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Abstract—Research for cyber-security defensive strategies 

to achieve enhanced power system security and attack detection 

against various cyber-attacks, such as the False-Data Injection 

(FDI) attack, are topics that could benefit from real-time digital 

simulation (RTDS). Recently, neural networks have gained 

traction within smart grid applications including cyber-attack 

detection. This paper performs RTDS of FDI attacks against 

traditional power system state estimation and simulates a 

convolutional neural network-based detector on the IEEE 14-

bus system. This paper demonstrates the benefit of Typhoon 

hardware-in-the-loop (HIL) for evaluating the effectiveness of 

neural network models in identifying and mitigating FDI 

attacks in power systems. By integrating Typhoon HIL into the 

simulation environment, we provide a novel approach to assess 

the resilience of power systems under cyber-attack scenarios. 

Keywords—Real-Time Digital Simulation (RTDS), Cyber-

Security, False-Data Injection (FDI) Attacks, Typhoon HIL, 
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I. INTRODUCTION  

Power systems have become more efficient and 
controllable over the last two decades, but at the expense of 
vulnerability to cyber-attacks through both their hardware and 
software. Sources of these vulnerabilities include the 
integration of a large number of measuring sensors or meters, 
which utilize GPS and telemetry communication to transfer 
data to SCADA for monitoring of real-time measurement 
sampling technology. A class of cyber-attacks that is being 
utilized in major cyber security breaches that have graced the 
news is the False Data Injection (FDI) Attack, which is 
designed to manipulate the data sampled within a 
communication network of measurement and control devices. 
The Ukrainian blackout in 2015 was reported to have been 
caused by an FDI attack hijacking SCADA operations with 
malicious firmware installed after a reconnaissance of 
phishing emails. These emails allowed the attackers to obtain 
authorized credentials to the target’s SCADA system network 
giving them access to implement malware to manipulate 
meter measurements and expedite open substation breakers 
remotely [1]. The 2010 Iran Stuxnet Worm attack, which 
altered the code of programmable logic controllers to create 
discrepancies between reported system behavior and the 

actual operations of nuclear centrifuges [2], exemplifies the 
severe impact of False Data Injection (FDI) attacks. These 
attacks have been instrumental in driving targeted systems to 
critical states, underscoring the urgency of further research in 
the field of cyber-security. The historical evidence of cyber-
attacks on energy infrastructure [3], including these high-
profile incidents, highlights the critical need for robust 
defensive strategies within the SCADA operations of power 
systems. Such strategies are essential to safeguard against and 
mitigate the effects of these sophisticated cyber threats.  

Real-Time Data Simulators (RTDS) can prove to be a 
useful tool in various application, especially for propelling 
cyber-security and neural network research. RTDS can help 
validate and emulate system models and communication 
networks combined with a Hardware in the Loop (HIL) 
testbed platform. An RTDS HIL setup was utilized to study 
the impact of load loss due to an FDI attack that specifically 
targeted the under-frequency load-shedding scheme [4]. 
Another RTDS HIL system [5] simulated and optimized a 
three-phase asynchronous motor speed control system. 
Virtual HIL (VHIL) takes HIL directly to the user’s PC and 
can provide useful insight into how a system will respond 
prior to RTDS or HIL testing [6,7,8]. In [9] and [10], neural 
network models were designed and implemented in a HIL 
environment for hybrid electric vehicle and cyber-security 
applications, respectively. The growth in neural network 
application and research can be attributed to faster computer 
chip processing, specifically the increased use of general-
purpose graphical processing units, and the increased 
availability of training data for neural network models [11].    

This paper is motivated by the need to effectively and 
accurately simulate FDI attacks and their countermeasures 
using RTDS. We conducted a detailed study simulating an 
FDI attack on the IEEE 14-bus system using the Typhoon HIL 
environment shown in figure 1 to address this. Central to our 
approach is the deployment of a Convolutional Neural 
Network (CNN) model, designed as a sophisticated defense 
mechanism. This model performs a multilabel classification 
task, aiming to detect data manipulation caused by FDI attacks 
and to identify the specific measurement data targeted by 
these attacks. The data in question is used by the Weighted-
Least-Squared (WLS) State Estimation (SE) algorithm, a 
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Fig. 1. Flow Chart containing Device that this paper’s model schematic and SCADA interface used to achieve RTDS for the case studies performed and HIL 
setup with the Typhoon HIL 604 Device. 

 

critical component for reporting system states. These states 
inform the optimal power flow algorithm, which is essential 
for generator dispatch in the system emulation. This paper 
highlights the potential of CNNs in enhancing the resilience 
of power systems against cyber threats, particularly in the 
complex and dynamic environment of smart grids. 

