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Abstract—False data injection (FDI) attacks can bypass bad
data detection and mislead state estimation (SE), resulting in
economic losses and security issues. Existing FDI attacks consider
the spatial correlation without considering the temporal
correlations. Therefore, FDI attacks can correctly mislead the
traditional Weighted Least Square SE (WLS-SE) with desired
voltage incremental, but hard to accurately mislead the deep-
learning-based SE to the desired malicious voltage. This paper
first proposes a long-short-term-memory-based state estimator
(LSTM-SE), and then proposes a novel deep-learning-SE-aided
(DLSEA) attack detection framework. The proposed detection
framework utilizes the voltage estimation difference (VED)
between the WLS-SE and LSTM-SE to detect the attacks. A fully
connected neural network is utilized to classify the VED values
for determining either normal system conditions or under
cyberattacks. Numerical results in the IEEE 14-bus and IEEE
118-bus systems show the proposed LSTM-SE can approximately
estimate the true voltage under FDI attacks, and the proposed
detection framework can detect FDI attacks with 0.99 accuracy.
We further evaluate the impact of noises on the performance of
LSTM-SE and DLSEA.

Index Terms— State estimation, long short-term memory, false
data injection attack, deep learning detection.!

1. INTRODUCTION

Supervisory control and data acquisition (SCADA) systems
monitor the critical infrastructure, including oil pipelines, water
distribution and smart grids. However, the IoT and
communication techniques cause SCADA systems vulnerable
to cyberattacks [1]. The well-known Ukraine blackouts in 2015
and 2016 demonstrate the consequence of cyberattacks on the
power system operation, and also show the plausibility of a
cyberattack adversary regarding the knowledge and capabilities
[2].

False data injection (FDI) attacks are one of cyberattacks
designed to mislead the state estimation (SE) function in the
control room of smart grids. The FDI attacks manipulate
measurements in the SCADA system without being detected
by the bad data detector in SE, and therefore cause bias in the
estimated voltage [3]. Based on the manipulated voltage, FDI
attacks can cause different consequences, such as line
overloading, load shedding, unstable system states and even
voltage collapse [4]. Different defense mechanisms have been
proposed to detect, identify, and mitigate FDI attacks, such as
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protected sensors [5], phasor measurement unit devices [6],
watermarking, meter encoding, and moving target defense
methods [7], [8]. However, most of these defense methods
require expensive hardware devices.

Machine learning and deep learning (DL) methods have
been widely applied to detect FDI attacks, where the
cyberattack detection is formulate as a classification problem
[9]. Traditional machine learning methods, such as support
vector machine [10], Gaussian abnormal detector [11], and
multilayer perceptron [12], [13], are used to classify the
dimension-reduced normal and compromised measurements.
However, the detection accuracy of these machine learning
methods is limited.

DL methods can detect FDI attacks with high accuracy rates.
In DC power flow model, recurrent neural network (RNN), a
sequence classification algorithm, can detect FDI attacks with
an accuracy rate of 99% [14]. In AC power flow model, an
RNN architecture is used to detect FDI attacks, in which the
discrete wavelet transform algorithm is used to extract the
hidden time-frequency domain characteristics and features at
every specific time [15]. Kaplan et. al. presented a data-driven
fault prediction approach and load forecasting approach to
conduct fault diagnosis in SGSs, in which the LSTM algorithm
is used for feature extraction and fault prediction [16].
However, deep learning algorithms require a long time and
large amounts of data for the training process. Liu et al.
proposed an FDI attack detection model in which GRU is
added to the fully connected layer in convolutional neural
networks (CNN) [17]. The CNN-GRU network is designed to
train and update network parameters based on historical
measurement data of power grid, and extract spatial and
temporal characteristics of the data to implement efficient and
real-time FDIA detectors. However, the downsides of CNN
include a lack of temporal data modeling and long training time
[18].

Since the FDI attacks follow the physical laws of the power
system, these attacks can mislead the weighted least square
state estimation (WLS-SE) to obtain the malicious voltages
designed by the attacker. Specifically, the voltage estimated
by WLS-SE exactly equals the attacker’s malicious voltage
target. This is because the traditional SE methods typically
utilize the measurements from a single snapshot of the power
system without considering the historical measurements. If an
SE method learns from both the spatial and temporal
relationship of the historical measurements, its estimated
voltage under the FDI attacks will not exactly follow the
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malicious voltage target. Furthermore, the voltage estimated
by the learning-based SE method is likely to be closer to true
voltage than the attacker’s malicious voltage target.

