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ABSTRACT

Vision transformers (ViTs) have demonstrated their superior accu-

racy for computer vision tasks compared to convolutional neural

networks (CNNs). However, ViT models are often computation-

intensive for e�cient deployment on resource-limited edge devices.

This work proposes Quasar-ViT, a hardware-oriented quantization-

aware architecture search framework for ViTs, to design e�cient

ViT models for hardware implementation while preserving the ac-

curacy. First, Quasar-ViT trains a supernet using our row-wise �ex-

ible mixed-precision quantization scheme, mixed-precision weight

entanglement, and supernet layer scaling techniques. Then, it ap-

plies an e�cient hardware-oriented search algorithm, integrated

with hardware latency and resource modeling, to determine a se-

ries of optimal subnets from supernet under di�erent inference

latency targets. Finally, we propose a series of model-adaptive de-

signs on the FPGA platform to support the architecture search and

mitigate the gap between the theoretical computation reduction

and the practical inference speedup. Our searched models achieve

101.5, 159.6, and 251.6 frames-per-second (FPS) inference speed

on the AMD/Xilinx ZCU102 FPGA with 80.4%, 78.6%, and 74.9%

top-1 accuracy, respectively, for the ImageNet dataset, consistently

outperforming prior works.
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1 INTRODUCTION

ViTs [10, 35, 42, 62] incorporate the attention mechanism [46] to

ful�ll various computer vision tasks, by allowing all the pixels in

an image to interact through transformer encoder blocks and thus

achieving higher accuracy compared to CNNs. Table 1 compares

representative CNN and ViT models, i.e., ResNet [12]/ResNeXt [56]

and DeiT [42] for the ImageNet dataset. DeiT-small (DeiT-S) with

a comparable number of parameters and GMACs as ResNet-50

achieves even higher accuracy than ResNeXt-101, whose size is

around 4× as that of DeiT-S. DeiT-base (DeiT-B) with comparable

size as ResNeXt-101 achieves 2.54% higher top-1 accuracy.

Table 1: Comparison of ResNets, ResNeXt, and DeiTs on Ima-

geNet dataset. We choose DeiT without distilling token here,

which represents state-of-the-art ViTs, as it can be directly

trained on ImageNet-10k without pre-training on a massive

dataset.

Model #Params (M) MACs (G) Top-1 Acc. Top-5 Acc.

ResNet-18 11.69 1.82 69.76% 89.08%

ResNet-50 26.56 4.14 76.13% 92.86%

ResNet-152 60.19 11.61 78.31% 94.05%

ResNeXt-101 88.79 16.59 79.31% 94.53%

DeiT-S 22.10 4.60 79.85% 94.97%

DeiT-B 87.50 17.60 81.85% 95.59%

Despite ViTs’ signi�cant accuracy improvement, it is non-trivial

to deploy ViT inference on resource-limited edge devices due to

their huge model size and complex architectures. For example,

even the lightweight ViT model DeiT-S [42] has a model size of

22.10" parameters× 4�~C4B per �oating-point parameter = 88.4"�,

presenting an overwhelming computing load and memory size for

most edge devices.

The basic transformer encoder with multi-headed self-attention

(MSA) and multi-layer perceptron (MLP) blocks is shown in Fig-

ure 1, consisting of multiple di�erent computation components,

including linear layer, attention, residual addition, matrix reshape

operation, GELU, and layer norm. To further understand the bottle-

neck of the current ViT model structure, we pro�le the runtime of

each component of ViT on a Xeon(R) Silver 4214 CPU [16] using

Pytorch Pro�ler [33] as shown in Figure 1. We use the same color to

indicate the same component in both the transformer block struc-

ture and pro�ling �gures. It shows matrix multiplication operations

dominate the processing time (94.7% and 87.3% for DeiT-B [42] and

DeiT-S [31], respectively) of execution cycles.
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Figure 1: Transformer encoder block structure andViTmodel

execution performance pro�ling on CPU for a) DeiT-Base

and b) DeiT-S with 12 encoders on ImageNet dataset.

Contemporary acceleration methods mainly focus on reduc-

ing the practical inference latency of matrix multiplication opera-

tions. They primarily fall into two categories: 1) neural architecture

search (NAS) that searches the lighter-weight model; and 2) model

compression, especially model quantization that reduces the per-

parameter bit-width. However, there are twomajor challengeswhen

applying these methods on hardware. The �rst challenge is associ-

ated with model quantization. It has been revealed that the most

suitable quantization schemes/bit-widths depend on model sizes

and architectures [49, 54], and there is a vast design space in the

quantization of both weights and activations for each layer on dif-

ferent models and hardware. As ViT models become deeper, the de-

sign space increases exponentially, resulting in poor performance of

rule-based strategies. Although recent studies explored automated

quantization techniques for a given ViT architecture [45, 49, 54],

they did not integrate model quantization with NAS together, which

could result in suboptimal performance. In this paper, we propose

the framework of model quantization and NAS co-design for ViTs

towards improved performance compared to treating NAS and

quantization separately.

The second challenge is the gap between the theoretical com-

putation throughput and the practical inference speed on actual

hardware. For example, layer-wise (inter-layer) mixed-precision

quantization (for CNNs) [49, 54] quantizes each layer with a dif-

ferent bit-width and therefore executes layers through distinct

hardware components sequentially, leading to low resource utiliza-

tion. Furthermore, kernel-wise mixed-precision quantization (for

CNNs) [29] assigns di�erent bit-widths down to the kernel level,

signi�cantly diversifying the computing pattern and is ine�cient

for hardware implementation.

Recent work FILM-QNN [40] and Auto-ViT-Acc [22] leverage

the intra-layer mixed quantization to achieve good performance

for both model accuracy and throughput on FPGA. By applying

two di�erent quantization bit-widths/schemes for di�erent chan-

nels and limiting the same mixed-precision ratio across each layer,

FPGA can e�ciently handle di�erent computations on di�erent

hardware resources sharing the same hardware design. However,

existing approaches su�er from a manually con�gured uniform

mixed-precision ratio across all layers, potentially compromising

quantized model accuracy. Moreover, architectural design consider-

ations are often neglected, limiting the overall model performance.

To address these problems comprehensively, we propose Quasar-

ViT, an integration of a hardware-oriented quantization-aware ar-

chitecture search targeting ViT. First, to fully unleash the com-

putation potential of FPGA resources, we investigate a hardware-

friendly row-wise mixed-precision quantization scheme. At the al-

gorithm level, di�erent from FILM-QNN [40] andAuto-ViT-Acc [22],

we quantize di�erent channels within each layer into lower and

higher bit-widths with the �exibility of di�erent mix-ratios for lay-

ers, which achieves a more �ne-grained architecture to maintain

the accuracy. At the hardware level, we propose the FPGA-based

model-adaptive design, including 4-bit atomic computation and

hybrid signed/unsigned DSP packing, which set basic hardware

units for the lower-bit computation, and decompose the higher-bit

computation to lower-bit ones to reuse the resources. Second, dur-

ing the supernet training, we propose the mixed-precision weight

entanglement mechanism, such that di�erent transformer blocks in

subnets can share weights for their common parts in each layer to

enable e�cient quantization during architecture search and reduce

training memory cost. On top of that, we establish the correspond-

ing FPGA latency and resource modeling to estimate the inference

latency and combine it with an e�cient hardware-oriented evo-

lution search method. Based on the above, we integrate with the

one-shot NAS algorithm to e�ciently �nd the most accurate quan-

tized model under the given inference latency. We also explore the

layer scaling in CaiT [43] and extend it to the supernet architecture

to improve the training e�ciency and model accuracy. To demon-

strate the compatibility of our proposed framework with knowledge

distillation (KD) and further improve our searched model accuracy,

we integrate KD [15] into the training process. Finally, on the hard-

ware side, we implement the basic computing units for 4-bit weight

and 6-bit activations with hybrid signed/unsigned DSP packing

optimization to enable e�cient FPGA implementation.

