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Abstract—Radio frequency (RF) sensing applications such
as RF waveform classification and human activity recognition
(HAR) demand real-time processing capabilities. Current state-
of-the-art techniques often require a two-stage process for
classification: first, computing a time-frequency (TF) transform,
and then applying machine learning (ML) using the TF domain as
the input for classification. This process hinders the opportunities
for real-time classification. Consequently, there is a growing
interest in direct classification from raw IQ-RF data streams.
Applying existing deep learning (DL) techniques directly to the
raw IQ radar data has shown limited accuracy for various
applications. To address this, this article proposes to learn the
parameters of structured functions as filterbanks within complex-
valued (CV) neural network architectures. The initial layer of
the proposed architecture features CV parameterized learnable
filters (PLFs) that directly work on the raw data and generate
frequency-related features based on the structured function of
the filter. This work presents four different PLFs: Sinc, Gaussian,
Gammatone, and Ricker functions, which demonstrate different
types of frequency-domain bandpass filtering to show their
effectiveness in RF data classification directly from raw IQ radar
data. Learning structured filters also enhances interpretability
and understanding of the network. The proposed approach was
tested on both experimental and synthetic datasets for sign
and modulation recognition. The PLF-based models achieved an
average of 47 % improvement in classification accuracy compared
with a 1-D convolutional neural network (CNN) on raw RF data
and an average 7% improvement over CNNs with real-valued
learnable filters for the experimental dataset. It also matched
the accuracy of a 2-D CNN applied to micro-Doppler (uD)
spectrograms while reducing computational latency by around
75%. These results demonstrate the potential of the proposed
model for a range of RF sensing applications with enhanced
accuracy and computational efficiency.

Index Terms— Activity recognition, explainable artificial intel-
ligence (AI), Gammatone, Gaussian, micro-Doppler (xD), radar,
radio frequency (RF) sensing, Ricker, sinc.
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I. INTRODUCTION

ECENT developments in affordable solid-state trans-

ceivers and computationally efficient graphics processing
units (GPUs), along with novel deep learning (DL) approaches,
have significantly enhanced the usability of radio frequency
(RF) sensors across a wide range of applications, including
human activity recognition (HAR) [1], [2] and RF signal
classification [3], [4].

This technological convergence has increased the demand
for real-time classification systems for RF-based applications.
However, current state-of-the-art techniques often require a
two-stage process for complex I/Q RF signal classification.
First, time—frequency (TF) analysis or other radar signal
processing techniques are applied to generate 2-D (or higher
3-D and 4-D) radar data representations. The most common
of these data forms are time-varying range-profile, range—
Doppler, range—angle maps, and TF spectrograms [5], [6].
While some studies explore joint domain classification [7],
[8], [9], micro-Doppler (uD) signature remains the prevalent
data form in HAR problems [10], [11]. Calculating the uD
representation of RF data requires heavy computation with
many windowed short-time Fourier transforms (STFTs) in
addition to the need for parameter optimization for window
type, window size, FFT length, and overlap size between
windows. The second step following the generation of RF
data representation is feeding the generated image into a
deep neural network (DNN) for activity classification [12],
[13], [14], [15]. This two-step RF classification scheme is
computationally intensive and exhibits high temporal latency
in inference, limiting its real-time applicability. While some
efforts have been made to implement TF spectrogram genera-
tion with DL-based approaches [16], [17], such methods still
tend to be computationally expensive for real-life applications.

The problems mentioned above necessitate a scheme to
directly process raw RF data. The solution to using raw RF
data is to process complex-valued (CV) numbers by repre-
senting the data in different channels. The CV spectrograms,
unlike absolute values, contain the full information like phase
shift and Fourier components. Yang et al. [18] propose a
recurrent neural network (RNN) that decodes 2-D 1/Q radar
data sequences, where both I and Q channels are supplied
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concurrently into the RNN. This model classifies two distinct
human activities with 93% average accuracy. The downside
of this model is that training requires high computational
complexity, with the network training phase spanning over
240 h using four Nvidia GeForce GTX 1080 GPUs. In [19],
an adaptive magnitude thresholding approach has been shown
to outperform state-of-the-art DL methods with up to a tenfold
reduction in memory usage and training time, making it
suitable for embedded platform deployment. However, it still
involves a two-step process: first generating puD signatures
and applying adaptive magnitude thresholding, followed by
the classification process. Loukas et al. [20] provide a sim-
ilar strategy by supplying range profile information along
with the raw I/Q data and replacing the old RNN with a
long-short term memory (LSTM) network. The studies [21],
[22] propose a novel CV CNN architecture for RF-based
HAR. The spectrogram values were used in the logarithmic
scale. The study [22] devised a model named FourierNet that
implements windowed Fourier transform in the 1-D time-series
data preprocessing as a part of the network. Finally, [23]
looked into the representation of the CV RF data in the forms
of range—time, range—Doppler map, or spectrogram. But this
study also required a two-stage process for classification which
does not solve the problem for real-time applications.

