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Abstract—This paper introduces SDA, the first effort to adapt
the expensive stable diffusion (SD) model for edge FPGA deploy-
ment. First, we apply quantization-aware training to quantize
its weights to 4-bit and activations to 8-bit (W4A8) with a
negligible accuracy loss. Based on that, we propose a high-
performance hybrid systolic array (hybridSA) architecture that
natively executes convolution and attention operators across
varying quantization bit-widths (e.g., W4A8 and all 8-bit QKTV
in attention). To improve computational efficiency, hybridSA
integrates diverse DSP packing techniques into hybrid weight-
stationary and output-stationary dataflows that are optimized
for convolution and attention. It also supports flexible dataflow
transitions to address the distinct demands of its output sequence
by subsequent nonlinear operators. Moreover, we observe that
nonlinear operators become the new performance bottleneck
after the acceleration of convolution and attention, and offload
them onto the FPGA as well. To reduce the latency of each
nonlinear operator, we pipeline its own execution at a fine
granularity. To minimize the resource utilization of nonlinear
operators, we carefully balance their execution with hybridSA in
a coarse-grained pipeline. Experimental results demonstrate that
our low-bit (W4A8) SDA accelerator on the embedded AMD-
Xilinx ZCU102 FPGA achieves a speedup of 97.3× (which takes
about 2.1 minutes for one SD inference), compared to the original
SD-v1.5 model on the ARM Cortex-A53 CPU (which takes about
3.5 hours for one SD inference). Our SDA project is open sourced
here: https://github.com/Michaela1224/SDA code.

I. INTRODUCTION

In the past few years, diffusion models have demonstrated

impressive quality improvement in various image generation

tasks over generative adversarial networks [1]–[6]. Among

them, the recent stable diffusion (SD) is a latent text-to-image

diffusion model that can generate photo-realistic images from

textual inputs [7]. However, the high quality of generated

images comes at the cost of substantial computational and

memory demands, which poses great challenges for deploy-

ment on resource-constrained edge devices.

i) Large model size and computation cost. SD mainly

consists of variational autoencoder (VAE) [8], [9], text en-

coder [10], and UNet [11]. UNet is the major bottleneck (more

than 98% of the total execution time) and has about 800

million parameters (3.1 GB in FP32). Moreover, the denoising

UNet demands many iterative forwarding steps to ensure

generative quality, e.g., 50 steps in SD-v1.5 [7], and each step

requires about 730 GOPs (giga-operations). When running on

an embedded ARM Cortex-A53 CPU, this UNet takes about

3.5 hours, which makes it impractical for deployment.

ii) Complex model structure. Shown in Fig. 1, in addition

to the Transformer blocks [12], which comprises multi-head

attention (including both self-attention and cross-attention)

and feed-forward networks, the SD UNet also integrates

convolution-based ResNet blocks [13]. These two blocks, at

various downsample and upsample scales, are nearly evenly

distributed within the SD UNet, which constrains the perfor-

mance gains achievable by existing accelerators specialized for

either the convolution or the attention operator [14]–[16].

iii) Variety of nonlinear operators. SD integrates a variety

of widely used nonlinear operators, including LayerNorm

(LNorm) [12], GroupNorm (GNorm) [17], SoftMax [12],

GeGLU [18], and SiLU [19], as shown in Fig. 1. These

nonlinear operators would become the new bottleneck after

the main convolution and attention operators are accelerated.

Moreover, they also pose new challenges for dataflow design

of the main convolution and attention accelerator, as they

require specific sequences of output streams from the main

accelerator to facilitate the execution of nonlinear operators.

To address the above challenges, at the algorithm level,

we first apply quantization-aware training for the SD model

with 4-bit weight and 8-bit activation (W4A8) quantization,

to reduce the model parameter size by 8× (from 3.1 GB to

389 MB) with comparable FID and CLIP scores.

At the hardware level, we design a low-bit stable diffusion

accelerator (SDA) to efficiently execute SD inference on edge

FPGAs. To meet the requirements of various main operators

(i.e., convolution and matrix multiplication inside attention)

and their output sequences for nonlinear operators, we pro-

pose a high-performance hybrid systolic array (hybridSA)

architecture. First, hybridSA supports native execution of

both convolution and attention with different quantization

bit-widths (e.g., W4A8 and all 8-bit QKTV in attention).

