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Abstract—Micro-Doppler signatures (µ-DS) play a crucial
role in activity classification using radar. However, conventional
methods for µ-DS generation, such as the Short-Time Fourier
Transform (STFT), suffer from several limitations, such as the
resolution limit, sensitivity to noise, and the need for parameter
tuning. To overcome these challenges, we introduce a novel deep
learning (DL) based approach that directly reconstructs high-
resolution µ-DS from 1D complex time-domain signals. Our
deep learning architecture comprises three key components: an
autoencoder block to enhance the signal-to-noise ratio (SNR), a
Convolutional STFT block to acquire the knowledge of frequency
transformations necessary for generating pseudo-spectrograms,
and a UNET block for the reconstruction of high-resolution
spectrogram images. We conducted evaluations of the proposed
method using both synthetic and real-world datasets. In the
case of synthetic data, we generated 1D complex time-domain
signals with multiple time-varying frequencies and assessed the
network’s performance in generating high-resolution µ-DS under
different SNR levels. For real-world data, A radar-based Ameri-
can Sign Language (ASL) dataset, consisting of 20 ASL signs are
used, to assess the classification performance achieved with µ-DS
generated by the proposed approach. Our results demonstrated a
3.34% increase in classification accuracy compared to traditional
STFT-based µ-DS. Both synthetic and experimental µ-DS re-
vealed that our approach effectively learns to reconstruct higher-
resolution and sparser spectrograms, showcasing its potential for
improving radar-based activity recognition applications.

Index Terms—Radar, STFT, micro-Doppler signature, Autoen-
coder, U-Net, HAR, time-frequency analysis.

I. INTRODUCTION

Recent advances in affordable solid-state transceivers, ef-
ficient graphics processing units (GPUs), and deep learning
techniques have expanded the practicality of radio frequency
(RF) sensors for applications such as human activity recogni-
tion (HAR) [1]–[3], defense and security [4], [5], mini-UAV
classification [6], advanced driver assistance systems (ADAS)
[7], anomaly detection [8], indoor monitoring [9] and health
monitoring [10]. These advancements have opened up new
possibilities for integrating RF sensors into an expanding range
of practical HAR applications.

In the context of radar-based HAR, time-frequency (TF)
analysis is crucial for capturing time-varying kinematic infor-
mation about dynamic activities, facilitating accurate classifi-
cation [11]. While some machine learning (ML) approaches
can classify activities directly from complex RF data [12]–
[15], traditional radar-based HAR methods typically involve

a two-step process. First, TF analysis or other radar signal
processing techniques are used to generate 2D (or higher-
dimensional) radar data representations, like time-varying
range-Doppler maps or µ-DS [16]. Although some studies
have explored joint domain classification [17], most studies
utilize µ-DS for HAR [18]–[20].

The Short-Time Fourier Transform (STFT) is a commonly
used method for TF analysis, decomposing signals into con-
stituent frequencies at different time windows, highlighting
time-varying characteristics. However, STFT has trade-offs
and limitations:

• Parameter Tuning: Selecting the right window length,
overlap size, and number of frequency bins can be chal-
lenging, as these parameters must be adjusted based on
signal characteristics. This tuning can be time-consuming
and may not yield optimal results for different signal sizes
and types.

• Resolution Limits: STFT has inherent resolution limits
due to the fixed window size. This means it may not
capture fine details in signals with rapidly changing
frequencies.

• Frequency Resolution vs. Time Resolution: A trade-off
exists between frequency and time resolution. Smaller
window sizes provide better time resolution but poorer
frequency resolution, while larger windows offer better
frequency but poorer time resolution.

