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HIGHLIGHTS

o Three-part methodology to characterize patterns of residential AC ownership and use.
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o Average AC Operation Rate ranges from 1 to 23 % of total hours across census tracts.
o Evaluate energy insecurity using Net AC Utilization, a function of ownership & use.
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Air conditioning (AC) is an important tool for combatting the adverse health effects of heat, but its use can also
drive surges of high demand for electricity. To better understand these effects, there is a need for non-intrusive
methods of estimating AC access and operation. In this study, we use a novel methodology to identify residential
AC ownership rates using smart meter data from 200,000 customers in Southern California, and find that 79 % of
all customers in the region have AC. In contrast to previous methods, we classify AC ownership using hourly,
rather than daily, electricity consumption records and directly account for the potential presence of electric
heating. We then adapt and apply an algorithm to determine in which hours these households operate their AC.
We estimate that the average customer runs their AC during 8.3 % of all hours in the two-year study period, but
census-tract level averages range from 1 to 23 % of all hours. Lastly, we combine our estimates of AC ownership
and use to analyze cooling behavior spatially and temporally, and are able to identify pockets of high cooling
demand, areas lacking in access or the ability to use their AC, and potential targets for cooling-related DR
programs.

1. Introduction AC is a key adaption tool to protect populations from the from the

health effects of climate change [3], especially as extreme heat events

Rising temperatures associated with global climate change and
urban warming coupled with higher standards of living are set to drive
huge increases in the electricity demand for cooling. By 2050, the global
capacity for air conditioning (AC) is expected to triple through both new
AC adoptions and increased use of existing units [1]. While it is prudent
to ensure that people have sufficient access to cooling resources, espe-
cially as extreme temperatures threaten public health [2], doing so will
have large implications for the power grid. Thus, a robust understanding
of residential cooling demand is necessary to identify communities
without adequate AC access and plan for future energy needs.
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both intensify and become more frequent [4]. As such, equitable and
resilient cooling access is a major objective for several stakeholders
including utilities, public health officials, and energy advocates.
Although there has been huge growth in AC adoption, there are still
many communities and countries in warm climates with low rates of AC
ownership [5,6]. Further, many households with AC are unable to meet
their energy needs because of the rising costs of electricity. For example,
in a 2020 survey of US household energy insecurity, 5 % of respondents
cited that financial circumstances prevented them from using their AC
and 11 % reported keeping their home at an unhealthy temperature to
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lower their electricity bill [7]. It is important to identify the commu-
nities that do not have adequate access to AC (either because of the
complete lack of AC or underutilization of cooling appliances due to
energy insecurity) to promote policies that will ensure vulnerable
communities will not be in danger during extreme heat events.

Meeting the increased demand for cooling could exacerbate the
challenge of managing peak loads across the power grid. The use of AC
units and fans currently account for 20 % of electricity demand in
buildings and 10 % of all global electricity consumption [1]. With rising
temperatures and increasing AC adoption, this percentage is expected to
grow, placing strain on the electric grid through increases in both the
overall and peak demand [8-10]. Grid operators and utilities rely on
accurate forecasts of electricity demand to ensure there is enough power
on the grid at any given time [11]. As AC units account for a significant
portion of electricity consumption in hot months, accurate estimates and
projections of the cooling demand are critical.

The challenge of quantifying a region’s demand for cooling is two-
fold. Highly accurate, high-resolution estimates of AC penetration are
essential to determine the contribution of cooling to a region’s elec-
tricity consumption, as well as make projections of how energy needs
may change in the future. However, residential customers have widely
varying patterns of demand due to different occupancy patterns, thermal
comforts, building characteristics, and appliances [12-15]. Thus, merely
knowing if a household has AC, or the number of households in a region
with AC, is not enough to model the energy demand of the house or
region itself. Instead, knowledge of how residential customers use their
AC, in combination with who has AC, is critical to evaluate the elec-
tricity demand that is required for cooling.

Exploring patterns of AC ownership and use is difficult due to the
shortage of data. Data regarding household appliances is rarely publicly
available and information about AC ownership and usage has typically
been gathered through state or federal surveys which are both finan-
cially expensive and time intensive [7,16,17]. Further, these efforts most
often produce AC estimates at large spatial extents, such as statewide or
regionally, that do not provide insight into local energy needs. More
recently, studies have utilized large scale smart meter data records to
study cooling demand, but these methods have shortcomings [6,18-21].
First, several of these studies ignore the impact of electric heaters on the
electricity-temperature relationship by either excluding data at lower
temperatures or assuming electric heaters are rarely present in the
dataset, which can lead to misidentification of AC households [19-21].
Second, most studies utilize daily electricity data, which does not cap-
ture intraday patterns of electricity use, and therefore focus primarily on
classifying if households have AC rather than analyzing how ACs are
used [19,21-23].

In this study, we present a three-part framework to study spatial and
temporal patterns of cooling demand in Southern California. In the first
part of this study, we develop a novel methodology (referred to as the
“AC Ownership Algorithm” for the remainder of the paper) that utilizes
hourly smart meter electricity records to identify the presence of AC and
electric heat appliances based on the relationship between electricity
demand and outdoor temperature. In the second part of this study, we
then adapt and apply a linear regression method (referred to as the “AC
State Algorithm” for the remainder of the paper) to the identified AC
households to make predictions about their hourly AC on/off state.
(Note: even though we identify electric heating in this paper, doing so is
only to estimate AC penetration more accurately. Hence, we focus our
analysis on AC ownership and use characterization, and we do not
attempt to characterize electric heating use). In the final step of the
methodology, we aggregate and combine estimates of AC ownership and
hourly AC states to better understand the regional cooling demand.
Through this analysis we answer the following research questions:

1. How do AC penetration estimates produced with a model that uti-
lizes hourly electricity data and considers both electric heating and
cooling compare to previous estimates in the literature?
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2. Can we use hourly electricity data to identify hours in which cus-
tomers use their AC?