II. PRELIMINARIES: CYBER-ATTACK AND CNN  

Cyber-attacks are coordinated and require reconnaissance 
time to plan before executing. The objective of this attack 
model is to mislead the WLS SE algorithm implemented into 
the system’s SCADA operations by manipulating the power 
measurements obtained and transmitted using an FDI attack. 
Assuming the worst-case scenario, the attacker has complete 
knowledge of the power system, such as distribution 
topology, electrical component parameters and setpoints, bad 
data detection (BDD) protocols, SE algorithms, and generator 
cost functions; and access to the measurement devices 
sampled by SCADA, to perform their FDI attack that 
manipulates the necessary data the operator utilizes for 
system operation or corrective actions.  

A Convolutional Neural Network (CNN) leverages the 
use of the convolution operation within at least one layer of 
the network instead of general matrix operations. They are 
specialized in processing data that has a grid-like structure, 
such as time-series data and image data [15]. Given that an 
FDI attack targets this type of data utilized within power grid 
operations, CNN can help discern the inconsistency and co-
occurrence dependency on the system’s measurements 
during such an attack. Furthermore, after computationally 
expensive training of a CNN to learn the desired features of 

a given input data, they exhibit fast computation times for 
producing their output in real-time operations. The 
application of CNN to the electric grid is due to the fast 
changes in the safe operation of power systems.  

A. The System Model and FDI Attack Scheme 

The system’s active power,  , and reactive power,  , 
bus injections, active,  , and reactive,  , branch power 

flows from bus   to bus  , and the slack bus voltage 

magnitude, ,  quantities are sampled into a measurement 

vector,  = (
 ⋯ 

 )  where   is the number of 
measurements utilized within the system. The targeted WLS 

SE models  with the following equation: 

 =  ℎ() +  

where   represents the Gaussian distributed noise error 

vector of each measurement, and ℎ()  is the theoretical 
measurement vector. Considering each bus within the IEEE 

14-bus system model as the set  ∈ 1,2,3, … 14 and  ∈   

as the set of all connected buses to bus  , ℎ()  uses the 

equations(1-5) below of a two-port -model of a network 

branch to construct the theoretical measurement vector, ℎ(), 
from a given state vector,  =
 ⋯   ⋯  


,  representing the bus RMS 

voltage magnitudes, , and phases,  .  

            =  −                              (1) 
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          =  ∑ ( + )∈
            (2)                                               

         =  ∑ ( − )∈
            (3) 

 = 
 +  − ( + )    (4) 

 = −
 +  − ( − ) (5) 

It is assumed that the attacker has complete knowledge of 
the IEEE 14-bus system allowing for a stealthy attack to go 
unnoticed by the BDD scheme [12,13]. The FDI attack 

scheme adopted from [14] uses   to represent the 

magnitude the attacker wishes to deviate a targeted state 

within . The targeted measurements within  are dependent 

on which state of   is targeted based on the subgraph 
generated for a single bus attack as discussed in [14]. The 

goal of the attack model is to manipulate the output of  from 

the WLS SE by targeting the necessary measurements in  

while minimizing   with an attack vector   that is 
constructed as shown below. 

                          = ℎ +  − ℎ()                      (6) 

The attacked measurement vector,  , for the WLS SE is 
calculated by the attack model using equation (7). 

                                         =  +                                  (7) 

The attack model is performed under the assumption that 
the cyber layer of the system has been penetrated. The study 
focuses on the consequences of the system receiving falsified 
data. To achieve a more realistic setting within an HIL 
testbed environment, a time sequence shown in Fig. 2 was 

developed for simulating the  sampling and WLS SE with 
scripts at consistent intervals. For the studies performed, the 

-sampling script executed every 4 seconds of the simulation 
time and the WLS SE Scripts executed 2 seconds after 

sampling of   , allowing a 2-second window prior to the 
estimation of the states for the FDI attack. 

B. Convolutional Neural Network Model and Training 

The CNN model utilized for this study comes from [16], 
where a 1-dimensional CNN solves a classification of an FDI 

attack present within  and whether each element within  is 
compromised or uncompromised due to a present attack.  
With the BDD acting as the first line of defense against FDI 
attacks, the CNN classifier acts upon the same measurements 
that are passed through the BDD as the second line of 
defense. The CNN attempts to extract and analyze features of 
the FDI attack against the set measurements by determining 
the location of the compromised measurements within the 
system. For the study performed, the network architecture of 
the CNN consists of four 1-dimensional-convolutional 
layers, a flattening layer and a dense layer as shown in Fig. 
3. The convolutional layers use the rectified-linear unit 
(ReLU) activation function and the dense layer uses the 

sigmoid activation function when passing their respective 
inputs through the layers. Details of the activation functions 
are discussed further in [16]. 

The training conducted on the CNN model used the mini-
batch gradient descent method with a batch size of 100 and 
an epoch size of 100. The training data was obtained from the 

emulation of the IEEE 14-bus system having 8 buses ( = 4, 
6, 9, 10, 11, 12, 13, and 14) experiencing a normally 
distributed dynamic load profile having a mean equal to that 
bus’s base load and standard deviation equal to 1/6 of the base 
load with Typhoon HIL Control Center in real-time HIL 
mode using the typhoon device 604 to obtain 2,347 

uncompromised samples of   and 39,193 compromised 

samples from the FDI attack model targeting   of bus  with 
a decrease of 0.026 radians. Following machine learning 
practice, the training data was split 7/10 for training the CNN 
and 3/10 for validating the model for each batch. Fitting used 
the initial learning rate of 0.001 and a patience of 5. The loss 
function for training shown in Fig. 4 was the cross-entropy 
function for each mini-batch. 

