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H I G H L I G H T S

• Three-part methodology to characterize patterns of residential AC ownership and use.
• Smart meter dataset of ~200,000 households in Southern California.
• Estimated AC Ownership Rate of 79 % and average AC Operation rate of 8.3 %.
• Average AC Operation Rate ranges from 1 to 23 % of total hours across census tracts.
• Evaluate energy insecurity using Net AC Utilization, a function of ownership & use.
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A B S T R A C T

Air conditioning (AC) is an important tool for combatting the adverse health effects of heat, but its use can also 
drive surges of high demand for electricity. To better understand these effects, there is a need for non-intrusive 
methods of estimating AC access and operation. In this study, we use a novel methodology to identify residential 
AC ownership rates using smart meter data from 200,000 customers in Southern California, and find that 79 % of 
all customers in the region have AC. In contrast to previous methods, we classify AC ownership using hourly, 
rather than daily, electricity consumption records and directly account for the potential presence of electric 
heating. We then adapt and apply an algorithm to determine in which hours these households operate their AC. 
We estimate that the average customer runs their AC during 8.3 % of all hours in the two-year study period, but 
census-tract level averages range from 1 to 23 % of all hours. Lastly, we combine our estimates of AC ownership 
and use to analyze cooling behavior spatially and temporally, and are able to identify pockets of high cooling 
demand, areas lacking in access or the ability to use their AC, and potential targets for cooling-related DR 
programs.

1. Introduction

Rising temperatures associated with global climate change and 
urban warming coupled with higher standards of living are set to drive 
huge increases in the electricity demand for cooling. By 2050, the global 
capacity for air conditioning (AC) is expected to triple through both new 
AC adoptions and increased use of existing units [1]. While it is prudent 
to ensure that people have sufficient access to cooling resources, espe
cially as extreme temperatures threaten public health [2], doing so will 
have large implications for the power grid. Thus, a robust understanding 
of residential cooling demand is necessary to identify communities 
without adequate AC access and plan for future energy needs.

AC is a key adaption tool to protect populations from the from the 
health effects of climate change [3], especially as extreme heat events 
both intensify and become more frequent [4]. As such, equitable and 
resilient cooling access is a major objective for several stakeholders 
including utilities, public health officials, and energy advocates. 
Although there has been huge growth in AC adoption, there are still 
many communities and countries in warm climates with low rates of AC 
ownership [5,6]. Further, many households with AC are unable to meet 
their energy needs because of the rising costs of electricity. For example, 
in a 2020 survey of US household energy insecurity, 5 % of respondents 
cited that financial circumstances prevented them from using their AC 
and 11 % reported keeping their home at an unhealthy temperature to 
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lower their electricity bill [7]. It is important to identify the commu
nities that do not have adequate access to AC (either because of the 
complete lack of AC or underutilization of cooling appliances due to 
energy insecurity) to promote policies that will ensure vulnerable 
communities will not be in danger during extreme heat events.

Meeting the increased demand for cooling could exacerbate the 
challenge of managing peak loads across the power grid. The use of AC 
units and fans currently account for 20 % of electricity demand in 
buildings and 10 % of all global electricity consumption [1]. With rising 
temperatures and increasing AC adoption, this percentage is expected to 
grow, placing strain on the electric grid through increases in both the 
overall and peak demand [8–10]. Grid operators and utilities rely on 
accurate forecasts of electricity demand to ensure there is enough power 
on the grid at any given time [11]. As AC units account for a significant 
portion of electricity consumption in hot months, accurate estimates and 
projections of the cooling demand are critical.

The challenge of quantifying a region’s demand for cooling is two- 
fold. Highly accurate, high-resolution estimates of AC penetration are 
essential to determine the contribution of cooling to a region’s elec
tricity consumption, as well as make projections of how energy needs 
may change in the future. However, residential customers have widely 
varying patterns of demand due to different occupancy patterns, thermal 
comforts, building characteristics, and appliances [12–15]. Thus, merely 
knowing if a household has AC, or the number of households in a region 
with AC, is not enough to model the energy demand of the house or 
region itself. Instead, knowledge of how residential customers use their 
AC, in combination with who has AC, is critical to evaluate the elec
tricity demand that is required for cooling.