Second, to improve the computation efficiency in hybridSA,

we employ two 4-bit DSP packing methods for convolution

and matrix multiplication operators to allow them to share a

single DSP (DSP48E2). We achieve an average DSP efficiency

of 4 ops/DSP and 2 ops/DSP for convolution and matrix

multiplication (4-bit multiply by 8-bit). Third, hybridSA sup-

ports flexible switching between weight-stationary and output-

stationary dataflows to generate output sequences friendly for

the processing of subsequent nonlinear operators.

Since nonlinear operators become the new performance

bottleneck after the main operators are accelerated on our

hybridSA, we accelerate them on the FPGA as well and

carefully dataflow their execution with the hybridSA. First,

to reduce the on-chip memory usage, we design a shared tile

buffer used by all nonlinear operators to communicate with

hybridSA. Second, to reduce the latency of each nonlinear

operator, we pipeline its own execution in a fine granularity;

note that pipeline has a negligible resource overhead. Third,

to minimize the resource utilization by nonlinear operators

while not hurting the overall performance, we dataflow their

execution with hybridSA in a coarse-grained pipeline, and

minimize the parallelism degree inside the nonlinear operators
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to merely match the hybridSA speed so that their execution

latency can be hidden (overlapped).

We collect our experiment results for running the contem-

porary SD-v1.5 model [20] on the embedded AMD-Xilinx

ZCU102 ARM-FPGA system-on-chip (SoC). Compared to the

original floating-point SD UNet running on the ARM CPU,

our SDA design on the FPGA, with 4-bit weight and 8-bit

activation, achieves a speedup of 97.3×, with comparable FID

and CLIP scores. Compared to the ARM CPU, SDA achieves

an average speedup of 126.5× and 77.2× for different ResNet

and Transformer blocks, respectively.

In summary, this paper makes the following contributions:

1. The first high-performance low-bit (W4A8) stable diffusion

accelerator on edge FPGAs with a negligible accuracy loss.

2. A hybrid systolic array architecture that supports native

execution of convolution and attention with different quan-

tization bit-widths, flexible dataflow switching to facilitate

nonlinear processing, and effective DSP packing.

3. Resource-efficient nonlinear units implementation and effi-

cient integration with hybridSA via two-level pipelining.

4. A comprehensive evaluation and analysis of SDA.

II. STABLE DIFFUSION AND LOW-BIT QUANTIZATION

A. Overview of Stable Diffusion Model

We select state-of-the-art stable diffusion v1.5 (SD-

v1.5) [20] as the foundational model for our exploration in

the text-to-image domain. The SD architecture is composed

of three primary components: text encoder, UNet, and VAE

decoder. Specifically, the denoising UNet is the most compu-

tationally intensive component in SD and requires numerous

iterative forwarding steps to maintain high generative quality.

For example, in SD-v1.5, the total number of denoising

timesteps required for one inference is 50, which takes about

3.5 hours to run on an embedded ARM Cortex-A53 CPU.

Therefore, our primary goal is to accelerate UNet for deploy-

ment on edge devices, especially on low power edge FPGAs.

Fig. 1 presents an overview of the UNet architecture in

SD-v1.5. The core of UNet is its encoder-decoder structure.

The encoder progressively downsamples the input, capturing

information at different scales and abstracting the high-level

features. The decoder then upsamples this information, re-

constructing the image details. First, the UNet contains three

Cross Attention Downsample Blocks (CADB) of different

sizes. Immediately followed by a Downsample Block (DB),

a Cross Attention Middle Block (CAMB), and an Upsample

Block (UB). Finally, the UNet also contains three Cross

Attention Upsample Blocks (CAUB) of different sizes. Each

block within the architecture is further composed of either

Transformer blocks, ResNet blocks, or a combination of both.

The ResNet block is composed of convolution operators

(CONV3/CONV1), a fully connected layer (1D FC), Group-

Norm (GNorm), and SiLU operators. The more complex

Transformer block comprises convolution (CONV1) opera-

tors, attention operators, GNorm, LayerNorm(LNorm), and

GeGLU [18] operators. Table I lists key variables and their

explanations relating to the UNet structure.

Fig. 1: UNet structure in SD. Variables explained in Table I.

TABLE I: Variables in UNet (Fig. 1) and their explanation

Operator Variable Explanation

Convolution

(ResNet/Transformer)

R Row/col size

N/M Number of input/output channels

G Number of channels per group for GNorm

Attention

(Transformer)

R×R Row size of input matrix in attention

M Col size of input matrix in attention

H Number of heads in attention

L Col size of output matrix for GeGLU

B. Our Low-Bit Quantization for Stable Diffusion

To reduce computational demands and model size of the SD

model, quantization is considered.