For this study, the trained CNN model was implemented 
within the HIL emulation environment by having the CNN 
model perform its classification during the execution of the 
WLS SE within the simulation time sequence discussed prior. 
New load profiles were generated with similar base loads as 
the load profiles used during the emulation sampling session 

to obtain new  vectors to pass through the CNN classifier.  

III. SIMULATION RESULTS 

A. Simulation Setup: Validating Attack Model 

To validate the success of the attack model discussed, the 
IEEE 14-bus power system was simulated with Typhoon HIL 
device 604 with constant loads at each bus where bus 14 was 
targeted. For the simulations, the user was able to specify 

which bus to target and quantity, its   or  . Data 

Loggers and a Stream Logger were used within Typhoon HIL 
SCADA to sample the simulation data and emulated model 
output of the targeted bus voltage waveform every 250 
milliseconds, respectively. The compiled model uses current 
and voltage phasor measurements at each bus to construct the 

system’s    matrix. A BDD module was designed to use 

WLS SE to give the system   vector, and compare the 

calculated   value to a threshold value,  = 58.124 , 
calculated from a chi-square test with 95% confidence. Over- 

and under-voltage conditions were monitored for any   
reported to be greater than 1.05 p.u. or less than 0.95 p.u., 

respectively, given the sampled .  
 

Fig. 2. Proposed Time Sequence for Executed SCADA System Operations 
with a simulated basic FDIA (top) during Variable Load conditions.  
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Fig. 3. Illustration of 1-Dimensional deep CNN architecture for proposed FDI attack classification. 

 
The FDI attack against the WLS SE was simulated using 

steady-state operations of the power system. The cyber-

attack model targeted   with a  = 0.02  radians 

increase. The WLS SE of bus 14’s  and the reported residual 
before the attack are compared with their values after the 
attack in Table I. It can be seen that the attack successfully 
passes through the BDD criteria, and thus the attacker can 
remain stealthy, prior to CNN implementation, within 

reasonable  values as the operator is required to maintain 

these quantities within a certain stable range.  

B. Simulation: Evaluating CNN Performance 

Using the same simulation setups as discussed in the prior 
section, the IEEE 14-bus system was modified using the 
dynamic load profiles obtained from a Western Electricity 
Conference Council (WECC) system. For the purposes of 
real-time emulation, the load profile was condensed to 
experience the hourly changes every ¼ second for a 
simulation time of 2190 seconds for each session performed. 
To obtain performance metrics of the CNN on the configured 
system and load profile, bus 12 experienced 470 attacks from 
the validated attack model to the WLS SE reported voltage 

phase angles with the same   value in one emulation 

session that followed the time sequence defined in Fig. 1, but 
with the CNN executing at the same time as the WLS SE. 
The Attack Detection Probability (ADP) is defined as the 
number of detected attacks over the number of attacks 
performed during this experiment’s simulations. Fig. 5 
contains the ADP plot of the CNN after multiple emulation 

sessions where the   varied for each session that bus 12 

was attacked. To measure the false positive rate (FPR) of the  

 
Figure 4. Plotted Loss Function for trained CNN model used for emulation 

in Typhoon HIL. 

Table I. BDD Report of Bus 14 During 
  Cyber-Attack 

Quantity Before FDIA After FDIA 

  0.967 P.U. 0.967 P.U. 


  −14.85° −13.71° 

 0.050 0.448 

 

 

Figure 5. Attack Detection Probability Performance of the trained CNN 
model implemented into the IEEE 14-bus System with Typhoon HIL 

simulation.  

CNN model, an emulation session was performed without 
attacking any bus and tracking the number of samples labeled 
as compromised by the model. The resulting FPR for this 
trained CNN model was 5.720% from a testing sample size 
of 472.  

IV. CONCLUSION 

Through the integration of both software and hardware in 
the Typhoon RTDS, we demonstrate its effectiveness in both 
the development and validation of attack models and 
defensive strategies, ensuring robustness before they are 
implemented in real-world scenarios. A noteworthy aspect of 
this paper is the practical application of a CNN in an RTDS 
environment. The CNN’s effectiveness was evaluated under 
altered system conditions, employing a new set of readily 
available load profiles distinct from those used in the model’s 
training phase. The simulation results are promising, 
particularly in the CNN’s ability to detect larger FDI attack 
magnitudes, which are critical as their undetected presence 
could lead to significant consequences in the smart grid. This 
paper highlights the significant potential of the Typhoon HIL 
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testbed as a valuable tool in the realm of cyber-security for 
power systems. 
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