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Abstract— Micro-Doppler signatures (µ-DSs) are widely used
for human activity recognition (HAR) using radar. However,
traditional methods for generating µ-DS, such as the short-time
Fourier transform (STFT), suffer from limitations, such as the
tradeoff between time and frequency resolution, noise sensitivity,
and parameter calibration. To address these limitations, we pro-
pose a novel deep learning (DL)-based approach to reconstruct
high-resolution µ-DS directly from a 1-D complex time-domain
signal. Our DL architecture consists of an autoencoder (AE)
block to improve signal-to-noise ratio (SNR), an STFT block
to learn frequency transformations to generate pseudo spectro-
grams, and, finally, a U-Net block to reconstruct high-resolution
spectrogram images. We evaluated our proposed architecture
on both synthetic and real-world data. For synthetic data,
we generated 1-D complex time-domain signals with multiple
time-varying frequencies and evaluated and compared the ability
of our network to generate high-resolution µ-DS and perform in
different SNR levels. For real-world data, a challenging radar-
based American Sign Language (ASL) dataset consisting of
100 words was used to evaluate the classification performance
achieved using the µ-DS generated by the proposed approach.
The results showed that the proposed approach outperforms the
classification accuracy of traditional STFT-based µ-DS by 3.48%.
Both synthetic and experimental µ-DSs show that the proposed
approach learns to reconstruct higher resolution and sparser
spectrograms.

Index Terms— American Sign Language (ASL), autoencoder
(AE), HRSpecNet, human activity recognition (HAR), micro-
Doppler signature (µ-DS), radar, short-time Fourier transform
(STFT), time–frequency analysis (TFA), U-Net.

I. INTRODUCTION

RECENT advancements in affordable solid-state
transceivers, computationally efficient graphics

processing units (GPUs), and innovative deep learning
(DL) techniques have significantly expanded the practicality
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of radio frequency (RF) sensors across a growing range of
applications involving human activity recognition (HAR)
[1], [2], defense and security [3], [4], [5], mini-UAV
classification [6], advanced driver assistance systems
(ADASs) [7], [8], [9], indoor monitoring [10], [11], anomaly
detection [12], and health monitoring [13], [14]. These
advancements have ushered in a new era of RF sensor utility,
enabling their integration into an ever-widening array of
practical applications for HAR.

For radar-based HAR, time–frequency (TF) analysis is
crucial as it captures essential kinematic information about
dynamic activities, enabling accurate and efficient classi-
fication [15]. While some machine learning (ML)-based
approaches can do classification directly from the complex
RF data stream [16], [17], [18], [19], most conventional
approaches for radar-based HAR require a two-level process.
First, TF analysis (TFA) or other radar signal processing
techniques are applied to generate 2-D (or higher 3-D and
4-D) radar data representations, such as time-varying range-
Doppler (RD) or range-angle (RA) maps or micro-Doppler
signature (µ-DS) [20]. While there have been some studies
that propose joint domain classification [21], [22], most studies
utilize the µ-DS for HAR [23], [24], [25], [26].

The most commonly used method of TFA is the short-time
Fourier transform (STFT), which allows the decomposition of
signals into their constituent frequencies at different time win-
dows, providing a representation that highlights time-varying
characteristics. In addition, other techniques, such as the
Gabor transform, the wavelet transform, and the Wigner–Ville
distribution, have also been employed [27], [28], [29]. These
methods offer different insights into the TF domain, and their
choice depends on the specific application and the desired level
of detail in the µ-DS analysis.

Although the STFT represents a potent TFA tool, it is
accompanied by specific tradeoffs and limitations.

1) Frequency Resolution Versus Time Resolution: One
significant tradeoff in STFT is the balance between fre-
quency and time resolution. On the one hand, a smaller
window size provides better time resolution but poorer
frequency resolution, making it difficult to distinguish
between closely related frequencies. On the other hand,
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a larger window size provides better frequency but
poorer time resolution [30].

2) Resolution Limits: STFT has inherent resolution limits
due to the fixed window size. This means that it may
not capture fine details in signals with rapidly changing
frequencies.

3) Parameter Tuning: Properly selecting the window
length, overlap size, and number of frequency bins in
STFT can be challenging, as these parameters need to be
adjusted based on the characteristics of the signal [31].
This exhaustive parameter tuning can be time-consuming
and may not always yield optimal classification results
for different signal sizes and types.

Hence, there has been some interest in the development of
DL methods for high-resolution frequency estimation and TF
representation. Izacard et al. [32] proposed Deepfreq, a deep
neural network (DNN) architecture to estimate the frequency
of each component from a multisinusoidal complex-valued
signal. Here, the real and imaginary channels are concatenated
side by side to feed into the neural network model creating a
1-D frequency spectrum. In a related context, Pan et al. [33]
proposed Cresfreq, a complex-valued neural network (CVNN)
architecture to generate a 1-D frequency representation of a
multisinusoidal complex-valued signal. These 1-D methods for
high-resolution frequency estimation can also be leveraged to
create 2-D TF representations, following a similar approach
to how the fast Fourier transform (FFT) is employed in the
STFT method.

