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Introduction
Vallisneria americana Michaux is a cosmopolitan species of 

submerged aquatic vegetation (SAV) found in the freshwater 
and low salinity reaches of Gulf of Mexico (GOM) estuaries 
(Doering et al. 1999, Hauxwell et al. 2007, Poirrier et al. 2010, 
Martin and Valentine 2019, DeMarco et al. 2022). Like many 
SAV species, V. americana plays a key role in maintaining aquat-
ic biodiversity, stabilizing sediments, improving water quality, 
and serving as habitat (Korshgen and Green 1988, Dennison et 
al. 1993, McFarland and Schafer 2008, Looby et al. 2019). Val-
lisneria americana can temporarily persist in salinities of 15—20, 
although salinity tolerance varies by population (Tootoonchi 
et al. 2020). In dynamic estuaries, salinity stress coupled with 
increasing anthropogenic and natural disturbances threaten 
this important habitat type, triggering management efforts to 
conserve and restore this key foundation species. 

Vallisneria americana has been used as a candidate species 
in restoration (Korschgen and Green 1988), using methods 
ranging from planting individual ramets, transplanting buds, 
or using seed pods and seed—based practices (Moore et al. 
2010, Rohal et al. 2021). Despite successful restoration in some 
areas, the southern US population of V. americana varies in 
numerous ways from its northern US counterparts (Rohal et 
al. 2024). Indeed, the southern population is often referred 
to as V. neotropicalis (Les et al. 2008), although the Integrated 
Taxonomic Information System does not formally recognize 
V. neotropicalis as a species and thus we retain the currently 
recognized V. americana nomenclature (Kauth and Biber 2014). 
Northern V. americana produces overwintering tubers/turions 
and senesces during the winter, while southern populations 
may persist year—round (McFarland and Shafer 2008). Repro-
ductively, umbellate inflorescences have been documented in, 
and may be exclusive to, the southern population (Rohal et al. 
2022). In northern V. americana, cold stratification improves 
germination rates (Jarvis and Moore 2008), however, Kauth 
and Biber (2014) found that was not the case with southern V. 
americana and that scarification was more effective in stimulat-

ing germination. 
Given the increased interest from governmental and non—

governmental organizations in restoring oligo— and meso-
haline habitat types such as V. americana, understanding the 
optimal conditions for southern V. americana propagation, 
including seed germination and early life history develop-
ment such as seedling growth, is of paramount importance 
for ecological restoration efforts. Here, we present the results 
of 2 experiments designed to: 1) evaluate germination differ-
ences of desiccated and non—desiccated seeds across common 
estuarine salinities; and 2) determine the impact of shaded/
unshaded conditions at these same salinity levels on growth of 
recently germinated V. americana seedlings. Our overarching 
goal is to determine optimal conditions for the early life stages 
of V. americana and provide applied, practical insights that 
can guide conservation efforts to restore, protect, and manage 
these critical habitats. 

Materials and Methods 
In Experiment 1, we tested whether seed germination rates 

differed among desiccated/non—desiccated seeds and across 
salinities. Seed pods were obtained from multiple locations in 
the Mobile—Tensaw Delta (USA) and cold—stratified over one 
winter in a refrigerator at 3°C. Prior to exposure to treatments, 
seeds were triple rinsed with 90% ethanol and deionized water 
for 3 min to reduce contamination (Seeliger et al. 1984, Kauth 
and Biber 2015). Desiccated seeds were allowed to air dry for 
48 hours while non—desiccated seeds remained submerged. 
Seeds were then separated into individual petri dishes based 
on desiccation (desiccated, non—desiccated) and salinity (0, 5, 
or 10) treatments, with 50 seeds per replicate. These salinities 
mimic the location that plants were collected from and are typ-
ical for this estuary, with lower salinities (0—5) persisting most 
of the year with occasional peaks (10—15+) in late fall months 
(Martin and Valentine 2014, Kauffman et al. 2018). Each 
unique desiccation x salinity treatment had 5 replicates and we 
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visually monitored for seed germination under 2.25x magnifi-
cation at increasing time intervals (Figure 1A). We checked for 
germination after 1, 3, 5, 10, 24, 48, and 72 h after the initia-
tion of the experiment. Because non—desiccated seeds did not 
germinate over this interval, we monitored their germination 
rates over an additional, longer period (168 hours). 