The contributions of our work are summarised as follows:

• An end-to-end hardware-oriented quantization-aware archi-

tecture search framework (Quasar-ViT) for ViTs, achieving

superior accuracy and inference speed over prior studies. La-

tency/resource modeling of the hardware accelerator design

is integrated into the search process.

• Hardware-friendly quantization techniques—such as �exible

row-wise mixed-precision quantization and mixed-precision

weight entanglement—in the architecture search, towards

high accuracy, low training cost, and e�cient implementa-

tion.
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• Real FPGA implementations of our model-adaptive design,

with our proposed 4-bit weight atomic computation and

hybrid signed/unsigned DSP packing.

• Integration of proposed supernet layer scaling (SLS) in our

framework, achieving further accuracy improvement. Our

ablation study also demonstrates our framework’s good com-

patibility with knowledge distillation (KD).

Quasar-ViT achieves 101.5, 159.6 and 251.6 FPS on theAMD/Xilinx

ZCU102 FPGA board with 80.4%, 78.6%, and 74.9% top-1 accuracy

for ImageNet, respectively.

Compared to the representative ViT training-aware quantiza-

tion [20] and the post-training quantization [27], at a similar model

size, our model achieves 2.1% and 5.2% higher top-1 accuracy, re-

spectively. Compared with Auto-ViT-Acc [22], a state-of-the-art

FPGA accelerator for ViT with mixed-scheme quantization (with-

out NAS), we achieve 1.7% better top-1 accuracy with a similar FPS,

and 1.6× better FPS with a similar level of model accuracy.

2 RELATED WORK

2.1 Vision Transformers

First proposed in [10], the vision transformer (ViT) is a ground-

breaking work that uses transformer blocks for vision tasks. Unlike

traditional CNN architectures that use a �xed-size window with re-

stricted spatial interactions, ViT interprets an image as a sequence of

patches and adopts the self-attention mechanism [46]. This allows

all the positions in an image to interact through transformer blocks,

which provides the extraordinary capability to capture relations at

the pixel level in both spatial and temporal domains. However, the

original ViT requires pre-training with large-scale datasets such as

ImageNet-21k and JFT-300M. To tackle the problem, many variants

such as DeiT [42] and T2T-ViT [62] were proposed, which can be

well trained with only ImageNet-10k. ViTs improve model accu-

racy at the cost of increased volume of computation and structural

complexity. In ViTs, the main model architecture is transformer

encoder blocks with multi-headed self-attention (MSA) and multi-

layer perceptron (MLP) blocks. These blocks involve large matrix

multiplications, which incur the most computational cost. These

complex architectures and enormous computation/storage demand

make it hard to deploy ViTs on resource-limited edge devices.

Therefore, we quantize all layers involved in matrix multiplica-

tion, but not the non-linear functions, e.g., layer normalization, due

to their low computational cost and potential e�ects on accuracy.

2.2 Non-Transformer DNN Model Quantization

2.2.1 �antization Scheme. To compress model size and improve

inference speed, model quantization has been widely explored

for deep neural networks (DNNs). Existing quantization research

can be categorized according to quantization schemes, such as bi-

nary [8, 36], ternary [13], and low-bit-width �xed-point [7, 7, 68, 68]

quantize models with the same interval between each quantization

level. Although binary and ternary quantization reduce operations

and simplify hardware implementation to the extreme, they intro-

duce large accuracy loss due to insu�cient bit-width. For example,

based on reports from the above works, accuracy typically degrades

by > 5% under binary quantization and 2− 3% for ternary quantiza-

tion. To overcome the large accuracy loss coming from insu�cient

bit-width, the �xed-point quantization is proposed, applying mod-

erate and adjustable quantization bit-width, to maintain accuracy.

This quantization scheme was implemented with di�erent methods

and algorithms, such as DoReFa-Net [68] and PACT [7].

Finally, there are also non-linear quantization schemes, such as

power-of-two (PoT) [17] and additive PoT [19]. They replace the

multiplication with shifting operations where the distribution of

quantization levels becomes unbalanced, having higher precision

around the mean and less precision at the two sides.

2.2.2 Mixed-Precision/Scheme�antization. To exploremore quan-

tization potential while preserving the model accuracy, Besides

the single scheme quantization, some works [9, 39, 45, 49, 54] ex-

plore inter-layer mixed-precision quantization by assigning dif-

ferent precisions to layers. For example, HAQ [49] determines

the bit-width of each layer by an agent trained with reinforce-

ment learning. DNAS [54] used NAS to search layer-wise bit-width.

Furthermore, [29] explored intra-layer mixed quantization to en-

able di�erent precisions or schemes within each layer. Based on

them, hardware designs [5, 40] leveraged the intra-layer mixed-

precision/mixed-scheme to enable uniformity within each layer,

guaranteeing inference acceleration. However, they need to set the

same mixed ratio for layers, which limits the model’s accuracy.

2.3 Transformer and ViT Quantization

Quantization has also been studied for transformers, especially for

natural language processing (NLP) tasks [1, 64, 65]. Q8BERT [64]

�netuned BERT through 8-bit quantization-aware training. Ternary-

BERT [65] implemented an approximation-based and loss-aware

ternary quantization on BERT. BinaryBERT [1] proposed a ternary

weight splitting strategy to derive binary BERT with performance

as the ternary one. Inspired by those, [27] and [22] studied quan-

tization on ViT in computer vision tasks. PTQ [27] evaluated the

post-training quantization on ViT and achieved comparable accu-

racy to the full-precision version. Auto-ViT-acc [22] proposed an

FPGA-aware framework with mixed-scheme quantization for ViT,

which we will compare in the evaluation. FQ-ViT [24] proposed

power-of-two factor and log-int-softmax to proceed with the ViT

quantization. Q-ViT [20] used the switchable scale to achieve head-

wise ViT mixed quantization. However, these works are all based on

full-precision pre-trained models and do not include the dimension

of network architecture search.

2.4 Neural Architecture Search

2.4.1 NAS Strategies. There has been a trend to design e�cient

DNNs with NAS. In general, NAS can be classi�ed into the follow-

ing categories according to its search strategy. First, reinforcement

learning (RL) methods [2, 4, 25, 32, 67, 69, 70] use recurrent neural

networks as predictors validating the accuracy of child networks

over a proxy dataset. Second, evolution methods [30, 37] develop

a pipeline of parent initialization, population updating, genera-

tion, and elimination of o�spring to �nd desired networks. Third,

one-shot NAS [3, 11, 60] trains a large one-shot model containing

all operations and shares the weight parameters with all candi-

date models. Based on the above work, weight-sharing NAS has

become popular due to training e�ciency [38, 47, 61]. One over-

parameterized supernet is trained with weights shared across all
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Figure 2: Comparison of mixed-precision quantization under

di�erent granularity. We use the example of two di�erent

bit-widths, represented as blue and pink colors. We propose

the row-wise �exible mixed-precision quantization in (d).

sub-networks in the search space. This signi�cantly reduces the

computational cost during the search. Although most of the above

work focuses on the traditional CNN architectures, such as [61]

and [38], some works have started investigating the search for ef-

�cient ViT networks [6, 18, 48, 55]. Among them, Autoformer [6]

entangles the model weights of di�erent ViT blocks in the same

layer during supernet training with an e�cient weight-sharing

strategy to reduce training model storage consumption as well as

training time.

