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Abstract—Research for cyber-security defensive strategies
to achieve enhanced power system security and attack detection
against various cyber-attacks, such as the False-Data Injection
(FDI) attack, are topics that could benefit from real-time digital
simulation (RTDS). Recently, neural networks have gained
traction within smart grid applications including cyber-attack
detection. This paper performs RTDS of FDI attacks against
traditional power system state estimation and simulates a
convolutional neural network-based detector on the IEEE 14-
bus system. This paper demonstrates the benefit of Typhoon
hardware-in-the-loop (HIL) for evaluating the effectiveness of
neural network models in identifying and mitigating FDI
attacks in power systems. By integrating Typhoon HIL into the
simulation environment, we provide a novel approach to assess
the resilience of power systems under cyber-attack scenarios.
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1. INTRODUCTION

Power systems have become more efficient and
controllable over the last two decades, but at the expense of
vulnerability to cyber-attacks through both their hardware and
software. Sources of these vulnerabilities include the
integration of a large number of measuring sensors or meters,
which utilize GPS and telemetry communication to transfer
data to SCADA for monitoring of real-time measurement
sampling technology. A class of cyber-attacks that is being
utilized in major cyber security breaches that have graced the
news is the False Data Injection (FDI) Attack, which is
designed to manipulate the data sampled within a
communication network of measurement and control devices.
The Ukrainian blackout in 2015 was reported to have been
caused by an FDI attack hijacking SCADA operations with
malicious firmware installed after a reconnaissance of
phishing emails. These emails allowed the attackers to obtain
authorized credentials to the target’s SCADA system network
giving them access to implement malware to manipulate
meter measurements and expedite open substation breakers
remotely [1]. The 2010 Iran Stuxnet Worm attack, which
altered the code of programmable logic controllers to create
discrepancies between reported system behavior and the
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actual operations of nuclear centrifuges [2], exemplifies the
severe impact of False Data Injection (FDI) attacks. These
attacks have been instrumental in driving targeted systems to
critical states, underscoring the urgency of further research in
the field of cyber-security. The historical evidence of cyber-
attacks on energy infrastructure [3], including these high-
profile incidents, highlights the critical need for robust
defensive strategies within the SCADA operations of power
systems. Such strategies are essential to safeguard against and
mitigate the effects of these sophisticated cyber threats.
Real-Time Data Simulators (RTDS) can prove to be a
useful tool in various application, especially for propelling
cyber-security and neural network research. RTDS can help
validate and emulate system models and communication
networks combined with a Hardware in the Loop (HIL)
testbed platform. An RTDS HIL setup was utilized to study
the impact of load loss due to an FDI attack that specifically
targeted the under-frequency load-shedding scheme [4].
Another RTDS HIL system [5] simulated and optimized a
three-phase asynchronous motor speed control system.
Virtual HIL (VHIL) takes HIL directly to the user’s PC and
can provide useful insight into how a system will respond
prior to RTDS or HIL testing [6,7,8]. In [9] and [10], neural
network models were designed and implemented in a HIL
environment for hybrid electric vehicle and cyber-security
applications, respectively. The growth in neural network
application and research can be attributed to faster computer
chip processing, specifically the increased use of general-
purpose graphical processing units, and the increased
availability of training data for neural network models [11].
This paper is motivated by the need to effectively and
accurately simulate FDI attacks and their countermeasures
using RTDS. We conducted a detailed study simulating an
FDI attack on the IEEE 14-bus system using the Typhoon HIL
environment shown in figure 1 to address this. Central to our
approach is the deployment of a Convolutional Neural
Network (CNN) model, designed as a sophisticated defense
mechanism. This model performs a multilabel classification
task, aiming to detect data manipulation caused by FDI attacks
and to identify the specific measurement data targeted by
these attacks. The data in question is used by the Weighted-
Least-Squared (WLS) State Estimation (SE) algorithm, a

Authorized licensed use limited to: Kansas State University. Downloaded on February 28,2025 at 17:22:24 UTC from IEEE Xplore. Restrictions apply.



Model Created Using Typhoon HIL Schematic Editor

Compilation

* Modai State Space

* Component Execution
Rates

« signal Frocessing
Frobas and streaming
Bandwidth

* Simulstion Tima-Step

* HIL Device
‘configuration

Typhoon HIL Model Emulation Architecture for Simulation

‘Medel Validation and

TYPHOON HIL DEVICE BASED FRGAS

« Low Dynamics Phenomena

Electrical Domain Components
« Handling communication
Protocod Stacks

= Signal Processing
Companents

Typhoon HIL Device 604 Connected to PC and Power Amplifier for PHIL

MODEL EMULATION
UPLOAD

'USER SIMULATION |
SETUP
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setup with the Typhoon HIL 604 Device.

critical component for reporting system states. These states
inform the optimal power flow algorithm, which is essential
for generator dispatch in the system emulation. This paper
highlights the potential of CNNs in enhancing the resilience
of power systems against cyber threats, particularly in the
complex and dynamic environment of smart grids.

