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Abstract: Background: The rise in work zone crashes due to distracted and aggressive driving calls
for improved safety measures. While Truck-Mounted Attenuators (TMAs) have helped reduce crash
severity, the increasing number of crashes involving TMAs shows the need for improved warning
systems. Methods: This study proposes an Al-enabled vision system to automatically alert drivers on
collision courses with TMAs, addressing the limitations of manual alert systems. The system uses
multi-task learning (MTL) to detect and classify vehicles, estimate distance zones (danger, warning,
and safe), and perform lane and road segmentation. MTL improves efficiency and accuracy, making
it ideal for devices with limited resources. Using a Generalized Efficient Layer Aggregation Network
(GELAN) backbone, the system enhances stability and performance. Additionally, an alert module
triggers alarms based on speed, acceleration, and time to collision. Results: The model achieves a
recall of 90.5%, an mAP of 0.792 for vehicle detection, an mIOU of 0.948 for road segmentation, an
accuracy of 81.5% for lane segmentation, and 83.8% accuracy for distance classification. Conclusions:
The results show the system accurately detects vehicles, classifies distances, and provides real-time
alerts, reducing TMA collision risks and enhancing work zone safety.

Keywords: multi-task learning; work zone safety; Truck Mounted Attenuators (TMA); automated
audible alerts; computer vision

1. Introduction

The number and severity of work zone crashes has been steadily increasing over
the past decade. About 100,000 work zone crashes occurred between 2013 and 2021, re-
sulting in 42,000 injuries and 924 fatalities (an increase of 61%) [1] with a 7% decrease
in work zone fatalities in 2022 [2]. In 2022, work zone crashes resulted in 891 fatalities
and 37,701 injuries [2]. A 2022 nationwide study on highway work zone safety by the
Associated General Contractors of America (AGC) found that 64% of highway contrac-
tors experienced work zone crashes [3]. According to Federal and State departments of
transportation, distracted and aggressive driving were the key factors perpetuating this un-
fortunate trend [4]. The FHWA mandated that each highway agency must revise their state
safety mobility plan by 2008 to incorporate positive protection measures in work zones [5].
These measures are designed to mitigate the impact of work zone crashes and enhance
safety for both workers and the traveling public. The TMA (Truck-Mounted Attenuator) is
an example of a protective device used in work zones that provides positive protection to
workers by absorbing the energy from rear-end motor vehicle collisions. Studies [6] have
confirmed that deploying TMAs in work zones helped reduce the risk of injury or death
and cost of a crash by 1.8 and 3.5 times, respectively. The number of TMA hits in recent
years has, however, increased; for example, in Virginia, TMA crashes have increased by
52.9%, 26.9%, and 36.4 from 2011 to 2012, 2012 to 2013, and 2013 to 2014, respectively [7]. In
Missouri, the number of TMA crashes rose by 20% between 2020 and 2023 [8]. This has ne-
cessitated the need for audible alert systems to provide early warning to distracted drivers
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who are on collision course with a TMA. These alert systems are manually operated, which
presents several challenges—(i) human error: the person responsible for activating the sys-
tem may forget or become distracted, leading to delays in deploying or no deployment of
the alert. (ii) Slower response time: manual systems depend on human reaction, which can
be slower under high stress, unlike automated systems that respond instantly. (iii) Operator
fatigue: operators may experience fatigue due to the monotonous environment, reducing
the effectiveness of the alert system. (iv) High operational cost: manual systems require
more personnel, increasing operational costs since someone must always be present to
manage the system. (v) Increased risk of injury: If the system is manually operated and
a TMA is struck, the operator could be harmed. Automated systems, however, eliminate
this risk by removing the need for a human operator in such situations. The goal of the
current study is to develop and evaluate an Al-enabled vision system that can be used to
automatically trigger an audible alert to drivers on collision course with a TMA.

The minimum requirements of an automated audible TMA alert system should include
the following abilities: (1) detect and classify all vehicles surrounding the TMA; (2) track
and determine the direction of each vehicle with respect to the TMA; (3) flag vehicle(s) on
collision course based on factors such as speed, acceleration, and time to collision; (4) send
an appropriate alert to the driver on collision course. Recent advances in deep machine
learning have significantly improved the accuracy of vision systems used for vehicle
recognition, lane detection, tracking, and other activities needed to improve real-time
situational awareness and safety on roadways. Traditionally, these systems are designed
to address a single task, such as vehicle detection, lane segmentation, or driving area
segmentation. However, an audible TMA alert system requires a vision system that can
perform multiple tasks simultaneously: detect vehicles, track their position with respect
to the TMA, identify traveling lanes, and flag vehicles on collision course with the TMA.
While multiple, single-task models could be integrated to deploy an alert system, the
computational cost of running multiple models is prohibitively expensive and impractical
for real-time applications.

To address this challenge, the current study implements the framework of a single
model that can multi-task on different but related problems needed to automatically op-
erate an audible TMA alert system. Multi-task learning (MTL) has emerged as a pivotal
technique in the realm of machine learning, demonstrating significant advancements across
various domains. MTL aims to enhance the performance of multiple related tasks by
leveraging shared representations and learning jointly, rather than independently. The
foundational principle behind MTL is that learning multiple tasks concurrently can lead to
improved generalization and efficiency, particularly when the tasks are related and can ben-
efit from shared information. This makes MTL particularly suitable for deployment on edge
devices with limited memory and computing capabilities, where running multiple models
simultaneously may not be feasible. The current study takes inspiration from Panoptic
models, exemplified by such as YOLOP [9], YOLOP2 [10], and Hybridnets [11], which have
demonstrated remarkable capabilities in simultaneously performing car detection, lane
detection, and driving area segmentation.