In Experiment 2, we documented the effect of light and sa-
linity on seedling root and leaf growth using recently emerged, 
lab—germinated seeds exposed to either shaded/unshaded 
conditions and various salinities (0, 5, or 10) for a 2 week pe-
riod. All seedlings were randomly assigned to individual 266 
mL containers and exposed to either low (shaded) or high 
(unshaded) light conditions at one of 3 salinity treatments (0, 
5, 10), with 5 replicates per unique light*salinity treatment. 
Gardening shade cloth covered treatments in the shaded 
treatment and a HOBO TidBiT logger verified that unshaded 
and shaded light conditions were 867.85 + 59.27 lum/ft2 and 
51.06 + 3.00 lum/ft2 (mean + 1 se), respectively, a reduction 
of ~95% of surface irradiance. Initial and final measurements 
of leaf (from the meristem to the end of the longest leaf) and 
root (from the meristem to the end of the longest root) length 
(Figure 1B) were taken from before/after photographs that in-
cluded a ruler for scale using ImageJ software (Schneider et al. 
2012). 

Statistical Analyses
In Experiment 1, we compared the germination rates as 

proportion of seeds germinated across desiccation (2 levels: 
desiccated and non—desiccated) and salinity (3 levels: 0, 5, 
10) treatments using a two—way Analysis of Variance. In Ex-
periment 2, we analyzed the proportion change in leaf and 

root length using 2—way Analysis of Variance across light (2 
levels: shaded, unshaded) and salinity (3 levels: 0, 5, or 10) 
treatments. Assumptions were tested prior to analyses and all 
data were considered significant at p < 0.05. When significant 
differences were detected, Tukey’s pairwise comparisons were 
used to determine where significant differences occurred. All 
analyses were done using SigmaPlot software (https://systat-
software.com/product/sigmaplot—v15/).

Results 
In Experiment 1, germination was highly influenced by 

desiccation (F
2,25

= 18.600; p < 0.001), but not salinity (F
2,25

= 
0.095; p = 0.910). Germination rates were 4 times higher in 
desiccated seeds (mean 0.214 + 0.03 se) than non—desiccated 
seeds (mean 0.048 + 0.012 se), despite the longer time period 
for germination in non—desiccated seeds (168 hours vs. 72 
hours) (Figure 2A). Germination of desiccated seeds generally 
occurred within the first 24 hours (Figure 2B). 

Growth of seedlings varied depending on salinity and light 
treatments in Experiment 2. Root length (Figure 3A) varied 
across salinities (F

2,24 
= 9.63; p = 0.001) and light (F

1,24 
= 6.77; 

p = 0.016) treatments, with no significant interaction (F
2,24 

= 
0.30; p = 0.740). Root growth was best in the 0 salinity and 
unshaded light treatment, with an increase of approximately 
62% in root length over the duration of the experiment. In 
general, the 0 salinity treatment exhibited higher root growth 
than salinity treatment levels of 5 (T = —3.10; p = 0.013) or 10 
(T = —4.282; p = 0.001) while 5 and 10 salinity trials were not 
significantly different (T = —1.22; p = 0.451). However, seed-
lings exposed to higher light (i.e., unshaded treatment), regard-

SC8

FIGURE 1. Examples of Vallisneria americana germination. A. Germinated and non—germinated seeds. B. Recently germinated seedlings containing 
root and leaf segments.
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less of salinity, tended to have longer roots than in lower light 
conditions (i.e., shaded) treatment (T = —2.60, p = 0.016). Leaf 
length similarly differed among salinity (F

2,24 
= 5.11; p = 0.014) 

and light (F
1,24 

= 9.64; p = 0.005) treatments (Figure 3B), with 
no interaction (F

2,24 
= 1.78; p = 0.190). Again, the 0 salinity 

and unshaded light treatment exhibited highest growth (~10% 
increase) over the duration of the experiment. Pairwise com-
parisons indicate that the proportion of change in leaf length 
was not significantly different between 0 and 5 salinities (T = 
—1.64; p = 0.248), but did differ between 0 and 10 (T = —3.20; 
p = 0.010). Leaf change did not differ between the 5 and 10 
treatments (T = —1.61; p = 0.26). Similar to the changes in root 
length, leaf length increase in the unshaded treatment was 
greater than in the shaded treatment (T = —3.11; p = 0.005). 