II. PRELIMINARIES: CYBER-ATTACK AND CNN

Cyber-attacks are coordinated and require reconnaissance
time to plan before executing. The objective of this attack
model is to mislead the WLS SE algorithm implemented into
the system’s SCADA operations by manipulating the power
measurements obtained and transmitted using an FDI attack.
Assuming the worst-case scenario, the attacker has complete
knowledge of the power system, such as distribution
topology, electrical component parameters and setpoints, bad
data detection (BDD) protocols, SE algorithms, and generator
cost functions; and access to the measurement devices
sampled by SCADA, to perform their FDI attack that
manipulates the necessary data the operator utilizes for
system operation or corrective actions.

A Convolutional Neural Network (CNN) leverages the
use of the convolution operation within at least one layer of
the network instead of general matrix operations. They are
specialized in processing data that has a grid-like structure,
such as time-series data and image data [15]. Given that an
FDI attack targets this type of data utilized within power grid
operations, CNN can help discern the inconsistency and co-
occurrence dependency on the system’s measurements
during such an attack. Furthermore, after computationally
expensive training of a CNN to learn the desired features of

a given input data, they exhibit fast computation times for
producing their output in real-time operations. The
application of CNN to the electric grid is due to the fast
changes in the safe operation of power systems.

A. The System Model and FDI Attack Scheme

The system’s active power, P;, and reactive power, Q;,
bus injections, active, P;;, and reactive, Q;;, branch power
flows from bus i to bus j, and the slack bus voltage
magnitude, V;, quantities are sampled into a measurement
vector, Z = (zf--z!) where n is the number of
measurements utilized within the system. The targeted WLS
SE models Z with the following equation:

Z=hX) +e

where e represents the Gaussian distributed noise error
vector of each measurement, and h(X) is the theoretical
measurement vector. Considering each bus within the IEEE
14-bus system model as the seti € {1,2,3,...14}and j € IV;
as the set of all connected buses to bus i, h(X) uses the
equations(1-5) below of a two-port m-model of a network
branch to construct the theoretical measurement vector, h(%),
from a given state vector, X =

[171 o Vi 8y 6’1\4]T, representing the bus RMS
voltage magnitudes, ¥}, and phases, 8,.

0;; =06, -0, (1)
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Py = Vi Yjen, Vj(Gijcos;j + Bijsin;;) 2)
Qi = Vi Xjen, V;(Gijsinb;; — B;jcosb;;) (3)
Py = Vi*(gsi + 9i;) — ViV;(gijcosby; + byjsinby;)  (4)
Qij = —Vi?(bsi + bij) — ViV;(gijsinb;; — byjcosb;;) (5)

It is assumed that the attacker has complete knowledge of
the IEEE 14-bus system allowing for a stealthy attack to go
unnoticed by the BDD scheme [12,13]. The FDI attack
scheme adopted from [14] uses c¢;,; to represent the
magnitude the attacker wishes to deviate a targeted state
within X. The targeted measurements within Z are dependent
on which state of £ is targeted based on the subgraph
generated for a single bus attack as discussed in [14]. The
goal of the attack model is to manipulate the output of X from
the WLS SE by targeting the necessary measurements in Z
while minimizing e with an attack vector a that is
constructed as shown below.

a=h(®+cpj) —h(®) (6)

The attacked measurement vector, Z,, for the WLS SE is
calculated by the attack model using equation (7).

Z,=Z+a 7)

The attack model is performed under the assumption that
the cyber layer of the system has been penetrated. The study
focuses on the consequences of the system receiving falsified
data. To achieve a more realistic setting within an HIL
testbed environment, a time sequence shown in Fig. 2 was
developed for simulating the Z sampling and WLS SE with
scripts at consistent intervals. For the studies performed, the
Z-sampling script executed every 4 seconds of the simulation
time and the WLS SE Scripts executed 2 seconds after
sampling of Z, allowing a 2-second window prior to the
estimation of the states for the FDI attack.

B. Convolutional Neural Network Model and Training

The CNN model utilized for this study comes from [16],
where a 1-dimensional CNN solves a classification of an FDI
attack present within Z and whether each element within Z is
compromised or uncompromised due to a present attack.
With the BDD acting as the first line of defense against FDI
attacks, the CNN classifier acts upon the same measurements
that are passed through the BDD as the second line of
defense. The CNN attempts to extract and analyze features of
the FDI attack against the set measurements by determining
the location of the compromised measurements within the
system. For the study performed, the network architecture of
the CNN consists of four 1-dimensional-convolutional
layers, a flattening layer and a dense layer as shown in Fig.
3. The convolutional layers use the rectified-linear unit
(ReLU) activation function and the dense layer uses the

sigmoid activation function when passing their respective
inputs through the layers. Details of the activation functions
are discussed further in [16].