YOLOP [9] was the pioneering model designed to address three tasks (detect cars, seg-
ment lanes, and segment driving areas) simultaneously, achieving state-of-the-art (SOTA)
performance on embedded devices with end-to-end training. Subsequent models like Hy-
bridnets [11] addressed specific weaknesses, incorporating techniques such as customized
anchors, multi-scale bi-directional feature networks, and hybrid loss functions to enhance
performance, while YOLOP2 [10] uses data augmentation (mosaic and mixup) and new
hybrid loss for enhance the model’s generalization. YOLOPX [12] introduced anchor-free
detection and attention mechanisms in lane detection to handle the loss of long-range con-
textual dependencies, while Ehsinet [13] utilized recursive gated convolutions to address
high-order spatial interaction loss.

Despite these significant advancements, these existing models face limitations when
applied as an Automated Truck-Mounted Alert System. They lack the capability to detect
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the distance of oncoming vehicles—a critical feature for alerting distracted drivers to
potential hazards. Additionally, they suffer information loss while passing through the
successive layers, leading to degradation of the model’s performance. To address this
gap, we propose the following: (1) A more generalized model that incorporates a distance
classification module into the model. This module accurately classifies the vehicles into
three zones: a safe zone (>120 m), a warning zone (60-120 m), and a danger zone (<60 m). By
providing real-time distance classification alerts, this enhancement aims to improve driver
awareness and response times, thereby reducing the risk of TMA collisions. (2) Generalized
Efficient Layer Aggregation Network (GELAN) as a backbone. GELAN provides more
stable and robust performance, using conventional convolution to achieve higher parameter
usage than the depth-wise convolution design based on the most advanced technology. It
offers advantages of being light, fast, and accurate. (3) An alert triggering module: This
module processes the model’s output and activates alarms based on the calculated speed,
acceleration, and time to collision of the detected vehicles. This module is activated if
the vehicles are within the danger zone or warning zone, ensuring timely warnings. A
calibrated camera is used to accurately measure speed, acceleration, and time to collision.
This study contributes to the body of knowledge in the following ways:

1. Introducing an Al-enabled vision system that leverages MTL to detect and classify
vehicles, perform lane and road segmentation, and determine distance categories (safe
zone, warning zone, danger zone) in real-time;

2. Implementing a Generalized Efficient Layer Aggregation Network (GELAN) back-
bone to enhance model stability, efficiency, and accuracy, addressing the limitations of
existing models;

3.  Incorporating an alert triggering module that activates alarms based on speed, accel-
eration, and time to collision, ensuring timely warnings for vehicles in the danger
zone or warning zone;

4. Additionally, our research marks the first instance of applying MTL techniques to
TMA automatic audible alerts.

2. Related Work
2.1. Multi-Task Learning

Multi-task learning (MTL) in machine learning involves training a single model to
perform multiple tasks concurrently. Unlike traditional approaches that train separate
models for each task, MTL leverages the interconnectedness of related tasks to enhance its
overall performance. The benefits of MTL are numerous. Firstly, it enhances efficiency by
reducing computational costs and data requirements through joint learning. This makes
MTL especially useful for deployment on edge devices, where it might not be possible to
run numerous models at once due to memory limitations. MTL also boosts accuracy by
leveraging shared information across related tasks, leading to improved generalization
compared to single-task models. Additionally, MTL acts as a regularization mechanism
by enabling the model to learn from various tasks simultaneously, mitigating the risk
of overfitting. MTL offers a powerful framework that not only enhances computational
efficiency and accuracy but also facilitates regularization, thereby contributing to more
robust and effective machine learning models [14-16]. Key methodologies in MTL include
hard parameter sharing, where layers of neural networks are shared among tasks, and
soft parameter sharing, where each task has its model but parameters are regularized to
remain similar [17]. MTL has wide-ranging applications across various fields, including
natural language processing, computer vision, speech recognition, and biomedical imaging.
In the field of computer vision, MTL has achieved significant success, especially with the
creation of panoptic models. This study draws inspiration from panoptic models like
YOLOP [9], YOLOP2 [10], and Hybridnets [11], which have shown impressive abilities
to simultaneously handle tasks such as car detection, lane detection, and driving area
segmentation.
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2.2. Object Detection

Object detection methodologies are broadly categorized into two main types: two-
stage detectors and one-stage detectors. Two-stage detectors employ region proposals
followed by feature extraction to detect objects within specific regions. Conversely, one-
stage detectors perform end-to-end object detection without region proposals. While two-
stage detectors like RCNNSs [18] typically offer superior performance, one-stage detectors
are preferred due to their faster processing speed. An example of a one-stage detector
is YOLO [19], which partitions the image into SxS grids and detects objects within each
grid. YOLOv3 [20] introduced the concept of anchors—predefined boxes used within
each grid to detect objects; however, tuning anchors for different datasets can be laborious.
Recently, there has been a surge in anchor-free detectors, eliminating the need for anchor
tuning. Examples include CenterNet [21] and YOLOVS, which have introduced anchor-free
detection methods. In addition to CNNs, transformer-based models like DETR [22] have
also achieved state-of-the-art results; however, their computational demands preclude their
use in real-world applications such as autonomous driving.