However, the drawback of these DL modules is their com-
putational inefficiency when applied repeatedly to produce µD
spectrograms. They are limited by their fixed signal length and
lack the flexibility to adjust window lengths, which is essential
for achieving an optimal tradeoff between time resolution and
frequency resolution. Moreover, these models are less robust
to noise, resulting in poor estimations at lower signal-to-noise
ratio (SNR) levels due to the fact that they are trained with
only clean, noiseless signal samples. In response to these
limitations, Pan et al. [34] introduced TFA-net, another CVNN
architecture, aimed at directly generating high-resolution TF
representations for complex multisinusoidal signals. Neverthe-
less, a notable concern with TFA-net is that the time index
of the TF representations it generates aligns with the length
of the input signal. This design choice imposes a substantial
computational burden, especially for higher length signals,
which are highly common in radar due to high sampling
rates. In addition, CVNN architectures generally demand more
computational time than their real-valued neural network coun-
terparts. Consequently, while TFA-net delivers high-resolution
TF representations, it does so at the cost of significantly higher
computational latency compared to conventional methods such
as STFT. Section II-B2 provides a detailed and comprehensive
explanation of these models.

Building upon the inspirations drawn from Deepfreq,
Cresfreq, and TFA-net, this article introduces HRSpecNet,
an end-to-end DNN architecture designed to produce high-
resolution 2-D TF representations from 1-D complex-valued
signals with less computational complexity and better noise
robustness. The proposed HRSpecNet architecture takes the

1-D complex data as input in two channels and comprises
three distinct blocks. First, the 1-D convolutional autoencoder
(AE) block is employed for effective noise reduction from
the input signal, enhancing the quality of the data. Subse-
quently, the STFT block, which learns several convolutional
filters resulting in proxy frequency domain representations,
is incorporated. In this block, the weights are adaptively
learned, enabling the representation of instantaneous frequency
(IF) changes within the feature maps. Finally, the U-Net
block utilizes these feature maps to construct a clean and
precise high-resolution TF representation of the input signal.
The HRSpecNet is more computationally efficient than its
DNN-based predecessors due to its updated ground label
generation and creating an output size as STFT. In addition,
having an AE and a U-Net block together within the archi-
tecture suppresses the noise in two stages, producing much
cleaner TF representations. The contributions of this article
can be summarized as follows.

1) A comprehensive end-to-end neural network architec-
ture has been developed that employs a three-stage
architecture with AEs, convolutional STFT, and image
reconstruction networks together with a novel weighted
loss function to force the network to learn to effectively
suppress noise and construct precise TF representations
from 1-D noisy complex-valued signals.

2) A novel ground truth labeling process is proposed, which
enforces higher resolution and has the same shape as
STFT.

3) An investigation into the properties of the HRSpecNet
model has been conducted, highlighting its comparative
advantage over traditional STFT and showcasing its abil-
ity to generate high-quality TF representations without
the need for extensive parameter tuning.

4) A rigorous evaluation of HRSpecNet has been provided,
comparing it both quantitatively and qualitatively with
STFT and other ML-based techniques such as Deepfreq,
Cresfreq, and TFA-net. The findings of the evaluation
reveal the performance of HRSpecNet in generating
high-resolution spectrograms across various SNR levels.

5) To demonstrate the real-world applicability of HRSpec-
Net, an assessment of its generalization capability on
real-life radar data has been performed. Specifically, the
performance of HRSpecNet has been evaluated on a
dataset comprising 100 American Sign Language (ASL)
words. A standard 2-D convolutional neural network
(CNN) model has been employed to classify the µD
signatures generated by HRSpecNet. The results of the
evaluation demonstrate that the classification of the µD
spectrograms generated by HRSpecNet provides higher
accuracy compared to other approaches.

6) HRSpecNet generates enhanced TF representations
while maintaining very high computational efficiency
compared to other ML-based techniques.

The organization of this article is as follows. The radar
signal model and the existing classical and ML-based tech-
niques to generate TF representations are summarized in
Section II. Section III discusses the proposed HRSpecNet
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architecture along with the process of dataset and ground truth
generation. The properties of the generated TF representations
and comparison with other approaches over both synthetic
and real-world data are discussed in Section IV. Finally,
conclusions are drawn and future directions are discussed in
Section V.

II. THEORETICAL BACKGROUND

A. Radar Signal Model

Frequency-modulated continuous-wave (FMCW) radar sys-
tems transmit linearly swept RF signals to measure both range
and velocity [35]. The instantaneous frequency of the chirp
signal can be modeled as

fi (t) = f0 +
B
τ

t, 0 ≤ t ≤ τ (1)

where f0 is the initial frequency at time t = 0, B is the
bandwidth, and τ represents the sweep time in seconds. The
received signal is reflected back from a target with time delay
Td , mixed with a copy of the transmitted signal, and then
passed through a low-pass filter (LPF) to obtain the IF signal.
The IF signal can be modeled as

sIF(t) = Aexp
(

2π

(
f0Td +

B
τ

Td t −
B
2τ

T 2
d

))
(2)

where A represents the amplitude of the signal. After sampling
the IF signal, the FMCW radar stores the received data in a
3-D radar data cube (RDC) of size P × N × M , where P is the
number of fast-time samples, N is the number of slow-time
samples, and M is the number of receiver channels. Different
RF data representations can be computed from the RDC, such
as RD, RA, and µ-DS.

B. TF Representation for Radar Signals

Radar can be used to observe moving objects by measuring
the change in frequency of the reflected radar signals. This
change in frequency, called the Doppler shift, is caused
by even the small movements of the target relative to the
radar [36]. Changing target movements in time creates a
signature in the frequency domain that can be observed in
the TF representation of the radar signals.

1) Short-Time Fourier Transform: One of the most com-
monly used TF transforms for visualizing the µ-DS of a
target is the spectrogram, which estimates the instantaneous
µ-D frequency as a function of time by computing the square
modulus of the windowed STFT across the slow-time radar
data x(t) as

S(k, ω) =

∣∣∣∣∫ ∞

−∞

h(t − k)x(t)e− jωt dt
∣∣∣∣2

(3)

where h(t) is a windowing function, such as rectangular,
Hamming, or Hanning window.

