal solution of TC-FDI attack is also impacted by
AH; introduced by RPS.

C. Impact of RPS on Spatial Corvelation in TC-FDI

The TC-FDI model takes the FDI model (7.1) as constraint
such that the compromised measurements can satisfy the
spatial correlation, ie., the subject to the physical law of
the power system. RPS can break the spatial correlation of
the compromised measurements. Under the RPS, the com-
promised measurements in the TC-FDI attack at time T in a
noiseless condition can be expressed as zj; = Hyxy + HpAx*.
According to (3), the estimation residual in the defender's SE
is zero, i.e., yqrp = 0, if and only if HpAx™ € col(Hy). As
Hy # Hy, the estimation residual is likely larger than zero,
indicating the detection of TC-FDI attacks. Specifically, the
estimation residual of the TC-FDI attack under the RPS can be
expressed in (14). This is because the attacker uses incorrect
system configuration to construct the attack vector, which
violates the physical law of the power system. Therefore, the
RPS can break the spatial correlation of the compromised
measurement vector in TC-FDI attacks

wiro = |(Hrsr + Hodx) — Hr(THr) Bl (Hrxr + Ho.-}.x}"
_ I{i—ﬂr(ugﬂr}"ﬂ,{)ﬂuml. (12)

D TC-FDI Artack With Parameter-Estimate-First Strategy

If TC-FDI attackers detect that RPS is deployed in
the system, the attackers would know that inaccurate line
impedance used in the TC-FDI attack construction can cause
the attack detected by RPS. Inspired by [13], we further
enhance the TC-FDI attacks with a PEF strategy in the context
of RPS. PEF strategy estimates the impedance of unknown
lines related to attack buses, and then the attacker constructs
TC-FDI attacks using the estimated impedance. Specifically,
the PEF strategy uses SCADA measurements of single or
multiple sampling instants to estimate the line impedance by
solving a weighted least-square NPE in

N
min ) (2 — & P)' W — h&P) (13)
=1
where z; is the SCADA measurement sampled at instant ¢, N is
the number of measurement vectors, X is the bus voltage state
vector, p is the line impedance state vector, W is a diagonal
covariance matrix W = diag{crl_‘fcrz_l_. e ,cr,;z}, and c:r-'? is
the variance of the error in the ith measurement.
Hereafier, we use the PEF-TC-FDI attack to refer to the TC-
FDI attack with the PEF strategy. In the PEF-TC-FDI attack,
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the attacker first estimates the impedance of unknown lines p
related to attacked buses by (13), calculates the incremental
voltage Ax* by (B), and then constructs TC-FDI attacks
by (14) using p and Ax*

i, =1Ip+ hffT + ﬂ'x*! ﬁ} - h(i‘r-ii} (14)

Compared with TC-FDI attacks, PEF-TC-FDI attacks have
an extra parameter estimation step. However, the PEF strategy,
in fact, weakens the attacker's knowledge of the power system,
making TC-FDI attacks more realistic. In the case study, we
will evaluate the stealthiness of PEF-TC-FDI attacks against
RPS.

V. NUMERICAL RESULTS
A. Test Svstems and Simulation Setting

We first evaluate the performance of the TC-FDI attacks
against ML detectors and statistic-based detectors, and then
evaluate the detection effectiveness of the RPS against the TC-
FDT attacks.

An hourly load profile of ERCOT [29] is adopted and
scaled. Historical voltage states and measurements in the train-
ing and testing data set are generated by MATPOWER [30].
The measurements include active and reactive power injection,
active and reactive power flow, and voltage magnitude. We
adopt a 2.5 redundancy factor (i.e., a ratio between the
numbers of measurements and system slales) o guarantee
the observability of the system in AC-SE [31], [32]. The
measurement noise is assumed to be Gaussian distributed with
#zero mean and the standard deviation as 1% of the actual
measurement. The proposed TC-FDI attacks are modeled and
solved by the CVX package [25]. The ML detectors are trained
and tested using Skleamn package [33].

We constructs lensors using the active power injection, reac-
tive power injection, and voltage magnitude measurements.
The historical measurement tensor contains the measurements
of 50 time instants. Specifically, the tensor size is 3x 14x 50
In TFDI attacks, we use TFDI attack magnitude (AM) wu to
measure the range of incremental voltage as Ax e [(1 — u)x,
(1 + p)x]. A larger AM reflects a larger selection range of
Ax, but not necessarily a larger absolute value of Ax. We use
attack detection probability (ADP), which is defined as the
ratio of the number of detected attacks to the total number of
launched attacks, to evaluaie the stealthiness of FDI attacks
against ML detectors. A lower ADP value indicates a more
stealthy FDI attack.