To address these limitations, there is a growing inter-
est in developing DL methods for high-resolution frequency
estimation and TF representation. Notable approaches in-
clude Deepfreq, HRFreqNet are DNN architectures for multi-
sinusoidal complex-valued signal frequency estimation [21],
[22], and Cresfreq, a complex-valued neural network (CVNN)
for 1D frequency representation of multi-sinusoidal signals
[23]. These methods can also be used to create 2D TF repre-
sentations, similar to STFT’s use of the Fast Fourier Trans-
form (FFT). However, these DL methods have drawbacks,
including computational inefficiency, fixed signal length, and
sensitivity to noise, limiting their performance at lower signal-
to-noise ratios (SNR). To address these challenges, TFA-net,
another CVNN architecture, was introduced to generate high-
resolution TF representations for complex multi-sinusoidal
signals [24]. While TFA-net provides high-resolution TF rep-

20
24

 IE
EE

 R
ad

ar
 C

on
fe

re
nc

e 
(R

ad
ar

Co
nf

24
) |

 9
79

-8
-3

50
3-

29
20

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
RA

DA
RC

O
N

F2
45

87
75

.2
02

4.
10

54
89

69

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on February 28,2025 at 18:49:49 UTC from IEEE Xplore.  Restrictions apply. 



resentations, it’s computationally very intensive, especially for
high-length signals, which are common in radar data due to
high sampling rates and also susceptible to noise as it is trained
with only clean dataset.

Expanding on the insights inspired by Deepfreq, Cresfreq,
and TFA-net, this paper presents HRSpecNet, a novel end-
to-end deep neural network (DNN) architecture designed
to generate high-resolution 2D TF representations from 1D
complex-valued signals. The proposed approach offers supe-
rior computational efficiency and enhanced noise robustness.
HRSpecNet includes a convolutional auto-encoder for noise
reduction, a Convolutional STFT block for intermediate fre-
quency representation, and a UNET block for high-resolution
TF generation. With the help of autoencoder block and UNET
block, the HRSpecNet can effectively suppress noise, resulting
in cleaner TF representations.

The contributions of this paper can be summarized as
follows:

• Development of an end-to-end DNN architecture with
a weighted loss function to ensure both better noise
suppression and precise TF representation generation.

• Investigation of HRSpecNet’s advantages over traditional
STFT, highlighting its high-quality TF representations
without extensive parameter tuning.

• Demonstration of HRSpecNet’s generalization capability
on real-life radar data, showing higher accuracy in clas-
sifying µD spectrograms compared to other methods.

The paper is organized as follows: the RF signal model and
existing techniques are summarized in Section II, discussion of
HRSpecNet in Section III, performance analysis in Section IV,
and conclusion and discussion of future directions in Section
V.

II. THEORETICAL BACKGROUND

A. Radar Signal Model

Frequency-modulated continuous wave (FMCW) radar sys-
tems are commonly used for measuring both the range and
velocity of objects. In such systems, the transmitted signal
can be a linearly swept RF signal, where the instantaneous
frequency fi(t) can be stated as,

fi(t) = f0 +
B

τ
t, 0 ≤ t ≤ τ, (1)

where, f0 is the initial frequency at time t = 0, B is the
bandwidth, and τ represents the sweep time in seconds. When
this signal is reflected back from a target with a time delay Td

and mixed with a copy of the transmitted signal, it passes
through a low-pass filter (LPF) to obtain the Intermediate
Frequency (IF) signal. The IF signal can be modeled as:

sIF(t) = A exp

(
2π(f0Td +

B

τ
Tdt−

B

2τ
T 2
d )

)
, (2)

where, A represents the amplitude of the received signal.
The received data is then sampled, and the FMCW radar stores
this data in a three-dimensional (3D) radar data cube (RDC) of

size P ×N×M , where P is the number of fast-time samples,
N is the number of slow-time samples, and M is the number
of receiver channels. Various RF data representations can be
derived from the RDC, such as Range-Doppler (RD), Range-
Angle (RA), and Micro-Doppler Signatures (µ-DS).

B. Classical Radar Signal Processing for Micro-Doppler Sig-
nature Generation

Radar can be used to observe moving objects by measuring
the Doppler shift in the reflected signals caused by the motion
of the target. These Doppler shifts, which change over time,
create a signature in the TF domain that can be observed in
the TF representation of the radar signals.