Exploring patterns of AC ownership and use is difficult due to the 
shortage of data. Data regarding household appliances is rarely publicly 
available and information about AC ownership and usage has typically 
been gathered through state or federal surveys which are both finan
cially expensive and time intensive [7,16,17]. Further, these efforts most 
often produce AC estimates at large spatial extents, such as statewide or 
regionally, that do not provide insight into local energy needs. More 
recently, studies have utilized large scale smart meter data records to 
study cooling demand, but these methods have shortcomings [6,18–21]. 
First, several of these studies ignore the impact of electric heaters on the 
electricity-temperature relationship by either excluding data at lower 
temperatures or assuming electric heaters are rarely present in the 
dataset, which can lead to misidentification of AC households [19–21]. 
Second, most studies utilize daily electricity data, which does not cap
ture intraday patterns of electricity use, and therefore focus primarily on 
classifying if households have AC rather than analyzing how ACs are 
used [19,21–23].

In this study, we present a three-part framework to study spatial and 
temporal patterns of cooling demand in Southern California. In the first 
part of this study, we develop a novel methodology (referred to as the 
“AC Ownership Algorithm” for the remainder of the paper) that utilizes 
hourly smart meter electricity records to identify the presence of AC and 
electric heat appliances based on the relationship between electricity 
demand and outdoor temperature. In the second part of this study, we 
then adapt and apply a linear regression method (referred to as the “AC 
State Algorithm” for the remainder of the paper) to the identified AC 
households to make predictions about their hourly AC on/off state. 
(Note: even though we identify electric heating in this paper, doing so is 
only to estimate AC penetration more accurately. Hence, we focus our 
analysis on AC ownership and use characterization, and we do not 
attempt to characterize electric heating use). In the final step of the 
methodology, we aggregate and combine estimates of AC ownership and 
hourly AC states to better understand the regional cooling demand. 
Through this analysis we answer the following research questions:

1. How do AC penetration estimates produced with a model that uti
lizes hourly electricity data and considers both electric heating and 
cooling compare to previous estimates in the literature?

2. Can we use hourly electricity data to identify hours in which cus
tomers use their AC?

3. What are the aggregate trends in sub-daily cooling behavior across 
temporal, climatic, and spatial extents?

4. Can a region’s residential cooling behavior be captured through 
combined estimates of regional AC ownership and patterns of AC 
consumption?

This framework improves upon previous studies because it can 
identify electric heating in homes, and hence, does not ignore or require 
the lack of electric heating to correctly identify AC. The use of hourly 
data also gives insight into the intraday patterns of households AC 
consumption, which can better inform grid system planning, energy 
equity policies, and demand side management.

2. Literature review

As smart meter installations expand and providers make data more 
accessible, researchers have used the electricity records to make in
ferences about residential electricity behavior. Specifically, studies have 
used the relationship between electricity demand and heat metrics to 
make estimates of which households in a dataset have AC [19–21,24]. 
These methods are based on the understanding that AC units will 
consume more energy to cool a space as the temperature increases above 
a certain threshold; thus, a positively correlated relationship between 
demand and temperature at higher temperatures will indicate a house
hold with AC.

Several papers have employed a method that screens for whether a 
household’s electricity demand has temperature dependence and de
termines whether a household has AC based on that dependence. For 
example, in the first step of a multi-part methodology, Dyson et al. 
regressed the daily electricity demand of a household against the 
ambient daily average temperature on days above 55 ◦F, calculated the 
slope of the linear model, and asserted that homes with a positive slope 
(i.e., electricity demand increases with temperature) had AC [20]. The 
method used in this study is a simple demonstration of the electricity 
temperature sensitivity concept that underlies many of the studies 
regarding AC identification and behavior [19,21,23–25].

