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Abstract—False data injection (FDI) attacks can bypass bad 

data detection and mislead state estimation (SE), resulting in 

economic losses and security issues. Existing FDI attacks consider 

the spatial correlation without considering the temporal 

correlations. Therefore, FDI attacks can correctly mislead the 

traditional Weighted Least Square SE (WLS-SE) with desired 

voltage incremental, but hard to accurately mislead the deep-

learning-based SE to the desired malicious voltage. This paper 

first proposes a long-short-term-memory-based state estimator 

(LSTM-SE), and then proposes a novel deep-learning-SE-aided 

(DLSEA) attack detection framework. The proposed detection 

framework utilizes the voltage estimation difference (VED) 

between the WLS-SE and LSTM-SE to detect the attacks. A fully 

connected neural network is utilized to classify the VED values 

for determining either normal system conditions or under 

cyberattacks. Numerical results in the IEEE 14-bus and IEEE 

118-bus systems show the proposed LSTM-SE can approximately 

estimate the true voltage under FDI attacks, and the proposed 

detection framework can detect FDI attacks with 0.99 accuracy. 

We further evaluate the impact of noises on the performance of 

LSTM-SE and DLSEA. 

Index Terms— State estimation, long short-term memory, false 

data injection attack, deep learning detection.1

 

I. INTRODUCTION 

Supervisory control and data acquisition (SCADA) systems 
monitor the critical infrastructure, including oil pipelines, water 
distribution and smart grids. However, the IoT and 
communication techniques cause SCADA systems vulnerable 
to cyberattacks [1]. The well-known Ukraine blackouts in 2015 
and 2016 demonstrate the consequence of cyberattacks on the 
power system operation, and also show the plausibility of a 
cyberattack adversary regarding the knowledge and capabilities 
[2]. 

False data injection (FDI) attacks are one of cyberattacks 
designed to mislead the state estimation (SE) function in the 
control room of smart grids. The FDI attacks manipulate 
measurements in the SCADA system without being detected 
by the bad data detector in SE, and therefore cause bias in the 
estimated voltage [3]. Based on the manipulated voltage, FDI 
attacks can cause different consequences, such as line 
overloading, load shedding, unstable system states and even 
voltage collapse [4]. Different defense mechanisms have been 
proposed to detect, identify, and mitigate FDI attacks, such as 
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protected sensors [5], phasor measurement unit devices [6], 
watermarking, meter encoding, and moving target defense 
methods [7], [8]. However, most of these defense methods 
require expensive hardware devices. 

Machine learning and deep learning (DL) methods have 
been widely applied to detect FDI attacks, where the 
cyberattack detection is formulate as a classification problem 
[9]. Traditional machine learning methods, such as support 
vector machine [10], Gaussian abnormal detector [11], and 
multilayer perceptron [12], [13], are used to classify the 
dimension-reduced normal and compromised measurements. 
However, the detection accuracy of these machine learning 
methods is limited.  

DL methods can detect FDI attacks with high accuracy rates. 
In DC power flow model, recurrent neural network (RNN), a 
sequence classification algorithm, can detect FDI attacks with 
an accuracy rate of 99% [14]. In AC power flow model, an 
RNN architecture is used to detect FDI attacks, in which the 
discrete wavelet transform algorithm is used to extract the 
hidden time-frequency domain characteristics and features at 
every specific time [15]. Kaplan et. al. presented a data-driven 
fault prediction approach and load forecasting approach to 
conduct fault diagnosis in SGSs, in which the LSTM algorithm 
is used for feature extraction and fault prediction [16]. 
However, deep learning algorithms require a long time and 
large amounts of data for the training process. Liu et al. 
proposed an FDI attack detection model in which GRU is 
added to the fully connected layer in convolutional neural 
networks (CNN) [17]. The CNN-GRU network is designed to 
train and update network parameters based on historical 
measurement data of power grid, and extract spatial and 
temporal characteristics of the data to implement efficient and 
real-time FDIA detectors. However, the downsides of CNN 
include a lack of temporal data modeling and long training time 
[18]. 

Since the FDI attacks follow the physical laws of the power 
system, these attacks can mislead the weighted least square 
state estimation (WLS-SE) to obtain the malicious voltages 
designed by the attacker. Specifically, the voltage estimated 
by WLS-SE exactly equals the attacker’s malicious voltage 
target. This is because the traditional SE methods typically 
utilize the measurements from a single snapshot of the power 
system without considering the historical measurements. If an 
SE method learns from both the spatial and temporal 
relationship of the historical measurements, its estimated 
voltage under the FDI attacks will not exactly follow the 
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malicious voltage target. Furthermore, the voltage estimated 
by the learning-based SE method is likely to be closer to true 
voltage than the attacker’s malicious voltage target.  

