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Abstract—Accurately determining Direction of Arrival (DoA)
is pivotal for various applications such as wireless communica-
tion, radar, and sensor arrays, where precise spatial localization
is crucial in enhancing system performance and overall efficiency.
Low signal-to-noise ratio (SNR) and limited number of snapshots
pose formidable challenges to accurate DoA estimation. Both
conventional model-based techniques and recent deep learning
(DL) based DoA estimation models that map sample covari-
ance matrices to DoA spectrum estimations struggle in such
environments. In this study, we introduce a comprehensive DL
framework that leverages sample covariance as input to predict
the corresponding DoA jointly with the estimation of the true co-
variance matrix. The proposed architecture comprises two main
components that employ Convolutional Neural Networks (CNN).
The first part focuses on covariance reconstruction, aligning with
the true covariance of a specific sample, and the second part
applies multi-label classification for the DOA estimation step.
Distinct from employing only Binary Cross-Entropy (BCE) loss
for the previous on-grid CNN approaches, our study implements
a holistic training strategy incorporating three individual loss
terms into one novel combined loss function. The proposed overall
framework integrates the Mean Squared Error (MSE) loss for
the true covariance matrix reconstruction, to enhance model
performance, particularly in low SNR and snapshot number
scenarios, coupled with the BCE and MSE losses for angle
estimation. This strategic combination demonstrates improved
robustness and performance compared to existing CNN-based
approaches.

Index Terms—Direction of Arrival (DOA), array signal pro-
cessing, covariance reconstruction, deep learning

I. INTRODUCTION

The problem of precise determination of Direction of Ar-
rival (DoA) holds critical importance across various research
domains such as wireless communication, radar systems,
sensor arrays, and many others [1], [2]. Achieving spatial
localization accuracy, a key facet of a successful DoA esti-
mation significantly bolsters system performance and overall
operational efficiency. With that in mind, the task of DoA
estimation presents formidable challenges, particularly in real-
world scenarios marked by multipath propagation, ambient
noise, low Signal-to-Noise Ratio (SNR), and a constrained
number of available snapshots [3], [4] specifically for fast-
changing environments.

Model-based DoA estimation techniques have played a
pivotal role in array signal processing for localizing sources
in sensor array applications. The Multiple Signal Classifica-
tion (MUSIC) algorithm leverages the eigen-structure of the

signal’s covariance matrix to estimate DoA with high resolu-
tion [5], [6]. Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT) exploits the invariance of
the signal subspace under a unitary transformation, providing
accurate estimates even in low SNR scenarios [7]–[9]. The
Minimum Variance Distortionless Response (MVDR) algo-
rithm employs a spatial filter to minimize the received power
while preserving the signal of interest, enhancing robustness
in noisy environments [10]. Conventional beamformers, such
as delay-and-sum, offer simplicity but are limited in resolving
closely spaced sources [11], [12]. Despite their efficacy, these
model-based techniques face challenges, including sensitivity
to model mismatch, limited performance in the presence of
strong noise or interference, low number of snapshots, or
correlated sources, and suffer high computational complexity,
especially for subspace techniques. Striking a balance between
computational cost and accuracy under such challenges re-
mains an ongoing concern in deploying these methods in real-
world applications.

Stated existing challenges for conventional DoA estima-
tion approaches prompted many researchers to explore deep
learning (DL) based techniques for DoA estimation due to
their ability to handle complex functional mappings [13]–
[15]. DL-based techniques operate as non-linear mapping
functions that learn the directional characteristics of array
systems [13], [16]–[18]. By constructing training datasets with
labeled DoAs, these methods establish a relation between
observed array data and signal directions, allowing for the
estimation of signal directions in test data for the same array
geometry. Deep learning-based approaches offer advantages
such as inherent adaptability, the ability to handle complex,
non-linear relationships, and rapid execution without specific
parameter optimization. They showcase improved performance
in low SNR scenarios and with fewer snapshots. Various
implementations, including end-to-end deep neural networks
(DNNs) for massive MIMO and convolutional neural networks
(CNNs) for low SNR scenarios, showcase the versatility and
accuracy of deep learning in DoA estimation, making them
well-suited for real-time applications [13], [19].

The model in [13] utilizes a conventional CNN architecture
that takes the sample covariance matrix as input and imple-
ments a multi-label classification scheme with a binary entropy
loss to estimate an output vector of DoAs with probability of
a target is present at each angle grid. These models are trained
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with true covariance matrices but tested with the sample
covariance. Although sample covariance is a good estimate of
the true covariance when the number of snapshots gets closer
to infinity, for a limited number of snapshot cases and under
low SNR regime the input sample covariance matrix is not
a good estimate of the true covariance leading to significant
performance loss under such conditions.