Based on this observation, this paper first proposes a long-
short-term-memory-based state estimation (LSTM-SE), which
utilizes LSTM to estimate the voltage and the physical power
flow model to calculate the loss of the estimated
measurements. Then, this paper proposes a novel deep-
learning-state-estimation-aided (DLSEA) detection framework
to detect FDI attacks, in which a fully connected neural
network (FCNN) is used to classify the voltage estimation
difference (VED) between the estimated voltage by WLS-SE
and that by LSTM-SE. Case studies are conducted in the IEEE
14-bus and 118-bus systems to evaluate the performance of
the LSTM-SE, when the system is under attack and free from
attacks. We further evaluate the proposed detector in attack
detection.

The rest of this paper is organized as follows. In Section II,
we provide preliminaries and related work. In Section III, we
propose a LSTM-SE method and a novel DLSEA detector.
Case studies are conducted in Section IV, and the conclusion
is drawn in Section V.

II. PRELIMINARIES
A. AC Weighted Least Square State Estimation

In the power system, the SCADA measurements z€[]”
can be expressed by nodal voltage xell”, ie., z=h(x)+e,

where h(-) is a vector of nonlinear functions and e is the

measurement noise. System operators utilize the state
estimation, an important function in the energy management
system, to calculate the nodal voltage with the measurements
received from the SCADA system. In the AC power flow
model, SE is formulated as a weighted least square (WLS)
problem, as shown in (1). Gauss-Newton algorithm can be
used to solve the WLS problem.

min (z—h(x))" K(z-h(x)) (1)

where K = diag(o,?,0,°,...,0,) is a diagonal matrix of the
measurement noise covariance.
B. False Data Injection Attack

The mathematical model of FDI attacks is provided in this
subsection. An FDI attack constructs a compromised
measurement z, by injecting an attack vector a into the

original measurements z,, i.e., z, =z, +a . Note that Chi-2

detector is used to detect large measurement errors in the bad
data detector of the SE. However, FDI attacks are delicately
designed to remain stealthy to Chi-2 detector by following the
power flow model of the power system. In the AC power
system model, the FDI attack vector a can be calculated by a =
h(x + Ax)— h(x), where Ax is the voltage bias designed by
the attacker. In this case, the estimation residual of the FDI
attacks is same as that of the original measurement without
attacks, and thus the attack is stealthy to BDD [19].

C. LSTM

As a specialized type of RNN, LSTM includes memory
cells and gating mechanisms, enabling it to capture and retain
long-term dependencies in sequential data. LSTM addresses
the vanishing gradient problem of RNN, and thus is widely
used for handling sequential data and time series problems.
These memory cells are equipped with gating mechanisms that

regulate the flow of information, allowing them to selectively
remember or forget information at each time step. In an LSTM
cell, there are an input gate, a forget gate, an output gate, and a
cell state. The input gate i controls the flow of new
information into the cell, the forget gate h; determines what
information to discard from the cell state, and the output gate
o;regulates the flow of information from the cell to the output
of the LSTM [20].

The input of a single LSTM unit is the measurement z' at
time instant 7. h’ and h'" are the hidden vectors at time
instant ¢, and at the last time step #-1, respectively. Compared
with RNN, LSTM cell introduces three gates, namely, input
gate 7, forget gate £, and the output gate o. The mathematical
expression of the LSTM cell is given in (2).

[, =c(W,z'+W,h"" +b,)

ih
[, =0(W.z' +W,h"" +b,)
[,=0(W_z +W, h""+b,))
¢ =tanh(W_z' + W,h'" +b,) @

ch
¢ =L+,
y' =o(W,T, tanh(c')+b )
where VV[,Wf,Wn are the weights associated with three gates,

and b,,b .b, are the weights associated with three gates.

III. DEEP-LEARNING-STATE-ESTIMATION-AIDED DETECTION
FRAMEWORK

In this section, we first construct LSTM-SE to estimate the
voltage of the power system and then propose a DLSEA
detection framework to detect FDI attacks. The relationship
between the LSTM-SE (orange section) and the proposed
DLSEA detection framework (blue section) is shown in Fig. 1.