One commonly used TF transform for visualizing Micro-
Doppler Signatures is the spectrogram. It estimates the instan-
taneous Micro-Doppler frequency as a function of time by
computing the square modulus of the windowed Short-Time
Fourier Transform (STFT) across the slow-time radar data,
denoted as x(t), denoted as:

S(k, ω) =

∣∣∣∣∫ ∞

−∞
h(t− k)x(t)e−jωtdt

∣∣∣∣2 , (3)

where, h(t) represents a windowing function, such as a
rectangular, Hamming, or Hanning window. The spectrogram
provides a visual representation of how the Micro-Doppler
frequency content of a target changes over time.

III. PROPOSED METHOD

This section presents the structure and specifics of our
proposed ML approach for generating high-resolution µ-DS.
It covers dataset creation, introduces HRSpecNet architecture,
and explains the training process with a weighted loss function.

A. Dataset Generation

The dataset creation process consists of two phases. First,
we generated multi-component 1D complex time-domain sig-
nals as inputs for our architecture. Then, we created label
TF images to represent the TF characteristics of these input
signals.

1) 1D Multi-component Complex Signal Generation: We
utilize multi-component sinusoidal FM signals denoted as s(k)
as the dataset inputs. These signals and their corresponding
instantaneous frequencies (IFs) are expressed as follows:

s(k) =

Q∑
q=1

Aq exp(2πfqk)

× exp(j2πBq × sin(2π(aqk
2 + bqk + θq))),

(4)

IFq(k) = fq + 2πBq(2aqk + bq)

× sin(2π(aqk
2 + bqk + θq)),

(5)

In this context provided, the component number Q adheres
to a discrete uniform distribution U(1, 10). The intensity of the
qth component, denoted as Aq , is calculated as 0.5 + 8|σq|,
where σq follows a uniform distribution U(0, 1). The vibration

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on February 28,2025 at 18:49:49 UTC from IEEE Xplore.  Restrictions apply. 



(6
4,

80
0)

(6
4,

40
0)

(6
4,

20
0)

(6
4,

10
0

)

(6
4,

20
0)

(6
4,

40
0)

(6
4,

80
0)

(2
,1

60
0)

Encoder

Conv1d
Kernel size = 3
Filter num = 64

Stride = 2

Decoder

Conv1dTranspose
Kernel size = 3
Filter num = 64

Stride = 2

Auto-Encoder Block (8,256,135)

(256,135)

(2
04

8,
13

5)

(8,256,135)

Reshape

𝟏
×

16
00

 (
𝐂
𝐨
𝐦
𝐩
𝐥𝐞
𝐱
)

R
ea

l
Im

ag
In

pu
t s

ha
pe

(2
,1

60
0)

Conv1d
Kernel size = 256

Filter num = 256*8
Stride = 10

(1
6,

25
6,

13
5)

(3
2,

12
8,

68
)

(6
4,

64
,3

4)

(1
28

,3
2,

17
)

(2
56

,3
2,

17
)

(1
28

,3
2,

17
)

(6
4,

64
,3

4)

(6
4,

64
,3

2)
(1

28
,6

4,
34

)

(6
4,

64
,3

4)

(3
2,

12
8,

68
)

(6
4,

64
,3

2)
(6

4,
12

8,
68

)

(3
2,

12
8,

68
)

(1
6,

25
6,

13
5)

(1
6,

25
6,

12
8)

(3
2,

25
6,

13
5)

(1
6,

25
6,

13
5)

concatenation

concatenation

concatenation

U-Net Block

(1
,2

56
,1

35
)

(8
,2

56
,1

35
)

Convolutional 
STFT Block

Fig. 1: The HRSpecNet Architecture

amplitude of the qth component, represented by Bq , is sampled
from U(0.2, 16). Both aq and bq fall within the ranges of
[−4, 4) and [−2.4, 2.4), respectively. The parameter θq is
drawn from a uniform distribution U(0, 2π), and the Doppler
shift fq follows a uniform distribution U(−1000, 1000). In
order to limit the computational challenges while training the
DL model, the signal length L is set to 1600 with a sampling
frequency of 3200. The sampling frequency is determined by
the pulse repetition frequency (PRI) of our radar system. We
set the number of frequency bins, Nf , to 256. It’s important
to note that our model architecture is designed to be versatile,
allowing it to generate TF representations for inputs of varying
lengths and a wide range of sampling frequencies during
testing even though the training is done over signal length
of L.