3. What are the aggregate trends in sub-daily cooling behavior across
temporal, climatic, and spatial extents?

4. Can a region’s residential cooling behavior be captured through
combined estimates of regional AC ownership and patterns of AC
consumption?

This framework improves upon previous studies because it can
identify electric heating in homes, and hence, does not ignore or require
the lack of electric heating to correctly identify AC. The use of hourly
data also gives insight into the intraday patterns of households AC
consumption, which can better inform grid system planning, energy
equity policies, and demand side management.

2. Literature review

As smart meter installations expand and providers make data more
accessible, researchers have used the electricity records to make in-
ferences about residential electricity behavior. Specifically, studies have
used the relationship between electricity demand and heat metrics to
make estimates of which households in a dataset have AC [19-21,24].
These methods are based on the understanding that AC units will
consume more energy to cool a space as the temperature increases above
a certain threshold; thus, a positively correlated relationship between
demand and temperature at higher temperatures will indicate a house-
hold with AC.

Several papers have employed a method that screens for whether a
household’s electricity demand has temperature dependence and de-
termines whether a household has AC based on that dependence. For
example, in the first step of a multi-part methodology, Dyson et al.
regressed the daily electricity demand of a household against the
ambient daily average temperature on days above 55 °F, calculated the
slope of the linear model, and asserted that homes with a positive slope
(i.e., electricity demand increases with temperature) had AC [20]. The
method used in this study is a simple demonstration of the electricity
temperature sensitivity concept that underlies many of the studies
regarding AC identification and behavior [19,21,23-25].

One limitation of this methodology is that homes without AC that
have a very slight temperature dependence (e.g., a home that uses fans
during warmer temperatures) could be misclassified as having AC, since
there is no minimum slope threshold. Chen et al. developed a more
robust methodology to avoid misclassifying these homes that regressed
daily average electricity demand against daily average outdoor tem-
perature with a segmented linear regression model [18]. Then, a home
was determined to have AC if a) the slope to the right of the stationary
point temperature, or SPT (i.e., the outdoor temperature at which a
home is expected to turn on their AC if they have it), was greater than
zero and b) the sum of the slopes to the right and left of the SPT was
greater than zero. The second criterion was included to ensure that
homes with a negligible temperature dependence were not identified as
having AC, but the rule assumes the household does not have electric
heating or rarely uses it. While this is a reasonable assumption in Cali-
fornia where a majority of homes are heated with natural gas, electric
heating is more common in other regions and will become more com-
mon on a future grid with high electrification [26,27]. This methodology
was used to make census-level estimates of residential AC ownership
across the Southern California region and identify communities that
would be most vulnerable to extreme heat and adapted in a later study to
test whether humid heat metrics are better indicators of AC ownership
[6,19,21].

A study by Elmallah et al. investigated access to both heating and
cooling in Northern California through a dataset of ~60,000 households
in PG&E territory, addressing the gap in the literature regarding electric
heat [28]. In this study, the segmented linear regression model described
by Chen et al. was adapted to detect electric or gas heating and electric
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cooling using both gas and electricity usage records. In contrast to the
model used by Chen et al., which used one changepoint (referred to as
the SPT) the researchers fit the data to three different linear models in
which there were no changepoints, one changepoint, and two change-
points. The different models represent 1) a house without heating or
cooling that has no temperature dependence, 2) a house with either
heating or cooling that has temperature dependence at either low or
high temperatures but not both, and 3) a house with both electric
heating and cooling that has temperature dependence at both low and
high temperatures. Then, Bayesian Information Criterion was used to
select the best model for each household, informing whether the
household heats or cools. In all, the study detected gas or electric heating
in 68 % of households, and electric cooling in 40 % of households. This
study is advantageous because it does not rely on the absence of electric
heating to categorize homes, and further explores the distribution of
both heating and cooling access.

While these studies were novel in their ability to detect cooling
across large spatial extents at high resolutions, they only capture
whether a household has an AC unit which is not enough to quantify the
cooling demand of a region. Information pertaining to how households
use their AC is critical to plan for electricity needs, but acquiring
appliance-level data is challenging and thus research related to AC use is
even further limited. Studies on household AC use typically analyze data
obtained through surveys on household energy use [29-31] or smart
meter trials and programs with sub-metered appliances [32-39]. For
example, a study related to AC usage in Hong Kong collected ques-
tionnaires from ~554 residents which included questions about how
many hours and in which months they turned on their AC at night as
well as their temperature settings [29]. The results of the study provided
insights into the cooling preferences of residents in Hong Kong, but
studies that use survey data are only capable of capturing general trends
in AC use and are likely imprecise as they rely on customers to accu-
rately report their energy behavior.

Datasets consisting of sub-metered appliance electricity records are
advantageous because they can produce a more exact quantification of
the cooling patterns of the studied buildings. A study in Sydney analyzed
the contribution of ACs to regional summer demand peaks using the
Smart Grid Smart City (SGSC) data set which includes appliance level
data from 808 homes and found that residential AC contributes up to 9
% percent of total peak demand [38]. However, the authors acknowl-
edge that the size of the dataset is a limitation of the study and may not
fully capture the variety of AC load profiles that exist in the study region.
In general, a limitation of appliance monitoring datasets is that they
consist of a small number of samples (e.g., less than 1000 homes). Thus,
until large-scale, sub-metered electricity datasets become available,
using appliance monitoring to draw inferences about the cooling
behavior of an entire region is not feasible.