2.4.2 Hardware-Oriented NAS. Some recent works realize the gap

between theoretical computation improvement and practical infer-

ence speedup. They investigate the algorithm/hardware co-design

and incorporate the inference latency into NAS [23, 41, 53], which is

more accurate than intuitive volume estimation by MAC operations.

For example, MnasNet [41] and NPAS [23] utilize the latency on

mobile devices as the reward to perform RL search, where gradient-

based NAS work FBNet [53] adds a latency term to the loss function.

However, these works neither target ViTs nor exploit quantization

in the hardware-aware ViT search.

3 HARDWARE-ORIENTED
QUANTIZATION-AWARE NAS FOR VITS

3.1 Row-Wise Flexible Mixed-Precision
Quantization with Hardware/Software
Co-design

Figure 2 classi�es quantization with di�erent levels of granular-

ity. Model-wise quantization [7, 68] uses a uni�ed quantization

bit-width for the whole model and thus misses some quantization

opportunities. On the other hand, mixed-precision quantization, as

discussed in related work, explores more quantization potential (i.e.,

quantizing each component to a bit-width as low as possible) while

preserving the accuracy of the model. Speci�cally, layer-wise (inter-

layer) mixed-precision quantization [49, 54] sets each layer with a

speci�c quantization bit-width. Besides that, Q-ViT [20] proposed

a head-wise mixed-precision quantization scheme, which assigns

di�erent bit-widths to di�erent attention heads. Both the layer-wise

and head-wise quantization schemes su�er from limited quantiza-

tion �exibility without considering the variance inside each layer.

Moreover, �xed row-wise (intra-layer) mixed-precision quantiza-

tion is proposed in prior work [40], which uses di�erent quantiza-

tion bit-widths for di�erent channels in each CNN layer and limits

the same mixed-precision ratio across di�erent CNN layers, and

thus multiple layers can share the same hardware design, making

it more hardware-friendly. Finally, kernel-wise mixed-precision

quantization [29] assigns di�erent quantization bit-widths down to

the kernel level, which greatly diversi�es the computing pattern

and makes it ine�cient to implement on hardware.

Based on the above discussion, we use the row-wise �exible

mixed-precision quantization scheme for ViTs, as shown in Fig-

ure 2(d), which preserves the quantization �exibility among layers

for better accuracy while maintaining the hardware uniformity for

more e�cient implementation. Di�erent from [40] that limits the

same mixed-precision ratio across CNN layers, for ViTs, we have to

provide the �exibility to obtain di�erent mixed ratios in di�erent

layers to maintain the model accuracy. To maintain hardware uni-

formity and avoid hardware under-utilization, we propose to design

the basic hardware units for the lower-bit computation, decompose

the higher-bit computation into lower-bit ones, and reuse the basic

hardware units (described in Section 4.2 and Section 4.3). As a re-

sult, we have preserved the uniformity of the hardware design and

enabled the �exible bit-width mixed-ratio among ViT layers. We

explain the hardware details in Section 4.

3.2 Intra-layer Mixed-Precision Weight
Entanglement

In classical one-shot NAS, the weights of each sample candidate

are shared with the supernet during training. However, as shown

in Figure 3 (a), when using the classical weight-sharing strategy,

the building blocks from multiple subnets, even in the same layer,

are isolated. Therefore, it leads to higher memory costs and slower

training convergence.

To address this problem, weight entanglement is proposed in [6]

to reduce the supernet model size: as shown in Figure 3 (b), di�erent

transformer blocks can share their common weights in each layer. It

also allows each block to be updated more times than the previous

independent training strategy, thus achieving faster convergence.

However, this structure is hard to combine with mixed quantization

since one shared weight cannot be trained into two di�erent bit-

widths at the same time (i.e., bit-width con�ict).

In this paper, we propose the mixed-precision weight entangle-

ment, as shown in Figure 3 (c), to incorporate the quantization

search while preventing the potential bit-width con�icts problem

in the shared weight. Mixed-precision weight entanglement block
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Figure 3: Classic weight sharing and original weight entanglement versus our proposed mixed-precision weight entanglement.

contains two parts of weights with di�erent precisions. Di�erent

quantization mixed ratios can be achieved by extracting di�erent

percentages of weights over these two parts. In the implementation,

for each layer, we only need to store the weights of the largest

of the = homogeneous candidate blocks with both the 4-bit and

8-bit weights. The remaining smaller building blocks can extract

the weights directly from the largest building block. The di�erent

quantization mixed ratios can be reached by moving the position

of the selected block.

3.3 Supernet Layer Scaling (SLS) Structure

The layer scaling structure proposed by CaiT [43] improves the

stability of the optimizations when training transformers for image

classi�cation, thus improving the model accuracy. We explore this

structure and extend it to supernet layer scaling (SLS).

Layer scaling is a per-channel multiplication of the vector pro-

duced by each residual block. For ViT, this layer is deployed after

the multi-head self-attention (MSA) and multi-layer perceptron

(MLP) modules in each encoder block. The objective is to group the

updates of the weights associated with the same output channel.

Layer scaling can be denoted as a multiplication by a diagonal ma-

trix diag
(

_Ģ,1, . . . , _Ģ,Ě
)

on the output of ;-th residual block, where

3 is the corresponding number of output channels in the model. All

_s are learnable weights.

To �t our mixed-precision weight entanglement strategy, dif-

ferent from the original CaiT [43] implementation that uses the

whole layer scaling in every training iteration, our SLS extracts the

corresponding elements synchronized with the output dimension

of the selected subnet while keeping the other weights frozen. As

shown in Figure 4, using the residual block of MLP as an example,

assuming that the current MLP’s output dimension starts from

<-th channel and ends at =-th channel, the supernet layer scaling

computation can be formulated as:

~Ģ = GĢ + diag
(

_Ģ,ģ, . . . , _Ģ,Ĥ
)

×MLP (LN (GĢ )) , (1)

where GĢ and~Ģ denote the input and output, respectively; LNmeans

the layer normalization.

3.4 End-to-End Quasar-ViT Framework

3.4.1 One-shot NAS Algorithm. Our one-shot NAS algorithm con-

sists of two steps:

λ
0   λ

0   0  ...  λ
0   0  ...  0   λ

0   0  ...  0    0   ...  λ

0   0  ...  0    0   ...  0   ...   λ

Figure 4: Supernet layer scaling (SLS) in Quasar-ViT encoder

block. We use the SLS after MLP as an example.

• We train a supernet to directly sample di�erent quantized

architectures as child models for training. The supernet is

trained with SLS and KD techniques. The search space is

encoded in the supernet, and the parameters of all candidate

networks in the search space are optimized simultaneously

by our proposed weight-sharing during training.