2) Ground truth TF representations: To generate the
ground truth data, we start by capturing each of the IF signal
components as per (5). Then, we apply a moving average
operation with a window size Lw and shift So to establish
the label frequencies. This relationship can be expressed as
follows:

ÎF q(i) =
1

Lw

So∗i+(Lw−1)∑
j=So∗i

IFq(j); i = 0, 1, 2, . . . , Lt

(6)

This operation bears resemblance to the STFT process,
resulting similar size time index for the labeled frequencies
as in the STFT process.

Given that we have set the number of frequency bins to
Nf , the resulting shape of the initial ground truth TF will be
a matrix of size Nf × Lt, where Lt = (

⌊
L−Lw

So

⌋
+ 1). This

initial 2D ground truth matrix, denoted as GTinitial(f, i), can
be represented as:

GTinitial(f, i) =

{
Aq, (∃q)(f∆f ≤ (ĨF q(i) < (f + 1)∆f)

0, otherwise
(7)

where the time index, denoted as i, spans the range from 0 to
Lt − 1, and the frequency index, denoted as f , ranges from
0 to Nf − 1. In this context, ∆f = fs

Nf
represents the fre-

quency interval, with fs being the sampling frequency. Lastly,
ĨF q(i) = mod(ÎF q, fs/2) signifies the modulo operation of
ÎF q with respect to fs/2. Afterwards, we convolve the 2D
GTinitial with a 1D Gaussian kernel with a kernel size of 3
and a standard deviation of 1 along the frequency dimension
in order to compensate for averaging effects and smooth out
our final ground truth, denoted as GTfinal.

B. Proposed HRSpecNet Architecture
The HRSpecNet is a novel DL architecture for high-

resolution TF representation and it consists of three main
components: an auto-encoder, a convolutional network resem-
bling the STFT to separate proxy TF, and a U-Net block
for generating high-resolution 2D TF representations. The
input comprises complex signals with C × L, where C = 2
represents real and imaginary parts, and L iss on the input
signal length. During training, the network processes noisy
signals with varying SNR levels. The auto-encoder reduces
noise, improving overall performance. The output of the auto-
encoder feeds into the STFT-like convolutional network, which
generates multiple proxy TF representations. The U-Net block
refines these proxies into high-resolution TF representations.
The model is trained with a weighted loss, encouraging it to
generate high-resolution TF images close to the ground truth
while reducing noise in the input signal. Detailed explanations
of each block follow are given next.

1) Auto-Encoder Module: The autoencoder architecture
employs multiple Conv1D layers to capture intricate patterns
in the input data while reducing the feature space dimension.
Each Conv1D block has 64 filters, a kernel size of 3, and
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a stride of 2 for local convolution operations, resulting in
reduced spatial dimensions. This encoding process enables the
autoencoder to learn a compact representation of the input
data. The input data is of shape 2×1600, and the autoencoder
preserves the same output shape during training. The model
minimizes the sum of squared error (SSE) loss, denoted as L1

in Figure 2, by comparing its output to a noise-free version of
the input signal, effectively reducing noise and enhancing the
final TF representation.

2) Convolutional STFT Module: The noise-reduced output
from the auto-encoder block feeds directly into the convo-
lutional STFT block. This block employs a 1D convolutional
unit to generate multiple proxy TF representations. The hyper-
parameters of this convolutional layer, such as the kernel size
and stride, correspond to the window size and shift in a typical
STFT operation. The number of filters in this layer determines
how many TF representations are created for the subsequent
U-Net block. For an input signal of length L, the STFT module
uses Lw as the kernel size and NfB filters, and the convolution
shifting is controlled by a stride of n0. The output feature
maps of the STFT layer have dimensions of NfB × Lt.
These feature maps are reshaped within the STFT block to
produce B ×Nf × Lt, illustrating B TF representations. For
instance, in Figure 1, an example signal with a length of
1600 samples is depicted, divided into real and imaginary
parts in a 2-channel configuration. In the convolutional STFT
block, the kernel size, filter numbers, and stride are set to
256, 256×8, and 10, respectively. After reshaping, the output
feature maps of the STFT block become 8× 256× 135, with
8 representing the number of TF representations, 256 as the
number of frequency bins, and 135 as the time index, Lt.
Importantly, the framework is not dependent on a specific
signal length, and the time index Lt within the convolutional
STFT block is determined directly by the number of input
samples. Therefore, the trained model with these parameters
can generate TF representations for varying input lengths.