Discussion
Globally, a decline in estuarine habitats such as SAV (Orth 

et al. 2006, Waycott et al. 2009, Dunic et al. 2021) has triggered 
conservation efforts to improve environmental conditions and 
reduce further declines. Restoration activities have gained 
recent attention to combat ongoing losses (Jarvis and Moore 
2008, McFarland and Shafer 2008, Paice et al. 2016, Rohal 

et al. 2021), with numerous techniques employed depending 
on location. These include the harvesting of seed pods from 
native populations for creation of a nursery stock (Cao and 
Ruan 2015) which can be more effective and cost—efficient 
once favorable conditions at the restoration site exist (Jarvis 
and Moore 2008, Rohal et al. 2024). Here, we provide practical 
information on optimal germination and growth conditions 
to improve planting protocols to restore V. americana and the 
ecosystem services it provides. 

In the northern GOM, the dominant estuarine SAV V. 
americana is frequently exposed to seasonal increases in saline 
conditions when low rainfall conditions and dominant south 
winds occur (Martin and Valentine 2012). Increases in salin-
ity have been shown to negatively influence flowering (French 
and Moore 2003) and seed germination (Jarvis and Moore 
2008) by hindering water uptake by seeds and disrupting ion 
balance, thereby negatively affecting germination processes 
(Wahid et al. 2009, Xia et al. 2020), particularly when salinity 
levels exceeded a certain threshold (French and Moore 2003, 
Jarvis and Moore 2008). We found that desiccation was more 
important than salinity at the levels we tested in determining 

FIGURE 2. Vallisneria americana seed germination by salinity and time. 
A. Mean (± se) desiccated (dashed bars) and non—desiccated (solid 
bars) seed germination across salinities. B. Timeline of seed germination. 
Most seeds germinated within 24—48 h.

FIGURE 3. Root and leaf growth of Vallisneria americana. A. Mean (± 
se) proportion change in seedling root lengths in light (solid bars) and 
shaded (dashed bars) conditions across varying salinities. B. Mean (± se) 
proportion change in seedling leaf lengths in light (solid bars) and shaded 
(dashed bars) conditions across varying salinities. 

A

B

A

B
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germination rates for this population, findings similar to pre-
vious studies in this area (Clark 1999). In submerged vegeta-
tion, desiccation can promote germination by breaking seed 
dormancy and enhancing the release of germination inhibi-
tors, similar to scarification noted in previous studies (Clark 
1999, Kauth and Biber 2014, Rohal et al. 2024). Desiccation 
promotes water imbibition by seeds, initiating the germination 
process and thus may be an underrepresented adaptation that 
allows submerged vegetation seeds to exploit the fluctuations 
in water levels and successfully germinate in aquatic habitats. 
Although our germination rates following dessication were 
relatively low (~25%), these germination rates were typical 
compared to previous studies (Rohal et al. 2024). Our results 
suggest that desiccation as a pretreatment for V. americana 
seeds can enhance germination success compared to non—des-
iccated seeds, by a fourfold increase, and is a low—cost, effec-
tive means to induce and increase germination success instead 
of scarification, which can be tedious and imprecise for large 
scale restoration efforts (Clark 1999, Kauth and Biber 2014, 
Rohal et al. 2024). That said, a more quantitative evaluation 
of seed water loss may identify optimal levels of desiccation for 
future restorations.

Light and salinity are 2 key environmental factors that sig-
nificantly influence V. americana seedling growth. Seedlings 
may experience reduced light conditions if they grow in exist-
ing beds or areas of reduced water clarity as well as variable 
salinities depending on prevailing conditions (e.g., decreased 

freshwater input or wind) that favor salt wedge penetration 
into oligohaline GOM estuaries (Martin and Valentine 2012, 
2014). We found favorable growth in the lowest salinities in-
dicating potential sensitivity to salinity stress at early growth 
stages. In addition, we highlight that higher light and increased 
water clarity promotes better seedling growth, indicating that 
shallower depths and less turbid areas may be targeted for res-
toration.

As this ecologically vital species continues to decline, infor-
mation on best practices for germination and growth strate-
gies can inform conservation, habitat management, and res-
toration initiatives. Here, we suggest that practitioners may 
enhance success by using a desiccation period prior to casting 
seeds and targeting lower salinity areas with restoration efforts. 
Restoration of natural hydrology may improve salinity condi-
tions by reducing the variability in salinity in upper estuarine 
reaches (Rozas et al. 2013), further facilitating success. Future 
studies should determine the influence of local conditions on 
maternal or seed phenotypic variation and the ecological im-
plications of seed germination under desiccated conditions. In 
conclusion, this work provides critical insights into this key 
foundation species and improves our understanding of the 
ecological requirements of GOM V. americana, including the 
range of conditions it can persist in. Our results provide criti-
cal information for improving restoration and preservation 
strategies in areas prone to multiple natural and anthropogen-
ic disturbances such as estuaries. 
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