• We select architectures from the pre-trained supernet using

the hardware-oriented evolution search method to �nd the

most accurate model under the given hardware resource

constraints. We search based on the hardware latency/FPS

and resource modeling illustrated in Section 4.4.

Here, we show a toy example of the supernet training process

including candidate sampling and the corresponding searched re-

sults for di�erent targeting FPS in Figure 5. Figure 5 (a) illustrates

one iteration of the supernet training process, where the pink area

indicates the sampled high precision values and the blue area indi-

cates the sampled low precision values in the supernet. The light

blue area indicates the frozen values (currently not sampled) in this

iteration. After the supernet training and the hardware-oriented

evolution search, we could obtain di�erent models targeting dif-

ferent frames per second (FPS) as shown in Figure 5 (b). For the
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Figure 5: SuperNet training process including candidate sampling and the searched results for di�erent targeting FPS. We use a

model with layers of 6 channels as a toy example.

sake of brevity, we only show the quantized value here. The scaling

factor along with other related structures is omitted.

3.4.2 Search Space. We show our search space design in Table 2.

Our search components include the overall embedding dimension,

the number of transformer layers, the quantization mixed-ratio (i.e.,

the percentage of 8-bit weights mixed in the layer) for each linear

layer, and the hidden dimension and expansion ratio (for MLP) in

each ViT encoder block.

To accelerate the supernet training process and improve the

overall model performance, we partition the large-scale search

space into two sub-spaces and encode them into two independent

supernets for QUASAR-Small and QUASAR-Large, respectively. By

splitting and customizing search space for supernets of di�erent

sizes, we mitigate the training interference caused by the huge

subnets’ di�erence. This training strategy has been proved in [66].

Such partition allows the search algorithm to concentrate on �nding

models within a speci�c hardware inference latency, which can

be specialized by users according to their available resources and

application requirements. It also reduces gradient con�icts between

large and small sub-networks trained via weight-sharing due to

gaps in model sizes.

Table 2: An illustration of our search space: It is divided into

two independent supernets within the di�erent parameter

ranges to satisfy di�erent resource constraints.

QUASAR-Small QUASAR-Large

Embed Dimension (192, 216, 240) (320, 384, 448)

Hidden Dimension (192, 256) (320, 384, 448)

8-bit Mixed-ratio (0%, 25%, 50%) (0%, 25%, 50%)

Expansion Ratio (3.5, 4) (3, 3.5, 4)

Number of Layers (12,13,14) (12,13,14)

3.4.3 Supernet Training. In each iteration, we randomly select a

quantized ViT architecture from the search space. Then we obtain

its weights from the supernet and compute the losses of the subnet.

Algorithm 1 Supernet Training.

Input: Training epochs # , search space P, supernet S, loss

function !, train dataset �ĪĨėğĤ , initial supernet weights WP ,

candidate weightsWĦ

for 8 in # epochs do

for data, labels in �ĪĨėğĤ do

Randomly sample one quantized ViT architecture from

search space P

Obtain the corresponding weightsWĦ from supernetWP

Compute the gradients based on !

Update the corresponding part ofWĦ inWP while freezing

the rest of the supernet S

end for

end for

Output S

Finally, we update the corresponding weights with the remaining

weights frozen. The architecture search space % is encoded in a

supernet denoted as S(%,,Č ), where,Č is the weight of the super-

net that is shared across all the candidate architectures. Algorithm 1

illustrates the training procedure of our supernet.

3.5 Hardware-Oriented Evolution Search

In our hardware-oriented evolution search for crossover, two ran-

dom candidate architectures are �rst picked from the top candidates.

Then we uniformly choose one block from them in each layer to

generate a new architecture. For mutation, a candidate mutates its

depth with probability %Ě �rst. Then it mutates each block with a

probability of %ģ to produce a new architecture. Newly produced

architectures that do not satisfy the constraints will not be added

for the next generation. To evaluate the candidates, we perform

hardware latency and resource modeling based on the proposed

row-wise �exible mixed-precision quantization scheme. The details

of the modeling have been discussed in Section 4.4.
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3.6 Integration with Knowledge Distillation
(KD)

To demonstrate the compatibility of our proposed framework with

knowledge distillation (KD) and further improve the accuracy of

our supernet, we also integrate KD [15] in our training process. We

use the pre-trained RegNetY-32G [34] with 83.6% top-1 accuracy as

di�erent teacher models. We also apply the soft distillation method.

Soft distillation [15] minimizes the Kullback-Leibler divergence

between the softmax of the teacher and the softmax of the student

model. The distillation loss is:

!ĩĥ Ĝ Ī = (1 − U)!ÿā (k (/ĩ ), ~) + Ug2!ćĈ (k (
/ĩ

g
),k (

/Ī

g
)), (2)

where /Ī and /ĩ are the logits of the teacher and student models,

respectively. k is the softmax function. g is the temperature for

the distillation, U is the coe�cient balancing the Kullback–Leibler

divergence loss (!ćĈ), and the cross-entropy (!ÿā ) on the ground

truth labels ~ in the distillation.

4 FPGA HARDWARE DESIGN FOR
QUASAR-VIT

4.1 Overall Hardware Design for Quasar-ViT

Figure 6 presents the overall hardware architecture of the Quasar-

ViT accelerator on the ARM-FPGA platform. Below is how each

module in ViT is mapped to the hardware in Figure 6. The most

time-consuming MSA and MLP modules are accelerated by our

GEMM engine on the FPGA, which is similar to the recent Auto-

ViT-Acc work [22]. The lightweight SLS modules right after MSA

and MLP layers are also accelerated on the FPGA to avoid time-

consuming execution on the ARM CPU. The less time-consuming

modules including layer normalization and activation functions

(i.e., Softmax or GELU) are executed on the ARM CPU, due to their

complex structure for FPGA implementation. The hardware engines

on the FPGA and software modules on the ARM CPU exchange

data via the shared o�-chip memory.
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Figure 6: Quasar-ViT hardware architecture.

As previously mentioned, we mainly focus on the most time-

consuming GEMM engine design. Due to the limited on-chip mem-

ory capacity and computing resource on the FPGA, for each ViT

layer (i.e., MSA and MLP), our GEMM engine processes the input,

weight, and output data in tiles: a small tile of the input (tokens)

and weight of each ViT layer are �rst loaded from the o�-chip

DDR memory to the on-chip bu�ers, then they are processed by

the GEMM engine all on-chip. To improve the performance, the

double bu�ering technique is applied again to overlap the o�-chip

memory accesses and GEMM computation, shown in Figure 6.

Next, we present our design of the basic hardware units in the

GEMM engine and the corresponding DSP (digital signal processor)

packing optimization, as well as the hardware resource and latency

modeling for the tiled GEMM design.

4.2 Uni�cation of Atomic Computation

One major challenge in the FPGA accelerator design is to e�ciently

support �exible mixed ratios of di�erent bit-width computations

across ViT layers. On one hand, putting multiple copies of hardware

accelerator designs for each mixed-ratio (i.e., each layer) simultane-

ously on the FPGA leads to severe hardware resource contention

and under-utilization, since layers are executed sequentially. On

the other hand, pre-synthesizing multiple copies of hardware accel-

erator designs for each layer and recon�guring the FPGA for each

layer incurs signi�cant FPGA recon�guration overhead.