1) Prior Quantization Studies and Limitations: Quantiza-

tion is categorized into two types: post-training quantization

(PTQ) and quantization-aware training (QAT). While previous

work [21]–[23] applied PTQ to diffusion model quantization,

PTQ often led to accuracy losses and seldom yielded stable

diffusion results. On the other hand, QAT, as employed by

TDQ [24] for diffusion model quantization, similarly did not

demonstrate stable diffusion outcomes. A recent approach,

EfficientDM [25], implemented QAT on SD quantization,

achieving an accuracy comparable to those of floating-point

models. However, EfficientDM was limited to weight quan-

tization, maintaining floating-point activation in SD. These

prior works [21]–[25] noted a key challenge in SD model

quantization: the activation value range varies during the

denoising process, rendering a single scaling factor inadequate

for covering the activation range in each denoising step.
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TABLE II: FID and CLIP score of our low-bit SD-v1.5

Method
Weight
Width

Activation
Width

FID ↓ CLIP ↑ GOPs
Param
(MB)

SD-v1.5 32-bit 32-bit 26.63 0.3055 729.4 3,115

SD-v1.5 (QAT) 4-bit 8-bit 26.71 0.3051 854.8∗ 389
∗We transform the 8-bit by 8-bit multiplication in attention to two 4-bit by
8-bit multiplications.

2) Activation Scale-Aware W4A8 Quantization: To address

the prior limitation and enhance the accuracy of the quantized

SD model, we utilized QAT and applied distinct scaling factors

at each denoising step. Please note that in selecting the bit-

width, we found that for weight representation, we can reduce

it to 4-bit without degrading accuracy. However, activation is

more sensitive than weight, and the value range varies during

the iterative denoising process. Therefore, we need to use 8-bit

representation for activation and apply distinct scaling factors

at each denoising step to preserve accuracy.

We perform zero-shot evaluation on MS COCO dataset

with 6000 randomly sampled prompts, and set classifier-free

guidance scale as 7.5 to generate the images. We applied the

Fréchet inception distance (FID) score to evaluate the quality

of generated images. A lower FID score suggests that the

distributions of generated images are more similar to those

of real images, indicating better quality and higher similarity.

Additionally, we used the contrastive language–image pre-

training (CLIP) score to assess how well the content of the

generated image aligns with the text prompt’s description. A

higher CLIP score denotes a better match, implying closer

alignment between the image and the textual description.

We compare the quantitative accuracy of our quantized

model with the baseline floating-point model in Table II.

Specifically, we quantize the model weight to 4 bits and

activation to 8 bits (W4A8). Shown in Table II, the low-bit

SD model achieves comparable FID and CLIP scores to the

original floating-point model while compressing the parameter

size by 8 times. It is important to note that the lower-bit

model exhibits higher GOPs due to our conversion of 8-bit

activation multiplied by 8-bit activation (i.e., Q × KT and

QKT
×V ) in the attention of Transformer block into twice as

many operations of 4-bit by 8-bit for uniform representation.

III. LOW-BIT STABLE DIFFUSION ACCELERATOR DESIGN

A. Overall SDA Architecture and Design Novelties

Based on our quantized low-bit SD model in Section II, we

design a high-performance stable diffusion accelerator (SDA)

on the embedded AMD-Xilinx ARM-FPGA SoC, whose over-

all architecture is shown in Fig. 2. Its key component is the

SD core on the FPGA, which accelerates all the operators in

SD UNet on the FPGA to avoid the performance limitation

imposed by Amdahl’s law. The SD core includes: 1) a hybrid

systolic array (hybridSA) to accelerate the main operators,

convolution in all blocks and matrix multiplication in attention

blocks, with different quantization bit-widths (e.g., W4A8 and

all 8-bit QKTV in attention), 2) a special function unit (SFU)

to accelerate all nonlinear operators, plus the linear shortcut

add and transpose operators (we denote all these operators in

SFU as nonlinear operators for the simplicity of writing),

Fig. 2: Overall architecture of SDA.

and 3) a shared tile buffer that is effectively shared by all

nonlinear operators to communicate with hybridSA. Note that

hybridSA takes 4-bit weights and 8-bit activations as inputs,

and we decompose one 8-bit by 8-bit multiplication into two

4-bit by 8-bit multiplications to be computed by hybridSA.

SFU takes 16-bit fixed-point data as inputs. The quantization

and dequantization units that convert data precisions between

hybridSA and SFU are omitted in Fig. 2.