Based on this observation, this paper first proposes a long-
short-term-memory-based state estimation (LSTM-SE), which 
utilizes LSTM to estimate the voltage and the physical power 
flow model to calculate the loss of the estimated 
measurements. Then, this paper proposes a novel deep-
learning-state-estimation-aided (DLSEA) detection framework 
to detect FDI attacks, in which a fully connected neural 
network (FCNN) is used to classify the voltage estimation 
difference (VED) between the estimated voltage by WLS-SE 
and that by LSTM-SE. Case studies are conducted in the IEEE 
14-bus and 118-bus systems to evaluate the performance of 
the LSTM-SE, when the system is under attack and free from 
attacks. We further evaluate the proposed detector in attack 
detection.  

The rest of this paper is organized as follows. In Section II, 

we provide preliminaries and related work. In Section III, we 

propose a LSTM-SE method and a novel DLSEA detector. 

Case studies are conducted in Section IV, and the conclusion 

is drawn in Section V. 

II. PRELIMINARIES 

A. AC Weighted Least Square State Estimation  

In the power system, the SCADA measurements 
m

∈z   

can be expressed by nodal voltage 
n

∈x  , i.e., ( )= +z h x e , 

where ( )⋅h is a vector of nonlinear functions and e is the 

measurement noise. System operators utilize the state 

estimation, an important function in the energy management 

system, to calculate the nodal voltage with the measurements 

received from the SCADA system. In the AC power flow 

model, SE is formulated as a weighted least square (WLS) 

problem, as shown in (1). Gauss-Newton algorithm can be 

used to solve the WLS problem.  

min   ( ( )) ( ( ))T
− −

x
z h x K z h x                    (1) 

where 2 2 2

1 2( , ,..., )mdiag σ σ σ− − −
=K is a diagonal matrix of the 

measurement noise covariance. 

B. False Data Injection Attack 

The mathematical model of FDI attacks is provided in this 
subsection. An FDI attack constructs a compromised 

measurement az  by injecting an attack vector a into the 

original measurements 0z , i.e., 0a = +z z a . Note that Chi-2 

detector is used to detect large measurement errors in the bad 
data detector of the SE. However, FDI attacks are delicately 
designed to remain stealthy to Chi-2 detector by following the 
power flow model of the power system. In the AC power 
system model, the FDI attack vector a can be calculated by a = 

h(x + ∆ x) −  h(x), where ∆ x is the voltage bias designed by 
the attacker. In this case, the estimation residual of the FDI 
attacks is same as that of the original measurement without 
attacks, and thus the attack is stealthy to BDD [19]. 

C. LSTM 

As a specialized type of RNN, LSTM includes memory 
cells and gating mechanisms, enabling it to capture and retain 
long-term dependencies in sequential data. LSTM addresses 
the vanishing gradient problem of RNN, and thus is widely 
used for handling sequential data and time series problems. 
These memory cells are equipped with gating mechanisms that 

regulate the flow of information, allowing them to selectively 
remember or forget information at each time step. In an LSTM 
cell, there are an input gate, a forget gate, an output gate, and a 
cell state. The input gate it controls the flow of new 
information into the cell, the forget gate ht determines what 
information to discard from the cell state, and the output gate 
ot regulates the flow of information from the cell to the output 
of the LSTM [20]. 

The input of a single LSTM unit is the measurement tz at 

time instant t. th and 1t −h  are the hidden vectors at time 
instant t, and at the last time step t-1, respectively. Compared 
with RNN, LSTM cell introduces three gates, namely, input 
gate i, forget gate f, and the output gate o. The mathematical 
expression of the LSTM cell is given in (2). 
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where , ,i f oW W W  are the weights associated with three gates, 

and , ,i f ob b b  are the weights associated with three gates. 

III. DEEP-LEARNING-STATE-ESTIMATION-AIDED DETECTION 

FRAMEWORK 

In this section, we first construct LSTM-SE to estimate the 
voltage of the power system and then propose a DLSEA 
detection framework to detect FDI attacks. The relationship 
between the LSTM-SE (orange section) and the proposed 
DLSEA detection framework (blue section) is shown in Fig. 1.  