Inspired by the approach proposed in QGTC [52] to support

arbitrary bit-width computation for quantized graph neural net-

works on GPUs, in our FPGA hardware design, we unify the basic

processing elements to process 4-bit weight atomic computations

and construct the 8-bit weight data computations using two 4-bit

weight data operations as such: for multiplication between an N-bit

activation value (02CĊ ) and an 8-bit weight value (F6C8), we derive

the corresponding product as:

02CĊ ·F6C8 = 02CĊ ·F6Cℎ4 << 4 + 02CĊ ·F6CĢ4, (3)

whereF6Cℎ4 andF6CĢ4 represent the higher and lower 4-bit data

ofF6C8, respectively. The multiplication result between 02CĊ and

F6Cℎ4 are left shifted by 4 bits.

Based on this uni�cation, we propose hybrid signed/unsigned

DSP packing to handle the 4-bit weight atomic computation.

4.3 Proposed Hybrid Signed/Unsigned DSP
Packing

To fully exploit the potential of DSP resources on FPGAs, we pack

multiple low-bit multiplications within each DSP block follow-

ing [57, 58]. Each DSP block (DSP48E2) on the AMD/Xilinx ZCU102

FPGA board could support the computation of %=(�+�)×�, where

both � and � are 27-bit operands, � is an 18-bit operand, and % is

the 45-bit output. In our study, we explore the following two DSP

packing schemes and discuss their design trade-o�s. The activation

bit-width # is set to 6 to fully exploit the DSP for computation.

• Packing factor 3 (3 weights sharing 1 activation). In

Figure 7 (a), three 4 × 6-bit multiplications are packed into a

single DSP block, by holding one 6-bit signed activation in

port � and three 4-bit weight values in port � . To pack three

weights into a single 27-bit port � , look-up tables (LUTs)

are utilized to �rst combine two weights and then integrate

them with the third weight data. With this DSP packing

scheme, for the W4A6 (i.e., 4-bit weight and 6-bit activation)

computation, we could pack three 4-bit weights that share

the same activation. And for the W8A6 computation, we

could use two DSPs to process the upper and lower 4-bit
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of three 8-bit weights in parallel. Note that after the 8-bit

weights are decomposed into two 4-bit weights, only the

upper 4-bit weights contain the sign bits and should be sign-

extended (required by DSP for output correctness [57, 58]),

the lower 4-bit weights should be treated as unsigned values.

• Packing factor 4 (2 weights sharing 2 activations). In

Figure 7 (b), four 4 × 6-bit multiplications are packed into

a single DSP block, by holding two 6-bit signed activation

values in port � and two 4-bit weights in port �. It is worth

mentioning the port placement of the activation and weight

values are swapped from the packing factor 3 scheme, to

increase the packing strength.With this DSP packing scheme,

for the W4A6 computation, we could pack a pair of two 4-

bit weights that share the same pair of activation values.

And for the W8A6 computation, a similar technique as the

previous packing scheme is used to separately handle the

upper and lower 4-bit values of an 8-bit weight. Again for the

two decomposed 4-bit weights, only the upper 4-bit weights

contain the sign bit and should be sign-extended (required

by DSP for output correctness [57, 58]), but the lower 4-bit

weights should be treated as unsigned values.

4.4 Hardware Resource and Latency Modeling

Here, we present our hardware resource and latency modeling used

in the hardware-oriented evolution search.

Table 3: Notations for Quasar-ViT accelerator

Notation Description

ĉ (Ċ ) Number of output (input) channels

Ă Number of token sequences

ĐĤ Tiling size for data in input channel dimension for

each head

Đģ Tiling size for data in output channel dimension

Ċℎ Total number of heads

ČĂ Parallel factor along the number of tokens

ĀėęĪ Number of data packed as one for activations

ĀĭĝĪ Number of data packed as one for weights

ýin (ýout,

ýwgt)

Number of AXI ports used for data transfer of input

(output, weight) tile

Ĉin (Ĉwgt,

Ĉout, Ĉcmpt)

Number of clock cycles for input transfer (weight

transfer, output transfer, computation) for a tile

ďdsp (ďlut ) Available number of DSPs (LUTs) on FPGA

ÿdsp DSP cost for each MAC operation

ÿlut LUT cost for each MAC operation

ÿ
ĚĩĦ

ĢīĪ
Number of LUTs used by a multiplication executed

on DSPs

ĊĚĩĦ Number of multiplication executed on DSPs

ĊĢīĪ Number of multiplication executed on LUTs

ĊĪĥĪ The total number of multiplication on FPGA

ĀĚĩĦ (ĀĢīĪ ) DSP (LUT) utilization threshold

Ĝ FPGA accelerator frequency

ĂČď Frames per second

4.4.1 Resource Modeling. To help guide the neural architecture

search, we provide details of the resource and latency models of

our FPGA accelerator design (mainly the GEMM engine). Table 3

lists the notations used in our models. We design our FPGA accel-

erator to fully leverage the available FPGA computing resources

(i.e., DSPs and LUTs), on-chip memory (i.e., BRAMs), and o�-chip

memory bandwidth. To fully exploit the computing capability with

the available hardware resources, We maximize the total number of

parallel basic hardware compute units using both DSPs (i.e., #ĚĩĦ )

and LUTs (i.e., #ĢīĪ ) for the datapath of our accelerator as

#ĪĥĪ = maximize
{

#ĚĩĦ + #ĢīĪ
}

, (4)

while satisfying the following resource constraints

#ĚĩĦ ·�ĚĩĦ ≤ (ĚĩĦ · WĚĩĦ , (5)

#ĢīĪ ·�ĢīĪ + #ĚĩĦ ·�
ĚĩĦ

ĢīĪ
≤ (ĢīĪ · WĢīĪ , (6)

where constraints 5 and 6 bound the DSP and LUT utilization to

be under the allowable thresholds, i.e., WĚĩĦ and WĢīĪ with the total

resource amounts denoted by (ĚĩĦ and (ĢīĪ . The hardware costs of

each multiplication implementation are denoted as �ĢīĪ and �
ĚĩĦ

ĢīĪ
.

In order to choose the best implementation method for the basic

hardware units of our design, we characterize the FPGA resource

consumption using Xilinx Vivado 2020.1 [59] for the three cases in

Table 4, i.e., (a) multiplications executed on DSPs with packing fac-

tor of 3, (b) multiplications executed on DSPs with packing factor of

4, and (c) multiplications executed purely using LUTs. As observed

in Table 4, we derive the hardware costs of each multiplication

implementation, particularly, the LUT costs for pure-LUT-based

and DSP-based methods correspond to�ĢīĪ and�
ĚĩĦ

ĢīĪ
. Note that the

DSP-based approach also consumes LUTs, due to data packing on

the input operands and output data construction operations, such

as bit shifting and data accumulation. Regarding the e�ciency

lost by decomposing 8-bit to 4-bit, for the composed W8A6 com-

putation, on average, we can achieve one computation with 25.8

LUTs and 0.5 DSP or purely 66.7 LUTs. In contrast, direct W8A6

computation used in [40] (i.e., packing twoW8A6 operations within

one DSP method) requires 21.5 LUTs and 0.5 DSP or purely 62.2

LUTs. Since most of the weights are in 4-bit, using decomposing

does not a�ect the overall performance much by a slight increase

in the LUT utilization. In terms of the e�ciency of DSP packing, a

single DSP can pack four W4A6 operations at most theoretically,

which is achieved by our approach.