The granularity and size of smart meter datasets presents an oppor-
tunity to gain insight into patterns of cooling behavior within and across
regions. The previously described AC identification studies used smart
meter data records but aggregated the records to the daily level. While it
has been shown that the correlation between daily electricity records
and temperatures is stronger than the correlation between hourly elec-
tricity and temperatures [18], the coarse resolution conceals intraday
patterns of AC use. Conversely, many studies have used higher resolu-
tion data and developed methods to non-intrusively disaggregate
appliance level consumption from overall electricity demand, but
isolating the AC load from smart meter records is challenging [40]. For
example, one study implemented a three-stage load decomposition
method that relied on the hourly electricity temperature relationship
and building characteristics to separate the AC load from the house-
hold’s total load [41]. The method was able to accurately estimate the
AC load profiles of the households in the dataset, when compared with
ground truth appliance-level data. However, researchers with large-
scale smart meter datasets typically do not have access to the building
characteristics that were utilized in this study.
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In the second step of the study by Dyson et al., the authors used smart
meter data from 30,000 customers in PG&E’s service territory to identify
the hours in which a household turned on their AC [20]. Similar to the
studies that determine the presence of an AC unit based on temperature
and electricity, the household’s hourly electricity demand and outdoor
temperature were fit to a linear regression model. However, this study
utilized hourly measurements to analyze intraday electricity demand
and make inferences about AC usage. Each pair of hourly electricity and
temperature measurements were fit to either a temperature-
independent model or a temperature dependent model with hourly
and weekend/weekday fixed effects and reassigned iteratively until the
model converged. The authors then calculated the impact that a 4-de-
gree change in the AC setpoint would have on each household’s
power consumption and aggregated the results to estimate the demand
response capacity of customers in PG&E’s service territory. This study
provided meaningful insight into the extent of grid services and flexi-
bility that residential customers can provide, but the analysis of cooling
behavior was limited.

Recent residential cooling demand studies have produced highly
resolved estimates of AC ownership across large spatial extents, offering
unprecedented insight into regional patterns of AC adoption. However, a
majority of these studies rely on daily data to infer which households
have AC, thus limiting the knowledge of patterns of AC use. Conversely,
studies pertaining to the patterns of AC have thus far utilized small
dataset samples that cannot be extrapolated to understand regional
cooling usage. Therefore, a research gap exists in the literature as the
heterogeneity of AC consumption across spatial, temporal, and climatic
extents has not been well explored. In this body of work, we use a large
scale hourly smart meter dataset to make highly resolved estimates of
household AC ownership and use patterns across the study region of
Southern California. The approach taken in our work provides novelty
and improves upon previous methods by directly modeling electric
heating, analyzing smart meter data at the hourly (rather than daily)
level, and combining estimates of AC ownership and hourly operation to
characterize cooling demand across a demographically and geographi-
cally diverse region.

3. Methodology

In this section, we describe the three-part framework that we develop
to characterize cooling behavior in Southern California using smart
meter data from ~200,000 residential customers. Before implementing
the framework, we carry out several filtering methods and outlier checks
to ensure that our dataset only contains households with a sufficient
amount of data, and that erroneous values are removed for each separate
household. In step 1 of our framework, we use a novel AC identification
methodology (the AC Ownership Algorithm) to determine which
households have AC. We compare our AC ownership results with the
results from Chen et al. [19] and survey data for the same study area
[16,42] to analyze the impact that household location and technologies
may have on AC identification for each method. In step 2, we employ an
AC state model (the AC State Algorithm) to determine in which hours the
AC households (determined in step 1) have their AC on. In step 3, we
combine our estimates of AC penetration and operation to describe the
cooling demand of the study region. This series of steps is summarized in
Fig. 1. In this three-part framework, we define and calculate three
different metrics that capture different aspects of a region’s cooling
demand:

e AC Penetration Rate: The estimated percentage of homes in a defined
region with AC.

e AC Operation Rate: The estimated fraction of hours out of a defined
set of hours (e.g., two-year study period or all hour 12s in a year) for
which the AC is active. The rate can be calculated for a single
household or as an average of all households in a defined region.
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Fig. 1. Overview of methodology for finding AC Penetration Rates, AC Operation Rates, and Net AC Utilization.

e Net AC Utilization: The product of a defined region’s AC Penetration
Rate and AC Operation Rate.

3.1. Dataset information and preprocessing

The dataset used in this analysis consists of smart meter electricity
records measured in 15-min intervals at the household level for 2015
and 2016. The data was provided by Southern California Edison (SCE),
an investor-owned utility, and contains data from roughly 200,000
distinct customers identified by SCE as being single-family households.
The customers were selected at random to be statistically representative
of the 4.5 million households located in Greater Los Angeles at 99 %
confidence level. The street address for each customer was also pro-
vided, allowing for detailed spatial analysis (e.g., AC use at the census
tract level). These dwellings span over ~2500 census tracts and 7
building climate zones, as defined by the California Energy Commission
[43], in the Southern California area. As this data is highly confidential,
the smart meter records were stored on a high-security data account
(HSDA) provided by the University of Southern California to meet the
security requirements of SCE.

Prior to applying the AC Ownership and AC State Algorithms, we
perform outlier analyses on the aggregate hourly and daily electricity
data. A large portion of this outlier analysis follows the steps performed
by Chen [19] and Peplinski, et al. [21]. The goal of the preprocessing
step is to remove all homes for which there is insufficient smart meter
data and remove smart meter records that indicate missing or highly
abnormal behavior. We aim to curate a dataset that is both represen-
tative of the region and makes it possible to clearly establish the rela-
tionship between electricity and temperature at the household level.

First, homes with fewer than 20 kWh of average annual electricity
consumption, which is approximately the daily electricity demand of an
average California home, are removed as it is likely these homes are
uninhabited [44]. Additionally, homes with consumption falling more
than three standard deviations above the mean annual electricity con-
sumption are removed as outliers. Next, we filter all homes that are
suspected to have solar panels on site to avoid the inconsistencies

created by net metering, discussed in greater detail in the work by Chen
[19] (we estimate that less than 2 % of homes in our dataset have solar
panels). For the remaining homes, we aggregate the 15-min smart meter
data to the hourly level and drop all hours for which the electricity
consumption is zero. For a smart meter to give a reading of zero across
an hour, the home would have to either be disconnected from the grid
due to long-term vacancy or power failure, or possess solar panels that
cause a meter read of zero due to net-metering. In either case, the hours
in question would not reflect the customer’s typical consumption pat-
terns, which may interfere with the analysis of AC ownership and use.
Note that temporary vacancy would be highly unlikely to give a meter
read of zero due to plug loads like refrigerators.