An important issue in RF signal processing with neural
networks is dissecting the learned model to gain insight. This
is not possible with the black-box nature of the traditional
neural networks. The study [24] is one of the pioneers in
introducing learnable filters for addressing the interpretability
issue by developing learnable sinc filters for the speaker
identification task from raw audio recordings. This model
is named SincNet and uses a 1-D layer of sinc functions
with their low and high cutoff frequencies transformed into
learnable parameters. With this design, bandpass filtering
by neural networks was made easy for dissection, and the
model was enabled to learn high-level, physically interpretable
parameters. In recent times, several studies have focused on
the use of filter banks for enhancing audio signals. Sivapatham
et al. [25] used Gammatone filter banks in a CNN for monaural
speech signal enhancement. They first used nonlearnable 64-
channel Gammatone filter banks to filter the audio signal input,
which was then fed into a simple CNN architecture. Khan and
Yener [26] introduced parameterized learnable Ricker wavelets
as a wavelet decomposition layer within the CNN model for a
phone recognition task. However, these methods were devel-
oped for audio signal classification. In [27], 2-D-learnable
Gaussian filters were introduced for image classification. All
the above-mentioned methods worked on real-valued data,
whereas RF signals are CV, requiring CV-CNN layers for
effective classification.

The authors’ previous study [28] demonstrates the applica-
tion of a CV neural network operating directly on the CV 1-D
slow-time data after pulse compression via the CV-SincNet
architecture. CV-SincNet maps the real-valued neural net-
work operations into the complex number domain to directly
process the 1-D complex slow-time RF data. CV-SincNet
also learns complex sinc functions that translate to one-sided
bandpass filters in the Fourier domain. Each CV sinc filter
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is parameterized by center frequency and bandwidth. This
architecture was shown to provide enhanced classification
performance compared with a 2-D CNN that uses the RF uD-
spectrograms with lower computational load.

This work builds on our previous study [28] by introducing
a more generalized framework for parameterized learnable
filterbank functions (PLFs). Unlike the previous approach,
which was limited to the sinc filter, we now present a gen-
eralized parameterized filter learning approach that can be
extended to other parameterized filter representations that are
suitable for backpropagation. We show the proposed concept
on bandpass filters, such as Gaussian, Gammatone, and Ricker
wavelet filters, demonstrating that we can learn parameters of
structured functions that can directly and effectively operate
on time-domain RF signals. Furthermore, we have developed a
more versatile neural network architecture, expanding beyond
ASL sign recognition to be applicable to other application
domains such as HAR and modulation recognition. In addi-
tion, we have simplified the overall network structure to
reduce computational latency, making it better suited for real-
time applications. The analyses in this article highlight the
advantages of the generalized PLF models, including higher
classification accuracy, faster prediction times, and improved
interpretability.

The contributions of this article are summarized as follows.

1) Generalized PLF Formulation: Develop a flexible frame-
work for learning parameters of more general PLFs such
as sinc, Gaussian, Gammatone, and Ricker.

2) PLF-Based CNN Architecture: Integrate PLFs into
CNNs to extract meaningful features directly from
time-series IQ radar data.

3) Evaluation on Synthetic and Real-World Datasets:
Assess the proposed approach on both the synthetically
generated and real-world datasets.

4) Comparison With Existing Methods: Increased perfor-
mance compared with the traditional real and CV CNNs
and real-valued PLF-based CNNs.

5) Physical Interpretation and Efficiency: Demonstrate the
physical relevance of learned filters and the potential for
real-time classification with reduced latency.

The organization of the article is as follows. Section II
discusses the formulation of different filters along with imple-
mentation details of all the neural network blocks for CV
operations. Section III presents the datasets and results for all
compared networks. Finally, Section IV concludes this article
and discusses future directions.