The training conducted on the CNN model used the mini-
batch gradient descent method with a batch size of 100 and
an epoch size of 100. The training data was obtained from the
emulation of the IEEE 14-bus system having 8 buses (i = 4,
6, 9, 10, 11, 12, 13, and 14) experiencing a normally
distributed dynamic load profile having a mean equal to that
bus’s base load and standard deviation equal to 1/6 of the base
load with Typhoon HIL Control Center in real-time HIL
mode using the typhoon device 604 to obtain 2,347
uncompromised samples of Z and 39,193 compromised
samples from the FDI attack model targeting 8, of bus i with
a decrease of 0.026 radians. Following machine learning
practice, the training data was split 7/10 for training the CNN
and 3/10 for validating the model for each batch. Fitting used
the initial learning rate of 0.001 and a patience of 5. The loss
function for training shown in Fig. 4 was the cross-entropy
function for each mini-batch.

For this study, the trained CNN model was implemented
within the HIL emulation environment by having the CNN
model perform its classification during the execution of the
WLS SE within the simulation time sequence discussed prior.
New load profiles were generated with similar base loads as
the load profiles used during the emulation sampling session
to obtain new Z vectors to pass through the CNN classifier.

III. SIMULATION RESULTS
A. Simulation Setup: Validating Attack Model

To validate the success of the attack model discussed, the
IEEE 14-bus power system was simulated with Typhoon HIL
device 604 with constant loads at each bus where bus 14 was
targeted. For the simulations, the user was able to specify
which bus to target and quantity, its @, or Vy,s. Data
Loggers and a Stream Logger were used within Typhoon HIL
SCADA to sample the simulation data and emulated model
output of the targeted bus voltage waveform every 250
milliseconds, respectively. The compiled model uses current
and voltage phasor measurements at each bus to construct the
system’s Z matrix. A BDD module was designed to use
WLS SE to give the system X vector, and compare the
calculated r value to a threshold value, T = 58.124 ,
calculated from a chi-square test with 95% confidence. Over-
and under-voltage conditions were monitored for any Vs
reported to be greater than 1.05 p.u. or less than 0.95 p.u.,
respectively, given the sampled Z.

Z-DATA SAMPLED -|| WLS SE -| FDI ATTACK -I

Cyber-Attacker Script Dausel

_—

Fig. 2. Proposed Time Sequence for Executed SCADA System Operations
with a simulated basic FDIA (top) during Variable Load conditions.
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The FDI attack against the WLS SE was simulated using
steady-state operations of the power system. The cyber-
attack model targeted 6;, with a ¢y, ;= 0.02 radians
increase. The WLS SE of bus 14’s X and the reported residual
before the attack are compared with their values after the
attack in Table I. It can be seen that the attack successfully
passes through the BDD criteria, and thus the attacker can
remain stealthy, prior to CNN implementation, within
reasonable c;,,; values as the operator is required to maintain
these quantities within a certain stable range.

B. Simulation: Evaluating CNN Performance

Using the same simulation setups as discussed in the prior
section, the IEEE 14-bus system was modified using the
dynamic load profiles obtained from a Western Electricity
Conference Council (WECC) system. For the purposes of
real-time emulation, the load profile was condensed to
experience the hourly changes every " second for a
simulation time of 2190 seconds for each session performed.
To obtain performance metrics of the CNN on the configured
system and load profile, bus 12 experienced 470 attacks from
the validated attack model to the WLS SE reported voltage
phase angles with the same c;;; value in one emulation
session that followed the time sequence defined in Fig. 1, but
with the CNN executing at the same time as the WLS SE.
The Attack Detection Probability (ADP) is defined as the
number of detected attacks over the number of attacks
performed during this experiment’s simulations. Fig. 5
contains the ADP plot of the CNN after multiple emulation
sessions where the ¢;,; varied for each session that bus 12
was attacked. To measure the false positive rate (FPR) of the
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Figure 4. Plotted Loss Function for trained CNN model used for emulation
in Typhoon HIL.

Table 1. BDD Report of Bus 14 During 6, Cyber-Attack

Quantity Before FDIA After FDIA
Via 0.967 P.U. 0.967 P.U.
O —14.85° —13.71°

r 0.050 0.448
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Figure 5. Attack Detection Probability Performance of the trained CNN
model implemented into the IEEE 14-bus System with Typhoon HIL
simulation.

CNN model, an emulation session was performed without
attacking any bus and tracking the number of samples labeled
as compromised by the model. The resulting FPR for this
trained CNN model was 5.720% from a testing sample size
of 472.

IV. CONCLUSION

Through the integration of both software and hardware in
the Typhoon RTDS, we demonstrate its effectiveness in both
the development and validation of attack models and
defensive strategies, ensuring robustness before they are
implemented in real-world scenarios. A noteworthy aspect of
this paper is the practical application of a CNN in an RTDS
environment. The CNN’s effectiveness was evaluated under
altered system conditions, employing a new set of readily
available load profiles distinct from those used in the model’s
training phase. The simulation results are promising,
particularly in the CNN’s ability to detect larger FDI attack
magnitudes, which are critical as their undetected presence
could lead to significant consequences in the smart grid. This
paper highlights the significant potential of the Typhoon HIL
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testbed as a valuable tool in the realm of cyber-security for
power systems.
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