Fig. 1. Illustration of generating 2-D TF representation on a test signal
x(t). g(t) is the Gaussian window and FT block denotes the 1-D frequency
transformation architecture such as Deepfreq or Cresfreq models.

2) ML Techniques to Generate TF Representation: DL-
based technique with the objective of precisely estimating
the frequencies of multisinusoidal signals from a finite set
of noisy samples is introduced first in the DeepFreq [32].
A novel neural network architecture is introduced in the study
that outperforms existing methods such as FFT in terms of
frequency estimation in high SNR scenarios. The DeepFreq
framework combines two essential modules: one for enhancing
frequency representation and another for automatic frequency
count estimation for a fixed signal length. The DeepFreq
framework is one of the very first DL-based approaches for
frequency estimation, but it has several limitations. It is sensi-
tive to noise in the input signal, which can lead to inaccurate
frequency estimates. In addition, the DeepFreq framework
cannot differentiate the amplitude of each frequency compo-
nent within a signal. Finally, the DeepFreq framework has a
high computational complexity compared to the existing FFT
method.

Inspired by Deepfreq, a CVNN, Cresfreq, designed for
high-resolution frequency estimation in 1-D complex sig-
nals has been introduced in [33]. The network learns
complex-valued basis vectors and employs convolutional ker-
nels for noise suppression. Subsequently, real-valued residual
blocks enhance the frequency representation resolution. The
Cresfreq addresses some limitations of Deepfreq such as
performance in the low SNR scenarios and estimating ampli-
tudes of the frequency components. However, it has a greater
computational latency than Deepfreq.

By employing these 1-D frequency estimation techniques
within segmented windows across the entire signal, we can
generate 2-D TF representations as shown in Fig. 1, where Lw

signifies the window length and S0 represents the nonoverlap
size. This is similar to the application of the STFT discussed
in Section II-B1, replacing conventional frequency transfor-
mation with 1-D DL-based architectures. In order to perform
the FT operation in Fig. 1, either Deepfreq or Cresfreq models
can be utilized.

A data-driven 2-D TF representation has been introduced
in [34], where a DL-based TFA model named TFA-Net is
proposed. The network consists of two key modules. First,
TFA-Net learns complete basis functions to obtain various TF
characteristics of time series and then uses 2-D filter kernels
for energy concentration to produce a TF representation of the
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time-domain signal. Unlike the STFT method, it eliminates
the need for window length adjustments. However, there are
two significant computational challenges associated with TFA-
Net. First, the TF representation’s time index is aligned with
the length of the input signal. This can lead to substantial
computational demands, especially for signals with a large
number of time indices, such as 1-D radar range profile
signals with high pulse repetition frequency (PRF). This can
significantly prolong the time required to generate the TF
representation. In addition, TFA-Net involves complex-valued
operations, which inherently consume more computational
resources when compared to standard DNN models. This
complexity adds to the computational overhead of the model.

While existing data-driven TF reconstruction approaches do
not require adjustment of window lengths and perform better
for multicomponent signals with closely adjacent IFs, they
have low noise robustness and high computational complexity.
As a solution, we introduce a novel DL architecture, HRSpec-
Net. In the following, we will delve into the specifics of our
proposed approach.

III. PROPOSED METHOD

This section provides the architecture and details for
the proposed ML-based generation of high-resolution µ-DS.
We delve into the dataset generation process for input complex
signals and corresponding ground truth TF representations.
We elaborate on the HRSpecNet architecture that we have
designed to robustly reconstruct high-resolution TF represen-
tations and its training process with a weighted loss function.

A. Dataset Generation

The process of dataset creation can be divided into two
distinct phases. Initially, we generated a set of multicomponent
1-D complex time-domain signals, which will be the inputs
to the proposed architecture. Subsequently, we produced the
corresponding label TF images, representing the TF represen-
tation of the input signals.

1) 1-D Multicomponent Complex Signal Generation: We
utilize multicomponent sinusoidal frequency modulated (FM)
signals denoted as s(k) as the dataset inputs. These signals
and their corresponding IFs are expressed as follows:

s(k) =

Q∑
q=1

Aq exp
(
2π fqk

)
× exp

(
j2π Bq × sin

(
2π

(
aqk2

+ bqk + θq
)))

(4)

IFq(k) = fq + 2π Bq
(
2aqk + bq

)
× sin

(
2π

(
aqk2

+ bqk + θq
))

. (5)

In the context provided, the component number Q adheres
to a discrete uniform distribution U(1, 10). The intensity of the
qth component, denoted as Aq , is calculated as 0.5 + 8|σq |,
where σq follows a uniform distribution U(0, 1). The vibration
amplitude of the qth component, represented by Bq , is sampled
from U(0.2, 16). Both aq and bq fall within the ranges of
[−4, 4) and [−2.4, 2.4), respectively. The parameter θq is
drawn from a uniform distribution U(0, 2π), and the Doppler

shift fq follows a uniform distribution U(−1000, 1000).
In order to limit the computational challenges while training
the DL model, the signal length L is set to 1600 with a
sampling frequency of 3200. The sampling frequency is set
based on the pulse repetition interval (PRI) of our experimental
radar system. Finally, the number of frequency bins N f is
established at 256. It is crucial to emphasize that while the
model is trained with these specified parameters, the model
architecture has been thoughtfully designed to ensure that
the trained model can be effectively tested to generate TF
representations for any input lengths as well as a wide range
of sampling frequencies.