One limitation of this methodology is that homes without AC that 
have a very slight temperature dependence (e.g., a home that uses fans 
during warmer temperatures) could be misclassified as having AC, since 
there is no minimum slope threshold. Chen et al. developed a more 
robust methodology to avoid misclassifying these homes that regressed 
daily average electricity demand against daily average outdoor tem
perature with a segmented linear regression model [18]. Then, a home 
was determined to have AC if a) the slope to the right of the stationary 
point temperature, or SPT (i.e., the outdoor temperature at which a 
home is expected to turn on their AC if they have it), was greater than 
zero and b) the sum of the slopes to the right and left of the SPT was 
greater than zero. The second criterion was included to ensure that 
homes with a negligible temperature dependence were not identified as 
having AC, but the rule assumes the household does not have electric 
heating or rarely uses it. While this is a reasonable assumption in Cali
fornia where a majority of homes are heated with natural gas, electric 
heating is more common in other regions and will become more com
mon on a future grid with high electrification [26,27]. This methodology 
was used to make census-level estimates of residential AC ownership 
across the Southern California region and identify communities that 
would be most vulnerable to extreme heat and adapted in a later study to 
test whether humid heat metrics are better indicators of AC ownership 
[6,19,21].

A study by Elmallah et al. investigated access to both heating and 
cooling in Northern California through a dataset of ~60,000 households 
in PG&E territory, addressing the gap in the literature regarding electric 
heat [28]. In this study, the segmented linear regression model described 
by Chen et al. was adapted to detect electric or gas heating and electric 
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cooling using both gas and electricity usage records. In contrast to the 
model used by Chen et al., which used one changepoint (referred to as 
the SPT) the researchers fit the data to three different linear models in 
which there were no changepoints, one changepoint, and two change
points. The different models represent 1) a house without heating or 
cooling that has no temperature dependence, 2) a house with either 
heating or cooling that has temperature dependence at either low or 
high temperatures but not both, and 3) a house with both electric 
heating and cooling that has temperature dependence at both low and 
high temperatures. Then, Bayesian Information Criterion was used to 
select the best model for each household, informing whether the 
household heats or cools. In all, the study detected gas or electric heating 
in 68 % of households, and electric cooling in 40 % of households. This 
study is advantageous because it does not rely on the absence of electric 
heating to categorize homes, and further explores the distribution of 
both heating and cooling access.

While these studies were novel in their ability to detect cooling 
across large spatial extents at high resolutions, they only capture 
whether a household has an AC unit which is not enough to quantify the 
cooling demand of a region. Information pertaining to how households 
use their AC is critical to plan for electricity needs, but acquiring 
appliance-level data is challenging and thus research related to AC use is 
even further limited. Studies on household AC use typically analyze data 
obtained through surveys on household energy use [29–31] or smart 
meter trials and programs with sub-metered appliances [32–39]. For 
example, a study related to AC usage in Hong Kong collected ques
tionnaires from ~554 residents which included questions about how 
many hours and in which months they turned on their AC at night as 
well as their temperature settings [29]. The results of the study provided 
insights into the cooling preferences of residents in Hong Kong, but 
studies that use survey data are only capable of capturing general trends 
in AC use and are likely imprecise as they rely on customers to accu
rately report their energy behavior.

Datasets consisting of sub-metered appliance electricity records are 
advantageous because they can produce a more exact quantification of 
the cooling patterns of the studied buildings. A study in Sydney analyzed 
the contribution of ACs to regional summer demand peaks using the 
Smart Grid Smart City (SGSC) data set which includes appliance level 
data from 808 homes and found that residential AC contributes up to 9 
% percent of total peak demand [38]. However, the authors acknowl
edge that the size of the dataset is a limitation of the study and may not 
fully capture the variety of AC load profiles that exist in the study region. 
In general, a limitation of appliance monitoring datasets is that they 
consist of a small number of samples (e.g., less than 1000 homes). Thus, 
until large-scale, sub-metered electricity datasets become available, 
using appliance monitoring to draw inferences about the cooling 
behavior of an entire region is not feasible.