II. PROPOSED METHOD
A. Parameterized Learnable Filter Formulation

Let us assume discretized 1-D slow-time complex IQ radar
data x[n] to be processed by a CNN architecture. In this case,
the first layer in a standard CNN uses a set of 1-D finite
impulse response filters, h;[n]j = 1,...,J, with the input
data, which results in the jth convolution output y;[n] =
x[n] * hj[n] = é:olx[ﬁ]hj[n — £], where K is the total
length of the input data. When the neural network is trained
over the data, all the elements of the filters 4 ;[n] are learned.
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The convolution operation is mainly filtering in the frequency
domain with the frequency response of the filter. However,
since standard CNNs can learn an unrestricted filter £;[n],
the learned filter can have a very random frequency-domain
response. Here, instead of letting CNNs learn any random
filter, we propose to put a structure to the learned filters. Let
the filters be defined by a function fy[n] that is parameterized
by a vector of parameters § = [6},6;,...,0p] where P is
the total number of parameters of the function. In this case,
instead of learning every element of a filter, CNNs will learn
the parameters @ of the function. If the number of parameters
is comparably less than the length of the filter, P < N, the
neural network learns a much smaller number of parameters.
For a neural network architecture to be able to learn the
parameters of the defined function within the backpropagation
algorithm, it is critical that the defined function should be fully
differentiable with respect to each parameter 6,p =1, ..., P.
Under such differentiability conditions, parameters 6 can be
updated within gradient-based optimization approaches used
in neural network training.

Although any differentiable function fy[n] can be used
within the defined architecture, in terms of radar-based activity
or modulation recognition problem, the underlying features of
the targeted classes are in the TF domain. Hence, we target to
use fp[n] that corresponds to bandpass filters. Since we can
design our own filter functions, we can use windowing oper-
ations such as Hamming windows to have lower sidelobes or
better frequency selectivity. Finally, the output of the proposed
generalized PLF layer will be the convolution of the raw radar
data with the structured filters as y;[n] = x[n] * Jo,[n].

1) Complex Sinc Filter: Our previous work [28] focused on
a complex sinc filter rather than this generalized framework,
and it can be seen as a subcase of the framework presented
here, where the structured filter can be represented as follows:

f0[n] = 291Sinc(2n01n) X ej27192n (1)

where sinc(x) = sin(x)/x is the sinc function and 6 = [6;, 6;]
has two learnable parameters. Since the frequency response
of the sinc function in (1) is a bandpass filter the parameter
0, corresponds to the bandwidth, and 6, is the center frequency
of the bandpass filter. In addition, since the complex filter
in (1) is differentiable with respect to its learnable parameters
[01, 6>], it is compatible with backpropagation.

While the complex sinc filter is an example of the proposed
PLF architecture, in this study we propose several different
filters we can use within the generalized structure as detailed
in Section II-A2-1I-A4.

2) Complex Gaussian Filter: Another filter function could
be a Gaussian filter. The impulse response of a Gaussian filter
is characterized by a sinusoidal wave modulated by a Gaussian
function. The time-domain formulation of a complex Gaussian
filter with respect to variance (6;) and center frequency (6,)
is given by

2 n?
eiﬁ . ej2n92n 2)
N

Joonnl =
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where n € [-(N/2), (N — 1)/2)] and the 3-dB bandwidth B
of the filter is related to the 6, parameter as

V10g(2)

7x B’

0, = 3)

The filter function defined in (2) is differentiable in terms
of both the parameters, and hence it is compatible with
backpropagation.

3) Complex Gammatone Filter: A Gammatone filter is a
type of linear filter commonly used in auditory modeling to
simulate the filtering characteristics of the human ear [29]. It is
named for its mathematical form, which combines a gamma
distribution function with a sinusoidal tone. The time-domain
formulation of a complex Gammatone filter with respect to its
variance (0;) and center frequency (6,) is given by

f(el,ez) [n] — n(y71)6727{0]nej27102n (4)

where n € [0, N — 1] and the 3-dB bandwidth B of the filter

is given as
0 _B/_1 5
"TaoVar o1 )

In both (4) and (5), y is the order of the filter and it is used
as a fixed parameter rather than a learnable parameter of the
filter and is set to four as done in [30].