Next, we match each individual household to weather stations within
a 20-mile radius, using data from 102 weather stations within three
different land-based weather station systems [45-47]. For each house-
hold and each hour, the temperature of the nearest weather station that
has a temperature reading in that hour is assigned to the household. If no
weather station within 20 miles has a temperature reading, the hour in
question is removed from the household’s data due to an inability to
establish an electricity-temperature relationship. Next, to eliminate
hours with extreme levels of electricity consumption, we bin electricity
data into ten temperature quantiles and remove hours for which con-
sumption exceeds 5 standard deviations above the mean within said
quantile. This eliminates hours with highly irregular electricity con-
sumption, caused by an unexpected load, that would distort the rela-
tionship between electricity demand and ambient temperature. After
performing this hourly filtering, we drop any homes for which less than
4380 hourly records remain (one half of a year) to ensure sufficient data
to perform the AC Ownership and State Algorithms. At the end of this
outlier removal process, we retain ~160,000 households from 2439
census tracts and four counties across Southern California Edison’s
service territory.

3.2. AC Ownership Algorithm and computation of AC Penetration Rate
(Step 1 in Fig. 1)

We determine whether each household in the filtered data set has an
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AC unit and/or electric heater by examining the relationship between
hourly electricity consumption and hourly outdoor temperature. For
households with an AC, we expect that there is a positive correlation
between hourly electricity consumption and hourly temperature above a
certain temperature threshold, but this relationship is dependent on the
operational status of the AC in a specific hour. For example, a household
with an AC may turn it off when unoccupied, so high-temperature hours
will only display temperature dependence within the subset of hours for
which the AC unit was running. Similarly, homes with electric heating
should display temperature dependence at temperatures below a spe-
cific temperature threshold, but only for the fraction of hours for which
the electric heater was in use. Given that electricity consumption de-
pends on many loads that are not related to temperature (e.g., cooking,
entertainment, household chores) and will therefore depend on indi-
vidual user behavior, we must account for this temperature-independent
electricity consumption before analyzing the temperature-dependent AC
and electric heating loads. We do this by subtracting an estimate of the
typical temperature-independent load for each hour (that is, the ex-
pected electricity consumption of non-AC or electric heating loads). For
each home, we group the electricity data by hour of the day and day type
(weekend vs weekday) and find the 25th percentile of electricity con-
sumption for each group. We then subtract the corresponding 25th
percentile value from each hourly electricity record (note: this leads to
some hourly electricity consumption records being negative, as shown in
Fig. 2). We use the 25th percentile, rather than the 50th percentile, as an
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estimate of the temperature-independent consumption to account for
the fact that some hours will feature a significant amount of AC and/or
electric heating use that skews the distribution.

We then fit each user’s adjusted data to four models that relate
electricity consumption to temperature with each model representing an
AC and electric heating technology combination. Examples of homes
that demonstrate good fits for each of the above models are shown in
Fig. 2. We refer to temperatures at which heating or cooling behaviors
may change as stationary point temperatures (SPT). For example, the
cooling SPT is the temperature above which there is a possibility of AC
use.

e Model 1: All data is fit to one horizontal line, implying that electricity
consumption is independent of temperature. This model corresponds
to no electric heating or AC (top left quadrant).

Model 2: A portion of the data is fit to one line representing the
temperature-independent portion of the load, and, at temperatures
above a cooling SPT, a portion is fit to an additional line representing
the hours that demonstrated a temperature-dependent load due to
AC usage. This model corresponds to a residence with AC but no
electric heating (top right quadrant).

Model 3: A portion of the data is fit to one line representing the
temperature-independent portion and, at temperatures below a
heating SPT, a portion is fit to an additional line representing the
hours that demonstrated a temperature-dependent load due to

Model 1 Model 2
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Fig. 2. Hourly electricity consumption versus hourly ambient temperature for four example homes in Southern California over the two-year period. Each plot depicts
one of the four AC and electric heating (EH) technology combinations: Model 1) no AC or EH, Model 2) AC no EH, Model 3) EH no AC, and Model 4) AC and EH.
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electric heating usage. This model corresponds to a residence with
electric heating but no AC (bottom left quadrant).

Model 4: A portion of the data is fit to one line representing the
temperature-independent portion of the load and the remaining data
is fit to one of two temperature-dependent lines, with one line for
temperatures below the heating SPT and one for temperatures above
the cooling SPT. This model corresponds to a residence with electric
heating and AC (bottom right quadrant).

For all the above models, every individual datapoint (i.e., hour) is fit
to exactly one line. For Model 1, there is a single temperature-
independent line that has a constant y-value equal to the mean elec-
tricity consumption of all points. However, for Models 2-4, we deter-
mine in which hours the electricity demand exhibits temperature
dependence and the lines of best fit for temperature dependent and
temperature-independent hours using a version of the expectation-
maximization (EM) algorithm. The EM algorithm involves iteratively
classifying datapoints to groups and then fitting models of those groups
until a condition is met.