The granularity and size of smart meter datasets presents an oppor
tunity to gain insight into patterns of cooling behavior within and across 
regions. The previously described AC identification studies used smart 
meter data records but aggregated the records to the daily level. While it 
has been shown that the correlation between daily electricity records 
and temperatures is stronger than the correlation between hourly elec
tricity and temperatures [18], the coarse resolution conceals intraday 
patterns of AC use. Conversely, many studies have used higher resolu
tion data and developed methods to non-intrusively disaggregate 
appliance level consumption from overall electricity demand, but 
isolating the AC load from smart meter records is challenging [40]. For 
example, one study implemented a three-stage load decomposition 
method that relied on the hourly electricity temperature relationship 
and building characteristics to separate the AC load from the house
hold’s total load [41]. The method was able to accurately estimate the 
AC load profiles of the households in the dataset, when compared with 
ground truth appliance-level data. However, researchers with large- 
scale smart meter datasets typically do not have access to the building 
characteristics that were utilized in this study.

In the second step of the study by Dyson et al., the authors used smart 
meter data from 30,000 customers in PG&E’s service territory to identify 
the hours in which a household turned on their AC [20]. Similar to the 
studies that determine the presence of an AC unit based on temperature 
and electricity, the household’s hourly electricity demand and outdoor 
temperature were fit to a linear regression model. However, this study 
utilized hourly measurements to analyze intraday electricity demand 
and make inferences about AC usage. Each pair of hourly electricity and 
temperature measurements were fit to either a temperature- 
independent model or a temperature dependent model with hourly 
and weekend/weekday fixed effects and reassigned iteratively until the 
model converged. The authors then calculated the impact that a 4-de
gree change in the AC setpoint would have on each household’s 
power consumption and aggregated the results to estimate the demand 
response capacity of customers in PG&E’s service territory. This study 
provided meaningful insight into the extent of grid services and flexi
bility that residential customers can provide, but the analysis of cooling 
behavior was limited.

Recent residential cooling demand studies have produced highly 
resolved estimates of AC ownership across large spatial extents, offering 
unprecedented insight into regional patterns of AC adoption. However, a 
majority of these studies rely on daily data to infer which households 
have AC, thus limiting the knowledge of patterns of AC use. Conversely, 
studies pertaining to the patterns of AC have thus far utilized small 
dataset samples that cannot be extrapolated to understand regional 
cooling usage. Therefore, a research gap exists in the literature as the 
heterogeneity of AC consumption across spatial, temporal, and climatic 
extents has not been well explored. In this body of work, we use a large 
scale hourly smart meter dataset to make highly resolved estimates of 
household AC ownership and use patterns across the study region of 
Southern California. The approach taken in our work provides novelty 
and improves upon previous methods by directly modeling electric 
heating, analyzing smart meter data at the hourly (rather than daily) 
level, and combining estimates of AC ownership and hourly operation to 
characterize cooling demand across a demographically and geographi
cally diverse region.

3. Methodology

In this section, we describe the three-part framework that we develop 
to characterize cooling behavior in Southern California using smart 
meter data from ~200,000 residential customers. Before implementing 
the framework, we carry out several filtering methods and outlier checks 
to ensure that our dataset only contains households with a sufficient 
amount of data, and that erroneous values are removed for each separate 
household. In step 1 of our framework, we use a novel AC identification 
methodology (the AC Ownership Algorithm) to determine which 
households have AC. We compare our AC ownership results with the 
results from Chen et al. [19] and survey data for the same study area 
[16,42] to analyze the impact that household location and technologies 
may have on AC identification for each method. In step 2, we employ an 
AC state model (the AC State Algorithm) to determine in which hours the 
AC households (determined in step 1) have their AC on. In step 3, we 
combine our estimates of AC penetration and operation to describe the 
cooling demand of the study region. This series of steps is summarized in 
Fig. 1. In this three-part framework, we define and calculate three 
different metrics that capture different aspects of a region’s cooling 
demand:

• AC Penetration Rate: The estimated percentage of homes in a defined 
region with AC.