To execute different combinations of main operators and

nonlinear operators in the SD model, the ARM CPU sends

scheduling instructions to configure the datapath scheduler on

the FPGA via the AXI bus that connects to the shared off-

chip memory. The datapath scheduler subsequently directs the

SD core to execute using the corresponding dataflow mode

of hybridSA and nonlinear operators in the SFU. At the same

time, the datapath scheduler also instructs the buffer controller

to manage the corresponding on-chip buffer reads and writes.

Novel hybridSA design. HybridSA exploits a hybrid systolic

array design with flexible switching between output station-

ary (OS) and weight stationary (WS) dataflows to support

native execution of various main operators in convolution

and attention with different quantization bit-widths. It also

generates output sequences friendly for the dataflow process-

ing of subsequent nonlinear operators. Moreover, hybridSA

employs two efficient DSP packing techniques inside each

PE (processing element) tailored for each dataflow mode to

improve the DSP utilization; on average, each DSP can pack

4 W4A8 operations in convolution and 2 W4A8 operations in

matrix multiplication.

Novel resource-efficient nonlinear units (SFU) design and

integration. In SDA, we accelerate all nonlinear operators

inside the SFU and carefully dataflow their execution with

hybridSA. Each nonlinear operator exploits the fine-grained

pipeline to reduce its latency. All nonlinear operators share

the same tile buffer to dataflow with hybridSA, so as to

reduce on-chip memory usage. Moreover, to minimize the

resource utilization by nonlinear operators, the parallelism

degree inside nonlinear operators is minimized to merely

match the hybridSA speed in the coarse-grained pipeline.

B. HybirdSA for Low-bit Convolution and Attention

1) Design Challenges: The design of the hybridSA archi-

tecture needs to meet the following requirements:

#1 Native support for various main operators with dif-

ferent bit-widths: Our analysis indicates that convolution
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operators and matrix multiplication operators in the SD UNet

contribute approximately equally to the total model GOPs.

Moreover, despite adopting W4A8 quantization for the SD

model, attention modules (ATTN1 and ATTN2 in Fig. 1) in the

Transformer block still require 8-bit by 8-bit multiplications

(e.g., Q ×KT and QKT
× V ), which account for 29.5% of

the total GOPs in the low-bit SD model.

This requires a unified architecture to efficiently support

the native execution of those main operators. While prior

studies [14], [16], [26]–[28] have extensively explored systolic

array (SA) architectures to support the execution of convolu-

tion or matrix multiplication, they only support one of them in

native hardware execution and pay extra overhead to convert

the other operator into the one with native hardware support.

#2 High computation efficiency with effective DSP packing:

To improve the computation efficiency for low-bit matrix

multiplication (MM) and convolution, it is natural to expect

that the design of each processing element (PE) can maximize

the DSP utilization through appropriate low-bit DSP packing

methods. While a DSP can easily pack two (and at most two)

W4A8 multiplications in MM [29], recent studies [30]–[32]

demonstrate that for W4A4 convolution, a DSP can pack up

to 6 multiplications and 2 additions (i.e., 8 W4A4 operations

in total). Therefore, our goal is to pack 4 W4A8 operations

for convolution and 2 W4A8 operations for MM, which poses

further challenges to integrate two different DSP packing

mechanisms into one unified hybridSA design.

#3 Flexible dataflow switching to generate friendly output

sequences for subsequent nonlinear units: Shown in Fig. 1,

after the MM operator, SoftMax, LNorm, and GeGLU require

the hybridSA to output a complete row of data (Z1×R×R for

Eq. (1), Z1×M for Eq. (2), and Z
1×2L for Eq. (4)) as quickly

as possible; note that we implement the CONV1 operator as

MM as well. This prefers an output-stationary (OS) dataflow

design for hybridSA, so that hybridSA can directly stream

its outputs onto those nonlinear operators instead of writing

and then reading the off-chip memory. On the other hand,

following convolution (CONV3) in the ResNet block, GNorm

requires the hybridSA to output data for the first G channels

(ZR×R×G for Eq. (2)) as soon as possible. This prefers a

weight-stationary (WS) dataflow design for hybridSA. As a

result, hybridSA needs to support the native execution and

flexible switching of MM-OS and CONV-WS dataflows.

2) HybridSA with MM-OS and CONV-WS Dataflows: To

meet the above design requirements, we design our hybridSA

architecture as shown in Fig. 3. It has X × Y processing

elements (PEs), which natively support the execution of MM-

OS and CONV-WS dataflows to maximize the sharing of

scarce on-chip resources. Each PE takes a 4-bit weight and

8-bit activation (W4A8) as inputs; and the 8-bit by 8-bit multi-

plication is decomposed into two 4-bit by 8-bit multiplications

with an extra shift and addition. Inside each PE, it further

decomposes the 8-bit activation into two 4-bit segments,

so that it can apply the more effective 4-bit (W4A4) DSP

packing [30], [31] to improve the computation efficiency.