In this study, we developed an improved joint covariance
matrix reconstruction and DoA estimation approach utilizing
two different CNN architectures backpropagated with a novel
combined loss term. The proposed comprehensive DL frame-
work is tailored to provide enhanced performance compared
to current CNN-based approaches in different SNR levels
and diverse snapshot scenarios. Unlike existing DL models,
proposed architecture uses sample covariance indirectly to
predict the corresponding DoA through a covariance matrix
reconstruction step. Covariance matrix estimation is first intro-
duced in [20] The proposed architecture comprises two sub-
networks as its main components: the first sub-network focuses
on learning the reconstruction of the true covariance matrix
from sample covariance during training, and the second part
is an angle estimation network that employs a CNN-based
on-grid approach for multi-label classification of the DoA
problem. To enhance the model approximation performance,
the final loss function is defined as the weighted combination
of three separate loss functions during training. The first loss
function is essentially a mean square error (MSE) that is
computed by comparing the estimated and true covariance
matrix in the covariance reconstruction sub-network. In the
angle estimation network, the second and third loss functions
are integrated metrics of the final estimation; these are BCE
loss for on-grid multi-label classification and MSE loss to
gauge the disparity between the estimated angles and the
corresponding ground truth angles. Utilizing only the clas-
sification loss for angle estimation is not enough since an
erroneous classification that is closer or far to the correct angle
is punished similarly. Adding MSE loss in angle estimates
forces the network to make better decisions. Notably, our study
diverges from the common practice of employing only binary-
cross entropy (BCE) loss for on-grid CNN approaches as done
in [13]. Instead, we adopt a holistic training strategy that
incorporates joint learning of the true covariance matrix and
DoA estimation. This strategic combination not only improves
the overall robustness of our model but also addresses specific
challenges posed by adverse conditions, such as low SNR and
a limited number of snapshots.

The paper is organized as follows: summarizing the DoA
signal model in Section II, discussing the overall framework
in Section III, analyzing performance in Section IV, and
concluding and discussing future directions in Section V.

II. SIGNAL MODEL

The success of a DoA estimation algorithm depends on
the knowledge of the received and transmitted signal and
the behavior of the noise through the transmission. In this
section, we lay out the mathematical foundation of the signal

model used in this study. The data generation scheme and
the numerical characteristics of the generated data will be
expressed together with the model architecture in the next
section.

In our model, we are assuming to work with an M element-
long uniform linear antenna array (ULA) operating in the
narrow band and reading in total K number of distinct and
uncorrelated signal sources at a given time period. Each
individual transmitted signal sk will contribute to the receiver’s
stimulation depending on its arrival angle θk along with the
captured noise η.

A received signal in this configuration with respect to the
sampling time t ∈ {1, ..., T} will be described as;

x(t) =
K∑

k=1

a(θk)sk(t) + η(t) (1)

where a(θk) = [1, ejd2π/λ∗sin(θk), ..., ejd2π(M−1)/λ∗sin(θk)] is
the steering vector of each antenna element, defined by the
uniform distance between antennas d and the wavelength of
the incoming signal λ, and it provides the information on the
phase shift in received signal for each antenna. Now, we define
A = [a(θ1), ..., a(θK)] as the compact form of the steering
vectors in a M ×K matrix form, and s(t) as the vector form
of all received targets.

x(t) = As(t) + η(t) (2)

In this model, actual signals and additive noise are consid-
ered to be independent. In many real-life scenarios, the noise
can be modeled with Gaussian distribution with zero mean
and an unknown noise power; η(t) ∼ N (0, σ2).

Subspace techniques for the DoA estimation, such as MU-
SIC and ESPRIT, employ separation of signal and noise
subspaces by analyzing the covariance matrix of the received
signal. The true covariance matrix can be stated as:

Rx = E[x(t)xH(t)] = ARsAH + σ2IM (3)

where Rs ∈ RK×K is the signal covariance matrix, a diagonal
matrix for the uncorrelated signal case with non-zero elements
corresponding to the power of the actual target signals. In real-
life scenarios, we lack the true covariance matrix information
and instead employ sample covariance matrix as an estimation
of the actual covariance matrix.