• AC Operation Rate: The estimated fraction of hours out of a defined 
set of hours (e.g., two-year study period or all hour 12s in a year) for 
which the AC is active. The rate can be calculated for a single 
household or as an average of all households in a defined region.
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• Net AC Utilization: The product of a defined region’s AC Penetration 
Rate and AC Operation Rate.

3.1. Dataset information and preprocessing

The dataset used in this analysis consists of smart meter electricity 
records measured in 15-min intervals at the household level for 2015 
and 2016. The data was provided by Southern California Edison (SCE), 
an investor-owned utility, and contains data from roughly 200,000 
distinct customers identified by SCE as being single-family households. 
The customers were selected at random to be statistically representative 
of the 4.5 million households located in Greater Los Angeles at 99 % 
confidence level. The street address for each customer was also pro
vided, allowing for detailed spatial analysis (e.g., AC use at the census 
tract level). These dwellings span over ~2500 census tracts and 7 
building climate zones, as defined by the California Energy Commission 
[43], in the Southern California area. As this data is highly confidential, 
the smart meter records were stored on a high-security data account 
(HSDA) provided by the University of Southern California to meet the 
security requirements of SCE.

Prior to applying the AC Ownership and AC State Algorithms, we 
perform outlier analyses on the aggregate hourly and daily electricity 
data. A large portion of this outlier analysis follows the steps performed 
by Chen [19] and Peplinski, et al. [21]. The goal of the preprocessing 
step is to remove all homes for which there is insufficient smart meter 
data and remove smart meter records that indicate missing or highly 
abnormal behavior. We aim to curate a dataset that is both represen
tative of the region and makes it possible to clearly establish the rela
tionship between electricity and temperature at the household level.

First, homes with fewer than 20 kWh of average annual electricity 
consumption, which is approximately the daily electricity demand of an 
average California home, are removed as it is likely these homes are 
uninhabited [44]. Additionally, homes with consumption falling more 
than three standard deviations above the mean annual electricity con
sumption are removed as outliers. Next, we filter all homes that are 
suspected to have solar panels on site to avoid the inconsistencies 

created by net metering, discussed in greater detail in the work by Chen 
[19] (we estimate that less than 2 % of homes in our dataset have solar 
panels). For the remaining homes, we aggregate the 15-min smart meter 
data to the hourly level and drop all hours for which the electricity 
consumption is zero. For a smart meter to give a reading of zero across 
an hour, the home would have to either be disconnected from the grid 
due to long-term vacancy or power failure, or possess solar panels that 
cause a meter read of zero due to net-metering. In either case, the hours 
in question would not reflect the customer’s typical consumption pat
terns, which may interfere with the analysis of AC ownership and use. 
Note that temporary vacancy would be highly unlikely to give a meter 
read of zero due to plug loads like refrigerators.

Next, we match each individual household to weather stations within 
a 20-mile radius, using data from 102 weather stations within three 
different land-based weather station systems [45–47]. For each house
hold and each hour, the temperature of the nearest weather station that 
has a temperature reading in that hour is assigned to the household. If no 
weather station within 20 miles has a temperature reading, the hour in 
question is removed from the household’s data due to an inability to 
establish an electricity-temperature relationship. Next, to eliminate 
hours with extreme levels of electricity consumption, we bin electricity 
data into ten temperature quantiles and remove hours for which con
sumption exceeds 5 standard deviations above the mean within said 
quantile. This eliminates hours with highly irregular electricity con
sumption, caused by an unexpected load, that would distort the rela
tionship between electricity demand and ambient temperature. After 
performing this hourly filtering, we drop any homes for which less than 
4380 hourly records remain (one half of a year) to ensure sufficient data 
to perform the AC Ownership and State Algorithms. At the end of this 
outlier removal process, we retain ~160,000 households from 2439 
census tracts and four counties across Southern California Edison’s 
service territory.