B. Comparison Between TFDI and TC-FDI Attacks

We compare the performance of the TFDI attacks and TC-
FDT attacks against the SVM detector [16]. The SVM detector
supports the visualization in the attack detection process and
highlights the advantages of TC-FDI attacks. First, we collect
the SCADA measurements of 600 time instants as the normal
data free of attacks. The attacker continuously launches TC-
FDI from the 300th time instant to the 500th time instant
with & = 5, aiming to increase the voltage angle of Buses
2, 4, and 5. For the comparison, we also generate 200 TFDI
attacks from the 300th time instant to the 500th time instant
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Fig. 4. Comparison of TFDI and TC-FDI altacks against 5%M detector from
the 300th to 500th time instant, (a) TFDT attack with AM = 0.01. (b} TFDT
attack with AM = 0.1. (c) TFDI altack with AM = 0.3.

using AM = 0.01, AM = 0.1, and AM = 0.3, respectively.
In each TFDI attack, the voltage angles of Buses 2, 4, and 5
are compromised by randomly generated incremental values
within the AM. In total, we generate 200 TC-FDI attacks and
600 TFDI attacks.

In the SVM detector, the PCA dimension reduction is first
applied to 1000 measurement vectors, including 600 historical
measurement vectors, 200 compromised measurement vectors
by the TC-FDI attack, and 200 compromised measurement
vectors by the TFDI attack. For the visualization, 68-D
measurement data is reduced to two principal components with
more than 99% of the signal variance retained. We demonstrate
the 2-D plot of 1000 measurement data in Fig. 4, where the
AM of 200 TFDI attacks is 0.01, (L1, and 0.3 in Fig. 4{a)—{(c),
respectively. In Fig. 4{a), both TC-FDI attack data points and
TFDA attack data points overlap with the historical data. Tt is
necessary 1o mention that the VM detector identifies outliers
far from the cluster of the historical measurements in the 2-D
plot as the detected compromised data |16]. As the data points
of TC-FDI and the TFDI attacks remain inside of the cluster
of the historical measurements, these altacks are stealthy Lo
the SVM detector. In Fig. 4(b) and (c), more TFDI attacks
become outliers and are detected by the SVM detector with
the increase of AM. It is interesting to observe that some
artacks with large AM are also located inside the historical data
area in Fig. 4(c). This is because the attacks with large AM
could inject a small incremental voltage due to the definition
of AM.
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Fig. 5. Nuclear norm of TFDI and TC-FDI attacks.

We demonstrate the importance of the nuclear norm in the
attack construction against the SVM detector. The nuclear
norm of the compromised measurement tensor in TC-FDI
attacks and TFDI attacks with different AMs from the 300th
to 500th time instant are shown in Fig. 5. We mark all
attacks detected by the SVM detector by square. Note that the
proposed TC-FDI attacks and TFDI attacks with 0.01 AM are
not detected by the SVM detector, and thus we only highlight
the detected TFDI attacks with (.1 and 0.3 AMs. As 0.01 AM
is very small, the nuclear norm value of TFDI attacks with .01
AM is very close to the nuclear norm of the historical tensor
without attacks. It is seen that a larger AM results in a higher
nuclear norm value, indicating a low temporal correlation
between the compromised measurements and historical mea-
surements. Most detected TFDI attacks have relatively high
nuclear norm values, while most undetected TFDI attacks have
relatively low nuclear norm values. Therefore, the drawbacks
of TFDI attacks are summarized as follows: 1) there is no
guide for selecting the incremental voltage, and a random
selection of the incremental voltage could compromise the
historical measurement pattern; 2) TFDI attacks with small
incremental voltage can be stealthy to the SVM detector, but
they also have a low negative impact on the system; and
3) TFDI attacks with large incremental voltage can be detected
by the SVM detector. In contrast, the TC-FDI attacks remain
stealthy to the SVM detector by considering the temporal
correlation of the historical measurements.

We demonstrate the relationship between the tensor nuclear
norm and attack detection. The SVM detector is used to
detect 100 TFDI attacks and 100 TC-FDT attacks, Then, we
calculate the tensor nuclear norm increase (NNI) of detected
TFDI attacks, undetected TFDI attacks, and TC-FDI attacks,
respectively. For a given attack, its NNI is defined as &k =
[(1Zalls — 1 Zoll+)/ (N Zoll+)], where ||Zo]ls is the nuclear norm
of historical measurements free of attack and || 7. is that
of historical measurements under the attack. For example, an
attack with NNI k indicates that the attack will increase || Lo«
by £%. Fig. 6 shows the boxplot of NNI values of detected
TFDI attacks, undetected TFDI attacks, and TC-FDI attacks.
The boxplot shows that stealthy attacks generally have low
nuclear norm values. The proposed TC-FDI attacks have very
low NNI values. Even though an attack with a low nuclear
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norm value does not guarantee its stealthiness to ML detectors,
the attack with a lower nuclear norm is more likely 1o remain
stealthy to ML detectors.