For the LUT usage, shown in Table 4, we have:

�
ĚĩĦ,Ħėęġ3

ĢīĪ
< �

ĚĩĦ,Ħėęġ4

ĢīĪ
< �ĢīĪ . (7)

In the �nal implementation, regardingwhichDSP packing scheme

to use and whether to use the pure-LUT-based method for the basic

hardware compute units, there are several situations according to

the available FPGA resources.

Situation-1: When (ĢīĪ is limited and insu�cient to hold the

LUT consumption of full utilization of DSP packing with a factor

of 3, denoted as:

(ĢīĪ · WĢīĪ ≤ 3 · (ĚĩĦ · WĚĩĦ ·�
ĚĩĦ,Ħėęġ3

ĢīĪ
. (8)

In this case, to fully utilize the computation resources, we directly

allocate DSP-based computations with a packing factor of 3 as much

as possible until we reach the LUT resource limit.
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Figure 7: Illustration of DSP multiplication packing schemes for (a) 3 weights sharing 1 activation with packing factor of 3, and

(b) 2 weights sharing 2 activations with packing factor of 4.

Table 4: FPGA resource consumption for a single DSP-based

or LUT-based basic hardware compute unit. W4A6 denotes

4-bit weight and 6-bit activation; W8A6 denotes 8-bit weight

and 6-bit activation.

pure LUT-based
DSP-based

packing

factor 3

packing

factor 4

W4A6
�ĈđĐ 33.3 10.9 12.9

�ĀďČ 0 0.33 0.25

W8A6
�ĈđĐ 66.7 21.9 25.8

�ĀďČ 0 0.67 0.5

W8A6

(direct)

�ĈđĐ 62.2 21.5

�ĀďČ 0 0.5

Situation-2:When (ĢīĪ is enough to hold all the LUT consump-

tion from DSP packing with the factor of 4, satisfying:

4 · (ĚĩĦ · WĚĩĦ ·�
ĚĩĦ,Ħėęġ4

ĢīĪ
≤ (ĢīĪ · WĢīĪ . (9)

Based on Eq. 4, 5, 6 and 9, we can conclude that using DSP

packing with the factor of 4 is more e�cient if it meets the following

condition:

(4 ·�
ĚĩĦ,Ħėęġ4

ĢīĪ
− 3 ·�

ĚĩĦ,Ħėęġ3

ĢīĪ
) · (ĚĩĦ · WĚĩĦ ≤ (ĢīĪ · WĢīĪ ·�ĢīĪ .

(10)

If it does not satisfy Eq. 10, we perform DSP-based computations

with a packing factor of 3. Besides that, for the remaining available

LUT resources, pure-LUT-based computation is also conducted in

both cases.

Situation-3:When (ĢīĪ is between the LUT demands by fully

deploying DSP computations with packing factors of 3 and 4, satis-

fying:

3 · (ĚĩĦ · WĚĩĦ ·�
ĚĩĦ,Ħėęġ3

ĢīĪ
≤ (ĢīĪ · WĢīĪ ≤

4 · (ĚĩĦ · WĚĩĦ ·�
ĚĩĦ,Ħėęġ4

ĢīĪ
.

(11)

Based on Eq. 4, 5, 6, and 11, we can conclude that using DSP

packing with the factor of 4 is more e�cient if it meets the following

condition:

(ĢīĪ · WĢīĪ + 3 · (ĚĩĦ · WĚĩĦ · (�ĢīĪ −�
ĚĩĦ,Ħėęġ3

ĢīĪ
)

�ĢīĪ
≤

(ĢīĪ · WĢīĪ

�
ĚĩĦ,Ħėęġ4

ĢīĪ

,

(12)

Input Sequence
Load Input Tile 

Output Sequence

Store Output Tile 

Weight Matrix

Load
Weight Tile 

Figure 8: Data tiling in ViT computations.

In this case, we conduct only DSP-based computations with a

packing factor of 4. Otherwise, if it does not satisfy Eq. 12, we per-

form DSP-based computations with a packing factor of 3 and pure

LUT-based computation for the remaining available LUT resource.

4.4.2 Latency Modeling. As discussed in the Hardware Design Sec-

tion, our GEMM hardware engine accelerates the major MSA and

MLP modules and processes their input, weight, and output data in

tiles, as shown in Figure 8. our GEMM hardware engine accelerates

the major MSA and MLP modules and processes their input, weight,

and output data in tiles, as shown in Figure 8. Each MSA can be

seen as multiple parallel matrix multiplications. The accelerator is

designed to process parallel computations within each head. This

input channel splitting is also done for fully connected (FC) layers,

each containing one matrix multiplication for compatibility, and

the results need to be accumulated from all the input channels

in all the heads. Furthermore, the computing engine exploits �ne-

grained data and operation parallelisms and can process )ģ · )Ĥ
multiply-accumulate (MAC) operations in parallel.
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We model the inference latency of our hardware design based

on the number of clock cycles. For a layer 8 in ViT, since data

packing can be used to transfer multiple (i.e., �ėęĪ or �ĭĝĪ ) values

at the same time in each AXI port, the clock cycles for loading one

input/weight tile and storing one output tile, are calculated as:

Ĉin =

⌈

ĐĤ

ĀėęĪ

⌉

·

⌈

Ă

ýin

⌉

,

Ĉwgt =

⌈

ĐĤ

ĀĭĝĪ

⌉

·

⌈

Đģ

ýwgt

⌉

,

Ĉout =

⌈

Đģ

ĀėęĪ

⌉

·

⌈

Ă

ýout

⌉

,

(13)

where !in, !wgt and !out indicate the number of the clock cycles

of input, weight, and output transfer for one corresponding tile,

respectively.

The clock cycle number to compute one tile is

Ĉcmpt = max
{

⌈

Ă

ČĂ

⌉

,
ĐĤ · Đģ · Ă

ĊĪĥĪ

}

, (14)

where the �rst term is calculated by the latency model. The total

number of multiplications needed to compute one tile of matrix

multiplication is )Ĥ ·)ģ · � . Each tile has two levels of parallelism:

one is along the )Ĥ and )ģ dimension and the parallel factor is

)Ĥ ·)ģ (i.e., fully parallel); and the other is along the � dimension

and the parallel factor is %Ă . Therefore, the �rst term is calculated as
⌈

Ă
ČĂ

⌉

. The second term is limited by the resource constraint, where

we can support at most #ĪĥĪ parallel multipliers (Eq. 4) due to the

resource constraint.

With the double bu�ers overlapping the data loading and com-

putation of the tiles, the overall clock cycle number for processing

one tile is !1 = max{!in, !wgt, !cmpt}.

To obtain the accumulation of output results, this process is

performed multiple times (i.e., processing
⌈

Ċ
ĐĤ

⌉

input tiles). The

clock cycle number for calculating the whole output tile is !2 =

max
{

!1 ·
⌈

Ċ
ĐĤ

⌉

+ !cmpt, !out
}

.