3.2. AC Ownership Algorithm and computation of AC Penetration Rate 
(Step 1 in Fig. 1)

We determine whether each household in the filtered data set has an 

Fig. 1. Overview of methodology for finding AC Penetration Rates, AC Operation Rates, and Net AC Utilization.
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AC unit and/or electric heater by examining the relationship between 
hourly electricity consumption and hourly outdoor temperature. For 
households with an AC, we expect that there is a positive correlation 
between hourly electricity consumption and hourly temperature above a 
certain temperature threshold, but this relationship is dependent on the 
operational status of the AC in a specific hour. For example, a household 
with an AC may turn it off when unoccupied, so high-temperature hours 
will only display temperature dependence within the subset of hours for 
which the AC unit was running. Similarly, homes with electric heating 
should display temperature dependence at temperatures below a spe
cific temperature threshold, but only for the fraction of hours for which 
the electric heater was in use. Given that electricity consumption de
pends on many loads that are not related to temperature (e.g., cooking, 
entertainment, household chores) and will therefore depend on indi
vidual user behavior, we must account for this temperature-independent 
electricity consumption before analyzing the temperature-dependent AC 
and electric heating loads. We do this by subtracting an estimate of the 
typical temperature-independent load for each hour (that is, the ex
pected electricity consumption of non-AC or electric heating loads). For 
each home, we group the electricity data by hour of the day and day type 
(weekend vs weekday) and find the 25th percentile of electricity con
sumption for each group. We then subtract the corresponding 25th 
percentile value from each hourly electricity record (note: this leads to 
some hourly electricity consumption records being negative, as shown in 
Fig. 2). We use the 25th percentile, rather than the 50th percentile, as an 

estimate of the temperature-independent consumption to account for 
the fact that some hours will feature a significant amount of AC and/or 
electric heating use that skews the distribution.

We then fit each user’s adjusted data to four models that relate 
electricity consumption to temperature with each model representing an 
AC and electric heating technology combination. Examples of homes 
that demonstrate good fits for each of the above models are shown in 
Fig. 2. We refer to temperatures at which heating or cooling behaviors 
may change as stationary point temperatures (SPT). For example, the 
cooling SPT is the temperature above which there is a possibility of AC 
use.

• Model 1: All data is fit to one horizontal line, implying that electricity 
consumption is independent of temperature. This model corresponds 
to no electric heating or AC (top left quadrant).

• Model 2: A portion of the data is fit to one line representing the 
temperature-independent portion of the load, and, at temperatures 
above a cooling SPT, a portion is fit to an additional line representing 
the hours that demonstrated a temperature-dependent load due to 
AC usage. This model corresponds to a residence with AC but no 
electric heating (top right quadrant).

• Model 3: A portion of the data is fit to one line representing the 
temperature-independent portion and, at temperatures below a 
heating SPT, a portion is fit to an additional line representing the 
hours that demonstrated a temperature-dependent load due to 

Fig. 2. Hourly electricity consumption versus hourly ambient temperature for four example homes in Southern California over the two-year period. Each plot depicts 
one of the four AC and electric heating (EH) technology combinations: Model 1) no AC or EH, Model 2) AC no EH, Model 3) EH no AC, and Model 4) AC and EH.
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electric heating usage. This model corresponds to a residence with 
electric heating but no AC (bottom left quadrant).

• Model 4: A portion of the data is fit to one line representing the 
temperature-independent portion of the load and the remaining data 
is fit to one of two temperature-dependent lines, with one line for 
temperatures below the heating SPT and one for temperatures above 
the cooling SPT. This model corresponds to a residence with electric 
heating and AC (bottom right quadrant).

For all the above models, every individual datapoint (i.e., hour) is fit 
to exactly one line. For Model 1, there is a single temperature- 
independent line that has a constant y-value equal to the mean elec
tricity consumption of all points. However, for Models 2–4, we deter
mine in which hours the electricity demand exhibits temperature 
dependence and the lines of best fit for temperature dependent and 
temperature-independent hours using a version of the expectation- 
maximization (EM) algorithm. The EM algorithm involves iteratively 
classifying datapoints to groups and then fitting models of those groups 
until a condition is met.