2) Ground Truth TF Representations: To generate the
ground truth data, we begin by capturing each of the IF signal
components as described in (5). Subsequently, we apply a
moving average operation over each of them with a window
size Lw and shift So to determine the label frequencies. This
relationship can be expressed as follows:

ÎFq(i) =
1

Lw

So∗i+(Lw−1)∑
j=So∗i

IFq( j); i = 0, 1, 2, . . . , L t . (6)

This operation bears resemblance to the STFT process,
resulting similar size time index for the labeled frequencies
as in the STFT process.

Given that we have set the number of frequency bins to
N f , the resulting shape of the initial ground truth TF will be
a matrix of size N f × L t , where L t = (⌊(L − Lw/So)⌋ + 1).
This initial 2-D ground truth matrix, denoted as GTinitial( f, i),
can be represented as

GTinitial( f, i) =

{
Aq , (∃q)

(
f 1 f ≤

(
ĨFq(i) < ( f + 1)1 f

)
0, otherwise

(7)

where the time index, denoted as i , spans the range from
0 to L t − 1, and the frequency index, denoted as f , ranges
from 0 to N f − 1. In this context, 1 f = ( fs/N f ) represents
the frequency interval, with fs being the sampling frequency.
Finally, ĨFq(i) = mod(ÎFq , fs/2) signifies the modulo opera-
tion of ÎFq with respect to fs/2. Afterward, we convolve the
2-D GTinitial with a 1-D Gaussian kernel with a kernel size of
3 and a standard deviation of 1 along the frequency dimension
in order to compensate for averaging effects and smooth out
our final ground truth, denoted as GTfinal. Fig. 2 shows the
flow diagram from example IF signals to the corresponding
final ground truth TF image.

B. Proposed HRSpecNet Architecture

In this segment, we introduce a new DL network archi-
tecture, HRSpecNet, for high-resolution TF representation.
The proposed architecture is illustrated in Fig. 3. The over-
all framework comprises three primary component networks,
beginning with an AE block, followed by a convolutional
network block resembling the STFT operation, and concluding
with a U-Net block for the generation of high-resolution 2-D
TF representation of the input signal. The input of the model
takes complex signals with C×L , where C = 2 accommodates
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Fig. 2. Flow diagram of ground truth TF-image generation of the example signal defined in (9).

Fig. 3. HRSpecNet architecture.

the real and imaginary parts of the signals and L depends on
the signal length. During the training phase, the DL framework
is fed with a signal deliberately infused with noise. The pri-
mary purpose of leveraging the AE block is to mitigate noise
and subsequently increase the network’s overall performance.
The AE’s output is passed into the convolutional STFT block,
where the network’s convolutional filter can calculate multi-
ple Fourier-like transformations, effectively depicting various
proxy TF representations of the original IFs. Following the
reshaping process, these proxy TF feature data are then passed
through the U-Net block, which is harnessed for the generation
of a high-resolution and focused TF representation. The whole
network is trained with a weighted loss guiding the model
to both learn to generate outputs close to the high-resolution
labeled TF images while also learning to reduce the noise
and generate a cleaner version of the noisy input signal.
A more comprehensive elaboration of each block is presented
subsequently.

1) AE Module: The AE architecture employed for the goal
of noise reduction consists of multiple Conv1D layers. These
layers are pivotal in capturing intricate patterns within the
input data while progressively reducing the dimensions of the
feature space. Specifically, each Conv1D block is configured
with 64 filters, a kernel size of 3, and a stride of 2. These

parameters enable the model to perform local convolution
operations, extracting salient features with reduced spatial
dimensions as the signal passes through the layers. Ultimately,
this hierarchical encoding process helps the AE learn a com-
pact representation of the input data, making it highly effective
in reducing noise and enhancing the overall quality of the final
TF representation. During training, the DL architecture takes
input data with a shape of 2×1600, and the AE block preserves
the same output shape as the input. During training, the AE
module assesses its output against a noise-free version of the
same input signal using a sum of squared error (SSE).

2) Convolutional STFT Module: Noise-reduced output from
the AE block is directly fed into the convolutional STFT
block. This block consists of a 1-D convolutional unit that
helps to create several intermediate TF representations. The
hyperparameters of this convolutional layer, such as kernel size
and stride, represent the window size and shifting in a typical
STFT operation. The number of filters in this layer helps in
determining the number of intermediate TF representations
that will be fed into the U-Net block. For an input signal
of length L , the size and number of filter kernels used in the
STFT module are, respectively, Lw and N f NTF. Shifting of
convolution operation is conducted through stride of n0 and
the output feature maps of the STFT layer become N f NTF×L t .
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Fig. 4. Visualization of the frequency spectra learned by the convolutional
STFT module.

These feature maps will be reshaped within the STFT block to
produce NTF×N f ×L t to illustrate NTF number of intermediate
TF representations of the original signal. For clarity, in Fig. 3,
an example signal with a length of 1600 samples is illustrated.
The real and imaginary parts of the signal are divided into two-
channel configurations, as described in Section III-B2. In the
STFT block, kernel size, filter numbers, and stride are taken
as 256, 256 × 8, and 10, respectively. After reshaping, the
output feature maps of the convolutional STFT block become
8 × 256 × 135. In the output shape, 8 is the number of
proxy TF representations, 256 is the number of frequency
bins, and 135 is the time index L t . As an example, each
crude TF representation from the convolutional STFT block
is also illustrated in Fig. 3. It is crucial to note that the entire
framework is not reliant on a specific signal length, and the
time index L t within the convolutional STFT block is directly
determined by the number of samples provided at the input
layer. Hence, the trained model for the given parameters can be
tested to generate TF representations for varying input lengths.