MM-OS dataflow: For the matrix multiplication (MM) inside

Fig. 3: Overview of X × Y size hybridSA design support-

ing hybrid output-stationary dataflow for matrix-multiplication

(MM-OS) and weight-stationary dataflow for convolution

(CONV-WS), and its PE design with 4-bit DSP-packing.

the Transformer blocks, hybridSA operates in the MM-OS

mode to generate friendly output sequences for its subsequent

SoftMax, LNorm, and GeGLU nonlinear operators. As shown

in Fig. 3(a), 8-bit activations (A) and 4-bit weights (W) are

propagated rightwards and downwards, respectively. Output

results are generated internally in each PE and then pushed

downwards through the array. As depicted in Fig. 4(a), hy-

bridSA with MM-OS dataflow first generates a tile of output

data along the rows of the matrix (ZX×M ) to satisfy the

data consumption of the subsequent nonlinear units. Note that

convolutions with a kernel size of 1 (CONV1), in the ResNet

block and the Transformer block, are processed as MM to

operate in the OS-based dataflow.

Shown in Fig. 3(b), each PE receives two 8-bit activations A
at a time and splits each into a pair of 4-bit activations. The

first two aligned 4-bit activations from two 8-bit activations

are then fed into one DSP48E2, while the remaining pair

of 4-bit activations are directed to another DSP48E2. Each

DSP48E2 performs four multiplications [29] along with two

4-bit weights, as shown in Fig. 4(c). A cost-effective bit-width

correction (BitCR in Fig. 3(b)) circuit is added to correct the

sign-bit contamination in the packed multiplications [33]. In

summary, one DSP performs four W4A4 multiplications, or

two W4A8 multiplications in MM-OS dataflow mode.

CONV-WS dataflow: To compute convolution operators and

to output friendly sequences for the subsequent GNorm non-

linear operator, hybridSA executes in CONV-WS mode. As

depicted in Fig. 3(a), CONV-WS dataflow shares the activa-

tion supply logic in that of MM-OS dataflow, but each PE

individually owns weights and passes partial results (Psum)

downwards. Fig. 5(a) shows that hybridSA can sequentially

generate a block of output data along the channels (ZR×R×G)

required for executing the subsequent GNorm nonlinear opera-

tor. Within each PE, the same DSP48E2 can perform six 4-bit

multiplications and two 4-bit additions [30]–[32] in CONV-

WS mode, as shown in Fig. 5(c). That is, each DSP can

perform four W4A8 operations (three multiplications and one

addition) in CONV-WS dataflow mode.

MM-OS and CONV-WS dataflow switching: Lastly, shown

in Fig. 4(b) and Fig. 5(b), we reorganize the output data layout
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Fig. 5: Workflow and DSP packing method when hybridSA works in weight-stationary (WS) mode for low-bit convolution.

The systolic array (SA) has X × Y PEs.

from the packed DSP computations on the fly, so that we

can ensure consistent data packing when transitioning between

MM-OS and CONV-WS dataflows with different DSP packing

techniques, without any additional conversion overhead.

C. Efficient Nonlinear Units and Integration with HybridSA

1) Overall Design Principles: The complex SD UNet

model structure, shown in Fig. 1, incorporates a variety of

nonlinear operators, such as SoftMax, LNorm, GNorm, SiLU,

GeGLU, and linear shortcut add and transpose. As will be

presented in Fig. 11 in Section IV-C, after the acceleration

of main operators, these nonlinear operators become the

new performance bottleneck and need to be offloaded onto

the FPGA as well. A straightforward implementation of all

operators—with the same parallelism degree as the main

SA design (e.g., [14] did it this way for SoftMax) and a

separate communication channel between hybridSA for each

operator—will soon consume all the FPGA resources while

for the majority of the time, the nonlinear units remain idle.

To reduce the on-chip memory usage, we design a shared

tile buffer to be shared by all nonlinear units to communi-

cate with hybridSA. To minimize the resource utilization by

nonlinear operators while not hurting the overall performance,

we employ a two-level pipeline design. First, we pipeline the

execution inside each nonlinear operator in a fine granularity.

Second, we design a coarse-grained pipeline between the

nonlinear operators and hybridSA to hide their execution

latency; the parallelism degree inside nonlinear operators can

be minimized to merely match the hybridSA speed.