2.3. Driving Area Segmentation

Segmentation involves the meticulous labeling of images at the pixel level, a fundamen-
tal task in computer vision. The evolution of segmentation methods has been marked by
significant advancements in recent years. Initially, a Fully Connected Network (FCN) [23]
was employed for segmentation tasks, laying the groundwork for subsequent develop-
ments; however, the FCN faced limitations, particularly in addressing the inherent multi-
scale nature of segmentation tasks. To overcome this challenge, PSPNet [24] introduced
global spatial pooling, enabling the consideration of multi-scale features. DeeplabV3 [25]
further refined segmentation techniques with atrous spatial pooling, enhancing the ability
to capture multi-scale features effectively. Subsequent advancements, such as SSN [26],
focused on incorporating conditional random field units in post-processing to improve
segmentation accuracy. ENet [27] introduced unique innovative initialization techniques
and bottleneck features to enhance efficiency and performance. DDU-Net [28] adopted two
decoders to enhance semantic segmentation.

2.4. Lane Detection

The narrow configuration of lanes, the fragmented pixel distribution, and occlusion
constitute three distinct characteristics that provide challenges for lane segmentation. Until
recently, conventional lane line identification algorithms—in particular, the Hough trans-
form [29]—were widely used. However, the advent of LaneNet [30] marked a paradigm
shift by treating individual lane lines as separate segmentation instances. Subsequently,
SCNN [31] introduced a slice-by-slice convolution to enhance information propagation
across channels within each layer, thereby improving segmentation accuracy. VPGNet [32]
employs vanishing point guidance to detect both lane and road markings, leveraging
geometric cues for enhanced detection performance. RESA [33] adopts a recurrent ap-
proach, iteratively shifting sliced feature maps in both vertical and horizontal directions
to capture global pixel information effectively. Enet-SAD [34], on the other hand, makes
use of a self-attention rectification technique to facilitate the learning of low-level features
from high-level characteristics, thereby improving performance without compromising the
model’s lightweight architecture.

Independent lane detection, lane segmentation, and drivable area detection face
limitations such as high computational costs, inconsistent results, increased latency, and
resource inefficiency. MTL addresses these issues by sharing feature extraction layers, which
reduces computational load and memory usage, improves consistency across tasks, lowers
latency by processing tasks in parallel, and enhances overall performance by leveraging
the interrelatedness of tasks.
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3. Methodology
Introduction

The methodology is divided into three main parts: data collection and processing,
model training and evaluation, and the alert triggering system. These parts are illustrated
in Figure 1. Data collection and processing involves gathering video and point cloud data
using LiDAR and processing it for model input. Model training and evaluation focuses
on training the model to output bounding box coordinates, distance classifications (safe
zone, warning zone, danger zone), lane segmentation, and road segmentation. The alert
triggering system triggers alarms based on speed, acceleration, and time-to-collision data
from a calibrated camera. The details of these parts are discussed in the sections that follow.

(a) DATA COLLECTION AND PROCESSING \

Set-up for data
collection

ances of each vehicle Output: ;
oA Bounding box(x.y.w,h, distance-class)
u Lane segmentation /!
Driveable area segmentation
Point cloud output .

(b) MODEL TRAINING AND EVALUATION

_
Model Evaluation

Model training

Images

Video Data and point
cloud synchronized to obtain dist-

1

(c) ALERT TRIGGERING SYSTEM

* Carin Warning * Time to collision<10s * Distance to collision <
- . Zone or Danger |—— And 10m
Zone * _Acceleration > 0
* Cardirectly
e — behind the TMA \

Output from
model

Heuristics

g sﬁlgz

Sound alarm
Light flashes goes off

Figure 1. Methodology.

4. Data Collection and Processing
4.1. Sensor Setup and Data Collection

Figure 2 showcases the data acquisition setup, featuring a high-definition 1080p
Logitech webcam (Logitech, HongKong, China) mounted above a Livox LiDAR sensor
(Livox, Shenzhen, China), both affixed to the top of a vehicle. The Livox LiDAR HAP
(T1) employed in this setup boasts a 120° horizontal field of view (FOV) and a 25° vertical
field of view. This LiDAR is capable of detecting objects up to a range of 150 m with
10% reflectivity, providing comprehensive 3D spatial information. A Logitech HD 1080
webcam was used for video streaming. This webcam offers a 78° diagonal field of view,
capturing high-definition video footage. To prevent any obstruction of the LIDAR’s view,
the webcam was strategically mounted on top of the LiDAR sensor. This vertically aligned
configuration ensures that both sensors have an unobstructed field of view, enabling them
to simultaneously capture complementary data streams.
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Figure 2. Data acquisition setup: a high-definition 1080p Logitech webcam mounted above a Livox
LiDAR with a 120-degree horizontal field of view, both installed on top of a vehicle to gather spatial
and video data.

The Logitech webcam was selected for its sharp 1080p HD resolution, outstanding
performance in low-light settings, autofocus capability, and automatic light adjustments.
Logitech is a reputable brand in the webcam market, known for delivering durable, high-
quality products that are both user-friendly and competitively priced compared to other
brands. The Livox HAP was chosen for its ability to endure harsh environments while
maintaining reliable performance. It offers a detection range of 150 m, which is ideal for
calibrating our model, and generates a dense point cloud with a unique non-repetitive
scanning pattern, enhancing point cloud resolution over time. Compared to other premium
LiDAR systems, the HAP is also more cost-efficient.

The entire sensor assembly was securely installed on the vehicle, as depicted in
Figure 2. This mobile setup was employed to gather data from a diverse range of environ-
ments, such as urban streets and highways. The chosen data collection routes included
Providence, Grindstone Parkway, Broadway, and I-70W in Columbia, Missouri, covering
both urban and freeway driving conditions. This variety ensures a robust dataset that
captures different driving conditions and environments.

The Logitech camera recorded video at a resolution of 640 x 480 pixels, operating at a
frame rate of 30 frames per second (FPS). Meanwhile, the Livox LiDAR operated at a frame
rate of 10 Hz, capturing spatial data ten times per second.