The shape of the feature map obtained from the convolu-
tional STFT module is N f NTF ×2 × Lw, where 2 represents
the real and imaginary parts. Fig. 4 illustrates the frequency
spectra learned from the weights of the convolutional STFT
module, revealing the presence of eight distinct feature sets.
During training, to generate the output of the convolutional
STFT module closer to the labeled TF images, a weighted
SSE loss function, L2, was used, as shown in Fig. 5. Each
of the outputs of this block provides a rich set of frequency
features to the next U-Net block allowing it to produce a
high-resolution TF representation as its output.

3) U-Net Module: The primary purpose of the U-Net mod-
ule is to fuse multiple TF feature maps from the convolutional
STFT module into a high-resolution 2-D TF representation.
In Fig. 3, the overall framework of the U-Net module is illus-
trated. The U-Net architecture comprises an encoder–decoder
network designed for the high-resolution TF representation
task. In the encoder, a series of convolutional layers with
increasing channels performs hierarchical feature extraction,
capturing details at different scales. Batch normalization and
rectified linear unit (ReLU) activation functions enhance train-
ing stability and nonlinearity. The decoder, on the other hand,
consists of transposed convolutional layers that upsample the
feature maps to recover the spatial resolution. Skip connections
achieved through concatenation play a pivotal role, facilitat-
ing the fusion of low- and high-level features to produce
the detailed TFA. The final convolutional layer produces a
single-channel output representing the 2-D TF representation.

4) Training the Proposed Architecture: Our training dataset
is constructed using 2 × 105 noisy signals, with uniformly
random generated SNR levels ranging from 0 to 15 dB.
For validation purposes, we employed a different set of
2 × 104 noisy signals, with SNR levels following the same
variation. Losses L2 and L3 are computed as the SSE loss
between the convolutional STFT and U-Net module outputs
and the label TF images, respectively. These losses are then
combined with the loss in the AE block L1. The total loss
utilized in training of the whole model is given as

L total = (λ × L1) + (α × L2) + L3 (8)

where L total denotes the aggregate training loss, while param-
eters λ and α are hyperparameters of the model and are
systematically tuned to a value of 3 and 0.1, respectively,
through an iterative process, aimed at achieving optimal per-
formance. Specifically, we tested the SSE loss term between
the output of the convolutional STFT block and the labeled
TF images to observe if forcing the input of the U-Net block
to be closer to the final label enhanced the final output.
Fig. 6(a)–(c) represents the normalized mean square error
(NMSE), structural similarity index measurement (SSIM), and
peak SNR (PSNR) between the model output and ground
truth TFs as a function of SNR, respectively, by varying α

from 0 to 10. We observed the best results when α = 0.1. The
flow diagram of the final proposed model is shown in Fig. 5
for better visualization.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD

For a comprehensive evaluation of the performance of the
proposed HRSpecNet model, this section provides results on
the following:

1) the performance of the HRSpecNet evaluated through
various simulation settings;

2) qualitative comparisons with existing methods in terms
of resolution and SNR performance;

3) quantitative comparisons, the effect of generated µ-DS
with the proposed method on classification performance
tested over a challenging experimental RF dataset con-
sisting of classifying 100 ASL signs.

In Sections IV-A and IV-B, for comparison with the STFT,
Deepfreq, and Cresfreq models, the window size, Lw, and the
shift size, S0, are set to be 200 and 10, respectively. In addition,
the number of frequency bins is set to 1000.

A. Simulation Validation

1) µ-DS Generation: To illustrate the performance of the
proposed approach, an example signal consisting of four
frequency components is considered. The signal and the cor-
responding IF expressions are given as follows:

s(t) = 1.5 exp( j2π(80 sin(6π t)))

+ 2 exp( j2π(40 sin(6π t + 0.5)))

+ 4 exp( j2π(1000t − 500t4))

+ exp( j2π(−1000t + 500t4)) (9)
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Fig. 5. Flow diagram of the proposed architecture.

Fig. 6. Comparison between the final output and the ground truth TF with varying the weight of L2 loss function (α) in terms of (a) NMSE, (b) SSIM, and
(c) PSNR versus SNR.

Fig. 7. TF representation of signal (9) by (a) STFT and (b) HRSpecNet.

IF1 = 480π cos(6π t)

IF2 = 240π cos(6π t + 0.5)

IF3 = 1000 − 2000 t3

IF4 = −1000 + 2000 t3. (10)

In this experiment, the SNR was 10 dB, the sampling
frequency was 6000 Hz, and the time duration was 1.15 s.
First, the STFT of the data is computed using a window
length of 256 and a nonoverlap length of 10. Fig. 7(a) and (b)
compares the TF representations of STFT and HRSpecNet,
respectively, with the same colormap. The STFT shows a
considerable amount of noise, while the HRSpecNet gives a
higher resolution, sparser, and cleaner representation similar to
the ground truth. In addition, the proposed HRSpecNet method
was able to detect the intersection points of IF signals much
more clearly than the STFT. Finally, the amplitude information
of each IF signal component was preserved in the HRSpecNet.