4) Complex Ricker Wavelet Filter: Ricker wavelet is the
negative normalized second derivative of a Gaussian function.
Introduced in [26], it is also known as the Mexican Hat
Wavelet. The time-domain formulation of a complex Ricker
filter with respect to variance (¢;) and center frequency (6,)

is given by
2 n? —Lzz .
oo 202 ,j2mbrn

30,71/ (912 l)e e ©

where n € [—(N/2), (N — 1)/2)]. As shown in Fig. 1, the
Ricker filter in the frequency domain has two peaks. The
3-dB bandwidth (6,) is determined by measuring the frequency
range from the first 3-dB point of the initial peak to the second
3-dB point of the subsequent peak. The relationship between
0; and the 3-dB bandwidth, B, is expressed as follows:

0 2 7

1=z (7

Since the learned filters have finite lengths, they will have

ripples and sidelobes in the frequency domain. To mitigate

such effects, windowing is a popular solution in signal pro-

cessing. Hence, we apply windowing as well by multiplying
the parameterized filters with a fixed Hamming window as

f'[nl = foln] - wln] ®)

where the window function w[n] is fixed and do not contain
any learnable parameters as specified by

Sfo60[n] =

w[n] = 0.54 — 0.46 cos(z%") ©)

where N is the length of both the window and the learned
filters. The time- and frequency-domain representations of
each of the parameterized filters after windowing are shown
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Fig. 1.
and a sampling frequency of 4000 Hz.

in Fig. 1. While the time domain real and imaginary
components of the filters follow the underlying functions,
the frequency-domain representations are different bandpass
filters.

Since our goal is to develop the model to learn interpretable
parameters of structured filters, we used the window function
as fixed; however, it is possible to design the window functions
with learnable parameters to jointly learn both the filters and
the windowing functions. Consequently, the only learnable
parameters in the complex learnable filter layer, as depicted in
Fig. 2, are 6, ; and 0, ; for each learned filter j € [0, J — 1].
For CV operations, the bandwidth related to 0, is initialized
over the entire frequency range [— f; /2, f;/2], where f; is the
sampling frequency. In the real-valued case, 6; is initialized
in the range [0, f;/2]. During training, the neural network
updates 6; Vj in the learnable filter layer together with other
parameters of the whole model.

The model sequence following the initial learnable filter
layer includes pooling, normalization, ReLU activation, and
dropout operations, all using complex operations, as illustrated
in Fig. 2. This sequence forms the learnable filter block, which
serves as the initial layer of the proposed DNN architecture.

B. Benefits of the Proposed PLF Layer

1) Interpretability: One key benefit of the proposed
approach is its interpretability. The model works directly with
complex RF signal spectra, and the parameters it learns have
clear physical meanings. This allows a better understanding
of which frequencies and spectral bands are important for RF
sensing. By revealing these critical components, the model
provides insights that are easier to interpret and understand
compared with traditional convolution layers.

2) Small Number of Parameters: Another significant advan-
tage is the reduced number of parameters required by the
model. For example, a 1-D Gaussian filter layer with J filters
only needs 2J trainable parameters, while a 1-D convolutional
layer with J filters needs N x J trainable parameters, where

Sinc filter Ricker filter

Examples of different types of filters after windowing in the time and frequency domains with a center frequency of 500 Hz, a bandwidth of 300 Hz,
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Fig. 2. PLF block.

N is the filter length. This means the model is smaller and
requires less number of parameters, which is advantageous in
terms of computational resources and training efficiency.

C. Complete Proposed Architecture

The proposed PLF-based CV-CNN architecture, PLFNet,
is developed to process the 1-D complex raw RF data. The
first layer of the proposed architecture comprises J CV PLFs,
each with a length of N = 251. This layer is then followed by
a complex max-pooling layer of size 1 x 4, batch normaliza-
tion, ReLLU activation, and dropout of 0.2. This sequence of
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layers comprises the PLF block, which is shown in Fig. 2. The
PLF block is followed by a series of convolutional block. Each
convolutional block has a convolutional layer with 64 filters
and a kernel size of 1 x 5 for each filter. This is followed
by a max-pooling layer of size 1 x 3, batch normalization,
ReLU activation, and dropout of 0.2. The outputs of the
convolutional blocks are flattened before being input to a dense
layer with a size of Z. After the application of dropout of
0.2, the network uses a softmax layer for classification. All
the layers mentioned were developed to work on CV data.
The CV operations for convolution, fully connected layers,
activation functions, pooling, and normalization were detailed
in our previous work [28]. These operations were implemented
by representing complex numbers as their real and imaginary
components, allowing for efficient computations within a
standard deep learning framework. For better visualization,
the flow diagram of the full proposed architecture is shown
in Fig. 3.

III. PERFORMANCE EVALUATION OF
THE PROPOSED METHOD

A comprehensive evaluation of the classification perfor-
mance of the proposed model under both synthetic and
real-world RF data has been made compared with several state-
of-the-art techniques. Evaluations are done for two different
applications: RF waveform modulation recognition using a
synthetic RF dataset and American Sign Language (ASL)
recognition using an experimental dataset. For both the appli-
cations, the proposed PLFNet is compared with the following
approaches.