In Model 2, we assume that for temperatures above the cooling SPT 
there is a possibility that the AC will be running and therefore that these 
hours can demonstrate temperature dependent or temperature- 
independent electricity consumption. To begin the EM algorithm, we 
first assume that all hours with temperature above the 70th percentile 
and electricity consumption above the 70th percentile of this subset of 
hours are temperature dependent, and all other hours are temperature 
independent (though the results of this algorithm were not noticeably 
sensitive to different initial seedings). The temperature-independent line 
is then defined by the mean electricity consumption for all points 
assigned to it, and the slope of the temperature-dependent line is 
calculated via a non-negative linear regression of electricity consump
tion on temperature for all hours assigned to it. All hours above the 
cooling SPT are then reassigned to the two lines depending on error 
minimization, and the models are refit with the newly assigned hours. 
This process continues iteratively until fewer than 1 % of eligible points 
switch line assignment or until fewer than 1 % of the total hours are 
assigned to the temperature-dependent line. We test potential cooling 
SPTs of integers ranging from 60 to 100 ◦F to cover a large range of 
potential cooling preferences and select the SPT that minimizes the total 
error. Model 3 proceeds identically to Model 2, but the classification of 
points occurs at temperatures below the heating SPT, and the search 
space for the heating SPT ranges from 40 to 70 ◦F.

For Model 4, a household’s data is split into two portions based on 
the midpoint of the heating and cooling SPTs found by Models 2 and 3, 
and then the algorithm described above is repeated for each portion of 
data with the midpoint serving as the lowest possible cooling SPT and 
the highest possible heating SPT. The temperature-independent line is 
again set as the mean of all points not assigned to the temperature- 
dependent lines, regardless of temperature.

For each of the four models, the model error is determined by the 
mean-squared error for the lines of best fit multiplied by the number of 
lines fitted (one line for Model 1, two for Models 2 and 3, and three for 
Model 4). The multiplier on the mean-squared error penalizes more 
complex models that would otherwise generally have lower error 
(similar to error terms used in information criterion analysis [48]). We 
fit all four of the models to each home, and then select the model that 
minimizes this custom error function. Homes for which Models 2 or 4 
were selected are considered to have AC, and homes for which Models 3 
or 4 were selected are considered to have electric heating. This algo
rithm is designed to capture the general relationship between electricity 
consumption and temperature of specific households, which gives 
insight to their space conditioning technologies, and not to minimize 
model error or most-accurately describe their heating or cooling 
demand.

To characterize AC ownership across our region, we match each 
household to a census tract and a California building climate zone using 

shapefiles from the US Census Bureau [49] and California Energy 
Commission [43]. For each respective census tract and climate zone, we 
calculate the AC Penetration Rate by dividing the number of homes in 
the area identified as having AC by the total number of homes in the 
region present in our dataset. We compare the results of this method
ology to the results found by Chen et al. [19] at the census tract level for 
Southern California and our aggregated results to survey data collected 
in the region. Following the filtering steps, the remaining records are 
statistically representative of 1534 census tracts.

3.3. AC State Algorithm and computation of AC Operation Rate (Step 2 
in Fig. 1)

For the subset of households designated as having AC, we proceed 
with a more fine-tuned algorithm to determine the cooling SPT and the 
hours during which the AC is on. While the AC Ownership Algorithm 
(described in Section 3.2) aimed to establish general electricity- 
temperature relationships for the purpose of identifying the presence 
of electric heating and cooling technologies, here we use the AC State 
Algorithm, adapted from Dyson et al., to establish specific cooling be
haviors and parameters [20]. This includes the cooling SPT (i.e., the 
temperature at which people begin to turn their AC on) and a more 
precise prediction of which hours feature AC activity. The AC State Al
gorithm classifies every hour as being “AC on” or “AC off” even though 
during an “AC on” hour the AC may not be running continuously 
throughout the hour.

In this method, each home is fit to a multiple-linear regression model 
that regresses electricity consumption on temperature and dummy 
variables that represent the interactions of day type (weekend vs 
weekday), hour of day, and a binary variable that classifies each hour as 
a high-temperature or low-temperature hour. The temperature depen
dent portion of the model is again conditional on the state of the heating 
and cooling technologies and is only defined for specific temperature 
ranges. 