In Model 2, we assume that for temperatures above the cooling SPT
there is a possibility that the AC will be running and therefore that these
hours can demonstrate temperature dependent or temperature-
independent electricity consumption. To begin the EM algorithm, we
first assume that all hours with temperature above the 70th percentile
and electricity consumption above the 70th percentile of this subset of
hours are temperature dependent, and all other hours are temperature
independent (though the results of this algorithm were not noticeably
sensitive to different initial seedings). The temperature-independent line
is then defined by the mean electricity consumption for all points
assigned to it, and the slope of the temperature-dependent line is
calculated via a non-negative linear regression of electricity consump-
tion on temperature for all hours assigned to it. All hours above the
cooling SPT are then reassigned to the two lines depending on error
minimization, and the models are refit with the newly assigned hours.
This process continues iteratively until fewer than 1 % of eligible points
switch line assignment or until fewer than 1 % of the total hours are
assigned to the temperature-dependent line. We test potential cooling
SPTs of integers ranging from 60 to 100 °F to cover a large range of
potential cooling preferences and select the SPT that minimizes the total
error. Model 3 proceeds identically to Model 2, but the classification of
points occurs at temperatures below the heating SPT, and the search
space for the heating SPT ranges from 40 to 70 °F.

For Model 4, a household’s data is split into two portions based on
the midpoint of the heating and cooling SPTs found by Models 2 and 3,
and then the algorithm described above is repeated for each portion of
data with the midpoint serving as the lowest possible cooling SPT and
the highest possible heating SPT. The temperature-independent line is
again set as the mean of all points not assigned to the temperature-
dependent lines, regardless of temperature.

For each of the four models, the model error is determined by the
mean-squared error for the lines of best fit multiplied by the number of
lines fitted (one line for Model 1, two for Models 2 and 3, and three for
Model 4). The multiplier on the mean-squared error penalizes more
complex models that would otherwise generally have lower error
(similar to error terms used in information criterion analysis [48]). We
fit all four of the models to each home, and then select the model that
minimizes this custom error function. Homes for which Models 2 or 4
were selected are considered to have AC, and homes for which Models 3
or 4 were selected are considered to have electric heating. This algo-
rithm is designed to capture the general relationship between electricity
consumption and temperature of specific households, which gives
insight to their space conditioning technologies, and not to minimize
model error or most-accurately describe their heating or cooling
demand.

To characterize AC ownership across our region, we match each
household to a census tract and a California building climate zone using
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shapefiles from the US Census Bureau [49] and California Energy
Commission [43]. For each respective census tract and climate zone, we
calculate the AC Penetration Rate by dividing the number of homes in
the area identified as having AC by the total number of homes in the
region present in our dataset. We compare the results of this method-
ology to the results found by Chen et al. [19] at the census tract level for
Southern California and our aggregated results to survey data collected
in the region. Following the filtering steps, the remaining records are
statistically representative of 1534 census tracts.

3.3. AC State Algorithm and computation of AC Operation Rate (Step 2
in Fig. 1)

For the subset of households designated as having AC, we proceed
with a more fine-tuned algorithm to determine the cooling SPT and the
hours during which the AC is on. While the AC Ownership Algorithm
(described in Section 3.2) aimed to establish general electricity-
temperature relationships for the purpose of identifying the presence
of electric heating and cooling technologies, here we use the AC State
Algorithm, adapted from Dyson et al., to establish specific cooling be-
haviors and parameters [20]. This includes the cooling SPT (i.e., the
temperature at which people begin to turn their AC on) and a more
precise prediction of which hours feature AC activity. The AC State Al-
gorithm classifies every hour as being “AC on” or “AC off” even though
during an “AC on” hour the AC may not be running continuously
throughout the hour.

In this method, each home is fit to a multiple-linear regression model
that regresses electricity consumption on temperature and dummy
variables that represent the interactions of day type (weekend vs
weekday), hour of day, and a binary variable that classifies each hour as
a high-temperature or low-temperature hour. The temperature depen-
dent portion of the model is again conditional on the state of the heating
and cooling technologies and is only defined for specific temperature
ranges.

Ei = Dichws +Ht(/}1 X (SPTH - Tt) TLi) + Ct(ﬁz X (Tt 7SPTC)) +J) ®

In Eq. 1, the electricity consumption during a one-hour time period t
(E;) is determined by the AC state (C;),the electric heating state (H,), and
a vector of dummy variables (Dp,w,s) that specify the fixed impact of the
combination of the hour of the day (h) and the day type (w, weekday vs
weekend), which are further split into high-temperature vs low-
temperature hours (s) with a threshold of 60 °F. These dummy vari-
ables account for non-temperature-dependent loads, such as cooking
and entertainment-related electricity consumption, that occur with
different frequency depending on the time of the week and the weather
(for example, people are likely to be home consuming some electricity at
8 pm on the weekdays during colder weather). If the AC is classified as
on during time t, the electricity consumption depends on the electricity-
temperature sensitivity for cooling (f,) multiplied by the difference
between the temperature and the cooling SPT (SPT¢), and an AC inter-
cept (j). Similarly, at temperatures below the heating SPT we assume
that electric heating could be on, and that electricity consumption
therefore depends on the electricity-temperature sensitivity for heating
($,) and a separate heating intercept (i). For homes that were classified
as having AC but no electric heat, the heating state of all hours was set to
zero. The heating and cooling intercepts can be interpreted as the
minimum additional electricity consumed when the AC or electric
heating is on and the electricity-temperature sensitivities can be inter-
preted as the increase in electricity consumption that occurs as outdoor
temperature increases when the AC is on, or as temperature decreases
when the electric heating is on.

For each hour, we again determine the AC state (on/off) and electric
heating state (on/off) via the EM algorithm that was used in the AC
Ownership Algorithm; we iteratively find lines of best fit for each state,
and then reassign hours based on minimizing the prediction error. We
use the same initial seeding from Section 3.2 for AC-on hours, and again
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terminate this algorithm when fewer than 1 % of eligible points switch
AC state or when fewer than 1 % of total points are classified as AC on.
Fig. 3 illustrates the results of this model for an example home with a
SPT of 81 °F. We show results for four hours of the day during the week
with the hourly AC and non-AC points indicated. Note that across all
hours the AC intercept and temperature sensitivity are constant, which
assumes that AC consumption is linearly dependent on changes in
temperature regardless of time of day or current temperature (provided
the temperature is above the SPT). With hour of the day included as a
variable in the regression, an 8 am datapoint may be classified as AC on
despite having a lower electricity consumption than a 4 pm datapoint
that is classified as AC off because the 8 am datapoint represents un-
usually high electricity consumption for that time of day and day type.