Since the support of shortcut add and transpose units are

relatively straightforward given the shared tile buffer, next we

describe more implementation details for other nonlinear units.

2) SoftMax Unit: The SoftMax operator [12] in the ATTN1

and ATTN2 of the Transformer block is calculated as:

SoftMax(xi) = exi−xmax/
∑R×R

j=1
exj−xmax (1)

where xi ∈ R
1×R×R. SoftMax necessitates three sequen-

tial row-wise data accesses, involving the identification of

the maximum value (MAX), exponentiation and summation

(SUB-EXP-ACC), and the normalization division (DIV).

Fig. 6(a) illustrates the detailed hardware structure of the

SoftMax unit, composed of a coarse-grained tile-level pipeline

and a fine-grained row-level pipeline. In the coarse-grained

tile-level pipeline, double tile buffers are inserted between the

hybridSA and SoftMax unit. The tile buffer collects and stores

row-wise tile data generated by hybridSA, and facilitates the

rate transition from the high-speed hybridSA (stage 1) to the

low-speed SoftMax unit (stage 2).

In stage 1, the maximum value (MAX) is also calculated

while storing tile data. Since SoftMax’s input data are from the

matrix multiplication result of all 8-bit QKTV , the two 4b×8b

outputs from hybridSA need to be left-shifted and added (ADD

in stage 1). For stage 2, double row buffers are introduced to

pipeline exponentiation summation (SUB-EXP-ACC in stage

2-1) and normalization division (DIV in stage 2-2).

Fig. 7 depicts the scheduling view between hybridSA and

SoftMax unit. Row-level pipeline implements time overlap

of exponentiation and summation, and normalization division;

while tile-level pipeline overlaps the entire SoftMax computa-

tion with hybridSA calculation (operating in MM-OS mode).

Consequently, the parallelism setting for the SoftMax unit only

needs to ensure that the computation is completed within the
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Fig. 6: Hardware structure of SoftMax unit (a), L/GNorm unit and SiLU unit (b), and their dataflow with hybridSA.

Fig. 7: Scheduling view between MM-OS-mode hybridSA and SoftMax unit.
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Fig. 8: Scheduling view between hybridSA and L/GNorm unit.

Fig. 9: Design of GeGLU unit and its dataflow with hybridSA.

time hybridSA generates two 4b×8b tiles, thereby reducing

on-chip resource consumption.

3) L/GNorm Unit and SiLU Unit: LNorm and GNorm

operators [17] share the following identical computations:

L/GNorm(xi) = γi × (xi − µ)/σ + βi (2)

where xi ∈ Z
1×M for LNorm, xi ∈ Z

R×R×G for GNorm.

They require three sequential accesses to input data to compute

the mean (µ), standard deviation (σ), and normalization based

on pre-trained affine transform parameters (γ and β).

Based on their common computational characteristics, we

design a tile-level pipeline as depicted in Fig. 6(b), where

LNorm and GNorm share most of the logic. We adopt integer

quantized norm proposed in [34], which iteratively computes

both the mean and mean-square value [35] (stage 1). Addition-

ally, to accommodate different accumulation requirements for

µ and σ in LNorm and GNorm, we added extra accumulation

(ACC) for GNorm in stage 2. Specifically, for matrix tile data

(ZX×M ) generated by hybridSA in MM-OS mode, LNorm

directly obtains X means and variances without additional

accumulation. For convolutional tile data (ZR×R×G) gener-

ated by hybridSA in CONV-WS mode, GNorm enables the

accumulator to obtain one mean and variance.

Shown in Fig. 8, the parallelism setting of the L/GNorm

unit only needs to ensure that the current tile calculation is

completed before the next tile data arrives. In addition, the

SiLU unit following GNorm in the ResNet block has the same

parallelism factor with GNorm and executes hardware-friendly

pixel-wise linear hard approximation calculations [36]:

SiLU(xi) ≈ xi ×ReLU6(xi + 3)/6 (3)

4) GeGLU Unit: The GeGLU operator [18] in the Trans-

former block needs one row of data to compute as follows:

GeGLU(xi) = xi ×GeLU(xL+i) (4)

GeLU(xL+i) ≈ xL+i ×ReLU6(1.702xL+i + 3)/6 (5)

where xi ∈ R
1×L.

Shown in Fig. 9, GeGLU has a similar tile-level pipeline,

where piece-wise linear hard approximation [36] for GeLU is

executed in stage 2. The shared row buffer used in SoftMax

(Fig. 6) is reused to store the first half of a row (xi ∈ R
1×L)

and feed data for multiplication (MUL) performed after GeLU.