The LSTM-SE method is an important part of the proposed 
DLSEA detection framework. First, the LSTM-SE method is 
trained using the historical measurements to estimate the 
voltage of the power system, and then the FCNN in the 
DLSEA detection framework is trained as a binary classifier 
using the historical normal measurements and compromised 
measurements. After the LSTM-SE and the FCNN is well 
trained, SCADA measurements sampled at each time instant 
are fed into the proposed DLSEA detection framework to 
determine whether the measurements are compromised by FDI 
attacks. 

x̂

ẑ

ˆ
Dx ˆ

Wx

 
Fig. 1. The relationship between the proposed LSTM-SE and the proposed 
DLSEA detection framework. 
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A.  LSTM-SE 

This subsection proposes an LSTM-based SE method, in 
which LSTM is applied to learn the voltage state correlations 
using historical SCADA measurements. The architecture of 
the proposed LSTM-SE method is shown in Fig. 2. The 
measurements are fed into the LSTM neural networks, and the 
output of these networks is system states, i.e., voltage 
magnitude and angle of all buses. Note that the true voltage 
states are unknown to the system operator, and thus, the error 
between the estimated and true states cannot be used as the 
loss function. The power flow model is utilized to map the 
estimated states to the estimated SCADA measurements. The 
physical power flow model can describe the relationship 
between the power injection and power flow measurement 

vector 
in in f f

 =
 

z P Q P Q  and system state [ ]=x v θ , 

as follows:  

       

( )

( )

2

2

( cos sin )

( sin cos )

( cos sin )

( cos sin )

i

in i j ij ij ij ij

j N i

i

in i j ij ij ij ij

j N i

ij

f i ij i j ij ij ij ij

ij

f i ij i j ij ij ij ij

P VV G B

Q VV G B

P V G VV G B

Q V B VV G B

θ θ

θ θ

θ θ

θ θ

=

=

= +

= +

= − + +

= − + −




         (3) 

where i

inP  and i

inQ  are active and reactive power injection of 

Bus i, respectively, and ij

fP  and ij

fQ  are active and reactive 

power flow of transmission line between Bus i and Bus j; Gij 
and Bij are the real and imaginary part of the admittance matrix, 

respectively; Vi is the voltage magnitude of Bus i; ijθ  is the 

voltage angle difference between Bus i and Bus j; and N(i) is 
the set of neighbor buses of Bus i.  

ˆ
txtz

ˆ
tz

− ( )h=z x

 

Fig. 2. The framework of LSTM-SE. 

For the loss function, we select cumulative mean square 
error (MSE) between the actual measurements z  and 

estimated measurements ẑ , i.e., 0

1
ˆ ˆ( ) ( )T

t t t t

t

L z z z z
m

= − − , 

where ẑ  is calculated by the estimated states x̂  based on the 
power flow model (3). Then, we can update the weights and 
biases of the LSTM using back-propagation.  

B.  DLSEA Detection Framework 

In this section, we propose a novel DLSEA attack detection 
framework that learns and classifies the voltage estimation 
differences between the attacker’s malicious voltage and the 
voltage estimated by the deep-learning state estimator. The 
deep-learning attack detection framework is shown in Fig. 3. It 
is assumed that the attacker maliciously injects FDI attacks at 

into the SCADA measurements zt at the current time instant t. 
When the SCADA system receives the latest measurements 

(compromised measurement t

az ), the system operator can 

apply the proposed attack detection framework to determine 
whether the system is under attack. The detection framework 

applies both WLS-SE and LSTM-SE to estimate the voltage. 
Then, a fully connected neural network is used to classify the 
voltage estimation difference. 

tz
ta

t

az

ˆ t

Wx

ˆ t

Lx

VED
tu

 

Fig. 3. The DLSEA attack detection framework. 