To estimate the cooling SPT, we look for a temperature that both
reduces error and increases the probability of correctly classifying the
state of the AC. A lower cooling SPT generally reduces the error term
because more of the data is fit to two lines instead of one. Conversely,
higher cooling SPTs generally lead to more confident predictions of the
AC state, since at higher temperatures there is typically a higher fraction
of hours classified as AC on and a larger magnitude difference between
the electricity consumption of an AC-on versus AC-off hour. We balance
these two objectives through an error term that combines the prediction
likelihood and the probability of AC being on, which is defined as the
fraction of hours with temperature above the cooling SPT that are
classified as AC hours. We test each cooling SPT between 60 and 100 °F
and find one value for each household that minimizes the error term.
More discussion of the SPT selection method can be found in [20]. We
used a fixed heating SPT of 60 °F for the electric heating system because
we are not interested in identifying specific electric heating behaviors.

Hourly Electricity Consumption (kWh)
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Fig. 3. Top: Scatterplot of hourly electricity consumption and temperature for
the two-year period for one household. Bottom: Results of the AC State Algo-
rithm for four different weekday hours over the two-year period. For this home,
we determined a cooling SPT of 81 °F, hence only hours with temperature
above 81 °F can be classified as AC on.
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We note that it is necessary to include this temperature dependence
below 60 °F to avoid the errors at low temperature hours dominating the
total error and therefore skewing the cooling SPT selection process. With
the optimal cooling SPT selected, we can make a final classification of
the hours during which a household’s AC is on.

We then determine a household’s AC Operation Rate, which is the
fraction of hours that a home has its AC on (the number of hours clas-
sified as AC on divided by the total hours). Recall that an “AC on” hour is
an hour that demonstrates clear temperature dependence, and the
classification does not capture the number or length of AC cycles that
occur during the hour. Following the same method of matching house-
holds to census tracts and climate zones as was used for AC Penetration
Rate, we also find the average AC Operation Rate for a region by taking
the mean of the AC Operation Rate for each household in the region. The
household and average AC Operation Rates can be calculated for the
entire study period or a subset of time (e.g., the AC Operation Rate in all
hour 12s).

3.4. Calculation of Net AC Utilization (Step 3 in Fig. 1)

Finally, we use our regional estimates of AC Penetration Rate and AC
Operation Rate to calculate the Net AC Utilization for a region as shown
in Eq. 3.

Net_AC_Utilitzationg = AC_Penetration_Rater x AC_Operation_Rateg
3)

Eq. 3 defines the Net AC Utilization of a region R as the product of the
region’s AC Penetration and Operation Rates. We find Net AC Utilization
for the entire study region, as well as for each census tract and climate
zone within the study region. Net AC Utilization is directly proportional
to the number of per-household "AC on" hours in a region and better
describes the AC use in a region than estimates of AC ownership or state
in isolation.

4. Results and discussion
4.1. Comparison of AC penetration rates with other studies

Across the entire study region, AC was detected in 79 % of house-
holds. In the California Residential Appliance Saturation Survey (RASS),
75 % and 86 % of customers surveyed in SCE territory reported having
central or room AC in the years 2009 and 2019, respectively. Our region-
wide estimate is in alignment with the survey results considering that
the smart meter records analyzed in this study (2015-2016) fell in be-
tween the survey years, [16,42].

This study’s estimate of the region’s overall AC Penetration Rate is
significantly higher than the value found in Chen et al. (69 %) [19].
There are multiple explanations that account for the difference. First, the
methodology used in this study to classify AC households does not make
assumptions regarding the electric heating status, and thus, is more
likely to correctly identify homes that have and use both electric heating
and cooling systems. Second, we expect this methodology to better
capture households that use their AC infrequently and/or have other
electric loads that contribute significantly to total demand, diluting the
electricity-temperature signature at the daily level. This theory is in part
validated by the breakdown of central versus room AC units reported in
the RASS (58 %/18 % in 2009 and 68 %/18 % in 2019), indicating that
the daily methodology utilized by Chen et al. might have accurately
captured the central conditioners but failed to identify the room con-
ditioners with smaller loads.

To gain an understanding of spatial differences in the results from
this study and Chen et al. [19], the difference in AC Penetration Rate
estimates in each census tract was plotted on a choropleth map shown in
Fig. 4. The areas in blue were estimated to have higher AC Penetration
Rates when the proposed hourly method was used in place of the pre-
vious daily method, while areas shown in red were estimated to have
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Fig. 4. Choropleth maps depicting the difference between census tract level AC Penetration Rates estimated with the hourly method proposed method in this study
and the daily method developed by Chen et al. [19]. Generally, the AC Penetration Rate computed with the new method is higher (blue) than when the previous
method was used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

lower AC Penetration Rates. This study’s method of detecting AC found a
higher penetration in the majority of census tracts across the region. We
note that the households studied in this analysis were not evenly
distributed across census tracts, and thus some of the census tracts that
show large differences between methods in Fig. 4 are the result of having
a small number of homes in that specific census tract. (Census tracts that
are not statistically represented are indicated in Fig. 4 with cross
hatching.)