4.2. Data Processing

In our data processing pipeline, the integration of camera and LiDAR data is critical
for accurate analysis and application; however, the differing frame rates and spatial per-
spectives of these sensors present challenges. To address these, we performed two key
steps: data synchronization and data calibration. These steps ensure that the data from both
sensors are temporally and spatially aligned, enabling precise and meaningful integration.

4.3. Data Synchronization

The first step in our pipeline was to achieve temporal alignment between the camera
images and the LiDAR point clouds. Given that the camera operates at a lower frame
rate (FPS) than the LiDAR, it was necessary to synchronize the data from both sensors.
We accomplished this by matching each camera image to the LIDAR point cloud with the
closest timestamp. This synchronization ensures that the data from both sources correspond
to the same moment in time, laying the foundation for accurate subsequent processing.

4.4. Data Calibration

After synchronization, the next step was to achieve spatial alignment between the
camera and LiDAR data through a process known as data calibration. To achieve accurate
spatial alignment, the point cloud data were calibrated using the natural edges present
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in the scene utilizing code developed by Yuan et al. [35]. Natural edges refer to the
distinct boundaries or transitions in an image, such as the edges of objects, where there is a
significant change in color or intensity. These edges on both LiDAR data and the camera
data are detected, allowing them to serve as common reference points for alignment. By
identifying and matching these natural edges detected by both the LiDAR and the camera,
these two datasets were accurately aligned.

For these edges in both the camera images and the LiDAR point clouds, we established
common reference points for alignment. Using these reference points, we computed
multiple extrinsic matrices that represent the transformation from the LiDAR frame to the
camera frame. These matrices encapsulate the rotation and translation necessary to map
points from the LiDAR coordinate system to the camera coordinate system.

Given the inherent noise and potential inaccuracies in individual calibration results,
we computed the median of these extrinsic matrices. The median matrix provides a robust
estimate of the transformation by mitigating the influence of outliers and ensuring a more
reliable mapping between the two coordinate systems.

Once the robust transformation matrix was established, we applied it to the 3D LiDAR
points, which include the x, y, and z coordinates. This transformation repositions the LIDAR
points into the camera’s coordinate frame. Subsequently, we projected these transformed
3D points onto the 2D image plane using the camera’s intrinsic matrix. The intrinsic
matrix accounts for the camera’s focal length, optical center, and other internal parameters
essential for accurate projection.

Lens distortion, which can cause significant deviations in the projected points, was
corrected using distortion coefficients specific to the camera. These coefficients adjust
the projected points to account for barrel or pincushion distortion, ensuring the points
accurately reflect the true scene’s geometry. Given the different fields of view (FOV) of
the camera and the LiDAR, not all projected points fall within the camera’s image plane.
Points that lie outside the image boundaries were discarded as they do not correspond
to any valid pixel in the image. This step ensures that only relevant points, which have a
corresponding pixel in the image, are retained for further processing.

Through these steps, we effectively synchronized and calibrated the LiDAR and
camera data, enabling accurate and meaningful integration of the two data sources for
subsequent analysis and applications. Figure 3 shows the point cloud data that has been
synchronized and calibrated with the image data.

Figure 3. Image data synchronized and calibrated with point cloud data.
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4.5. Ground Truth

YOLOPX was utilized to generate ground truth data. YOLOPX is an anchor-free,
multi-task learning network specifically designed for panoptic driving perception. It excels
in detecting traffic objects, segmenting drivable areas, and identifying lanes. YOLOPX
was selected for its real-time object detection capabilities, optimized performance on edge
devices, and excellent balance between accuracy and speed compared to other models.
YOLOPX’s outputs include the bounding box coordinates of the vehicle, lane segmentation,
and road segmentation. For distance ground truth creation, the synchronized point cloud
data were used. The point cloud distances within each bounding box were obtained, and
the 75th percentile of these distances was calculated to determine the car’s distance. This
distance was then categorized into three distinct ranges: “danger” (0-60 m), “warning”
(60-120 m), and “safe” (greater than 120 m). This categorization helps in assessing the safety
levels and potential risks posed by oncoming vehicles. The training dataset comprised
6757 images, while the validation dataset included 1691 images (80:20 ratio). For testing,
3825 images were used, all sourced from a video clip that was not part of the training or
validation sets, ensuring the model had not previously encountered them.

5. Model Training and Evaluation
5.1. Model Network

The model comprises a shared encoder along with three distinct decoders, illustrated
in Figure 4. The encoder initially processes images with a feature size HXWX3. This encoder
is composed of both a backbone and a neck, which collectively extract features from the
input images. Subsequently, the individual decoders execute specialized tasks, including
object detection, distance classification, lane detection, and drivable area segmentation.

5.2. Encoder

The primary function of the encoder is to extract features from images. Our selection
of the GELAN (Generalized Efficient Layer Aggregation Network) backbone is grounded
in its capability to capture intricate patterns and contextual information within images,
qualities that are essential for our decoder heads. Moreover, it addresses issues such
as gradient vanishing, thereby improving training stability. Additionally, it strikes a
balance between accuracy and computational efficiency, as noted in YOLOvV9 [36]. GELAN
backbone splits the convolutional layer into two paths and processes each and then merges
them back. The dual strategy facilitates efficient gradient flow and feature reuse, which
enhances the model’s learning efficiency and inference speed by ensuring depth without
the computational penalty associated with the increased complexity. These qualities are
vital for the TMA alert system, ensuring that the model can effectively capture information,
detect vehicles and lanes, and accurately determine distances. The encoder’s neck serves
the purpose of feature aggregation and refinement, consolidating and refining features from
different scales across the network. By combining various levels, it enhances the model’s
ability to capture both the high-level and low-level features of the image. Various modules
have been used in the necks of networks, including SPP (Spatial Pyramid Pooling), FPN
(Feature Pyramid Network), and Bi-FPN (Bi-directional Feature Pyramid Network). SPP
divides up different feature maps into spatial bins, independently pooling features from
these bins, which are then concatenated to form a multi-scale representation (cite). In our
network, we have adopted the SPPELAN introduced in YOLOV9, this module incorporates
Spatial Pyramid Pooling within the ELAN structure, hence capturing multi-scale contextual
information while maintaining computational efficiency.
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Figure 4. TMA model.