The LSTM-SE method is an important part of the proposed
DLSEA detection framework. First, the LSTM-SE method is
trained using the historical measurements to estimate the
voltage of the power system, and then the FCNN in the
DLSEA detection framework is trained as a binary classifier
using the historical normal measurements and compromised
measurements. After the LSTM-SE and the FCNN is well
trained, SCADA measurements sampled at each time instant
are fed into the proposed DLSEA detection framework to
determine whether the measurements are compromised by FDI
attacks.

SCADA measurement

at current time instant ¢

Training process of LSTM-SE Training process of FCNN

DLSEA framework|

Initialize LSTM

— Trained
o]

X
Calculate VED
Trained FCNN

Initialize FCNN

Prepare normal
measurements with label 0

Prepare compromised
measurements with label 1

| ‘WLS-SE |

D Xy

Calculate loss
Update weights

t=t+1
No

Yes

Fig. 1. The relationship between the proposed LSTM-SE and the proposed
DLSEA detection framework.
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A. LSTM-SE

This subsection proposes an LSTM-based SE method, in
which LSTM is applied to learn the voltage state correlations
using historical SCADA measurements. The architecture of
the proposed LSTM-SE method is shown in Fig. 2. The
measurements are fed into the LSTM neural networks, and the
output of these networks is system states, i.e., voltage
magnitude and angle of all buses. Note that the true voltage
states are unknown to the system operator, and thus, the error
between the estimated and true states cannot be used as the
loss function. The power flow model is utilized to map the
estimated states to the estimated SCADA measurements. The
physical power flow model can describe the relationship
between the power injection and power flow measurement

vector z =[Pm Q, P, Qf] and system state x=[v 0],

as follows:
P =Y VV(G,cos6,+B,sin6,)

J=N@)

0, = 2. VV,(G,sin6, +B, cos6))
J=N@ (3)
i _ _p2 :
Pl ==V G, +VV,(G,cos6, +B,sinb,)
Qr ==V B;+V V(G cos§, — B; sin6))
where P, and Q) are active and reactive power injection of
Bus i, respectively, and P,” and Q}’ are active and reactive

power flow of transmission line between Bus i and Bus j; Gj;
and Bj; are the real and imaginary part of the admittance matrix,
respectively; Vi is the voltage magnitude of Bus i; 6, is the

voltage angle difference between Bus i and Bus j; and N(i) is
the set of neighbor buses of Bus i.

LSTM-SE

Power flow model

Fig. 2. The framework of LSTM-SE.

For the loss function, we select cumulative mean square
error (MSE) between the actual measurements z and

1 R A
estimated measurements Z , i.e., L; :—Z(zt -2)(z,-2),
m-
where Z is calculated by the estimated states X based on the
power flow model (3). Then, we can update the weights and
biases of the LSTM using back-propagation.

B. DLSEA Detection Framework

In this section, we propose a novel DLSEA attack detection
framework that learns and classifies the voltage estimation
differences between the attacker’s malicious voltage and the
voltage estimated by the deep-learning state estimator. The
deep-learning attack detection framework is shown in Fig. 3. It
is assumed that the attacker maliciously injects FDI attacks a,
into the SCADA measurements z, at the current time instant .
When the SCADA system receives the latest measurements
(compromised measurement z; ), the system operator can

apply the proposed attack detection framework to determine
whether the system is under attack. The detection framework

applies both WLS-SE and LSTM-SE to estimate the voltage.
Then, a fully connected neural network is used to classify the
voltage estimation difference.

a‘ N $

z Xy [ Y.
Power System [—»(1) WLS-SE - S
VED| oo
LSTM-SE
X}

Fig. 3. The DLSEA attack detection framework.

DLSEA detection framework

»\N\
|

= 0/1

FCNN

The deep-learning attack detection framework is designed
based on three observations. First, the attacker’s malicious
voltage generally is not consistent with the temporal
correlation of historical voltage states. Second, the estimated
voltage by the LSTM-SE follows the temporal correlation of
historical voltage states, and thus will not exactly equal the
attacker’s malicious voltage. Third, the attacker’s malicious
voltage is unknown to the defender (system operator).
However, the traditional widely-used power system state
estimation method, i.e., WLS-SE, is vulnerable to FDI attacks.
Consequently, the estimated voltage by the WLS-SE is
considered to be equal to the attacker’s malicious voltage.
Therefore, the VED can be selected as the feature for an attack
detection classifier. The VED between the attacker’s
malicious voltage and the voltage estimated by the LSTM-SE
is approximated by the VED between WLS-SE and LSTM-SE,
defined as follows:

VED =X, —X, 4)
where X, is the estimated voltage from WLS-SE and X, is

the estimated voltage from LSTM-SE.