R̃x =
1

T

T∑
t=1

x(t)xH(t) (4)

If the number of snapshots is adequately high, the sample
covariance matrix R̃x converges to the true covariance matrix
Rx. We formulated the synthetic data generation according to
the provided signal model and employed the opportunity of
access to the actual true covariance matrix that the synthetic
data gives us by embedding the estimation of true covariance
matrix Rx from the sample covariance matrix R̃x into our
model’s design. Next section details this process.
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Fig. 1: The proposed joint covariance reconstruction and angle estimation model with novel combined loss terms.

III. PROPOSED METHOD

A. Data Preprocessing and Labeling

The synthetic data used in this study is created in MATLAB
by following the signal model described in Section II. The sim-
ulated data includes all SNR and snapshot values determined
to be used in the tests. The tested SNR values range between
−20 dB and 20 dB with 5 dB increments. The tested snapshot
values include N ∈ {50, 100, 150, 200, 300, 400, 500, 600}.
The models in the evaluation were trained with the whole
dataset and tested separately over an independently generated
dataset according to a specific test SNR and snapshot number
value.

The training dataset includes all possible angles for targets
between 20° and 160° in the two-target case with the minimum
angular distance between targets defined as ∆θ = 1°. The grid
scale is also selected as 1°, therefore the on-grid configuration
has in total Dangle = 141 angle values. The targets are
assumed to be noncoherent and are affected mainly by the
simulated thermal noise from the system which follows the
Gaussian distribution.

B. Overall Framework

The full proposed DoA estimation model is depicted in
Fig. 1. This architecture is a sequential combination of two
sub-networks that are defined to solve separate objectives. In
that respect, the overall model accepts the sample covariance
matrix of the received signal as input of the first sub-network
and recovers an estimate of the true covariance matrix as
output. Then, the reconstructed covariance matrix is fed into
the second sub-network for DoA estimation. This network
returns a fully connected layer output vector, wherein each
element represents the probability that there is an estimated
target in the corresponding angle.

The key component of the overall network is to employ
true covariance directly where the sample covariance matrix
estimation is poor due to the low number of snapshots. The
initial covariance estimation network mitigates this problem
by cleaning the sample covariance to retrieve a better estimate
of the true covariance than the bare sample covariance. The
covariance reconstruction layer learns its objective alongside

the DoA estimation network during training by including the
covariance loss LCov into the final loss term Ltotal.

The second important novelty of the proposed model is the
joint loss term that not only includes the classification loss,
Binary Cross-Entropy (BCE) loss for multi-target multilayer
classifications, based on the on-grid angle model but also
employs Mean Squared Error (MSE) based on the numerical
angle values converted from the final output. The BCE loss is
defined for each possible angle location as in (5). The MSE
loss on the other hand was defined according to the two-target
case and directly utilizes the correct angle values θ1 and θ2.

LBCE =
1

Dangle

Dangle∑
i=1

ŷip(yi) + (1− ŷi)(1− p(yi)) (5)

LMSE =
1

2

2∑
i=1

(θ̂i − θi)
2 (6)

C. Covariance Estimation

The covariance estimation sub-network is a concatenation
of convolutional layers with Scaled Exponential Linear Unit
(SELU) activation functions. There are four convolutional
blocks in total with 1 stride and equal padding, the first two
of them having 32 5 × 5 kernels, the third one having 32
5 × 5 kernels, and the last one having 2 5 × 5 kernels. Both
sample covariance and true covariance matrices are originally
complex numbers, and in our model they are represented as
images having two channels.

D. CNN-Based Angle Estimation

The angle estimation sub-network receives the true covari-
ance matrix from the initial covariance reconstruction network
and passes it through a sequence of convolutional blocks
composed of a convolutional layer, a Residual Linear Unit
(ReLU), and a Batch Normalization operation.

E. Training the Overall Framework

The overall model combines all three loss terms in the
training process, as shown in (7).

Ltotal = LCov + LBCE + αLMSE (7)
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(a) (b) (c)

Fig. 2: Scatter plot for the estimated target angles for 200 snapshots and 0 dB SNR for (a) Base model (b) Base CNN +
Covariance Estimation (c) Base CNN + Covariance Estimation + Angular MSE Loss

The strength of the MSE loss on the overall training is
controlled by a weight term α that is defined heuristically. In
our experiments, the α value was chosen as 0.1. The kernel
size is kept 3× 3 with 1 stride for all blocks, and the kernel
number changes to 32, 64, 128, and 256 from the first block
to the last block. The last convolutional block is followed by
a sequence of fully-connected layers. The final layer has the
number of neurons equal to the amount of the total angle grids
Dangle.