C. Impact of Weights on the Performance of TC-FDI Attacks

We evaluate the impact of weights & in the objective
function of TC-FDI attacks on the performance of TC-FDI
attacks. Tt is assumed that the attacker launches TC-FDI attacks
with & weights 3, 4, and 5, respectively, in the 30{0th time
instant, aiming at increasing the voltage angle of Buses 2, 4,
and 5. The compromised measurements received by the system
operator and the compromised voltage angle estimated by the
system operator are shown in Fig. 7.

In Fig. 7, we show the normal measurement and compro-
mised measurement under TC-FDI attacks in a single time
instant. In Fig. 7(a), it is seen that the compromised voltage
angles of Buses 2, 4, and 5 are larger than the normal voltage
of these three buses. A larger A weight results in a larger
[|Ax|ly. In Fig. 7(b), all measurements related to the attacked
buses (Buses 2, 4, and 5) are compromised by the attacks.
Note that the TC-FDI attacks do not yield a distinct change
of measurement values, which contributes to the stealthiness
of the proposed attack against ML detectors.

D TC-FDI Artacks Against Statistic-Based BDD

We evaluate the stealthiness of TC-FDI attacks against Chi-
squared, LNR and CUSUM detectors in the IEEE 14-bus
system. For each detector, 400 normal measurements are used
to calculate the false positive rate and 400 TC-FDI attacks are
generated to calculate the ADP.
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TABLE 11
ADP oF TC-FDI ATTACKS AGAINST STATISTIC-BASED BDDs
Detector Chi-square LNR CLISUM
Mormal 1.25% 1.50% 1%
TC-FDI 1.25% 1.25% 0%

We apply the CUSUM detector in Python package [34]. Itis
assumed that the CUSUM detector receives normal measure-
ments from the 1st time instant to the 200th time instant, and
TC-FDI attacks continually compromise the measurements
trom the 201st time instant to the 400th time instant. When the
system is free of attacks, bias k and threshold h are selected
to ensure no false alert. Specifically, we set bias k to 1.02 and
threshold fi to 3, indicating 3 standard deviations above the
average CUSUM error summation under normal conditions.
When the system is under attacks from the 201st time instant
to the 400th time instant, it is seen that § and T do not trigger
any alert in Fig. 8. Since the residual of TC-FDI attacks is the
same as that of the normal measurements, there is no mean
shift for the residual.

We summarize the performance of three statistic-based
BDDs in Table T1. Due to the space limit, the residual and
LNR of normal and compromised measurements in Chi-square
and LNR detectors are not shown. It is seen that the ADP of
TC-FDI attack against each detector is similar to the false-
positive rate. Tt indicates the stealthiness of TC-FDI attacks
against statistic-based BDDs.

E. TC-FDI Attacks Against MI. Detectors

This section evaluates the stealthiness of TC-FDI attacks
against four different detectors, including SVM, k-NN detec-
tor [15]. SLR detector [15], and GAD [16]. The training
set includes the uncompromised measurement vectors of 500
time instants and the compromised measurement vectors of
500 time instants under the TFDI attacks. The testing set
includes 100 uncompromised measurement vectors and 500
compromised measurement vectors. Specifically, in the testing
set, we generate 100 TC-FDI attacks with A = 4, 100 TC-FDI
attacks with A = 5, 100 TFDI attacks with 0.05 AM, 100 TFDI
attacks with 0.1 AM., and 100 TFDI attacks with 0.2 AM. The
AM in TFDI and weight Ain TC-FDI are selected in a way
such that their average ||Ax|; are comparable, as shown in
3rd row of Table 111

Ineh0

TABLE 11
ADF OF ML DETECTORS AGAINST TFDT AND TC-FDI ATTACKS
Attack TFDI TC-FDI
Weight 0.05 0.10 0.20 4.0 5.0
| as]| 0.008 | 0017 0.033 0.008 0.013
SV 0,55 080 0.90 0,04 010
SLR 0.51 0.76 .85 0.02 0.08
KNN 050|079 084 0.06 0.15
GAD 0.13 0.43 D.68 .09 0.09