3) UNET Module: The U-Net module’s main purpose is
to combine multiple TF feature maps from the convolutional
STFT module into a high-resolution 2D TF representation.
It follows an encoder-decoder architecture, with the encoder
using convolutional layers for hierarchical feature extraction,
and the decoder using transposed convolutional layers to
upsample feature maps. Skip connections, achieved through
concatenation, help blend low-level and high-level features
for detailed TF analysis, and the final convolutional layer
generates a single-channel output for the 2D TF representation.

𝑳𝟐

Auto-Encoder
Block

Convolution 
STFT Block UNET Block

𝑳𝟏 𝑳𝑻𝒐𝒕𝒂𝒍

Noisy Input 
Data

Clean Signal

Autoencoder
Output Final Output

Ground Truth TF

*𝝀

Fig. 2: Flow-diagram of the proposed architecture.

4) Training the proposed architecture: Our training dataset
is constructed using 2 × 105 noisy signals, with uniformly
random generated SNR levels ranging from 0 to 15 dB. For
validation purposes, we employed a different set of 2 × 103

noisy signals, with SNR levels following the same variation.
The loss in the U-Net module L2 is computed as SSE loss
between the final 2D TF output of the model and the labeled
TF. This L2 loss is combined with the loss in the auto-encoder
block L1. The total loss utilized in training the whole model
is given as

Ltotal = λ× L1 + L2 (8)

where Ltotal denotes the aggregate training loss, while the
parameter λ is a hyperparameter of the model and is sys-
tematically tuned to a value of 3 through an iterative process,
aimed at achieving optimal performance. The flow diagram of
the proposed model is shown in Fig. 2 for better visualization.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD

In this section we will evaluate the performance of the
proposed HRSpecNet model.

A. Micro-Doppler Signature Generation

To illustrate the performance of the proposed approach, an
example signal consisting of three frequency components is
considered. The signal expressions are given as follows:

s(t) = exp(j2π(
1

80
sin(6πt)fs))

+ exp(j2π(
1

300
sin(4πt)fs))

+ exp(j2π(
1

2.5
t− 0.4t2)fs)

(9)

In this experiment, the SNR was 10 dB, two different
sampling frequency, 4000 and 10000 Hz, were used, and the
time duration was 1 seconds. First, the STFT of the data
is computed using window lengths of 32, 64, 128, and 256
with a non-overlap length of 10. Figure 3 compares the TF
representations of STFT and HRSpecNet with the same col-
ormap. The STFT shows a considerable amount of noise, while
the HRSpecNet gives a higher resolution, sparser, and cleaner
representation. Additionally, the proposed HRSpecNet method
was able to detect the intersection points of IF signals much
more clearly than the STFT. For the best TF representations
from STFT can be seen from window lengths 128 and 256
for a fs of 4000 and 10000 Hz respectively. But HRSpec-
Net, without any parameter tuning, outputs fairly consistent
TF representations for both tested sampling frequency cases.
This signifies the robustness of HRSpecNET to exhaustive
parameter tuning. Also, the result shows the high-resolution
capability of the proposed approach.
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B. Quantitative Comparison on Classification Performance
with STFT

One important analysis is how the reconstructed TF rep-
resentations affect the final classification performance for
STFT and HRSpecNet, in a real-world HAR scenario using a
dataset of 20 ASL signs. The µ-DSs are generated with STFT
and HRSpecNet. Notably, the HRSpecNet model, trained on
synthetic data only, outperformed STFT by producing higher-
resolution spectrograms with better noise suppression and
clearer distinctions in subtle movements as shown in Fig. 4.
These µ-DSs were then used as input for CNN classification.

