Gulf and Caribbean Research

Volume 35 | Issue 1

2024

Light and salinity effects on *Vallisneria americana* seed germination and seedling growth

Chelsea Lawrence
Auburn University

Dorothy Byron
University of South Alabama/Dauphin Island Sea Lab

Charles Martin

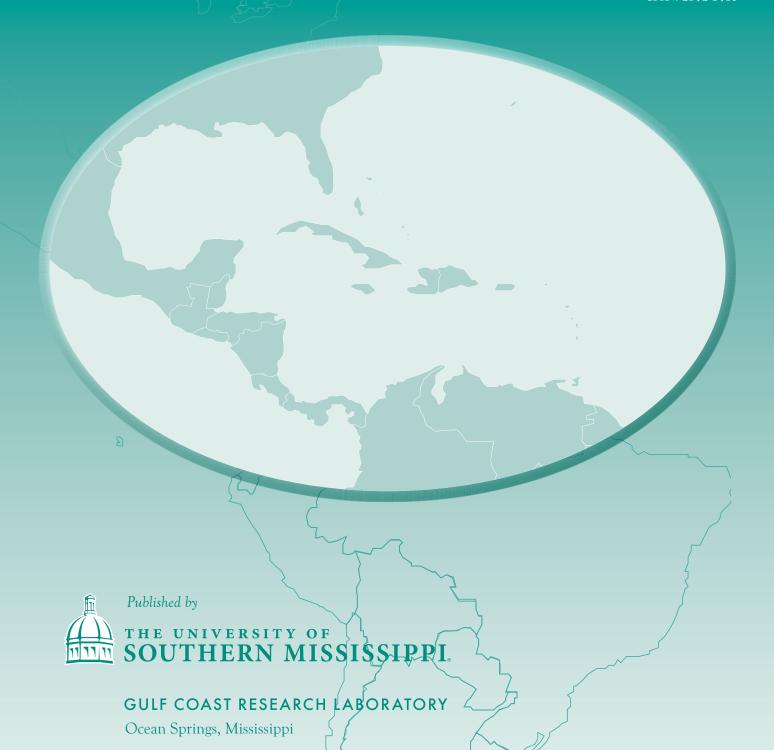
University of South Alabama/Dauphin Island Sea Lab, martin.charles.w@gmail.com

Follow this and additional works at: https://aquila.usm.edu/gcr

Recommended Citation

Lawrence, C., D. Byron and C. Martin. 2024. Light and salinity effects on *Vallisneria americana* seed germination and seedling growth. Gulf and Caribbean Research 35 (1): SC7-SC11.

Retrieved from https://aquila.usm.edu/gcr/vol35/iss1/7


DOI: https://doi.org/10.18785/gcr.3501.07

This Short Communication is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact aquilastaff@usm.edu.

GULF AND CARIBBEAN

R E S E A R C H

Volume 35 2024 ISSN: 2572-1410

SHORT COMMUNICATION

LIGHT AND SALINITY EFFECTS ON VALLISNERIA AMERICANA SEED GER-MINATION AND SEEDLING GROWTH[§]

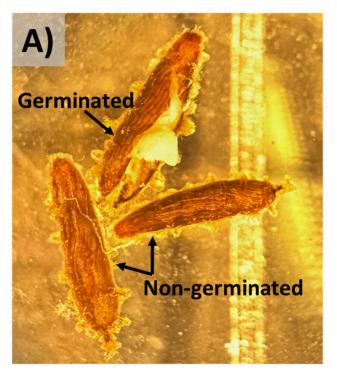
Chelsea Lawrence¹, Dorothy Byron^{2,3}, and Charles W. Martin^{2,3}

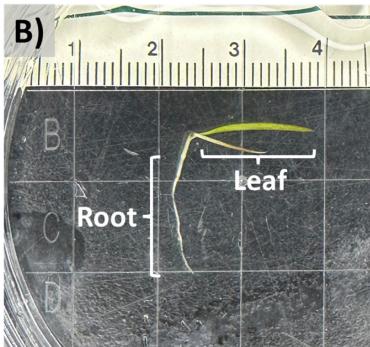
¹Department of Entomology and Plant Pathology, 107 Comer Hall, Auburn University, Auburn, AL; ²Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; ³Stokes School of Marine and Environmental Sciences, University of South Alabama, 600 Clinic Dr., Mobile, AL 36688, USA; Corresponding author, email: cmartin@disl.org