1) CNN-2D: The complex raw radar is first transformed
to a 2-D spectrogram image and then processed by a
conventional 2-D real CNN.

2) CNN-ID: A real 1-D CNN that takes raw radar data as
input with two separate channels for real and imaginary
components.

3) CVCNN-1D: A complex 1-D CNN that directly pro-
cesses complex raw radar data with complex neural
network operations.

4) Real-Valued Learnable Filters: This is the real-valued
version of the proposed PLFNet to evaluate the benefit
of CV process. For the formulation of real-valued PLFs,
the real parts of each complex filter were used. Learnable
filters are applied to raw radar data using two channels
for real and imaginary components separately.

Sections III-A1 and III-A2 will discuss the details of each

compared architecture and their training process.

A. Detailed Descriptions of Compared DNNs

1) CNN-2D Architecture: To use the CNN-2D architecture,
first a TF transformation is done over the raw RF signals.
We compute the spectrogram of input RF data—the square
modulus of the windowed STFT across the RF data x(¢) as
2

Sn, w) = ‘/00 h(t — n)x(t)e /' dt (10)

where h(t) is the window function.

IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 2, 2024

TABLE I
MODEL S1ZES OF COMPARED MODELS

Layer Blocks CVCNN-1D  CNN-1D  RV-PLF  PLFNet
PLF (256, 251) - - 1024 1536
Conv_input (256, 251) 130,048 129,280 - -
CB 1 (64, 5) 164,480 82,240 82,240 164,480
CB 2 (64, 5) 41,600 20,800 20,300 41,600
CB 3 (64, 5) 41,600 20,800 20,300 41,600
CB 4 (64, 5) 41,600 20,800 20,300 41,600
CB 5 (64, 5) 41,600 20,800 20,800 41,600
CB 6 (64, 5) 41,600 20,800 20,300 41,600
Dense 1 256 66,048 49,408 49,408 66,048
Softmax 100 51,400 25,700 25,700 51,400
Total Parameters 619,976 390,628 262,372 491,464

After generating the TF spectrograms, they are saved as
images of size 128 x 128 for both the synthetic and real-world
datasets. These images are then used as input for the CNN-
2D model. Drawing from prior work [31], a CNN architecture
with four convolutional blocks was designed. Each block
contains two convolutional layers, followed by a 2 x 2 max-
pooling layer, batch normalization, ReLU activation, and a
dropout rate of 0.2. The convolutional blocks use 32 filters
each with a kernel size of 3 x 3. Following the convolutional
blocks, the tensor is flattened and processed through a dense
layer with the dimension of 256 x 1. A dropout rate of 0.5 is
applied before passing the output to a softmax classifier as
detailed in Fig. 4.

2) Other Compared Architectures: For real-valued net-
works, a CNN-1D and a PLF-based CNN-1D, were used
to process the 1-D complex RF data. Both the real-valued
networks separate the raw complex RF data stream into its
real and imaginary parts, forming a real input representation
of size L x 2, where L is 4000 and 13 050 for RF waveforms
and ASL data, respectively. The real-valued PLFNet follows
the same architecture as the CV one, described in Section II-C.
The principal difference is that the model only computes
real-valued operations in each layer instead of CV ones.

In lieu of the PLF block, the CNN-1D architecture uses
a convolutional block of the same length as the PLFs as
its first layer, after which its architecture is the same as
that of the PLFNet. Similarly, for the CVCNN-1D, the PLF
block is replaced with a convolutional block with complex
operations. Details about all the architectures and a layer-
by-layer comparison of the number of parameters for each
network are given in Table 1.

B. Classification of RF Waveform Modulation Types

1) Dataset Generation: To facilitate the evaluation of the
proposed methodology, one of the applications we tested is
to classify RF waveform modulation. For this purpose, it is
necessary to generate a dataset of raw RF data with known
transmitted waveform types. For the initial validation of the
proposed approach, we chose to generate a purely simulated
dataset consisting of synthetic noisy waveform receptions.