Fr
eq

ue
nc

y 
(H

z)

0 1 3 42
Time (sec) Time (sec)

STFT HRSpecNet

(a) (b)

-1600

0

1600

Y
E

S
H

O
M

E
I L

O
V

E
 Y

O
U

0 1 3 42

-1600

0

1600

-1600

0

1600

Fig. 4: Sample µD signatures for ASL signs for (a) STFT, (b)
HRSpecNet

1) Experimental Setup and Dataset: For radio frequency
(RF) data collection, a 77 GHz TI IWR1443 automotive short-
range radar was used. The radar system parameters selected
for the data collection are given in Table I.

In a lab setting, the radar was positioned on a table against
a wall at a height of 0.91 meters, with ASL signers seated
1.5 meters away. To prevent signal interference, a computer
monitor behind the radar displayed sign instructions. Six par-
ticipants, including professional ASL signers, deaf individuals,
CODAs, and lab members, collected data with IRB approval.
The dataset consists of 100 diverse high-frequency ASL signs,

TABLE I: TI IWR1143 Radar Parameters

Parameter Value
Number of TX & RX channels 1 & 1
Start & Stop frequency 77 & 81 GHz
Bandwidth 4 GHz
RX gain 45 dB
Periodicity 40 ms
Pulse repetition frequency (PRF) 3200 Hz
Number of ADC samples per chirp 256
Number of Chirp loops per Frame 128
Total number of frames 700
Total time 28s

with 3,000 radar sign samples (30 per sign). Each participant
performed five 4-second repetitions of each sign, with a 2-
second interval, resulting in 28 seconds of data per sign per
participant. For classification, the analysis will focus on the
first 20 sign classes. Additional dataset details can be found
in reference [25].

2) Classification Model: The µDSs generated from STFT
and HRSpecNet were saved as 128 × 128 images and used
as input for a 2D CNN classification model. This CNN
architecture, based on previous work [9], consists of four
convolutional blocks, as shown in Fig. 5. Each block includes
two convolutional layers with 32 filters in the first two blocks
and 64 filters in the remaining blocks. All convolutional layers
use a 4 × 4 kernel size. Each block is followed by 2 × 2
maxpooling, batch normalization, ReLU activation, and a 0.3
dropout. After the convolutional blocks, the tensor is flattened
and passed through a dense layer with a size of 256 × 1,
followed by a 0.3 dropout, and then input into a softmax
classifier.

3) Classification Performance for 20 Class ASL Data: For
performance evaluation, two datasets were generated based on
STFT and HRSpecNet respectively. Each dataset was split into
80% for training and 20% for testing. Models were trained for
150 epochs to ensure convergence. Subsequently, confusion
matrices were generated for each case, and metrics like testing
accuracy, precision, recall, and F1 scores were computed.
Table II demonstrates that the classification acheived using
the TF images generated by the proposed model outperformed
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the classification using the STFT-based spectrograms in all
metrics. Notably, it achieved a 2.91% higher accuracy is
achieved compared to the state-of-the-art STFT method.

TABLE II: Performance of the compared models in terms of
evaluation metrics.

Network Testing
Accuracy Precision Recall F1

Score
STFT 77.58 80.19 79.71 76.82
HRSpecNet 80.49 84.07 82.43 79.86

V. CONCLUSION

HRSpecNet, a novel deep learning architecture, exceling at
reconstructing precise, high-resolution TF representations of
complex signals is proposed. The proposed approach elim-
inats the need for parameter tuning, offering accurate, high-
resolution spectrograms efficiently. The initial study shows the
model’s noise resilience and generalization capability in an
experimental radar dataset, surpassing traditional methods in
classification accuracy. It holds promise for RF-sensing-based
activity recognition. For future work, an extensive analysis of
the proposed approach as well as comparisons with other DL-
based approaches will be provided.
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