KEY WORDS: submerged aquatic vegetation, restoration, plant nursery, optimal conditions, wild celery

Introduction

Vallisneria americana Michaux is a cosmopolitan species of submerged aquatic vegetation (SAV) found in the freshwater and low salinity reaches of Gulf of Mexico (GOM) estuaries (Doering et al. 1999, Hauxwell et al. 2007, Poirrier et al. 2010, Martin and Valentine 2019, DeMarco et al. 2022). Like many SAV species, V. americana plays a key role in maintaining aquatic biodiversity, stabilizing sediments, improving water quality, and serving as habitat (Korshgen and Green 1988, Dennison et al. 1993, McFarland and Schafer 2008, Looby et al. 2019). Vallisneria americana can temporarily persist in salinities of 15–20, although salinity tolerance varies by population (Tootoonchi et al. 2020). In dynamic estuaries, salinity stress coupled with increasing anthropogenic and natural disturbances threaten this important habitat type, triggering management efforts to conserve and restore this key foundation species.


Vallisneria americana has been used as a candidate species in restoration (Korschgen and Green 1988), using methods ranging from planting individual ramets, transplanting buds, or using seed pods and seed-based practices (Moore et al. 2010, Rohal et al. 2021). Despite successful restoration in some areas, the southern US population of V. americana varies in numerous ways from its northern US counterparts (Rohal et al. 2024). Indeed, the southern population is often referred to as V. neotropicalis (Les et al. 2008), although the Integrated Taxonomic Information System does not formally recognize V. neotropicalis as a species and thus we retain the currently recognized V. americana nomenclature (Kauth and Biber 2014). Northern V. americana produces overwintering tubers/turions and senesces during the winter, while southern populations may persist year-round (McFarland and Shafer 2008). Reproductively, umbellate inflorescences have been documented in, and may be exclusive to, the southern population (Rohal et al. 2022). In northern V. americana, cold stratification improves germination rates (Jarvis and Moore 2008), however, Kauth and Biber (2014) found that was not the case with southern V. americana and that scarification was more effective in stimulating germination.


Given the increased interest from governmental and non governmental organizations in restoring oligo- and mesohaline habitat types such as V. americana, understanding the optimal conditions for southern V. americana propagation, including seed germination and early life history development such as seedling growth, is of paramount importance for ecological restoration efforts. Here, we present the results of 2 experiments designed to: 1) evaluate germination differences of desiccated and non-desiccated seeds across common estuarine salinities; and 2) determine the impact of shaded/ unshaded conditions at these same salinity levels on growth of recently germinated V. americana seedlings. Our overarching goal is to determine optimal conditions for the early life stages of V. americana and provide applied, practical insights that can guide conservation efforts to restore, protect, and manage these critical habitats.

MATERIALS AND METHODS

In Experiment 1, we tested whether seed germination rates differed among desiccated/non-desiccated seeds and across salinities. Seed pods were obtained from multiple locations in the Mobile-Tensaw Delta (USA) and cold-stratified over one winter in a refrigerator at 3°C. Prior to exposure to treatments, seeds were triple rinsed with 90% ethanol and deionized water for 3 min to reduce contamination (Seeliger et al. 1984, Kauth and Biber 2015). Desiccated seeds were allowed to air dry for 48 hours while non-desiccated seeds remained submerged. Seeds were then separated into individual petri dishes based on desiccation (desiccated, non-desiccated) and salinity (0, 5, or 10) treatments, with 50 seeds per replicate. These salinities mimic the location that plants were collected from and are typical for this estuary, with lower salinities (0-5) persisting most of the year with occasional peaks (10–15+) in late fall months (Martin and Valentine 2014, Kauffman et al. 2018). Each unique desiccation x salinity treatment had 5 replicates and we

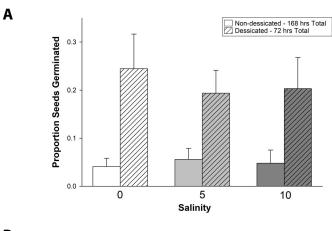
⁸The first author conducted this research as part of the Dauphin Island Sea Lab's Research Experience for Undergraduates in the coastal and nearshore marine science program.