The generated dataset consists of five common waveform
modulations: linear frequency modulation (LFM), rectangular,
Costas code, Barker code (binary phase code), and Frank
code (polyphase code). We include 500 samples of each of
these modulations for a total of 2500 waveforms with the
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Fig. 3. Flow diagram of the proposed PLFNet architecture.
2| [ cB=convBiock TABLE II
2 CLASSIFICATION PERFORMANCE COMPARISON OF
é Cony Layer 1 RF WAVEFORM MODULATION
g Clomy Ly 2 Network Testing Precision | Recall | F1 Score
T o Maxpool Layer Accuracy
X
0 T [ _CNN2D [ 952 [ 953 [ 9.9 | 95 |
Mic'ro-doppler_ CNN-1D 64.6 66.9 66.61 63.76
Signatures Ry CVCNN-1D 822 77.1 83.6 7753
ASL Data 373,700 373,316 -
RF Waveform | 198,181 197,925 DR Sm.c 84.2 90.81 81.05 7195
CV-Sinc 95.6 95.48 95.64 95.52
Gaussian 90.78 90.55 90.67 90.65
Fig. 4. CNN architecture for uD-spectrogram classification. CV-Gaussian 96.8 96.22 96.52 96.67
Gammatone 83.4 88.42 83.32 79.86
CV-Gammatone 94.2 94.61 94.41 94.06
CV-Ricker 95.2 95.9 95.32 95.24

PARAMETER RANGES FOR DIFFERENT TYPES OF WAVEFORM

| Types | Parameters | Range of Values |
ALL fe (center freq.) U [_%7 J%c]
A (Amplitude) UT1, 10]
fs (sampling freq.) 4000 Hz
SNR U0, 20]
1 fe
LFM B (Bandwidth) U [m fc}
Costas fstep (num of freq steps) UT5, 20]
step_size Fstep/ fs
Barker Lp (barker code length) {7,11,13}
Frank M (phase_steps) {6,7,8}

corresponding ground-truth labels. Each of these waveform
types has several variables that are randomly varied to generate
2500 distinct waveforms to ensure variation within the dataset.
The sampling frequency, fs, is 4000 with a duration of 1 s.
Table II offers a full accounting of the parameters available for
modulation, as well as the extent of their variation. Each data
sample is added random white Gaussian noise with a signal-
to-noise ratio (SNR) selected uniformly random between 0 and
20 dB, as listed in Table II.

2) Results for Waveform Classification: For this application,
input RF data size is 1 x 4000 and the number of filters in
the PLF block was chosen to be J = 128, with four following
convolutional blocks and a dense layer size of 128. Table III
shows a comparison of classification performance across dif-
ferent architectures. The PLFNets with learnable filters—using
sinc, Gaussian, Gammatone, and Ricker functions—performed
well, achieving testing accuracies of 95.6%, 96.8%, 94.2%,
and 95.2%, respectively, Gaussian filter providing the best
performance among tested learnable filters. In contrast, the
CVCNN-1D model, which does not have learnable filters in its
first layer, only reached an accuracy of 82.2%. This difference
highlights the importance of PLFs for building an enhanced
feature set for the rest of the convolutional layers.

In addition, CV CNNs consistently outperformed real-
valued CNNs, with an average accuracy improvement of about
10.5%. The CNN-2D model, which works not on the raw 1Q
data but on the TF spectrogram images, achieved a strong
accuracy of 95.2%, similar to the PLFNet models, with much
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higher computational complexity as we will demonstrate next
on the experimental dataset case.

C. Classification Performance Over Real-World Dataset

to evaluate the performance of compared methods in a
real-world HAR scenario, a challenging dataset consisting
of 100 ASL signs was used. The details about the experimental
radar system and setup can be found in [32].

The dataset comprises 2500 radar sign samples from five
participants, with each class having 25 samples. Each sign was
recorded five times per participant, each recording lasting 4 s,
followed by a 2-s inter-stimulus interval. This resulted in 28 s
of data collection per class from each participant, capturing
a total of 89600 chirps. For each 4-s sample, 12800 chirps
were collected. To account for minor inconsistencies between
the start and end times of each sample, an additional 125 chirps
were included at both ends. Each chirp consists of 256 fast-
time samples, resulting in a 2-D CV raw radar data size of
256 x 13050 for a single sign. After range processing, the
range bins corresponding to the target location are summed,
creating a 1-D slow-time complex raw radar data vector of
1 x 13050, which will be input to compared models.

For compared models, in the initial layer, the number of
filters is chosen to be J = 256, the network has a series of
six convolutional blocks before the softmax, and the dense
layer has a length of 256 nodes. To evaluate performance,
we split the dataset with 80% allocated for training and 20%
for testing. All THE models were trained to converge over
150 epochs. Posttraining, the models were assessed using the
same test set, and confusion matrices were generated for each
model. The performance metrics—accuracy, precision, recall,
and F'1 scores—were derived from these confusion matrices
and are summarized in Table IV along with top-N accuracy
values measuring how well a model can predict the correct
class within its top N predictions. From the achieved results,
we can point out some key conclusions.