One important need for STFT-based TF representation is
the need to select window length and shifting parameters for
an optimal result. The top and bottom rows in Fig. 8 represent
the TF representations using STFT with varying window sizes
and the HRSpecNet for a signal with a sampling frequency of
2000 and 8000 Hz, respectively. The instantaneous frequencies
have the same normalized values so that the resultant TF
plot shows the same output on both occasions. The generated
signal consists of two frequency components as given in the
following:

s(t) = 1.5 exp
(

j2π

(
1

240
sin

(
4π t2) fs

))
+ 4 exp

(
j2π

(
1
6

fs t −
3
10

fs t4
))

(11)

Normalized-IF1 =
1

30
cos

(
4π t2)

Normalized-IF2 =
1
6

−
6
5

t3. (12)

Here, the output shows two important properties of the
proposed HRSpecNet model.

1) More Flexible Against Parameter Tuning: As discussed
earlier, the time and frequency resolution varies with
respect to the length of the window functions. The opti-
mum length of the window function depends heavily on
the signal length, sampling frequency, and the changing
rate of instantaneous frequency components. As shown
in Fig. 8, the spectrograms created by STFT using
window lengths 32, 64, 128, and 256, show different
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Fig. 8. TF representation of signal (11) by (a)–(d) STFT and (e) HRSpecNet. The highlighted black boxes indicate the best TF representations observed
from STFT.

characteristics. Different window lengths, such as 64 and
256, were found to be better for different sampling
frequency cases. On the other hand, the outputs from
the HRSpecNet shown in Fig 8(e) are fairly consistent
on both occasions. This shows that while the window
length needs to be adjusted for STFT to get enhanced
TF representations, the HRSpecNet is more robust to
this exhaustive parameter tuning.

2) Aliasing Effects: As seen in Fig. 8, the signals contain
aliasing effects as the signal component in IF2 aliases
after 0.8 s. Although the aliasing effect was not consid-
ered in the training of the model or in training dataset
generation, our model was still able to reconstruct a
correct TF representation for an aliased component.

2) Performance Improvements Due to AE: Some of them
are listed as follows.

a) SNR improvement: As discussed in Section III-B4,
the HRSpecNet model has been trained using 200 000 data
samples. These samples were corrupted by Gaussian noise
with the SNR levels varying from 0 to 15 dB. Fig. 9(a) shows
the SNR difference between the input signal and AE output
for 20 000 testing samples. Each sample duration is 1 s with
a sampling frequency of 6 kHz and a maximum number of
ten IFs. The test SNR levels span from −5 to 20 dB with an
interval of 5. The AE’s input and output SNR levels were
calculated with respect to the ground truth time frequency
representation (TFR). After testing the trained model, it was
observed that the AE improved the SNR of the signals by an
average of 2.5 dB. As shown in Fig. 9, utilizing the AE in
the proposed architecture improved the SNR of the signals at
all SNR levels, with the greatest improvement seen at lower
SNR levels.

b) Overall performance improvement: To further evalu-
ate the effects of the AE on the final reconstructed TF-image
outputs, the NMSE, SSIM, and PSNR of the TF represen-
tation with respect to the corresponding clean signal TF
representation are computed as a function of the SNR lev-
els. Fig. 9(b)–(d) shows the NMSE, SSIM, and PSNR plots
versus SNR for HRSpecNet and HRSpecNet without AE,
respectively. Overall, adding the AE helped to reduce the
NMSE. Furthermore, significant enhancements in SSIM and
PSNR can be seen as well. These results demonstrate that
the AE can improve the reconstruction performance of the

U-Net module, especially at lower SNR levels. At higher SNR
levels, both models showed similar performance. In short,
the improvement in the SNR level due to the AE helped
the U-Net module to reconstruct finer TF representations.
Fig. 10(e) and (f) shows the TF representations in various
SNR levels without AE and with AE block, respectively. The
contribution of the utilization of the encoder on reconstructed
TF images can be seen clearly.

B. Qualitative Comparison With Existing Methods

1) High-Resolution TF Spectrograms: In this section,
we are going to analyze and compare how varying models
perform in terms of distinguishing closely related frequency
points. To test this, we chose a noiseless signal with two
frequency components, with a constant frequency difference.
The sampling frequency and the duration are 6 kHz and 1.15 s,
respectively. The signal representation is given as follows:

s(t) = exp( j2π(20 sin(6π t) − 1500t))

+ exp( j2π(20 sin(6π t) − 1500t + d)) (13)
IF1 = 120π cos(6π t) − 1500
IF2 = 120π cos(6π t) − 1500 + d. (14)

To evaluate the frequency resolution performance of the
proposed HRSpecNet model, we compared it with the standard
STFT method and three other ML-based techniques, Deepfreq,
Cresfreq, and TFA-NET. The IF components were separated
by a constant frequency difference d as shown in (14), where
d was gradually decreased from 200 to 60 Hz with an interval
of 10 Hz. The window length for STFT operation was set
to 256 as we observed the best TF representations using this
particular window length.

As shown in Fig. 11, when d = 200, all models were able
to clearly distinguish the two IF components. However, when
d < 150, the STFT, Deepfreq, and Cresfreq models gradually
lost their ability to distinguish the two IF components, while
the TFA-NET and HRSpecNet models were still able to clearly
separate them. The TFA-NET and HRSpecNet models started
to lose their ability to identify the two IF signals at d <

70 and d < 60, respectively. This shows that TFA-Net and
the proposed HRSpecNet demonstrate enhanced frequency
resolution performance compared to STFT.
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Fig. 9. Effect of AE. (a) Actual SNR levels and AE output SNR levels versus sample number. (b) NMSE at the final output. (c) PSNR at the final output.
(d) SSIM at the final output.