For the k-NN detector, k& value is optimized by searching
k={1,2,..., /M), where M™ is the number of training
samples. Specifically, under each & value, we conduct fivefold
cross-validation in the training data set, and the optimal &
value is selected which has the highest average F1 scores. The
SLR detector is solved using the Newton-CG solver and the
penalization parameter of the SLR is optimized by searching
in the interval [0.01, 1] based on fivefold cross-validation.
The maximum number of iterations is chosen as 1000, In
GAD. the compromised measurements in the training data
set are subsampled according to the principle of anomaly
detection (few abnormal data), such that the ratio of abnormal
data to normal data is 0.1. Since the PCA is applied on
the measurements, the assumption of independence for the
historical measurements helds for the Gaussian distributed
features. The training data set is used (o creale a mullivariate
Gaussian distribution model and the crossing validation data
set is wsed to select the best threshold. Finally, the SVM
detector with Gaussian kernel is applied to detect FDIT attacks,
since the data set is not linearly separable.

The ADP of four detectors against TFDI and TC-FDI
attacks is summarized in Table TI1. First, we can observe that
TC-FDI with &4 = 4 and TFDI with 0.05 AM have the
same average ||Ax|y, and TC-FDI with & = 5 and TFDI
with 0.1 AM have similar average [[Ax|;. It is seen that all
detectors are able to detect the TFDI attacks. Specifically, the
ADP of the detectors increases with the increase of AMs. For
the TFDI attacks with 0.1 AN, the ADP of most detectors is
around #0%. For the TC-FDI attacks, the ADP of the detectors
slightly increases with the attack weight. For the TC-FDI
attacks with & = 4, the ADP of most detectors is below 6%.
For the TC-FDI attacks with A = 5, the ADP of most detectors
is below 10%, and the ADP of KNN is 15%. From the results
in Table 111, the TC-FDI attacks are highly stealthy FDI attacks
to traditional ML detectors,

FE Detection of TC-FDI Attacks Using RPS

This section assesses the detection effectiveness of the
RPS against the proposed TC-FDI attacks in the IEEE 14-
bus system. The graph-based planning method installs nine
D-FACTS devices on the transmission lines indexed by {1, 3,
4, 8 10, 12, 13, 17, 18} [3]. RPS utilizes the ACOPF-
based operation method (9) o generate the setpoinis of all
D-FACTS devices. Since the attacker does not know the actual
line reactance dispatched by RPS, it is assumed that the
attacker uses the original line impedance without the RPS to
continually launch TC-FDI attacks.
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Fig. 9. ADF of EPS against TC-FIDI attacks under different RPS magnitudes.

We generate RPS operation points (D-FACTS setpoinis)
using eight different RPS magnitudes 5 from (L0035 to 0.05
with an incremental of 0.005 to study the impact of RPS
magnitude on the detection effectiveness. Under each RPS
magnitude, the attack constructs 50 TC-FDI attacks using
weights A = 0.1 and A = 3, respectively. The ADP of RPS
is shown in Fig. 9. It is seen that the ADP of RPS increases
with the RPS magnitude. When the RPS magnitude is larger
than 0.02, the EPS method is able to detect all TC-FDI
attacks. This is because a larger RPS magnitude has a larger
capability to increase the estimation residual. When the attack
weight increases, the ADP remains the same under different
RPS weights. This is because the ADP is mainly determined
by the placement of D-FACTS devices under the given RPS
magnitude, which is consistent with the characteristics of RPS
in [8]. It is necessary (0 note that the incremental angle of
the TC-FDI attack is very small under the weight L = 0.1.
Therefore, the simulation results suggest that the RPS under
the graph-based placement with a large RPS magnitude is
effective in detecting TC-FDI attacks.

(. Detection of PEF-TC-FDI Attacks Using RPS

This section evaluates the detection effectiveness of the RPS
against the PEF-TC-FDI attacks. In PEF-TC-FDI attacks, it
is assumed thal the attacker has no prior knowledge of ling
parameters of all transmission lines connected to attacked
buses and uses the NPE {13) to estimate the line parameters.
We use rool mean-square ermror (RMSE) to measure the
accuracy of the line parameter estimation.