Through this methodology, we also estimated that 25 % of house-
holds have electric heating. In the 2009 RASS, only 4 % and 1 % of
customers reported an electric heater as their primary and auxiliary
space heating appliance. The percentages of primary and auxiliary space
heating appliances increased to 17 % and 6 % in the 2019 RASS. Since
our smart meter records fall in between the survey years, the method-
ology used in this study likely overestimates the portion of electric
heaters present in Southern California. One explanation for the
discrepancy in values is that households may be supplementing their
natural gas heating with electric room space heaters that were not sur-
veyed in RASS. Elmallah et al. detected electric heating in 27 % of
homes, which was higher than the value reported for RASS in some of
climate zones located in their dataset; similarly, the authors pointed to
the use of room space heaters as an explanation [28]. It is important to
note that Southern California has more cooling degree days (CDDs) than
heating degree days (HDDs) [50], and demand for space conditioning is
driven by cooling needs rather than heating needs.

4.2. Tracking temporal patterns of AC operation rate

One of the major advantages of the method described in this study is
the ability to track patterns of AC operation. While the AC Penetration
Rate is an important metric to characterize who has access to AC in a
community and inform where the power grid may experience spikes in
demand, information about how people use their AC is also necessary to
quantify cooling demand. Here, we analyze variations in customer AC
Operation Rate, including how often and when their AC unit is on, and
explore how these behaviors create regional differences in cooling

behavior.

The results of this study found the average customer with AC has an
AC Operation Rate of 8.3 % calculated across the entire two-year study
period. The bar chart shown in Fig. 5 depicts how AC Operation Rates
vary across and within the climate zones in SCE’s territory. In the cooler,
coaster climate zones (e.g., climate zones 6 and 8) the AC Operation Rate
across the full study period is generally lower than for customers in the
hot, desert climate zones (e.g., climate zones 14 and 15). For example, in
climate zone 15 which is characterized by a hot, desert climate, only 5 %
of customers have an AC Operation Rate less than 3 %, compared to 23
% of customers in the coastal climate zone 6.

In addition to knowing how often utility customers use their AC, we
can capture the timing of when customers use their AC and how that
varies across the region. The heat maps in Fig. 6 show the average AC
Operation Rate in each hour and month combination for each of the
study region’s seven climate zones. Across all climate zones, the AC
Operation Rate is higher in the afternoon and early evening, as well as in
the hot, summer months. In climate zones that experience relatively cool
temperatures (e.g., climate zones 6 and 8) the range of hours and months
with notable AC Operation Rates is smaller, and the AC Operation Rate
itself is, in those time periods, generally lower than in the hotter, desert
climate zones, such as 14 and 15.

4.3. Spatial trends in AC penetration rate, AC operation rate, and net AC
utilization

To observe how trends in cooling behavior vary across the study
region, study results were aggregated to the census tract level. In Fig. 7,
panel a) depicts AC Penetration Rates, lending insight into which areas
have higher rates of AC ownership. Panel b) displays AC Operation
Rates, which measure how often the average customer in each census
tract used their AC during the study period. In general, the cooler,
coastal and mountainous regions have lower rates of ownership and use
their AC less frequently than the hotter, inland and desert regions (also
shown in Section 4.2).

While AC Penetration Rates and AC Operation Rates separately
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Fig. 5. Stacked bar chart showing the breakdown of AC Operation Rates over the study period for each climate zone. Each bin represents an AC Operation Rate
range, with darker shades of blue indicating a higher AC Operation Rate (e.g., AC is classified on for more hours). The summer mean temperature for each climate
zone is shown to the right of each bar. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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each subplot.

provide important information about the cooling demand of a commu-
nity, we can better estimate the locations that are likely to have high
cooling demand by combining these factors into one metric. Thus, Net
AC Utilization, which accounts for both the percentage of households in
a specified area that have AC and how often those customers have their
AC on was computed for the entire study region by census tract, with the
results shown in Fig. 7, panel c). The Net AC Utilization of a census tract
is directly proportional to the expected number of hours of AC use that

an average household selected from our data in that census tract would
have and thus is useful for evaluating local cooling need and the location
of demand surges during extreme heat events. In Fig. 7, we report Net
AC Utilization by decile because there is not a clear physical meaning of
the metric as a percentage value (in contrast to AC Penetration and AC
Operation Rates).

In general, the regional patterns are consistent across each of the
panels shown in Fig. 7, meaning areas with higher AC Penetration Rates
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Fig. 7. Choropleth maps depicting the a) AC Penetration Rate, b) AC Operation Rate, and c¢) Net AC Utilization (binned by decile) computed at the census tract level.

also have higher AC Operation Rates and Net AC Utilization. Although
the regional trends are consistent, there are still census tracts where the
AC Penetration Rate is relatively high, but the AC Operation Rate is
relatively low (and vice versa), which demonstrates the limitation of
relying on AC Penetration Rates alone when evaluating cooling demand.

If we compare the AC Penetration Rates and Net Utilization Rates, we
can see how incorporating the AC Operation Rates impacts our evalu-
ation of cooling demand. Table 1 provides the percentage of census
tracts at each quantile of AC Penetration Rate that fall into each quantile
of Net AC Utilization. For example, of the census tracts in the 20-40 %
percentile of AC Penetration, it is more likely that they fall into a lower
percentile of Net AC utilization than remain in the 20-40 % percentile
range. This could be explained by the fact that these census tracts
experience cool enough temperatures that they rarely need to use their
AC, or that they are lower-income census tracts within that quantile that
are more conscious of their electricity consumption.

A second interesting insight is that while most census tracts with high
AC Penetration Rates also have high AC Operation Rates, roughly 23 %
of census tracts in the top quantile of AC Penetration Rate shift into the
bottom two Net AC Utilization quantiles. This could be explained by
high-income census tracts that own ACs despite living in relatively
cooler climates, thus not requiring cooling often, or low-income census
tracts in hot regions where households forgo cooling to lower electricity
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Table 1

A transition matrix summarizing the AC Penetration Rates and Net AC Utiliza-
tion percentile ranks of the census tracts in the study region, where 0-20 %
indicates the lowest and 80-100 % indicates the highest AC Penetration Rate/
Net AC Utilization quantile. Each value represents the percent of census tracts
that originally fell in each AC Penetration Rate quantile (denoted by row) that
shift into the specified Net AC Utilization quantile (denoted by column), effec-
tively showing the impact that including AC Operation Rates has on the cooling
demand evaluation.