1) Among the methods using 1-D raw radar inputs, both
complex and real-valued PLFNets performed better than
the CNN models, CNN-1D and CVCNN-1D. Using
PLFs as the first layer of the network and capturing
frequency-domain information improved performance
compared with directly using random convolutional fil-
ters on raw radar data.

2) CV networks showed better classification accuracy,
about 6.9% higher on average, compared with real-
valued ones. This highlights the importance of using
CV networks and designing complex PLFs suitable for
complex radar data.

3) Our proposed PLFNet especially with CV Gaussian
filters achieved higher accuracy compared with CNN-
2D, which is the common approach in the literature [31]
and processes uD signatures after TF transformation.
Therefore, PLFNet’s ability to provide similar or slightly
better results without the computational burden of
explicitly calculating uD signatures is very significant.

As PLFNets with Gaussian filters demonstrated the
best performance among other compared PLFs, following
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TABLE IV

CLASSIFICATION PERFORMANCE OF THE COMPARED MODELS IN TERMS
OF EVALUATION METRICS FOR 100-CLASS ASL DATA

Testing Accuracy
Network Topl ] Top3 ‘ Tops Prec. | Recall F1
\ CNN-2D [ 63.95 ] 8146 | 89.92 [ 66.27 [ 62.98 [ 63.21 ]
CNN-1D 10.82 21.79 29.16 10.87 9.98 10.08
CVCNN-1D 17.63 27.94 38.89 16.81 17.76 17.15
Sinc 56.26 75.03 81.92 61.5 56.78 55.95
CV-Sinc 64.8 80.32 86.23 69.69 64.85 64.41
Gaussian 55.7 75.73 81.64 60.03 55.6 55.26
CV-Gauss 65.97 83.33 89.76 70.04 65.8 65.27
Ricker 58.22 76.58 84.6 64.99 58.35 57.81
CV-Ricker 64.14 81.01 86.07 68.31 64.25 63.37
Gammatone | 56.75 74.68 80.16 58.63 56.75 55.52
CV-Gamma 63.71 79.74 86.29 67.76 63.65 63.53
TABLE V
COMPUTATIONAL TIME REQUIRED FOR EACH NETWORK
Tot'al' Pre- . Avg. in- Total la-
Network training processing| ference
. . . tency
time time time
CNN-2D (on uDs) 0.16 Hrs 2601 ms 32 ms 2633 ms
CNN-1D 0.68 Hrs 377 ms 167 ms 451 ms
CVCNN-1D 0.76 min 377 ms 211 ms 588 ms
GaussNet 2.07 hrs 377 ms 252 ms 629 ms
CV-GaussNet 2.62 hrs 377 ms 275 ms 652 ms

computational and interpretability evaluations will focus on
Gaussian filter case only.

1) Computational Latency: In addition to the performance
of the approaches, another key metric is the overall latency
of a technique, which is the time from data acquisition to
generate a prediction. To achieve near real-time classification,
methods that combine low latency with high performance are
the most suitable. We assessed the computational needs of each
approach by measuring the average times for preprocessing,
training, and the time required for the network for prediction
(inference time), as detailed in Table V.

For the experiments, both data processing and network
training were conducted on an Alienware m15 R7 laptop with
an NVIDIA 3060 GPU, Intel 11th Gen CPU, and 32 GB
of memory. The total training time for the CNN-2D model
was much shorter compared with other methods. The 1-D
CNNs, having a larger network, took longer to train than the
standard CNN-2D working on pD-spectrogram images. The
preprocessing time mentioned in Table V is the duration it
takes for one data sample, from acquisition to being ready
as an input to a DNN. After the 2-D radar data matrix is
obtained from the corresponding TX-RX pair of the radar,
range processing is applied to the fast-time samples, and 1-D
slow-time data are obtained by summing the range bins for
each slow-time sample. These 1-D data are the input for all
networks except CNN-2D. For CNN-2D, additional moving
target identification (MTI) filtering and STFT operations are
needed to generate uD-spectrogram images. A 4096-point
FFT, a window size of 256, and an overlap of 240 points
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Fig. 5. Testing accuracy versus prediction time.
TABLE VI
CV-GAUSSNET PERFORMANCE V. # GAUSSIAN FILTERS
Num of WO e Training Testing ac- Avg.. .
filters parame- time curacy preliceen
ters time
8 331,256 0.37 Hrs 35.65% 65 ms
16 336,424 0.45 Hrs 48.31% 71 ms
32 346,760 0.58 Hrs 58.44% 87 ms
64 367,432 0.79 Hrs 62.76% 114 ms
256 491,464 2.62 Hrs 65.97% 275 ms

were used for STFT resulting in a higher preprocessing time
for CNN-2D.