5.3. Detection Head

The detection head is an anchor-based, multi-scale detection head that employs the
Path Aggregation Network (PAN) to process a bottom-up transfer of the features. Features
from the bottom-up and top-down pathways are concatenated to enhance the detection
capabilities. The multi-scale detection heads predict the following: (1) the bounding box
coordinates, specifying the position and dimensions (x, y, width, and height) of detected
objects; (2) classifying the objects within these bounding boxes; (3) the probability of
the predicted class, providing a confidence score for each classification; (4) lastly, they
predict the distance category of a detected car. The distance prediction categorizes the
car’s proximity into three distinct ranges. These are “danger”, which corresponds to a
distance of 0-60 m; “warning”, for a range of 60-120 m; and “safe”, for distances greater
than 120 m. This categorization helps in assessing the safety levels and potential risks
posed by oncoming vehicles to the TMA. If a vehicle falls within a risky distance range,
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an alert triggering system is activated to alert the motorist during the risk of the TMA
being hit.

5.4. Lane Detection and the Drivable Area Segmentation Decoder

Lane detection and drivable area segmentation differ in their attributes: lane detection
segments small linear lines, while drivable area segmentation segments larger areas. Unlike
in YOLOP, Hybridnets, and Ehisnet, where features for both decoders (the lane and drivable
area) stem from the same feature head, we extract features for these decoders from distinct
layers to prevent mutual interference. Drawing inspiration from YOLOPX [12], we utilize
lower features of P4 for the drivable areas as shown in Figure 4c, which we then restore to
the H x W size through four up-samplings.

The lane detection head (Figure 4d), also influenced by YOLOPX, acquires high-
level features C2 and integrates them with an up-sampled P3 that contains multi-scale
information. Subsequently, these features are restored to the H x W size using three up-
samplings. A Polarized Self-Attention mechanism is employed to separate the direction
and magnitude of the features, establishing long-distance contextual dependencies. Overall,
our approach optimizes both accuracy and efficiency in lane detection and drivable area
segmentation tasks.

5.5. Loss

Our model has multiple heads, therefore, we employ a multi-task loss. The overall
loss of the model is given by the following:

1)

L= agetLger + D‘dasegﬁdaseg + ‘Xllseg‘cllseg
where Lg,; is the detection head loss; L is the drivable area segmentation loss; L, is
the lane detection 10ss; & get, ®gaseq, X11seg are tuning parameters to balance the total loss;
and & ge; i 1, R ggseq 18 0.2, and ajseq is 0.2—these are the same values used in YOLOP.

The detection head loss is given by the formula below:

Lot = “cls’ccls + “obj'cob]' + “box’cbox + “dist'cdist 2)

where L is a classification loss; Ly is the distance classification loss; Ly; is the object
loss; and L5, Lyist, Lopj are all Binary Cross Entropy losses, which is a binary variant of the
cross entropy loss—this loss is suitable because each object class is treated independently;
Loy is the box loss, in which the Complete Intersection Over Union addresses localization
and the size of the predicted bounding box; «s is tuned to 0.5, a ;s is tuned to 1, ay,, is
tuned to 0.05 and «,; is tuned 1.

For the drivable area, cross entropy loss was used to minimize the pixel level classifi-
cation error.

‘Cdaseg = Lee @3)

For the lane detection, we employed a combination of cross entropy loss and IoU loss.

Ellseg = Lee + Liou 4)

TP
Liow =1~ 75 FPT N ©)
Lee = Zyllog(pl) (6)

where TP = true positives; FP = false positives; FN = false negatives; y; is the true label (0 or
1); and p; is the predicted probability of the class.
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Video Live-stream

5.6. Training

The TMA model was trained on an Nvidia RTX GeForce 3090 (Nvidia, Santa Clara,
CA, USA)for 30 epochs, starting from pretrained YOLOPX weights. The initial learning rate
was set to 0.001, with a minibatch size of 16. A 3-epoch warm-up period was implemented,
and the learning rate was adjusted using cosine annealing. The AdamW optimizer was
utilized for training.

5.7. Alarm Triggering System

Figure 5 and Algorithm 1 outline the steps involved in the real-time operation of
the alert triggering system. The system receives a video livestream as input, which the
model processes through three decoder heads: drivable area, lane detection, and object
detection with distance classification. The output includes lane segmentation, drivable
area segmentation, vehicle detection, and distance classification, categorizing vehicles
into danger zone, warning zone, or safe zone. The livestream is captured by a calibrated
camera, which accurately determines vehicle distances. The alert system uses a “follower
box” to track vehicles within two critical zones in the same lane as the TMA: the danger
zone (0-60 m) and the warning zone (60-120 m). With the known distances, the system
calculates vehicle speeds and time to collision. If a vehicle moves too close to the TMA,
visual and auditory alarms are triggered to warn drivers, thereby enhancing the safety of
road maintenance crews. The following sections provide more details on this process.