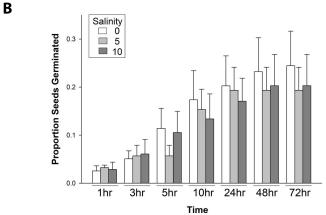
FIGURE 1. Examples of Vallisneria americana germination. A. Germinated and non-germinated seeds. B. Recently germinated seedlings containing root and leaf segments.

visually monitored for seed germination under 2.25x magnification at increasing time intervals (Figure 1A). We checked for germination after 1, 3, 5, 10, 24, 48, and 72 h after the initiation of the experiment. Because non—desiccated seeds did not germinate over this interval, we monitored their germination rates over an additional, longer period (168 hours).

In Experiment 2, we documented the effect of light and salinity on seedling root and leaf growth using recently emerged, lab-germinated seeds exposed to either shaded/unshaded conditions and various salinities (0, 5, or 10) for a 2 week period. All seedlings were randomly assigned to individual 266 mL containers and exposed to either low (shaded) or high (unshaded) light conditions at one of 3 salinity treatments (0, 5, 10), with 5 replicates per unique light*salinity treatment. Gardening shade cloth covered treatments in the shaded treatment and a HOBO TidBiT logger verified that unshaded and shaded light conditions were 867.85 + 59.27 lum/ft² and 51.06 + 3.00 lum/ft² (mean + 1 se), respectively, a reduction of ~95% of surface irradiance. Initial and final measurements of leaf (from the meristem to the end of the longest leaf) and root (from the meristem to the end of the longest root) length (Figure 1B) were taken from before/after photographs that included a ruler for scale using ImageJ software (Schneider et al. 2012).

Statistical Analyses


In Experiment 1, we compared the germination rates as proportion of seeds germinated across desiccation (2 levels: desiccated and non-desiccated) and salinity (3 levels: 0, 5, 10) treatments using a two-way Analysis of Variance. In Experiment 2, we analyzed the proportion change in leaf and


root length using 2—way Analysis of Variance across light (2 levels: shaded, unshaded) and salinity (3 levels: 0, 5, or 10) treatments. Assumptions were tested prior to analyses and all data were considered significant at p < 0.05. When significant differences were detected, Tukey's pairwise comparisons were used to determine where significant differences occurred. All analyses were done using SigmaPlot software (https://systatsoftware.com/product/sigmaplot—v15/).

RESULTS

In Experiment 1, germination was highly influenced by desiccation ($F_{2,25}$ = 18.600; p < 0.001), but not salinity ($F_{2,25}$ = 0.095; p = 0.910). Germination rates were 4 times higher in desiccated seeds (mean 0.214 ± 0.03 se) than non–desiccated seeds (mean 0.048 ± 0.012 se), despite the longer time period for germination in non–desiccated seeds (168 hours vs. 72 hours) (Figure 2A). Germination of desiccated seeds generally occurred within the first 24 hours (Figure 2B).

Growth of seedlings varied depending on salinity and light treatments in Experiment 2. Root length (Figure 3A) varied across salinities ($F_{2,24} = 9.63$; p = 0.001) and light ($F_{1,24} = 6.77$; p = 0.016) treatments, with no significant interaction ($F_{2,24} = 0.30$; p = 0.740). Root growth was best in the 0 salinity and unshaded light treatment, with an increase of approximately 62% in root length over the duration of the experiment. In general, the 0 salinity treatment exhibited higher root growth than salinity treatment levels of 5 (T = -3.10; p = 0.013) or 10 (T = -4.282; p = 0.001) while 5 and 10 salinity trials were not significantly different (T = -1.22; p = 0.451). However, seedlings exposed to higher light (i.e., unshaded treatment), regard-

FIGURE 2. Vallisneria americana seed germination by salinity and time. A. Mean (± se) desiccated (dashed bars) and non–desiccated (solid bars) seed germination across salinities. B. Timeline of seed germination. Most seeds germinated within 24–48 h.

less of salinity, tended to have longer roots than in lower light conditions (i.e., shaded) treatment (T = -2.60, p = 0.016). Leaf length similarly differed among salinity ($F_{2,24}$ = 5.11; p = 0.014) and light ($F_{1,24}$ = 9.64; p = 0.005) treatments (Figure 3B), with no interaction ($F_{2,24}$ = 1.78; p = 0.190). Again, the 0 salinity and unshaded light treatment exhibited highest growth ($^{\sim}10\%$ increase) over the duration of the experiment. Pairwise comparisons indicate that the proportion of change in leaf length was not significantly different between 0 and 5 salinities (T = -1.64; p = 0.248), but did differ between 0 and 10 (T = -3.20; p = 0.010). Leaf change did not differ between the 5 and 10 treatments (T = -1.61; p = 0.26). Similar to the changes in root length, leaf length increase in the unshaded treatment was greater than in the shaded treatment (T = -3.11; p = 0.005).