Then, an FCNN is constructed as a binary attack detection
classifier. The input lay has 2n-1 neurons (the number of
voltage states), and the output lay has one neuron. The width
and depth of the network is adjusted by the complexity of the
power system. The structure of FCNN for the IEEE 14-bus
and 118-bus systems is shown in Table I, where /i denotes the
number of neurons in the k-th hidden layer. For the hidden
layers, the rectified linear unit (ReLU) is selected as the
activation function since it can introduce the property of non-
linearity to a deep learning model and solve the vanishing
gradients issue. We adopt the sigmoid activation function for
the output layer, and thus, the activation function can map the
hidden layer output into the probability of the attack detection.

Table 1. The structure of fully connected neural network

System States k I
14 27 5 {100,200,400,200,100}
118 235 6 {100,200,400,400,200,100}

IV. CASE STUDY

We first evaluate the performance of LSTM-SE method in
estimating the voltage and then assess the performance of the
proposed detection framework in detecting FDI attacks. In SE,
there are 68 and 400 measurements in the IEEE 14-bus and
118-bus systems, respectively. In the case study, we have five
measurement type, including active power flow, reactive
power flow, active power injection, active power injection and
voltage magnitude. In each measurement, we adopt zero-mean
Gaussian distributed noise, that has a standard deviation as 1%
of the actual measurement. We train the LSTM-SE model with
different network structures, and then select the structure with
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the best performance based on cross-validation. The
algorithms are performed on a computer with an Intel Core 19-
13900 CPU and a Nvidia RTX 4090 24GB GPU.

The historical measurements and voltage are generated
using the one-year load profile of ERCOT Utility in the IEEE
14-bus system, and the one-year load profile of WECC in the
IEEE 118-bus system [21], [22]. 80% of the data is used as the
training data, and the remaining data is used as the testing data
for the LSTM-SE. The testing data for the LSTM-SE method
is further used as the normal measurements for the DLSEA
detection framework. Then, FDI attacks are launched on each
normal measurement vector. There are 3500 and 5000 FDI
attacks as the compromised measurements in the IEEE 14-bus
and 118-bus systems, respectively.

In each FDI attack, the voltage angles of one randomly
selected bus are compromised. The normal and compromised
data are divided into the DLSEA detection framework's
training and testing data. For the DLSEA detector, the
precision and the F1 score are used to measure its performance
in detecting FDI attacks.

We employed the Adam optimizer, recognized as one of
the most effective optimization algorithms, to optimize both
LSTM-SE and DLSEA models. Adam's adaptive learning
rates and momentum help expedite convergence and enhance
model performance across various tasks. We conduct random
search to determine the constant learning rates, batch size, and
model architecture based on the performance of the model.
Since LSTM-SE and FCNN classifier are both pre-trained
offline, the proposed DLSEA framework can achieve good
execution time. In the IEEE 118-bus system, the execution
time of LSTM-SE and FCNN is less than 2ms

A. Performance of LSTM-SE

In this section, we evaluate the accuracy of the voltage
estimation of LSTM-SE. The performance of LSTM-SE is
measured in quantity by the root mean square error (RMSE),

0_~2
formulated as RMSE =, /Z" 1M , where x’ and X, are
= n

the actual and estimated value of the i-th state, respectively.

We first demonstrate the voltage estimated by the LSTM-
SE under no attack and under attack conditions, respectively.
Under no attack conditions, the LSTM-SE’s estimated voltage
angle at 352 Day 12 AM is shown in Fig. 4(a). It is seen that
the LSTM-SE’s estimated voltage angle is almost the same as
the true voltage value. In Fig. 4(b), an FDI attack decreases
the voltage angle of Bus 7. It is seen that WLS-SE is
vulnerable to FDI attacks following the attack’s target.
However, LSTM-SE is robust to the FDI attacks, and its
estimation is closer to the true voltage of Bus 7. The
estimation accuracy of LSTM-SE under FDI attacks can
contribute to the effectiveness of the proposed detection
framework.