MODEL

Backbone

| |

Object
Lane

Detection )
Drivable

and
Distance
Category

area detection

HEURISTICS

* Carin Warning + Time to collision<10s * Distance to collision <
—_—
Zone or Danger |——» And 10m

1

* Cardirectly

Zone *_Acceleration >0
behind the TMA 1 '

————

Output from model n S&rn':

Sound alarm
Light flashes goes off

Figure 5. Alarm triggering system.

5.8. Determining Vehicles behind the TMA (“Follower Box”)

To trigger the alarm in our alert system, the heuristics code monitors vehicles within
the danger zone (0-60 m) and warning zone (60-120 m) that follow behind the TMA in the
same lane, disregarding vehicles in other lanes. This is accomplished using a “follower box”
to identify the relevant lane. The process of drawing the follower box is semi-automated.
The Python code calculates the distances between continuous lane markings and selects
those with the largest distance between them as these are usually behind the TMA when
the camera is positioned at its rear; however, this method may occasionally be inaccurate,
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requiring manual adjustment by dragging the follower box to the correct lane markings
behind the TMA. The box is then aligned within the lane where the TMA is moving. This
setup allows the alarm system to focus on cars in the same lane as the TMA, as illustrated
in Figure 6.

Algorithm 1. Alarm Triggering System

1:let D «+ []
2:1etS <[]
3:let A <[]
4: for frame; in livestream:
5: detected_vehicles, distance_category, drive_area, lane_segment <— TMA Model(frame;)
6: if distance_category = “Safe Zone”:
7: None
8: elif distance_category = “Danger Zone” or “Warning Zone”:
9: 14 = Calculate distance between two consecutive lane_segmentation
10: selected_lane = max(ly)
11: followerBox <— Draw a follower box in-between selected lane
12: for each corner (bottom-right, top-right, bottom-left, top-left) of followerBox:
13: xsp, ysp = Calculate intersection with nearest lane line from the selec-
ted lane
14: lane_line_equation <— Derive lane line equation for left and right lanes
15: if detected_vehicle lies within lane_line_equation:
16: vehicle_following TMA < True
17: else:
18: vehicle_following TMA < False
19: if vehicle_following TMA = true:
20: distance_from_TMA <« calibrated_camera(detected_vehicles)
21: D « append(distance_from_TMA)
27. speed = distance_from_TMA
P time

23: S < append(speed)
24: acceleration = st’:;fg
25: A < append(acceleration
26: if len(D) = 100:
27: time_to_collison = g[[llg(())]]
28: if A [100] > 0 and time_to_collision < 8.5:
29: light_alarm = True
30: else:
31: light_alarm = None
32: if D [100] < 10:
33: sound_alarm = True
34: else:
35: sound_alarm = False
36: letD+ [],A<[],S<[]
37: else:

None

38: return light_alarm, sound_alarm

To identify vehicles moving in the same lane as the TMA, the code first determines
the lane lines surrounding the TMA's lane using the follower box. The process begins by
identifying the bottom-right corner of the box and calculating the horizontal intersection
with the nearest lane line, recording this point. A similar calculation is performed from the
top-right corner to obtain a second point on the right lane line. This procedure is repeated
for the bottom-left and top-left corners of the box to identify points on the left lane line.
Using these points, the system derives the equations for the right and left lane lines. These
equations are useful when the detected lane lines do not extend far enough to the car. By
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extending the lane lines using the derived equations, the system can determine if the car’s
bottom center lies between these lines, as shown in the image above.

Distance: 87.31 m

Figure 6. Follower box in cyan.

To confirm if a car is within the lane lines, the system checks if its bottom center falls
between the right and left lane lines. It calculates the horizontal intersection of the car’s
bottom center with the right lane line and records this position. The same calculation is
performed for the left lane line. If the car’s bottom center lies between these two positions,
and the car is within the danger zone and warning zone, it is marked as following the TMA.
This scenario is depicted in Figure 7.

Figure 7. Car within danger zone following the TMA.

5.9. Camera Calibration and LiDAR Correction

Once a vehicle is detected, it is tracked, and the distance from the TMA is calculated
using a calibrated camera. This distance is used to determine parameters such as speed,
acceleration, and time to collision. The camera is calibrated using chessboard images cap-
tured from various angles, processed with OpenCV’s camera calibration code to generate
the camera calibration matrix. However, since this calibration does not yield accurate
distances, LIDAR is employed to obtain true distance values. These true distances are then
used to correct the camera calibration results.

5.10. Speed, Acceleration, and Time to Collision

Distances are recorded and maintained in a window of the past 100 values, with
the current distance being the average of these values. Speed is calculated by taking the
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difference between the first and last distances in this window and dividing by the time
difference. Similarly, a window of the past 100 speed values is maintained to calculate
acceleration by taking the difference between the first and last speed values and dividing
by the time difference. Time to collision is determined by dividing the distance by the
speed at each point.

5.11. Alarm Triggering

The system features two alarms: a light alarm and a sound alarm. The light alarm
alerts drivers approaching the TMA with acceleration, triggered when the time to collision
is less than 8.5 s and acceleration is greater than zero. If the driver does not heed the light
alarm and comes dangerously close to the TMA, the sound alarm is triggered when the
vehicle is within 10 m of the TMA to alert the driver.

6. Results and Discussion
6.1. Overall Model Performance

The TMA model demonstrates exceptional performance across various tasks crucial
for enhancing work zone safety. The model achieved a recall of 90.5%, a mean Average
Precision (mAP) of 0.792 for vehicle detection, a mean Intersection over Union (mIOU)
of 0.948 for road segmentation, an accuracy of 81.5% for lane segmentation, an IOU of
0.711 for lane segmentation, and an accuracy of 83.8% for distance classification, as shown
in Table 1. These results underscore the model’s robust capability in detecting vehicles,
accurately determining their distances, and providing real-time alerts.