DISCUSSION

Globally, a decline in estuarine habitats such as SAV (Orth et al. 2006, Waycott et al. 2009, Dunic et al. 2021) has triggered conservation efforts to improve environmental conditions and reduce further declines. Restoration activities have gained recent attention to combat ongoing losses (Jarvis and Moore 2008, McFarland and Shafer 2008, Paice et al. 2016, Rohal

FIGURE 3. Root and leaf growth of Vallisneria americana. A. Mean (\pm se) proportion change in seedling root lengths in light (solid bars) and shaded (dashed bars) conditions across varying salinities. B. Mean (\pm se) proportion change in seedling leaf lengths in light (solid bars) and shaded (dashed bars) conditions across varying salinities.

et al. 2021), with numerous techniques employed depending on location. These include the harvesting of seed pods from native populations for creation of a nursery stock (Cao and Ruan 2015) which can be more effective and cost—efficient once favorable conditions at the restoration site exist (Jarvis and Moore 2008, Rohal et al. 2024). Here, we provide practical information on optimal germination and growth conditions to improve planting protocols to restore *V. americana* and the ecosystem services it provides.

In the northern GOM, the dominant estuarine SAV *V. americana* is frequently exposed to seasonal increases in saline conditions when low rainfall conditions and dominant south winds occur (Martin and Valentine 2012). Increases in salinity have been shown to negatively influence flowering (French and Moore 2003) and seed germination (Jarvis and Moore 2008) by hindering water uptake by seeds and disrupting ion balance, thereby negatively affecting germination processes (Wahid et al. 2009, Xia et al. 2020), particularly when salinity levels exceeded a certain threshold (French and Moore 2003, Jarvis and Moore 2008). We found that desiccation was more important than salinity at the levels we tested in determining

germination rates for this population, findings similar to previous studies in this area (Clark 1999). In submerged vegetation, desiccation can promote germination by breaking seed dormancy and enhancing the release of germination inhibitors, similar to scarification noted in previous studies (Clark 1999, Kauth and Biber 2014, Rohal et al. 2024). Desiccation promotes water imbibition by seeds, initiating the germination process and thus may be an underrepresented adaptation that allows submerged vegetation seeds to exploit the fluctuations in water levels and successfully germinate in aquatic habitats. Although our germination rates following dessication were relatively low (~25%), these germination rates were typical compared to previous studies (Rohal et al. 2024). Our results suggest that desiccation as a pretreatment for V. americana seeds can enhance germination success compared to non-desiccated seeds, by a fourfold increase, and is a low-cost, effective means to induce and increase germination success instead of scarification, which can be tedious and imprecise for large scale restoration efforts (Clark 1999, Kauth and Biber 2014, Rohal et al. 2024). That said, a more quantitative evaluation of seed water loss may identify optimal levels of desiccation for future restorations.

Light and salinity are 2 key environmental factors that significantly influence *V. americana* seedling growth. Seedlings may experience reduced light conditions if they grow in existing beds or areas of reduced water clarity as well as variable salinities depending on prevailing conditions (e.g., decreased

freshwater input or wind) that favor salt wedge penetration into oligohaline GOM estuaries (Martin and Valentine 2012, 2014). We found favorable growth in the lowest salinities indicating potential sensitivity to salinity stress at early growth stages. In addition, we highlight that higher light and increased water clarity promotes better seedling growth, indicating that shallower depths and less turbid areas may be targeted for restoration.

As this ecologically vital species continues to decline, information on best practices for germination and growth strategies can inform conservation, habitat management, and restoration initiatives. Here, we suggest that practitioners may enhance success by using a desiccation period prior to casting seeds and targeting lower salinity areas with restoration efforts. Restoration of natural hydrology may improve salinity conditions by reducing the variability in salinity in upper estuarine reaches (Rozas et al. 2013), further facilitating success. Future studies should determine the influence of local conditions on maternal or seed phenotypic variation and the ecological implications of seed germination under desiccated conditions. In conclusion, this work provides critical insights into this key foundation species and improves our understanding of the ecological requirements of GOM V. americana, including the range of conditions it can persist in. Our results provide critical information for improving restoration and preservation strategies in areas prone to multiple natural and anthropogenic disturbances such as estuaries.