IV. PERFORMANCE ANALYSIS

A. Evaluation of Covariance Estimation Layer

In the proposed architecture, the first issue is to make
sure that the covariance estimation network works properly;
therefore the first analysis looks at whether the estimated true
covariance is close to the actual true covariance.

Fig. 3 shows three random samples from the test dataset
selected from simulated test data with different snapshot and
noise power values. The top figures are the sample covariances,
and they clearly demonstrate the effect of the low snapshot
number on the poor estimation; the noise in sample covari-
ance dominates the matrix as information is low due to the
inadequate number of snapshots. The middle figures are the
actual true covariances of the test signals. The bottom figures
are the reconstructed covariance matrices, which are closer
to the actual true covariance matrices. The diagonal entries
seem to be more apparent in the reconstructed images, but the
entries are still more distinctly recognizable.

B. Evaluation Across SNR

This analysis is performed to evaluate the proposed model’s
performance with respect to the noise power. The snapshot
value throughout the analysis was kept constant at N = 200.
Accuracy and RMSE values of the proposed model and the
compared methods with respect to the SNR values in tests can
be found in Fig. 4 and 5.

First comment is on the increase of performance in the
CNN model with the addition of the covariance estimation
block. Both models converge to a very high accuracy for high-
SNR cases, for the sample covariance approaches to the true
covariance as the number of snapshots increases. However,

Fig. 3: Covariance estimation results for three random ex-
amples. Sample covariance matrices for a) N=200 0 dB
SNR case, b) N=300 0 dB SNR case, c) N=300 -10 dB
SNR case are shown above. The middle figures are the true
covariance matrices, and the bottom figures are the estimated
true covariances of the respective column.

in low-SNR cases, retrieving the true covariance from the
sample covariance input with the estimation block results in
a significant increase in the accuracy; with the boost of the
additional MSE loss the final accuracy score increases to
1.92% for 0 dB, 5.56% for −5 dB, and 6.99% for −10 dB
SNR.

The second point is the comparison of the CNN model with
the traditional algorithms in accuracy and RMSE metrics. The
proposed model approaches to the error rate of MUSIC in all
SNR scenarios, and surpasses it above 0 dB SNR rates. On
the other hand, the accuracy for the proposed model is higher
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than the conventional methods in both low-SNR and high-
SNR. One explanation for these results might be understood
by looking at the scatter plots in Fig. 2. The misses of the base
CNN model is not guaranteed to be around the true angle,
while misses of the traditional source separation methods
usually approach closer to the true angle. The MSE loss term
in our case helps to direct the estimations to converge to the
true targets even in misses.

Fig. 4: Accuracy of the compared methods with respect to
SNR values, for 200 snapshots.

Fig. 5: RMSE loss of the compared methods with respect to
SNR values, for 200 snapshots.

C. Evaluation Across Snapshot Number

The performance analysis of the proposed model over the
snapshot values show a cleaner picture for the potential of
the covariance estimation. The SNR value throughout the
analysis was kept constant at 0 dB. Fig. 6 shows the accuracy
with respect to the number of snapshots and shows that the
proposed model outperforms the conventional beamformer
and MUSIC along with the base CNN model.The accuracy
difference between the base CNN and the proposed model is
0.92% for 200 snapshots, 1.4% for 150 snapshots, and 3.81%
for 100 snapshots.

The comparison of RMSE error with respect to the number
of snapshots is presented in Fig. 7. The proposed model for
all snapshot values provides a better result compared to both
the conventional methods and the base network and closely
surpasses the error for MUSIC. The inclusion of the covariance
estimation network seems to help DoA estimation for lower
snapshot values.

Fig. 6: Accuracy of the compared methods with respect to the
number of snapshot for 0 dB SNR

Fig. 7: RMSE loss of the compared methods with respect to
the number of snapshot for 0 dB SNR

V. CONCLUSION

In this study, we developed a neural network model for
the direction of arrival estimation problem that incorporates
both covariance reconstruction and combined weighted loss
functions to boost the DoA estimation performance in low
SNR and low snapshot conditions. The proposed model in-
cludes a covariance estimation module for recovering the
true covariance matrix from the sample covariance and a
comprehensive loss term that minimizes the DoA errors in
multiple respects. Achieved results indicate that the proposed
covariance reconstruction scheme and novel loss term enhance
the general DoA estimation performance of the deep learning
architecture under various SNR and snapshot conditions. A
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further study will include extensive analysis and comparison
of the proposed model under various more realistic scenarios.
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