The deep-learning attack detection framework is designed 
based on three observations. First, the attacker’s malicious 
voltage generally is not consistent with the temporal 
correlation of historical voltage states. Second, the estimated 
voltage by the LSTM-SE follows the temporal correlation of 
historical voltage states, and thus will not exactly equal the 
attacker’s malicious voltage. Third, the attacker’s malicious 
voltage is unknown to the defender (system operator). 
However, the traditional widely-used power system state 
estimation method, i.e., WLS-SE, is vulnerable to FDI attacks. 
Consequently, the estimated voltage by the WLS-SE is 
considered to be equal to the attacker’s malicious voltage. 
Therefore, the VED can be selected as the feature for an attack 
detection classifier. The VED between the attacker’s 
malicious voltage and the voltage estimated by the LSTM-SE 
is approximated by the VED between WLS-SE and LSTM-SE, 
defined as follows:  

ˆ ˆ
W LVED = −x x                            (4) 

where ˆ
Wx  is the estimated voltage from WLS-SE and ˆ

Lx  is 

the estimated voltage from LSTM-SE. 
Then, an FCNN is constructed as a binary attack detection 

classifier. The input lay has 2n-1 neurons (the number of 
voltage states), and the output lay has one neuron. The width 
and depth of the network is adjusted by the complexity of the 
power system. The structure of FCNN for the IEEE 14-bus 
and 118-bus systems is shown in Table I, where lk denotes the 
number of neurons in the k-th hidden layer. For the hidden 
layers, the rectified linear unit (ReLU) is selected as the 
activation function since it can introduce the property of non-
linearity to a deep learning model and solve the vanishing 
gradients issue. We adopt the sigmoid activation function for 
the output layer, and thus, the activation function can map the 
hidden layer output into the probability of the attack detection. 

Table I. The structure of fully connected neural network 

System States k lk 

14 27 5 {100,200,400,200,100} 

118 235 6 {100,200,400,400,200,100} 

IV. CASE STUDY 

We first evaluate the performance of LSTM-SE method in 
estimating the voltage and then assess the performance of the 
proposed detection framework in detecting FDI attacks. In SE, 
there are 68 and 400 measurements in the IEEE 14-bus and 
118-bus systems, respectively. In the case study, we have five 
measurement type, including active power flow, reactive 
power flow, active power injection, active power injection and 
voltage magnitude. In each measurement, we adopt zero-mean 
Gaussian distributed noise, that has a standard deviation as 1% 
of the actual measurement. We train the LSTM-SE model with 
different network structures, and then select the structure with 
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the best performance based on cross-validation. The 
algorithms are performed on a computer with an Intel Core i9-
13900 CPU and a Nvidia RTX 4090 24GB GPU. 

The historical measurements and voltage are generated 
using the one-year load profile of ERCOT Utility in the IEEE 
14-bus system, and the one-year load profile of WECC in the 
IEEE 118-bus system [21], [22]. 80% of the data is used as the 
training data, and the remaining data is used as the testing data 
for the LSTM-SE. The testing data for the LSTM-SE method 
is further used as the normal measurements for the DLSEA 
detection framework. Then, FDI attacks are launched on each 
normal measurement vector. There are 3500 and 5000 FDI 
attacks as the compromised measurements in the IEEE 14-bus 
and 118-bus systems, respectively. 

In each FDI attack, the voltage angles of one randomly 
selected bus are compromised. The normal and compromised 
data are divided into the DLSEA detection framework's 
training and testing data. For the DLSEA detector, the 
precision and the F1 score are used to measure its performance 
in detecting FDI attacks.   

We employed the Adam optimizer, recognized as one of 
the most effective optimization algorithms, to optimize both 
LSTM-SE and DLSEA models. Adam's adaptive learning 
rates and momentum help expedite convergence and enhance 
model performance across various tasks. We conduct random 
search to determine the constant learning rates, batch size, and 
model architecture based on the performance of the model. 
Since LSTM-SE and FCNN classifier are both pre-trained 
offline, the proposed DLSEA framework can achieve good 
execution time. In the IEEE 118-bus system, the execution 
time of LSTM-SE and FCNN is less than 2ms 

 
A. Performance of LSTM-SE 

In this section, we evaluate the accuracy of the voltage 
estimation of LSTM-SE. The performance of LSTM-SE is 
measured in quantity by the root mean square error (RMSE), 

formulated as 
0 2

1

ˆ( )n i i

i

x x
RMSE

n=

−
=  , where 0

i
x  and ˆ

i
x are 

the actual and estimated value of the i-th state, respectively. 
We first demonstrate the voltage estimated by the LSTM-

SE under no attack and under attack conditions, respectively. 
Under no attack conditions, the LSTM-SE’s estimated voltage 
angle at 352 Day 12 AM is shown in Fig. 4(a). It is seen that 
the LSTM-SE’s estimated voltage angle is almost the same as 
the true voltage value. In Fig. 4(b), an FDI attack decreases 
the voltage angle of Bus 7. It is seen that WLS-SE is 
vulnerable to FDI attacks following the attack’s target. 
However, LSTM-SE is robust to the FDI attacks, and its 
estimation is closer to the true voltage of Bus 7. The 
estimation accuracy of LSTM-SE under FDI attacks can 
contribute to the effectiveness of the proposed detection 
framework. 