ACKNOWLEDGEMENTS

This research was conducted as the REU project of the lead author, funded by the National Science Foundation grant REU 2150347 to R. Carmichael. We thank the staff at the Dauphin Island Sea Lab for assistance with the logistics necessary to complete this project.

LITERATURE CITED

- Cao, J., and H. Ruan. 2015. Elodeid species as nursery beds for the successful seed restoration of *Vallisneria spiralis* L. Polish Journal of Ecology 63:53–62. https://doi.org/10.3354/ab00605
- Clark, R.D, Jr. 1999. The Reproductive Ecology of Vallisneria americana: The Effect of Seed Pre—treatment and Salinity of Germination and the Effect of Salinity on Seedling Growth and Survival. Ph.D. dissertation, University of South Alabama, Mobile, AL. 58 p.
- DeMarco, K.E., E.R. Hillmann, J.A. Nyman, B. Couvillion, and M.K. La Peyre. 2022. Defining aquatic habitat zones across northern Gulf of Mexico estuarine gradients through submerged aquatic vegetation species assemblage and biomass data. Estuaries and Coasts 45:148–167. https://doi.org/10.1007/s12237–021–00958–7
- Dennison, W.C., R.J. Orth, K.A. Moore, J.C. Stevenson, V. Carter, S. Kollar, P. Bergstrom, and R.A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health. BioScience 43:86–94. https://doi.org/10.2307/1311969

- Doering, P.H., R.H. Chamberlain, K.M. Donohue, and A.D. Steinman. 1999. Effect of salinity on the growth of *Vallisneria americana* Michx. from the Caloosahatchee Estuary, Florida. Florida Scientist 89–105.
- Dunic, J.C., C.J. Brown, R.M. Connolly, M.P. Turschwell, and I.M. Côté. 2021. Long—term declines and recovery of meadow area across the world's seagrass bioregions. Global Change Biology 27:4096—4109. https://doi.org/10.1111/gcb.15684
- French, G.T. and K.A. Moore. 2003. Interactive effects of light and salinity stress on the growth, reproduction, and photosynthetic capabilities of *Vallisneria americana* (wild celery). Estuaries 26:1255–1268. https://doi.org/10.1007/BF02803628
- Jarvis, J.C. and K.A. Moore. 2008. Influence of environmental factors on *Vallisneria americana* seed germination. Aquatic Botany 88:283–294. https://doi.org/10.1016/j.aquabot.2007.12.001
- Kauffman, T.C., C.W. Martin, and J.F. Valentine. 2018. Hydrological alteration exacerbates the negative impacts of invasive Eurasian milfoil Myriophyllum spicatum by creating hypoxic conditions in a northern Gulf of Mexico estuary. Marine Ecol-

- ogy Progress Series 592:97–108. https://doi.org/10.3354/meps12517
- Kauth, P.J. and P.D. Biber. 2014. Testa imposed dormancy in *Vallisneria americana* seeds from the Mississippi Gulf Coast. The Journal of the Torrey Botanical Society 141:80–90. https://doi.org/10.3159/TORREY-D-13-00053.1
- Kauth, P.J. and P.D. Biber. 2015. Moisture content, temperature, and relative humidity influence seed storage and subsequent survival and germination of *Vallisneria americana* seeds. Aquatic Botany 120:297–303. https://doi.org/10.1016/j.aquabot.2014.09.009
- Korschgen, C.E. and W.L. Green. 1988. American wild celery (*Vallisneria americana*): Ecological considerations for restoration. Technical Report 19. US Department of the Interior, Fish and Wildlife Service, Washington D.C. 24 p.
- Hauxwell, J., T.K. Frazer, and C.W. Osenberg. 2007. An annual cycle of biomass and productivity of *Vallisneria americana* in a subtropical spring—fed estuary. Aquatic Botany 87:61—68. https://doi.org/10.1016/j.aquabot.2007.03.003
- Les, D.H., S.W. Jacobs, N.P. Tippery, L. Chen, M.L. Moody, and M. Wilstermann—Hildebrand, 2008. Systematics of *Vallisneria* (hydrocharitaceae). Systematic Botany 33:49–65. https://doi.org/10.1600/036364408783887483
- Looby, A., L.K. Reynolds, C.R. Adams, and C.W. Martin. 2021. Submerged aquatic vegetation patch size affects fish communities in a turbid—algal lake. Frontiers in Conservation Science 2:657691. https://doi.org/10.3389/fcosc.2021.657691
- Martin, C.W. and J.F. Valentine. 2012. Eurasian milfoil invasion in estuaries: Physical disturbance can reduce the proliferation of an aquatic nuisance species. Marine Ecology Progress Series 449:109–119. https://doi.org/10.3354/meps09515
- Martin, C.W. and J.F. Valentine. 2014. Sexual and asexual reproductive strategies of invasive Eurasian milfoil (*Myriophyllum spicatum*) in estuarine environments. Hydrobiologia 727:177—184. https://doi.org/10.1007/s10750—013—1798—9
- Martin, C.W. and J.F. Valentine. 2019. Does invasion of Eurasian milfoil Myriophyllum spicatum lead to a "trophic dead end" and reduced food web complexity in Gulf of Mexico estuarine food webs? Frontiers in Environmental Science 7:166. https://doi.org/10.3389/fenvs.2019.00166
- McFarland, D.G. and D.J. Shafer. 2008. Factors influencing reproduction in American wild celery: A synthesis. Journal of Aquatic Plant Management 46:129–144.
- Moore, K.A., E.C. Shields, and J.C. Jarvis. 2010. The role of habitat and herbivory on the restoration of tidal freshwater submerged aquatic vegetation populations. Restoration Ecology 18:596–604. https://doi.org/10.1111/j.1526–100X.2010.00699.x
- Orth, R.J., T.J. Carruthers, W.C. Dennison, C. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J.