The testing accuracy of the approaches and the correspond-
ing total latency for prediction are shown in Fig. 5. While
conventional 1-D CNNs take the least time, their accuracy is
very low. While the standard 2-D CNN working on uD-images
has high accuracy, it also has a very high latency. The proposed
PLFNet provides both high accuracy with low latency. Hence,
it can be seen that the proposed PLFNet is a viable solution
for near real-time and high-accuracy radar-based classification
problems.

A detailed analysis of PLFNet with Gaussian filters was
performed to understand how the number of learned Gaussian
filters affects accuracy and latency. The model was trained
with different numbers of PLFs, ranging from 8 to 256. The
resulting testing accuracy and average prediction times for
each setup are shown in Table VI. Reducing the number of
filters led to faster prediction times, but too few filters also
reduced accuracy. Using 64 filters resulted in about an 81%
decrease in total prediction time while maintaining almost the
same performance as the CNN-2D.

D. Interpretability of PLFNets

A key feature of the proposed PLFNet architecture is its
enhanced interpretability. Each PLF depends only on parame-
ters with clear physical meanings, such as spectral frequencies
and bandwidths. To identify which spectral bands are favored
by the PLFNet, we calculated the weights of the convolutional
layer that follows the PLF block. By examining the normalized
weight magnitudes for each of the 256 kernels, we can see
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Fig. 7. Filter and weight distribution of the PLFNet with Gaussian filters.

that the model gives different levels of importance to specific
kernels. For better visualization, the top four Gaussian kernels
were projected onto a uD-spectrogram image as seen in Fig. 6
along with their central frequency and bandwidth values. It is
interesting to note that one of the top kernels mainly focuses
on the lower Doppler frequency region which has most of the
signal energy, while another on the lower and upper frequency
tips, and the fourth on a band centered at around —400 Hz.

The histogram and cumulative weight distribution of all
the 256 learned Gaussian filters in the frequency domain
is shown in Fig. 7. Most kernels were learned with center
frequencies falling into the 0-400-Hz range, suggesting that the
model prioritizes this spectral segment using more kernels and
weights here. Interestingly, the distribution of kernels across
frequencies is not symmetrical. Certain frequency regions,
like [1200, 1600), are given less importance, showing min-
imal activity, while other bands, such as (—1200, —800] or
[400, 800), have more learned kernels and weights. We also
evaluated other PLF-based approaches and saw similar trends
in filter distribution. This makes sense because these bands
contain most of the Doppler components related to hand
movements in sign language.

IV. CONCLUSION AND FUTURE WORK

In this study, we presented a novel approach using CV
parameterized learnable filters (PLFs), enabling the network to
develop more interpretable filters that directly process complex
RF data signals. To optimize our model’s efficiency and
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compatibility with the raw complex RF data stream, we crafted
a complex PLF layer. This layer allows the model to learn
filters characterized by trainable parameters of the defined
filter functions such as the center frequency and bandwidth.
Parameterized filters such as sinc, Gaussian, Gammatone,
and Ricker wavelets have been developed and tested. The
remaining architecture used complex versions of standard
DNN components, including convolution, max-pooling, batch
normalization, ReLLU, and dropout.

We validated the effectiveness of our architecture on both
synthetic and experimental datasets. For the synthetic dataset,
a five-class RF waveform modulation recognition dataset is
generated, while for the experimental case, a 100-ASL sign
RF dataset is used. Our current approach not only slightly
outperforms the widely used state-of-the-art 2-D CNNs that
operate on uD-spectrogram images and other CNN variants
that handle 1-D radar data in terms of accuracy but also
significantly reduces latency, indicating strong potential for
near real-time RF data classification. The learned filters rely
solely on meaningful physical parameters such as center
frequency and bandwidth, enhancing interpretability. Future
research will focus on deploying the proposed models on edge
computing platforms to showcase near real-time applications.
Recognizing multiple signal modulations arriving simultane-
ously is another challenging problem that could benefit from
the proposed approach.
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