IV. EVALUATION

A. Experimental setup

1) Training Setup: We utilize the diffusers library as the

foundation for our code and employed Quantization-Aware

Training (QAT) on the SD-v1.5 model using publicly available

datasets [37], [38]. In addition to 4-bit weight and 8-bit

activation quantization, other bias parameters adopt a 16-bit

fixed-point format. We document the quantitative outcomes

in terms of FID and CLIP scores on the MS-COCO 2014

validation set [39] for zero-shot evaluation. The majority of

our training utilized 16 nodes, each equipped with 8 NVIDIA

A100 GPUs boasting either 40GB or 80GB of memory. We

opted for the AdamW [40] optimizer with a weight decay

setting of 0.01 and established a training batch size of 2,048.

2) Hardware Platform: Our proposed SDA is evaluated

on the AMD-Xilinx-ZCU102 ARM-FPGA SoC board with

a high-speed 4GB DDR4 SODIMM. This board integrates

an ARM Cortex-A53 CPU and a ZU9EG FPGA, which has

2,520 DSPs, 912 BRAMs, and 274.1K LUTs. We utilize Vitis

HLS and Vivado to implement our SDA design, which runs

on board at a clock frequency of 250MHz. The resource

utilization is collected from post place-and-route reports and

the power is measured using a power meter. Our CPU baseline

is the original SD model with FP32 precision running on the

ARM CPU as it does not support low-bit precision.
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Fig. 10: Latency and speedup comparison of different ResNet and Transformer blocks with different sizes in Fig. 1.

Fig. 11: Execution time breakdown before/after acceleration.

TABLE III: Performance and energy-efficiency comparison

Platform
Performance

(iter/s)
Power
(W)

Energy
(iter/s/W)

GOPS

CPU 0.004 2.871 0.0014 3
SDA 0.389 9.977 0.039 332.5

GPU
0.386 7.5 0.052 281.5
0.489 15 0.033 356.7

B. Overall Performance

Shown in Table III, compared to the embedded ARM

CPU, our SDA achieves a 97.3× speedup (measured in SD

UNet iterations processed per second) and a 27.9× energy

efficiency improvement. The overall throughput of the SDA is

332.5 GOPS. Due to the adoption of different DSP packing

methods, CONV3 and MM/CONV1 operators in the low-

bit SD model achieve a throughput of 400.6 GOPS and

301.3 GOPS, respectively. Fig. 10 represents the speedup of

ResNet and Transformer blocks of various sizes. Our SDA

demonstrates an average speedup of 126.5× and 77.2× for

ResNet and Transformer blocks over CPU, respectively.

In addition, we also run SD UNet on Jetson TX2 embedded

GPU. At 7.5W, it achieves 0.386 iter/s and 0.052 iter/s/W. At

15W, it achieves 0.489 iter/s and 0.033 iter/s/W. Our SDA

achieves 0.389 iter/s and 0.039 iter/s/W, which is comparable

to the TX2 performance running at 7.5W and slightly outper-

forms TX2 in performance/watt running at 15W.

C. Performance Breakdown

Fig. 11 (a) and (b) break down the execution time for main

and nonlinear operators in ResNet and Transformer blocks

before and after acceleration. Specifically, when all operators

are executed on the ARM CPU, CONV in the ResNet block

and MM in the Transformer block occupy 96.5% and 59.1%

of the overall time, becoming the primary latency bottlenecks.

Subsequently, after accelerating these main operators with our

proposed hybridSA, the time percentage of CONV and MM

decreases to 18.3% and 3.1% of the updated overall time,

respectively. At this point, nonlinear operators—especially
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TABLE IV: Resource utilization of our SDA accelerator

Component DSP LUT BRAM

HybridSA 485(19.2%) 140,397(51.2%) 333(36.5%)

Nonlinear Units 211(8.4%) 46,562(17.0%) 342.5(37.6%)

Other Logic 110(4.4%) 33,737(12.3%) 137.5(15.0%)

Total 806(32.0%) 220,696(80.5%) 813(89.1%)

SiLU and GNorm in the ResNet block, SoftMax and GeGLU

in the Transformer block—executing on the CPU become

the new bottleneck. Due to Amdahl’s law, it does not help

much even if we increase the spatial size of hybridSA to

further reduce the latency of main operators. Instead, we

should allocate hardware resources now to accelerate the

nonlinear operators. Indeed, our SDA design eliminates the

new bottleneck imposed by nonlinear operators, which are

accelerated on the FPGA and dataflowed with our hybridSA

to well hide their latencies.