- Kenworthy, S. Olyarnik, and F.T. Short. 2006. A global crisis for seagrass ecosystems. Bioscience 56:987–996. https://doi.org/10.1641/0006–3568(2006)56[987:AGCFSE]2.0.CO;2
- Paice, R.L., J.M. Chambers, and B.J. Robson. 2016. Outcomes of submerged macrophyte restoration in a shallow impounded, eutrophic river. Hydrobiologia 778:179–192. https://doi. org/10.1007/s10750–015–2441–8
- Poirrier, M.A., K. Burt—Utley, J.F. Utley, and E.A. Spalding. 2010. Submersed aquatic vegetation of the Jean Lafitte National Historical Park and Preserve. Southeastern Naturalist 9:477–486. https://doi.org/10.1656/058.009.0306
- Rohal, C.B., L.K. Reynolds, C.R. Adams, C.W. Martin, and S.B. Gorham. 2021. A preliminary investigation of umbellate inflorescences in *Vallisneria americana* populations of Central Florida. Aquatic Botany 175:103436. https://doi.org/10.1016/j.aquabot.2021.103436
- Rohal, C.B., C.R. Adams, C.W. Martin, S. Tevlin, and L.K. Reynolds. 2024. Seed bank and germination ecology of sub—tropical *Vallisneria americana*. Aquatic Botany 190:103721. https://doi.org/10.1016/j.aquabot.2023.103721
- Rozas, L.P., C.W. Martin, and J.F. Valentine. 2013. Effects of reduced hydrological connectivity on the nursery use of shallow estuarine habitats within a river delta. Marine Ecology Progress Series 492:9–20. https://doi.org/10.3354/meps10486
- Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671–675. https://doi.org/10.1038/nmeth.2089
- Seeliger, U., E. Cordazzo, and E.W. Koch. 1984. Germination and algal—free laboratory culture of widgeon grass, *Ruppia maritima*. Estuaries 7:176–178. https://doi.org/10.2307/1351773
- Tootoonchi, M., L.A. Gettys, K.L. Thayer, I.J. Markovich, J.W. Sigmon, and S. Sadeghibaniani. 2020. Ecotypes of aquatic plant *Vallisneria americana* tolerate different salinity concentrations. Diversity 12:65. https://doi.org/10.3390/d12020065
- Wahid, A., M. Farooq, S.M. Basra, E. Rasul, and K.H. Siddique. 2016. Germination of seeds and propagules under salt stress. In: M. Pessarakli, ed. Handbook of Plant and Crop Stress, Third Edition. CRC Press, Boca Raton, FL, USA, p. 321–337.
- Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A.Calladine, J.W. Fourquren, K.L. Heck, Jr., A.R. Hughes, G.A. Kendrick, W.J. Dknworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106:12377–12381. https://doi.org/10.1073/pnas.0905620106
- Xia, W., B. Zhu, X. Qu, H. Liu, Y. Liu, X. Chen, L.G. Rudstam, L. Ni, and Y. Chen. 2020. Effects of salinity on sprouting and growth of three submerged macrophytes. Ecohydrology 13:e2235. https://doi.org/10.1002/eco.2235