Fig. 10. TF representation of signal s(t) = 2 exp( j2π(80 sin(6π t))) + 3 exp( j2π(30 sin(6π t2))) + 4 exp( j2π(2500t − 2000 t2)) in different SNR levels for
(a) STFT, (b) Deep-freq, (c) Cresfreq, (d) TFA-NET, (e) HRSpecNet w/o AE, and (f) HRSpecNet.

2) Different SNR Levels: In this section, the performance
of the proposed approach will be compared with the existing
methods both qualitatively and quantitatively.

a) Qualitative comparison: Fig. 10 shows the TFRs
generated from the proposed model along with STFT and
the ML-based methods for the same signal under different
SNR conditions varying from −5 to 20 dB. It is important
to note that the proposed HRSpecNet model was trained
with 0–15-dB SNR cases. At −5-dB SNR, all the models
produce noisy TFRs. However, some of the frequency com-
ponents can be seen in the TFRs from STFT, TFA-NET,
and HRSpecNet. At 0-dB SNR, TFA-NET and STFT can
show the frequency components in a noisy background, while
HRSpecNet produces a much less noisy TFR. However, the
frequency components are hardly visible in the TFRs from

Cresfreq and Deepfreq. At 5-, 10-, and 20-dB SNR levels,
HRSpecNet produces very clean and accurate TFRs compared
to other methods. All the DL-based methods, as well as the
STFT, yield accurate TF representations when applied to clean
signals or signals with higher SNRs.

b) Quantitative comparison: To demonstrate a quanti-
tative comparison, first a testing dataset was generated with
SNRs varying from −5 to 20 dB with 1-dB intervals. The
1000 samples were generated for each SNR case, and thus,
the testing dataset consisted of 26 000 data samples for
this analysis. Each sample duration is 1 s with a sampling
frequency of 6 kHz and a maximum number of ten IFs.
For evaluation, we compared each of the noisy TFRs with
respect to their corresponding ground truth TFRs. Then, the
average of NMSE, SSIM, and PSNR metrics was calculated
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Fig. 11. TF representation of signal (13) by (a) STFT, (b) Deepfreq, (c) Cresfreq, (d) TFA-NET, and (e) HRSpecNet.

Fig. 12. Comparison between HRSpecNet, STFT, and other DL approaches. (a) NMSE. (b) SSIM. (c) PSNR versus SNR.

for each SNR level. Fig. 12(a)–(c) shows the NMSE, SSIM,
and PSNR as a function of SNR for all compared approaches,
respectively. The results show that the proposed approach
provides enhancements compared to standard STFT and other
DL-based approaches in all metrics.

This suggests that HRSpecNet could be used for applica-
tions where high-quality high-resolution TFRs are required,
such as radar target recognition, speech processing, and music
analysis.

C. Quantitative Comparison on Classification Performance

Although different methods can reconstruct varying TF rep-
resentations, one important analysis is how the reconstructed
TF representations affect the final classification performance.
In order to evaluate the performance of compared methods in
a real-world HAR scenario, a challenging dataset consisting
of 100 ASL signs was utilized. First, the µ-DSs were generated
using STFT and the trained DL-based models. Note that all
data-driven approaches compared here are trained only with
their respective simulated datasets. No experimental data are
used in the training process, and the trained models are tested
on the experimental data. In Fig. 13, µ-DSs of three ASL
signs reconstructed using compared models have been given.
This figure reveals that the spectrograms produced by the

HRSpecNet model exhibit a higher resolution and increased
ability to distinguish subtle movements, surpassing not only
the other DL-based methods but also the STFT. Furthermore,
the proposed approach excels in noise suppression, resulting
in significantly clearer and sparse spectrograms compared to
other DL-based approaches. This shows that the proposed
HRSpecNet model can generate realistic spectrograms in
real-world conditions even though it is only trained with
synthetic signal examples. After generating the spectrograms
from each method, the magnitude of the µDS is obtained
and given as the input to four different DNNs for classifi-
cation: deep CNN (DCNN) [37], person identification [38],
VGGNet-16 [39], and a CNN model specifically developed
for radar-based ASL classification, ASL-Net, based on [10]
in order to test the classification performance observed over
reconstructed TF images from compared techniques. Multiple
different classifiers are tested to remove any bias from a
specific classifier.

Next, we will discuss the experimental setup, data collection
procedure, explanation of the CNN model for classifi-
cation, and performance comparison with other existing
methods.

1) Experimental Setup: For RF data collection, a 77-GHz
TI IWR1443 automotive short-range radar was used. The
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Fig. 13. Sample µD signatures for ASL signs for (a) STFT, (b) Deepfreq, (c) Cresfreq, (d) TFA-NET, and (e) HRSpecNet.

TABLE I
TI IWR1143 RADAR PARAMETERS

radar has three transmitters and four receivers, but only one
transmitter and one receiver were used in this experiment. The
radar system parameters selected for the data collection are
given in Table I.

The radar was positioned on top of a table placed against a
wall in a laboratory environment at a height of 0.91 m. ASL
signers were seated on a chair in front of the radar at a distance
of 1.5 m. A computer monitor was placed exactly behind the
radar, outside of its field of view to prevent it from reflecting
the radar waves and creating noise in the signal. The monitor
continuously displayed instructions to the participants about
the signs they needed to articulate. This setup was designed
to minimize interference from the environment and to ensure
that the radar had a clear view of the signer’s hands. The
experimental setup is shown in Fig. 14(a).