Table 1. TMA model’s performance.

Objection detection Lane detection Driveable area Distance
Recall mAP50 Pixel accuracy 10U mlIOU classification
0.905 0.792 0.815 0.711 0.948 81.5%

Figure 8 showcases the output of the TMA model, highlighting its ability to detect
vehicles, classify distances, and segment lanes and roads. In the images, the danger zone
is represented in pink, the warning zone in cyan, and the safe zone in yellow, clearly
demonstrating the model’s proficiency in distance assessment.

Figure 8. Cont.
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Figure 8. TMA model’s output.

6.2. Distance Detection Accuracy

The model’s accuracy in detecting the distance of oncoming vehicles was evaluated
across three distance ranges and the accuracy as shown in Table 2 are as follows:

e  (0-60 m: the model achieved an accuracy of 0.94;
60-120 m: the accuracy dropped to 0.58;
e  Over 120 m: the model had an accuracy of 0.73.

Table 2. Accuracy across different classes.

Zone Distance Accuracy
1 Danger zone 0-60 m 0.94
2 Warning zone 60-120 m 0.58
3 Safe zone >120 m 0.73

These results indicate that the model is highly accurate at shorter distances but faces
challenges as the distance increases.

6.3. Comparison with Existing Models

The performance of the TMA model was benchmarked against several existing models,
including YOLOP, YOLOPv2, Hybridnets, and Ehisnet, focusing on key tasks such as object
detection, lane detection, drivable area segmentation, and key metrics like recall, mean
Average Precision at 50% Intersection over Union (mAP50), pixel accuracy, Intersection
over Union (IOU), and mean Intersection over Union (mIOU). Figure 9 illustrates that
the TMA model excels across these tasks, particularly in detecting vehicles, classifying
distances, and segmenting lanes and roads, consistently maintaining high accuracy across
all parameters.

Our choice of the GELAN backbone is a key factor in the model’s performance. The
GELAN backbone efficiently captures intricate patterns and contextual information within
images—critical for the success of the multi-task learning employed in the TMA model. This
network architecture solves issues such as gradient vanishing, improving training stability,
and allows for better feature extraction, particularly useful for tasks like lane detection and
road segmentation, where capturing fine details is essential. Unlike simpler backbones
used in the other models, GELAN utilizes a dual-path strategy, splitting convolutional
layers into two paths and merging them, which facilitates better gradient flow and feature
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reuse. This strategy enhances learning efficiency and improves inference speed without
the computational penalties typically associated with increased model complexity. Such
an approach ensures that the TMA model achieves a better balance between accuracy and
computational efficiency, surpassing models like YOLOP and Hybridnets in performance
while maintaining speed, which is critical for real-time applications

E

Figure 9. TMA model’s comparison with other models.

6.4. Object Detection

Table 3 highlights that the TMA model achieves a recall of 0.905 and an mAP50 of
0.792, which is competitive with existing models. While Ehisnet outperforms in recall with
0.923, the TMA model maintains a strong balance between recall and mAP50, showcasing
its reliability in object detection tasks. Notably, incorporating distance classification into
the model does not significantly impact its performance, indicating the model’s robustness
and efficiency. This can be attributed to the GELAN backbone’s ability to capture more
detailed features, making it better suited for distinguishing vehicles in work zones.
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Table 3. Performance comparison on object detection.

Object Detection
Recall mAP50
TMA model 0.905 0.792
YOLOP 0.915 0.791
Hybridnets 0.845 0.688
Ehisnet 0.923 0.811

6.5. Lane Detection

Table 4 shows the TMA model’s superiority in lane detection, with a pixel accuracy of
0.815 and an IOU of 0.711. It outperforms YOLOP, Hybridnets, and Ehisnet, demonstrating
its capability to accurately segment lanes. The TMA model uses its enhanced feature extrac-
tion and segmentation capabilities to achieve higher accuracy and mIOU in challenging
conditions, such as work zones with inconsistent lane boundaries.

Table 4. Performance comparison on lane detection.

Lane Detection

Pixel Accuracy I0U

TMA model 0.815 0.711
YOLOP 0.575 0.558
Hybridnets 0.77 0.532
Ehisnet 0.652 0.634

6.6. Drivable Area Segmentation

Table 5 highlights the TMA model’s excellent performance in drivable-area detection,
with an mIOU of 0.948, surpassing YOLOP, Hybridnets, and Ehisnet.

Table 5. Performance comparison on drivable area segmentation.

Driveable Area Segmentation

mIOU
TMA model 0.948
YOLOP 0.91
Hybridnets 0.931
Ehisnet 0.926

6.7. Inference Speed

Table 6 highlights a comparison of the size and speed (FPS) of the TMA model against
existing models. The TMA model strikes an optimal balance with a model size of 22.27 M
and a processing speed of 58.2 FPS on an Nvidia RTX GeForce 4080, outperforming other
models in speed while maintaining a competitive model size. For example, YOLOPx, while
larger at 32.9 M, achieves a slower processing speed of 50.7 FPS, and Hybridnets, though
smaller in size at 12.8 M, processes at only 32 FPS.
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Table 6. Inference speed.

Model’s Speed
Model Size Speed
Yolopx 329M 50.7 FPS
TMA model 2227 58.2 FPS
Ehsinet 12.81 46.5 FPS
Hybridnets 12.8M 32 FPS

However, deploying the TMA model on edge devices such as the Nvidia Jetson reveals
more about its real-world performance under resource-constrained conditions. On the
Nvidia Jetson, the inference speed drops to 12 FPS, which, although slower than high-end
GPUs, remains efficient for work zone safety applications. Given the Jetson’s limited
computational power compared to desktop GPUs, achieving 12 FPS demonstrates the
model’s robustness and adaptability to lower-resource environments while still providing
adequate performance for safety-critical tasks.