Since there are
⌈

ĉ
Đģ

⌉

number of output tiles, the total number of

clock cycles for a ViT layer 8 is described by

Ĉğtot =

⌈

ĉ

Đģ

⌉

· Ĉ2 + Ĉout . (15)

Under a working frequency 5 , the FPS is calculated as:

ĂČď =

Ĝ
∑

ğ
Ĉğtot

. (16)

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

Our supernet training process takes 700 epochs with a batch size of

2048. The learning rate is set to 5 × 10−4 initially and decayed with

a cosine annealing schedule. The AdamW [28] optimizer is used

with the epsilon value of 14−8 and weight decay of 0.05. Additional

training optimizations, such as warmup and label smoothing are

performed during training. The number of warmup epochs and

label smoothing factor are set as 20 and 0.1, respectively. After

supernet training, we perform the hardware-oriented evolution

search, without subnet retraining.

Our training is conducted on 8 NVIDIA Ampere A100 GPUs

with CUDA 11.0 and PyTorch 1.7 frameworks on the Ubuntu oper-

ating system. To test the e�ectiveness of our framework, we also

implement Quasar-ViT framework on the Xilinx ZCU102 embedded

FPGA platform with quad-core ARM Cortex-A53 and XCZU9EG

FPGA chip. The FPGA working frequency is set to 150 MHz for all

the designs implemented via Xilinx Vitis and Vitis HLS 2020.1.

5.2 Accuracy Results

Here we analyze the accuracy results of our Quasar-ViT framework.

The weight precision is mixed with 4-bit and 8-bit, as mentioned

earlier, and the activation bit-width is determined by the hardware

feature. Without loss of generality, we use activation of 8-bit to

evaluate the accuracy in the ablation study of knowledge distillation

and supernet layer scaling.

5.2.1 Ablation Study of Knowledge Distillation and Supernet Layer

Scaling. To evaluate the compatibility of knowledge distillation

and our proposed SLS, we conduct an ablation study on both of

them. Without loss of generality and to prevent interference from

di�erent model sizes and di�erent quantization mixed ratios from

the searched subnet, we unify the search constraint with pureW8A8

(8-bit for both weight and activation) quantization implementation.

As shown in Table 6, we conduct four di�erent settings of Quasar-

ViT with the uni�ed model size and quantization scheme. The ac-

curacy of the four cases is 74.1% (w/o distillation and SLS), 75.6%

(only distillation), 74.9% (only SLS), and 76.1% (with both of them),

respectively. Knowledge distillation and SLS strategies are orthogo-

nal to each other, and both improve the model accuracy. Using them

together provides a better result. Given the observed e�ectiveness

of our proposed SLS strategy and the seamless compatibility of our

framework with knowledge distillation, we opt to incorporate both

strategies in our following experiments. Here we also quantize the

baseline DeiT-T [42] and compare it with our method without SLS

and distillation. Even without SLS and distillation, our quantization

NAS approach achieves a much better model accuracy than the

full-precision and the quantized (W8A8) DeiT-T models.

5.2.2 Ablation Study of Mixed-Ratio and �antization Scheme. To

assess the e�cacy of our row-wise �exible mixed-precision quanti-

zation scheme, we conducted an ablation study examining both the

quantization scheme itself and the 8-bit mixed ratio, as outlined in

Table 7. Since Quasar-ViT automatically searches the mixed ratios,

here we pick up the best model from the search stage for di�er-

ent mixed ratios and compare them with the counterparts under

the �xed row-wise mixed quantization scheme. The results indi-

cate a consistent improvement in accuracy across di�erent 8-bit

mixed-ratio levels with our �exible mixed scheme, underscoring

the e�ciency of our proposed quantization scheme.

5.2.3 Overall Accuracy Results. Table 5 compares representative

ViT-based works with our proposed Quasar-ViT. Since many ViT-

based works do not incorporate model quantization, we also con-

sider the bit-width in the model size and the equivalent number of

total bit operations (BOPs).
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Table 5: Comparison of representative ViT-based works with our proposed Quasar-ViT.

Model
Quantization #Params Model Size MACs MAC Bit-width Equivalent Top-1 Accuracy

Mixed Type (") ("�) (�) Weight Activation BOPs (�) (%)

DeiT-T [42] - 5.7 22.8 1.3 32 32 1.3 × 103 72.2

T2T-T [63] - 4.3 17.2 1.1 32 32 1.1 × 103 71.7

PiT-T [14] - 10.6 42.4 1.4 32 32 1.4 × 103 72.4

LocalViT-T [21] - 5.9 23.6 1.3 32 32 1.3 × 103 74.8

FQ-ViT [24] Model-wise 5.7 5.7 1.3 8 8 80.6 71.6

Q-ViT [20] Head-wise 5.7 - - 4-8 4-8 - 72.8

QUASAR-S (ours) Row-wise 5.9 4.1 1.4 4 & 8 6 45.6 74.9

PVT [51] - 24.5 98.0 3.8 32 32 3.9 × 103 79.8

DeiT-S [42] - 22.9 91.6 4.6 32 32 4.8 × 103 79.9

Swin-T [26] - 28 112.0 4.5 32 32 4.7 × 103 81.2

BossNAS [18] - - - 3.4 32 32 3.5 × 103 80.5

PTQ [27] Layer-wise 22.9 16.6 4.6 6-10 6-10 - 75.1

FQ-ViT [24] Model-wise 22.9 22.9 4.6 8 8 294.4 79.1

Q-ViT [20] Head-wise 22.9 - - 4-8 4-8 - 80.1

QUASAR-L1 (ours) Row-wise 14.7 9.8 3.2 4 & 8 6 103.8 78.6

QUASAR-L2 (ours) Row-wise 22.6 15.8 4.8 4 & 8 6 163.2 80.4

Table 6: Comparison between di�erent settings of QUASAR-

Small with and without knowledge distillation (KD) and su-

pernet layer scaling (SLS) on ImageNet dataset.

Model
Setting #Params Quantization Top-1 Acc.

KD SLS (M) Scheme (%)

DeiT-T [42] No No 5.7 W32A32 72.2

DeiT-T (quant) No No 5.7 W8A8 71.5

Ours No No 5.9 W8A8 74.1

Ours Yes No 5.9 W8A8 75.6

Ours No Yes 5.9 W8A8 74.9

Ours Yes Yes 5.9 W8A8 76.1

Table 7: Comparison between di�erent settings of 8-bit quan-

tization mixed-ratio and quantization schemes.

Scheme Model Size (MB) 8-bit mixed-ratio (%) Acc. (%)

Fixed row-wise 3.6 23 73.5

Flexible row-wise 3.6 23 74.2

Fixed row-wise 4.1 39 74.1

Flexible row-wise 4.1 39 74.9

As shown in Table 5, we present three Quasar models for dif-

ferent accuracy levels: QUASAR-S searched within the QUASAR-

Small supernet, and QUASAR-L1, QUASAR-L2 searched within the

QUASAR-Large supernet.

Our QUASAR-S achieves 74.9% top-1 accuracy with only 4.1 MB

model size and 1.4 GMACs, Compared with the representative ViT-

based model LocalViT-T [21] under a similar accuracy, our model

size is only 17.4% of that in LocalViT-T; although the GMACs num-

bers are similar, our MAC unit is much more hardware e�cient

as it is for a 4-bit/8-bit weight and a 6-bit activation instead of a

32-bit �oating-point MAC unit in LocalViT-T. For a higher model

Table 8: Comparisons of FPGA implementations for ViTs

on ImageNet, including DeiT-S and Auto-ViT-Acc from [22],

and our Quasar-ViT, all running at 150MHz on the same

AMD/Xilinx ZCU102 embedded FPGA platform.