D. Resource Utilization

Table IV illustrates the resource utilization of the proposed

SDA. We implement the proposed hybridSA with a spatial size

of 20×10, and configure the parallelism factor for SoftMax,

L/GNorm, SiLU and GeGLU to 5. HybridSA consumes the

majority of the resources as planned and the entire design is

bottlenecked by LUT and BRAM usages. It only uses 32%

of the DSP resources, due to the efficient DSP packing in hy-

bridSA. Meanwhile, DSP packing comes at a cost of increased

LUT usage, and it is nontrivial to further increase the spatial

size of hybridSA. Moreover, as presented in Section IV-C,

it is more important to allocate some hardware resources to

accelerate the nonlinear operators (the new bottleneck after the

main operator acceleration) and hide their execution latencies

to achieve the best overall performance.

V. RELATED WORK

A. FPGA-based Systolic Array Designs

The systolic array (SA) architecture, including output-

stationary (OS), weight-stationary (WS), and input-stationary

(IS) dataflows, is widely adopted to accelerate DNN infer-

ence, since its simple PE array design with local neighboring

communication can be easily scaled up with a high clock

frequency [14], [16], [26]–[28], [41]. Table V summarizes the

differences between our SDA and prior SA studies.

First, existing SA architectures are designed and optimized

only for a single main operator, either matrix multiplication

or convolution, and incurs extra overhead to convert the other

main operator into the one with native hardware support. In

contrast, our SDA accelerator supports the native execution of

both main operators in the same hybridSA hardware in the

MM-OS and CONV-WS dataflow modes, respectively.

Second, most existing SA architectures only support a

subset of nonlinear operators involved in CNN or Transformer-

based models. In contrast, our SDA accelerator accelerates a

variety of nonlinear operators, including SoftMax, L/GNorm,

SiLU and GeGLU, and carefully dataflows their execution with

hybridSA with minimal resource utilization.

Third, most existing SA architectures do not well support

DSP packing, especially the latest 4-bit DSP packing for

TABLE V: Comparison with prior FPGA-based SA studies

Prior

Works

Dataflow

Suppoted Operators

Precison
DSP

Packing

Native Main

Operator
Nonlinear Operator

OS WS CONV MM SoftMax LNorm GNorm SiLU GeGLU

[26] 7 : : 7 7 7 : : : W4A8 7

[27] 7 : : 7 7 7 : : : W8A8 :

[28] 7 : 7 : : : : : :
W8A8

W16A16
:

[14] 7 7 : 7 7 : : : : - :

[16] 7 7 7 : : : : : : W8A8 7

SDA 7 7 7 7 7 7 7 7 7 W4A8 7

convolutions. In contrast, our SDA accelerator well integrates

state-of-the-art DSP packing techniques [29]–[32] to im-

prove computation efficiency and carefully tunes the dataflow

switching to avoid data repacking overhead.

B. FPGA-based Accelerator for Large Language Models

More recently, a growing body of work has demonstrated

the potential of FPGAs in accelerating the emerging large

language model (LLM) inference [15], [26], [42]. The lat-

est FlightLLM [15] proposed a complete mapping flow that

integrates configurable sparse DSP chain, always-on-chip de-

coding, and length adaptive compilation for LLMs, which

achieved 6× higher energy efficiency and 1.8× better cost

efficiency against Nvidia V100 on the LLaMA-7B model.

However, existing FPGA-based accelerators for LLMs mainly

focus on accelerating language model inference based on

Transformers, and all of them are deployed on cloud FPGAs.

Different to previous work, our SDA is the first to explore

the potential of edge FPGAs to accelerate large low-bit stable

diffusion model and support both the attention-based Trans-

former blocks and the convolution-based ResNet blocks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented SDA, the first efficient

low-bit stable diffusion inference accelerator on edge FPGAs.

Our SDA accelerator proposes a high-performance hybridSA

architecture that supports native execution of convolution and

attention blocks with different quantization bit-widths, with

effective DSP packing techniques. Moreover, it implements

various resource-efficient nonlinear units, and efficiently inte-

grates them with hybridSA—which supports flexible dataflow

switching to generate friendly outputs for subsequent nonlin-

ear processing—to minimize their resource utilization while

well hiding their execution latencies via two-level pipelining.

Compared to the ARM CPU, our SDA achieves a speedup of

97.3× while maintaining comparable FID and CLIP scores on

the modern SD-v1.5 model. In future, we will focus on more

microarchitecture optimizations to achieve more competitive

performance compared to embedded GPUs and extend SDA

to support more applications and platforms.
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