The comprehensive evaluation and comparison demonstrate that the TMA model
excels in key performance metrics, including object detection, lane detection, and drivable
area detection, while also achieving a high processing speed and efficient model size. These
advancements highlight the TMA model’s potential to significantly enhance real-time work
zone safety applications.

6.8. Limitations

Real-world deployment of the proposed Al-enabled vision system could face several
challenges that impact its performance, especially when applied to diverse environments
beyond the controlled conditions of the original training dataset. Since the model was
trained primarily on U.S. roads, it may struggle to accurately detect and classify vehicles
or road features in other countries with different traffic rules, road designs, or vehicle
types. For example, regions with very hilly or mountainous terrains, sharp curves, or
narrow roads may present difficulties, as these conditions were not fully represented in the
dataset. Differences in vehicle types and sizes, such as motorcycles, tuk-tuks, or large trucks
that are more common in other regions, could pose further detection and classification
challenges, as the model may be biased toward vehicles common in the U.S. To ensure
reliability and scalability across diverse geographies, future research should focus on
training the model on more comprehensive and diverse datasets, including a variety of
road types and vehicle types from different countries. Incorporating driving data from
various regions would improve the robustness of the system. Another important measure
would be deploying adaptive algorithms that allow the system to dynamically learn and
adjust to new environments in real-time.

6.9. Broader Impact and Application

The Al-enabled vision system using multi-task learning (MTL) developed in this study
offers significant potential for improving road safety and autonomous driving beyond
its application to Truck-Mounted Attenuators (TMAs). By efficiently detecting vehicles,
classifying distances into danger zones, and performing lane and road segmentation,
this system can enhance Advanced Driver Assistance Systems (ADAS), providing real-
time alerts for collision avoidance and lane-keeping in passenger vehicles. Secondly, the
Al-enabled vision system could be applied to smart crosswalks where it would detect
oncoming vehicles and estimate their speed and distance. The system could automatically
trigger warning lights or alerts for both drivers and pedestrians when a potential collision
is detected. This could be particularly useful in school zones, busy city intersections, or
areas with heavy foot traffic. Similar technology could be applied to bicycle lanes, where
the system would detect vehicles encroaching into bike lanes or moving dangerously close
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to cyclists. It could trigger visual and audio alerts for both cyclists and drivers to avoid
potential accidents, contributing to safer shared roads. The system could be integrated into
V2X communication platforms, allowing vehicles to share real-time safety information with
nearby vehicles and infrastructure. For instance, when a vehicle equipped with this system
detects an imminent collision or road hazard, it could broadcast alerts to surrounding
vehicles or traffic management systems, improving overall situational awareness on the
road and thus improving overall road safety and traffic management.

7. Conclusions

This study presents the development and evaluation of an Al-enabled vision system
designed to enhance work zone safety by automatically triggering alerts for drivers on a
collision course with Truck-Mounted Attenuators (TMAs). The methodology encompassed
three key components: data collection and processing, model training and evaluation, and
an alert triggering system.

The data collection process utilized synchronized video and point cloud data from a
high-definition webcam and Livox LiDAR sensor mounted on a vehicle, ensuring compre-
hensive coverage of various driving environments. The model, based on the Generalized
Efficient Layer Aggregation Network (GELAN) backbone, was trained to perform multiple
tasks including object detection, lane segmentation, road segmentation, and distance classi-
fication. The training was conducted using an Nvidia RTX GeForce 3090—starting from
pretrained YOLOPX weights—and utilized advanced techniques such as cosine annealing
and the AdamW optimizer.

The TMA model demonstrated outstanding performance across all tasks, achieving a
recall of 90.5%, an mAP of 0.792 for vehicle detection, an mIOU of 0.948 for road segmen-
tation, an accuracy of 81.5% for lane segmentation, and an accuracy of 83.8% for distance
classification. The model maintained high accuracy in distance detection, particularly at
shorter ranges, and was able to provide real-time alerts effectively.

Comparative analysis with existing models such as YOLOP, Hybridnets, and Ehisnet
highlighted the TMA model’s superior performance in key metrics, including object detec-
tion, lane detection, and drivable area segmentation, while also achieving faster processing
speeds and maintaining an efficient model size. The incorporation of a distance classifica-
tion module did not significantly affect the overall model performance, showcasing the
model’s robustness and efficiency.

The comprehensive evaluation demonstrates that the TMA model is a significant
advancement over existing models, offering enhanced accuracy, reliability, and real-time
processing capabilities. These enhancements highlight the TMA alert system’s potential
to greatly enhance work zone safety by providing timely and precise alerts to prevent
collisions and reduce associated costs, such as human injuries, fatalities, vehicle damage,
and traffic disruptions. This study contributes to the field by presenting a novel application
of multi-task learning (MTL) techniques for TMA automatic audible alerts, setting a new
benchmark for work zone safety technologies.

8. Future Directions

To build on the current work, future research could focus on enhancing the model’s
robustness across diverse environmental conditions, such as including a variety of road
types and vehicle types from different countries. Integrating additional data sources, such
as radar or thermal imaging, could further enhance the system’s reliability and effectiveness.
Moreover, exploring the adaptability and scalability of this model for different types of
roadwork scenarios or its integration into existing traffic management infrastructure could
open new avenues for further development in this field. By addressing these areas, the
TMA model could evolve into a more versatile and comprehensive solution, continuing to
set higher standards in work zone safety technology.
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