Net AC Utilization Percentiles

0-20 20-40 40-60 60-80 80-100
% % % % %

0-20 % 49 % 26 % 15 % 7 % 3%
20-40

AC Penetration % 29 % 25 % 21 % 15 % 10 %
Rate 40-60

Percentiles % 18 % 21 % 22 % 20 % 18 %
60-80

% 13 % 18 % 21 % 24 % 24 %
80-100

% 9% 14 % 19 % 25 % 33%
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costs despite high temperatures. The results of this section suggest that
AC Penetration and AC Operation Rates are not always tightly correlated
and warrants a further analysis of what factors cause diverging results in
some regions, as those populations may either be underserved or
consume a disproportionate amount of electricity making them a target
for grid flexibility efforts.

4.4. Net AC utilization considering climate

While Net AC Utilization provides a useful metric of existing cooling
demand in a region, we are also interested in the relationship between a
household’s theoretical need for cooling and their actual AC behaviors.
We approximate a single household’s theoretical cooling need by
aggregating their hourly temperatures to the daily level and calculating
their annual CDDs. In Fig. 8, we plot the mean household Net AC Uti-
lization against the mean household CDDs at the census tract level.

We see that for a given number of CDDs, there is a large variety in the
degree of Net AC Utilization across census tracts. This is of particular
note for census tracts with a high number of CDDs, and thus a high
theoretical cooling need, but a low Net AC Utilization. For example,
there are 41 census tracts that rank above the 80th percentile of CDDs
but fall below the 50th percentile of Net AC Utilization. These census
tracts may be experiencing energy insecurity due to poor access to AC or
lack the financial resources needed to use the AC that they do have
(although there are confounding factors unrelated to enery insecurity,
such as AC efficiency and a building’s thermal properties, that can in-
fluence AC use). Additional analysis is needed to determine if these
census tracts are particularly vulnerable to extreme heat. Lastly, a small
number of census tracts display high Net AC Utilization despite rela-
tively low theoretical cooling need, which may represent an opportunity
for targeted demand response programs.

5. Conclusion

In this three-part framework, we first developed a novel methodol-
ogy for identifying the presence of AC from household-level smart meter
data and used the model to compute regional AC Penetration Rates.
Unlike previous methods, our novel model used hourly, rather than
daily, electricity consumption data and directly modeled electric heat-
ing, which was a confounding or ignored variable in several previous
studies. We believe our focus on hourly data allowed us to better identify
homes with a variety of AC types and with intermittent AC use and find
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that our results align well with survey data from similar years in the
same region. In the second part of this study, we predicted the hourly AC
state at the household level using the AC State Algorithm and aggregated
the results to observe trends in AC Operation Rates across spatial,
temporal, and climatic ranges. Finally, we combined AC Penetration and
AC Operation Rates to calculate each census tract’s Net AC Utilization
and better characterize regional residential cooling behavior.

Unsurprisingly, we find higher rates of AC Operation Rates in the
middle of the day and afternoon of summer months. We also find that
some census tracts have surprisingly low Net AC Utilization when
compared to adjacent areas and when compared to the amount we
would expect for an area with significant climatic need for cooling. This
phenomenon may be explained by the demographic or economic traits
of the census tract (which is beyond the bounds of this analysis).
Regardless of the cause, these areas would likely benefit from programs
designed to increase AC access and/or address energy insecurity. In
future work, we plan on conducting a more rigorous analysis of the
factors that drive disparities in the cooling demand. For areas that
already have high AC Penetration Rates and AC Operation Rates, these
census-level estimates increase our understanding of where surges in
demand are likely to occur during extreme heat events and high tem-
peratures which is useful information for utilities and grid planners.

The authors would like to acknowledge several limitations of this
study. First, there is no ground truth data of AC ownership or operation
at the household level with which to validate our results, thus we cannot
determine the accuracy of our algorithms that were used to determine
the AC Penetration and AC Operation Rates. Furthermore, comparisons
between methods also cannot speak to whether one method is more or
less accurate for our dataset. Instead, we focus on comparing our AC
Penetration estimates with relevant survey data for the same region.
This study would also benefit from a sensitivity analysis that examined
how algorithm specifications such as the range of potential STP tem-
peratures, the error formula used, and the estimate of temperature-
independent load impact the AC Penetration and AC Operation Rates.
Unfortunately, the extensive runtime of the algorithms on our compu-
tational resources makes parametric analysis impractical.

While our dataset contains nearly 160,000 homes after filtering, the
large spatial extent of the data spreads these homes across many census
tracts and creates a large range in the number of homes per census tract.
As a result, the samples of homes in this dataset are only statistically
representative for ~63 % of the census tracts. We believe our general
method of relating electricity consumption and ambient temperature at
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Fig. 8. Scatter plot of normalized Net AC Utilization versus CDD experienced during the study period averaged by census tract. Census tracts that are not statistically

represented by the households in our dataset are not included.
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the hourly level with models that represent distinct electric space con-
ditioning technologies and usage patterns can be extrapolated to other
regions. However, in other regions, the different climatic factors and
relative frequencies of a variety of space heating and cooling technolo-
gies may require modifications to the methodology presented here. For
example, studies of other areas may find that a humid heat metric is
more closely related to AC ownership and use than temperature alone.
As large smart meter datasets become more widely available, these al-
gorithms should be repeated on a variety of climate zones and pop-
ulations. Lastly, in this study we discuss Net AC Utilization as a way to
characterize AC behavior, but we acknowledge that a more complete
study of cooling demand would consider the magnitude of AC electricity
consumption, which is beyond the bounds of this analysis.
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