Consistent with the TC-FDI attacks in previous sections,
PEF-TC-FIM attacks compromise the voltage of three buses
{Buses 2, 4, and 5) in the IEEE 14-bus system. There are
10 transmission lines connected to three attacked buses, five
neighbor buses, and 35 measurements related to these eight
buses and ten lines. For each transmission line, there are
three line parameters. According to the standard m branch
model, a single transmission line i—f has three line parameters,
i.e., series admittance g;; + jby; and charging susceplance fy;.
Therefore, there are 30 unknown ling parameters for these
ten lines. This means that the NPE needs to estimate 16
voltage states (eight buses) and 30 line parameter states (10
lines) using 35 measurements. In this case, the system is not
observable. To simplify the problem, we further assumed that
the attacker knows the charging susceptance of all lines and
only needs to estimate the series admittance g + jby; of ten
lines.
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First, we evaluate the performance of NPE under different
numbers of measurement vectors and different numbers of
unknown lines. For the number of measurement vectors, we
consider the following two cases: 1) using measurements
sampled in a single instant (N = 1) and 2) using measurements
sampled in 10 instants (¥ = 10). When the number of
unknown lines increases from 1 o 10, we conduct NPE 100
times under different noises. The boxplots for the RMSE
of the estimated g and estimated & are shown in Fig. 10{a)
and (b), respectively. Tt is seen that the number of unknown
lines greatly impacts the accuracy of the estimated parameters.
When there are more than five unknown lines in NPE, the
accuracy of the estimated parameters is greatly reduced. This
is because the system becomes unobservable in the NPE due to
the increased number of states. In addition, more measurement
vectors contribute to improving the estimation accuracy. Tt
suggests PEF-TC-FDI attackers use more measurement vectors
to get more accurate estimated line parameters.

Second, we evaluate the detection effectiveness of the RPS
against the PEF-TC-FDI attacks. We construct four PEF-TC-
FDI aitack scenarios, as shown in Table I'V, in which the
mumber of attack buses is different. In each attack scenario,
we construct 100 PEF-TC-FDI attacks using the estimated line
parameters by NPE under N = 10. Table IV summarizes the
attack scenario, NPE performance, and ADP of the RPS. It
is seen that PEF-TC-FDA attacks with a single attack bus are
stealthy to RPS due to accurale estimated line parameters.
However, RPS can effectively detect PEF-TC-FDI attacks that
compromise multiple buses.

In summary, the stealthiness of PEF-TC-FDI attacks against
RPS is significantly impacted by the accuracy of the line
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TABLE IV
DETECTION OF PEF-TC-FDI ATTACKS UsING RPS

Scenaric 1 2 3 4
# Attack buses 1 1 2 3
Attack buses {2} {5} {24} {2.4.5}
# Unknown lines 4 5 ] 10
Median RMSE g 0002 0016 3.870 4410
Median RMSE & (005 0.165 24583 18110
ADP 0 0.0l 0.93 1.04)

parameter estimation, which is determined by the number
of unknown lines. More attacked buses lead to more line
parameters being estimated, thus degrading the stealthiness of
PEF-TC-FIM attacks. Note that TC-FDI attacks are designed to
remain stealthy to ML detectors in this work, and thus, TC-FDI
attacks generally compromise the voltage of multiple buses
to make the compromised measurements consistent with the
temporal correlation of historical measurements. Thus, RPS is
able to detect PEF-TC-FDI attacks that compromise multiple
buses.

From the defender’s perspective, it is necessary to increase
the frequency of RPS in order to reduce the number of
measurement vectors collected by the attacker. A smaller N
value contributes to reducing the accuracy of line parameter
estimation and improving the detection capability to detect
PEF-FDI attacks. In order to effectively detect PEF-FDI
attacks, it is necessary to combine RPS with other detection
methods, such as meter protection [35] and meter coding [36].
These joint methods can protect the buses with single trans-
mission lines from PEF-FDI attacks.

VI. ConNcLUSION

This article proposes novel convex TC-FDI attacks in AC
power system model, which balances the tradeofl between
the negative attack impact on the system operation and
attack stealthiness. Specifically, the objective function of
the proposed TC-FDI attack maximizes the L1-norm of the
malicious incremental voltage Lo increase the negative attack
impact, and minimizes the nuclear norm of the compromised
historical measurement tensor to make the compromised
measurements consistent with the historical measurements.
The linearized power system model is utilized as constraints
to make the proposed attack follow the spatial correlation
of the historical measurements. An RPS method is utilized
to detect TC-FDI attacks, in which D-FACTS devices are
integrated into the ACOPF model. Simulation results compare
the performance of TFDI and TC-FDI attacks against four
ML detectors and demonstrate the stealthiness of the TC-FDI
attacks. Simulation results also verify the effectiveness of RPS
in detecting TC-FIM attacks. In our future work, we will use
the local information of the attack area to construct TC-FDI
attacks, which contributes to reducing the computational time.
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