 
(a) Voltage angle estimation under no attack 

 
(b) Voltage angle estimation under attacks 

Fig. 4. The voltage estimation of LSTM-SE under no attack and attack 
conditions. 

Then, we compare the RMSE of LSTM-SE with that of the 
traditional WLS-SE using measurements from the testing 
dataset consisting of 3500-time instants. In Fig. 5(a), we can 
see that the whiskers in LSTM-SE’s RMSE are similar to the 
median of WLS-SE’s RMSE in voltage magnitude estimation. 
The LSTM-SE outperforms the WLS-SE in voltage magnitude 
estimation, but it performs slightly worse in the angle 
estimation compared with WLS-SE. This is because the 
voltage magnitudes of some buses are directly measured and 
the angle of all buses is not measured.  

R
M

S
E

 
(a) Voltage magnitude                            (b) Voltage angle 

Fig. 5. Boxplot of RMSE in WLS-SE and LSTM-SE.  

B. Performance of DLSEA Detection Framework 

We evaluate the performance of the proposed DLSEA 
detection framework in detecting FDI attacks in the IEEE 14-
bus and 118-bus systems. Historical measurements of 3500 
and 5000 are labeled as normal measurements in the IEEE 14-
bus and 118-bus systems, respectively. Then, we generate one 
FDI attack on each measurement vector, labeled as the 
compromised measurements. In each FDI attack, the voltage 
angles of one randomly selected bus are compromised, and 
their incremental values are randomly selected according to 

the uniform distribution 
1 1(0.08 ,0.12 )Uθ θ θ∆ = , where 

1θ  is 

the average voltage angle at time instant 1. Thus, 10000 
normal and compromised measurement vectors are divided 
into the training and testing data for the DLSEA detection 
framework in the IEEE 118-bus system and 7000 in the IEEE 
14-bus system.  

We conduct 5-fold cross-validation in the dataset of normal 
and compromised measurements. The average precision, 
accuracy, and F1 score in 5-fold cross-validation are shown in 
Table II. It is seen that the proposed detection framework can 
effectively detect FDI attacks with extremely low false 
positive and false negative rates.  

Table II. The performance of DLSEA detection framework. 

System Precision Accuracy F1 score 

14-bus 0.999 0.997 0.997 
118-bus 1.000 0.999 0.999 

We evaluate the performance of LSTM-SE and DLSEA 
under three different Gaussian noise standard deviations (1%, 
2%, and 3% of the actual measurement) in the IEEE 14-bus 
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system. The performance of DLSEA detection is shown in 
Table III. With a larger noise, the precision of DLSEA 
decreases. When there exists 3% standard deviation, the 
precision of DLSEA is 95.1%. 

Table III. The performance of DLSEA framework under different noises. 

Noise Precision Accuracy F1 score 

0.01 0.999 0.997 0.997 
0.02 0.989 0.994 0.994 
0.03 0.951 0.973 0.973 

 

V. CONCLUSIONS 

Based on the recurrent network’s learning capability of 
sequential data, this paper first applies LSTM networks to 
construct LSTM-SE. We evaluate the performance of LSTM-
SE in the IEEE 14-bus system. The LSTM-SE outperforms the 
traditional WLS-SE in voltage magnitude estimation with an 
RMSE value lower than 0.002, but it performs slightly worse 
in the angle estimation compared with the WLS-SE with an 
RMSE value lower than 0.004. This paper found that the VED 
of each state is close to zero in normal conditions, and the 
VED of the attacked state becomes non-zero under FDI 
attacks. Based on the characteristics of the VED, this paper 
proposes a novel DLSEA detection framework to detect FDI 
attacks against power system statics state estimation, in which 
an FCNN is used to classify the VED as a binary classification 
problem. In case studies, 5-fold cross-validation is conducted 
on the normal and compromised measurement dataset in the 
IEEE 14-bus and 118-bus systems. Simulation results verify 
that the proposed DLSEA detection framework can effectively 
detect FDI attacks with 0.999 precision. In future work, the 
proposed detection framework will be applied to the 
localization and data recovery of FDI attacks on power 
systems. 
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