£~ L5TM
~= True voltage

-0.10 =

-0.15

-0.20 1

Voltage angle (p.u.}

-0.25 =
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(a) Voltage angle estimation under no attack

-0.10 & —f— WLS under attack
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-0.25 4

wvoltage angle (p.u.)
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(b) Voltage angle estimation under attacks

Fig. 4. The voltage estimation of LSTM-SE under no attack and attack
conditions.

Then, we compare the RMSE of LSTM-SE with that of the
traditional WLS-SE using measurements from the testing
dataset consisting of 3500-time instants. In Fig. 5(a), we can
see that the whiskers in LSTM-SE’s RMSE are similar to the
median of WLS-SE’s RMSE in voltage magnitude estimation.
The LSTM-SE outperforms the WLS-SE in voltage magnitude
estimation, but it performs slightly worse in the angle
estimation compared with WLS-SE. This is because the
voltage magnitudes of some buses are directly measured and
the angle of all buses is not measured.

le—2 le-3

1.0 - 41
| .
0.8 i 3 H
0.6 m
53} 2}
2 22
~ 0.4
1
0.2
T =
0.0 - . 0
‘WLS-SE LSTM-SE ‘WLS-SE LSTM-SE

(a) Voltage magnitude (b) Voltage angle

Fig. 5. Boxplot of RMSE in WLS-SE and LSTM-SE.

B. Performance of DLSEA Detection Framework

We evaluate the performance of the proposed DLSEA
detection framework in detecting FDI attacks in the IEEE 14-
bus and 118-bus systems. Historical measurements of 3500
and 5000 are labeled as normal measurements in the IEEE 14-
bus and 118-bus systems, respectively. Then, we generate one
FDI attack on each measurement vector, labeled as the
compromised measurements. In each FDI attack, the voltage
angles of one randomly selected bus are compromised, and
their incremental values are randomly selected according to
the uniform distribution A@=U/(0.086,,0.126,) , where 6 is

the average voltage angle at time instant 1. Thus, 10000
normal and compromised measurement vectors are divided
into the training and testing data for the DLSEA detection
framework in the IEEE 118-bus system and 7000 in the IEEE
14-bus system.

We conduct 5-fold cross-validation in the dataset of normal
and compromised measurements. The average precision,
accuracy, and F1 score in 5-fold cross-validation are shown in
Table II. It is seen that the proposed detection framework can
effectively detect FDI attacks with extremely low false
positive and false negative rates.

Table II. The performance of DLSEA detection framework.

System Precision Accuracy F1 score
14-bus 0.999 0.997 0.997
118-bus 1.000 0.999 0.999

We evaluate the performance of LSTM-SE and DLSEA
under three different Gaussian noise standard deviations (1%,
2%, and 3% of the actual measurement) in the IEEE 14-bus
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system. The performance of DLSEA detection is shown in
Table III. With a larger noise, the precision of DLSEA
decreases. When there exists 3% standard deviation, the
precision of DLSEA is 95.1%.

Table III. The performance of DLSEA framework under different noises.

Noise Precision Accuracy F1 score
0.01 0.999 0.997 0.997
0.02 0.989 0.994 0.994
0.03 0.951 0.973 0.973

V. CONCLUSIONS

Based on the recurrent network’s learning capability of
sequential data, this paper first applies LSTM networks to
construct LSTM-SE. We evaluate the performance of LSTM-
SE in the IEEE 14-bus system. The LSTM-SE outperforms the
traditional WLS-SE in voltage magnitude estimation with an
RMSE value lower than 0.002, but it performs slightly worse
in the angle estimation compared with the WLS-SE with an
RMSE value lower than 0.004. This paper found that the VED
of each state is close to zero in normal conditions, and the
VED of the attacked state becomes non-zero under FDI
attacks. Based on the characteristics of the VED, this paper
proposes a novel DLSEA detection framework to detect FDI
attacks against power system statics state estimation, in which
an FCNN is used to classify the VED as a binary classification
problem. In case studies, 5-fold cross-validation is conducted
on the normal and compromised measurement dataset in the
IEEE 14-bus and 118-bus systems. Simulation results verify
that the proposed DLSEA detection framework can effectively
detect FDI attacks with 0.999 precision. In future work, the
proposed detection framework will be applied to the
localization and data recovery of FDI attacks on power
systems.
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