DeiT-S
Auto-ViT Quasar-ViT

-Acc L2 L1 S

Quant. No
Mixed Mixed Mixed Mixed

Scheme Precision Precision Precision

Weight 32 4 & 8 4 & 8 4 & 8 4 & 8

Act. 32 8 6 6 6

Top-1 Acc. 79.9 78.7 80.4 78.6 74.9

kLUT 47% 67% 66% 66% 65%

FF - - 31% 31% 30%

DSP 69% 62% 69% 69% 69%

BRAM - - 44% 44% 44%

accuracy level, our QUASAR-L1 and QUASAR-L2 achieve 78.5%

and 80.4% top-1 accuracy, respectively. Among them, QUASAR-L2

only has a 15.8 MB model size with a computation volume of 4.8

GMACs, which obtains the smallest BOPs with a similar level of

accuracy compared with other baselines. Speci�cally, compared

with PTQ [27] (16.6 MB, top-1 75.1%), QUASAR-L2 achieves a simi-

lar model size and GMACs with 5.2% higher accuracy. Compared

with ViT NAS framework BossNAS [18], we additionally achieve

low-bit quantization with a much smaller BOPS and similar ac-

curacy. Compared with quantization-aware training framework

Q-ViT [20] using multiple quantization bit-widths in the range of 4

to 8, which incurs ine�ciency and hardware under-utilization, our

results show better accuracy with a more uni�ed and hardware-

friendly quantization scheme.
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5.3 Comparison of Hardware Results on FPGA

We implement a proof-of-concept hardware accelerator for our

Quasar-ViT on the AMD/Xilinx ZCU102 embedded FPGA platform.

We also compare our results to Auto-ViT-Acc [22], the state-of-

the-art FPGA accelerator for ViT with mixed-scheme quantization

(without NAS). We retrieve the hardware results for Auto-ViT-Acc

(which is quantized from DeiT-S) and the original DeiT-S on the

same Xilinx ZCU102 FPGA platform from [22].

Figure 9: Comparisons between DeiT-S, Auto-ViT-Acc

from [22], and our Quasar-ViT.

As shown in Table 8 and Figure 9, our approach consistently

outperforms the previous work. Speci�cally, compared with DeiT-

S [42], our QUASAR-L2 achieves 2.6× higher inference frames per

second (FPS) with 0.5% better accuracy. Compared with Auto-ViT-

Acc [22], our QUASAR-L1 achieves 1.6× higher FPS (159.6) with

a similar model accuracy level, and our QUASAR-L2 achieves a

similar level of FPS with 1.7% better top-1 accuracy.

The improvement in model accuracy and inference performance

within our framework is attributed to two key factors. Firstly, our

approach involves the training and search for a customized network

architecture, speci�cally tailored for both the mixed-precision quan-

tization schemes and the targeted inference latency. This strategy

enhances adaptability and e�ciency, surpassing the achievements

of previous methodologies.

Secondly, our novel supernet training algorithm, coupled with

the proposed hybrid DSP packing design, allows for distinct quanti-

zation mixed ratios across various model layers. This �ne-grained

model achieves better �exibility than the previous approaches, un-

leashing the full potential of mixed-precision quantization.

With regard to the e�ciency of our hardware accelerator de-

sign, the performance is mainly limited by DSP, LUT, and o�-chip

memory bandwidth. On par with Auto-ViT-Acc [22], our design

achieves 150MHz frequency with about 66% usage of LUTs and

69% DSPs without timing violations. Note a typical FPGA design

usually utilizes approximately 60% to 70% of the available FPGA

resources; otherwise, it may fail during the placement and routing

phase due to congestion or result in a lower operating frequency.

Without considering the timing violation, the maximum theoretical

expected performance is based on the 100% utilization ratio for both

DSP, LUTs, and bandwidth, which can achieve about 1.47x of our

reached FPS for the same model.

5.4 Other Transformer-based Model Accuracy
Results

To demonstrate the scalability and versatility of our methods, we

applied them across various datasets and applications, notably de-

ploying them on a large language model (LLM). This choice is mo-

tivated by two key factors. Firstly, LLM shares a transformer-based

architecture similar to that of Vision Transformer (ViT), aligning

with the framework that we propose. Secondly, LLM is frequently

integrated with ViT in text-to-image/video applications, making

it an ideal candidate to showcase the scalability of our approach

across both models and its potential for real-world applications.

Our comparative analysis, presented in Table 9, utilizes the

renowned LLM model, LLaMA, as the foundation for our supernet.

We juxtapose our optimized results with those of LLaMA-7B [44] on

the commonly used WikiText-2 dataset for LLMs, with perplexity

score (PPL) serving as the evaluation metric, where lower scores

indicate superior performance. According to the comparison results,

our method shows a constant pattern, achieving a similar level of

PPL with a much smaller model size.

Table 9: Result comparison on large language model.

Model Model Size (GB) W # Bits A # Bits PPL

LLaMA-7B [44] 26.8 FP32 FP32 5.68

Ours 6.7 INT8 INT8 5.73

Ours 4.8 INT4 & 8 INT8 5.91

5.5 Training Cost Comparison

Prior co-design frameworks, such as APQ [50], have also delved into

the integration of neural architecture search (NAS) and quantiza-

tion techniques. Please note that APQ is based on the convolutional

neural network (CNN) and BitFusion platform [50]. To the best of

our knowledge, we compare our Quasar-ViT models (both small

and large variants) and the APQ result. As detailed in Table 10,

our approach demonstrates superior FPS performance while main-

taining comparable or even higher model accuracy, achieved at a

reduced training cost. Compared with the 2,400 GPU hours training

cost of APQ [50], our approach only consumes 768 and 1,344 GPU

hours for the small and large versions of Quasar-ViT, respectively.

Our training setting has been illustrated in Section 5.1.

Table 10: Training cost and accuracy comparison with other

NAS and quantization co-design.

Method Training cost (GPU hours) FPS Acc.(%)

APQ [50] 2400 82.2 75.1

QUASAR-S 768 101.5 74.9

QUASAR-L 1344 251.6 80.4
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6 CONCLUSION

In this work, we proposeQuasar-ViT, a hardware-oriented quantization-

aware network architecture search framework to enable e�cient

ViT deployment on resource-constrained edge devices. First, we

proposed hardware-friendly quantization techniques including �ex-

ible row-wise mixed-precision quantization scheme and intra-layer

mixed-precision weight entanglement in architecture search to-

wards high accuracy and low training cost for e�cient implemen-

tation. Second, we propose 4-bit weight atomic computation and

hybrid signed/unsigned DSP packing for FPGA implementation,

then incorporate latency/resource modeling to enable the hardware-

oriented architecture search. Third, we extend the supernet layer

scaling technique to further improve the training convergence and

supernet accuracy. We also demonstrate the compatibility of our

proposed framework with knowledge distillation during super-

net training. Finally, we developed an e�cient hardware-oriented

search algorithm—integrated with hardware latency and resource

modeling—to search the e�cient subnet with high accuracy under

a given inference latency target and implemented the searched

model on real FPGA hardware for validation. From the experiment

evaluation results, our approach achieves 101.5, 159.6, and 251.6

FPS on the AMD/Xilinx ZCU102 FPGA board with 80.4%, 78.6%,

and 74.9% top-1 accuracy for ImageNet, respectively, consistently

outperforming prior works.
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