2) Dataset: Six people participated in data collection,
including four professional ASL signers, two hearing impaired
people, two children of hearing impaired adults (CODAs),
and two lab members. The whole data collection procedure

Fig. 14. Experimental setup and timing of sign articulation. (a) Experimental
setup for data collection with radar [22]. (b) Example of sequential prompts
given to the user.

was IRB-approved. Hundred different ASL signs were selected
from the ASL-LEX2 [40] database. The signs were chosen to
be high frequency and phonologically unrelated to each other
in order to create a diverse dataset. More information about
the dataset can be found in [41].

The dataset consists of a total of 3000 radar sign samples
from six participants, with 30 samples for each class. Five
repetitions of each sign were collected from each participant,
with each repetition lasting 4 s followed by a 2-s interstimulus
interval. In total, 28 s of data were collected for each class
from each participant.

3) Classification Model: The generated µDSs from all
models were saved as 128 × 128 images, which are then
supplied as input to four different 2-D CNN models, including
the ASL-Net architecture. The ASL-Net consists of four con-
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TABLE II
PERFORMANCE OF THE COMPARED MODELS IN TERMS OF EVALUATION METRICS

Fig. 15. CNN architecture for ASL sign classification.

volutional blocks, as illustrated in Fig. 15. Each convolutional
block had two convolutional layers having 32 filters each
in the first two blocks and 64 filters each in the rest. All
the convolutional layers consist of a kernel size of 4 × 4.
The two convolutional layers in each block were followed
by 2 × 2 maxpooling, batch normalization, ReLU activation
function, and a dropout of 0.3. After the convolutional blocks,
the tensor is flattened and fed into a dense layer of size 256×1,
after which a dropout of 0.3 is applied and input to a softmax
classifier.

4) Classification Performance for 100 Class ASL Data: For
performance evaluation, five TF-image datasets were generated
based on STFT, HRSpecNet, TFA-NET, Deepfreq, and Cres-
freq. All Dl-based reconstruction approaches are completely
trained on simulated data only and the trained models are
utilized to generate the TF images for the experimental radar
data. Each reconstructed TF-image dataset was split into 80%
training and 20% testing samples in the same way. All four
classification models have been trained individually for a long
enough time (150 epochs) to reach convergence for each model
using the training portion of the generated TF-image datasets.
Afterward, the trained models were tested, and confusion
matrices were generated for each case. Testing accuracy,
precision, recall, and F1 Scores were evaluated from the
confusion matrices. Table II presents the obtained results for
the top-performing classifier, ASL-Net, and the average results
from four classification models. All tested classifiers provided
the best accuracy results for the dataset generated using the
proposed HRSpecNet model. In addition to outperforming
compared DL-based reconstruction approaches, on average,
HRSpecNet was able to give 3.14% better accuracy than the
state-of-the-art STFT method. The noise-robust architecture
of the proposed model with weighted loss terms, the novel
labeling process, and the generation of suitable training dataset
are several possible reasons for the enhanced performance.

TABLE III
COMPARISON OF COMPUTATIONAL EFFICIENCY

As shown in Table II, top-3 and top-5 accuracies were also
computed. Top-N accuracy indicates whether the model is able
to predict the expected class within the top-N highest probabil-
ities. Since the dataset consists of 100 classes, top-N accuracy
measurement is an important performance-evaluating factor to
consider. The top-3 and top-5 accuracies of HRSpecNet also
surpass those of other methods.

D. Computational Efficiency

In this section, we carried out simulations to compare the
computational efficiency of different methods, including the
proposed HRSpecNet. For evaluation, the same testing dataset
mentioned in Section IV-B2 was used. We measured the
average execution time for each method, and the results are
summarized in Table III. Both data processing and network
training have been done using an Alienware m15 R7 laptop
with an NVIDIA 3060 GPU, Intel 11th Gen CPU, and 32-GB
memory.

The STFT is observed to be the least computationally
intensive approach, while the HRSpecNet is the most com-
putationally efficient method among DL-based techniques.
On the other hand, TFA-NET, despite producing similar
high-resolution TF representations, takes significantly more
time to complete than our proposed approach. There are two
main reasons for this. First, TFA-NET generates TFRs with
dimensions of 256 × 6000, as the time index of these TFRs
matches the dimension of the input signal. Second, TFA-NET
involves complex-valued operations, which inherently demand
more computational resources than standard DNN models.
To illustrate further, even though Deepfreq has more parame-
ters than Cresfreq, the latter, being complex-valued, ends up
costing about 2.5 times more in terms of computational time.

V. CONCLUSION

An innovative DL-based architecture, named HRSpecNet,
is introduced specifically to reconstruct highly concentrated
TF representations of multicomponent time-varying signals.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on February 28,2025 at 18:52:53 UTC from IEEE Xplore.  Restrictions apply. 



496 IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 2, 2024

HRSpecNet is composed of three fundamental modules: the
AE, the convolutional STFT, and the U-Net modules. Notably,
our proposed approach eliminates the need for exhaustive
parameter tuning, a common requirement in traditional STFT
methods. Furthermore, it offers the advantage of producing
highly accurate high-resolution spectrograms while maintain-
ing computational efficiency compared to other ML-based
methods. One of the key strengths of our model is its noise
robustness and generalization capabilities, as demonstrated by
its successful application in generating µD spectrograms for
a challenging experimental dataset consisting of 100 distinct
ASL gestures recorded using FMCW radar. Despite being
trained only on a simulated dataset, the spectrograms gen-
erated by the HRSpecNet outperformed all other methods,
including STFT, in terms of classification accuracy. This result
underscores the fact that HRSpecNet excels in detecting subtle
micro-movements within these activities. These findings open
up new avenues for applications in RF-sensing-based activity
recognition.
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