Et = Dt∈h,w,s + Ht(β1 × (SPTH − Tt) + i ) + Ct(β2 × (Tt − SPTC)) + j ) (1) 

In Eq. 1, the electricity consumption during a one-hour time period t 
(Et) is determined by the AC state (Ct),the electric heating state (Ht), and 
a vector of dummy variables (Dh,w,s) that specify the fixed impact of the 
combination of the hour of the day (h) and the day type (w, weekday vs 
weekend), which are further split into high-temperature vs low- 
temperature hours (s) with a threshold of 60 ◦F. These dummy vari
ables account for non-temperature-dependent loads, such as cooking 
and entertainment-related electricity consumption, that occur with 
different frequency depending on the time of the week and the weather 
(for example, people are likely to be home consuming some electricity at 
8 pm on the weekdays during colder weather). If the AC is classified as 
on during time t, the electricity consumption depends on the electricity- 
temperature sensitivity for cooling (β2) multiplied by the difference 
between the temperature and the cooling SPT (SPTC), and an AC inter
cept (j). Similarly, at temperatures below the heating SPT we assume 
that electric heating could be on, and that electricity consumption 
therefore depends on the electricity-temperature sensitivity for heating 
(β1) and a separate heating intercept (i). For homes that were classified 
as having AC but no electric heat, the heating state of all hours was set to 
zero. The heating and cooling intercepts can be interpreted as the 
minimum additional electricity consumed when the AC or electric 
heating is on and the electricity-temperature sensitivities can be inter
preted as the increase in electricity consumption that occurs as outdoor 
temperature increases when the AC is on, or as temperature decreases 
when the electric heating is on.

For each hour, we again determine the AC state (on/off) and electric 
heating state (on/off) via the EM algorithm that was used in the AC 
Ownership Algorithm; we iteratively find lines of best fit for each state, 
and then reassign hours based on minimizing the prediction error. We 
use the same initial seeding from Section 3.2 for AC-on hours, and again 
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terminate this algorithm when fewer than 1 % of eligible points switch 
AC state or when fewer than 1 % of total points are classified as AC on. 
Fig. 3 illustrates the results of this model for an example home with a 
SPT of 81 ◦F. We show results for four hours of the day during the week 
with the hourly AC and non-AC points indicated. Note that across all 
hours the AC intercept and temperature sensitivity are constant, which 
assumes that AC consumption is linearly dependent on changes in 
temperature regardless of time of day or current temperature (provided 
the temperature is above the SPT). With hour of the day included as a 
variable in the regression, an 8 am datapoint may be classified as AC on 
despite having a lower electricity consumption than a 4 pm datapoint 
that is classified as AC off because the 8 am datapoint represents un
usually high electricity consumption for that time of day and day type.

To estimate the cooling SPT, we look for a temperature that both 
reduces error and increases the probability of correctly classifying the 
state of the AC. A lower cooling SPT generally reduces the error term 
because more of the data is fit to two lines instead of one. Conversely, 
higher cooling SPTs generally lead to more confident predictions of the 
AC state, since at higher temperatures there is typically a higher fraction 
of hours classified as AC on and a larger magnitude difference between 
the electricity consumption of an AC-on versus AC-off hour. We balance 
these two objectives through an error term that combines the prediction 
likelihood and the probability of AC being on, which is defined as the 
fraction of hours with temperature above the cooling SPT that are 
classified as AC hours. We test each cooling SPT between 60 and 100 ◦F 
and find one value for each household that minimizes the error term. 
More discussion of the SPT selection method can be found in [20]. We 
used a fixed heating SPT of 60 ◦F for the electric heating system because 
we are not interested in identifying specific electric heating behaviors. 

We note that it is necessary to include this temperature dependence 
below 60 ◦F to avoid the errors at low temperature hours dominating the 
total error and therefore skewing the cooling SPT selection process. With 
the optimal cooling SPT selected, we can make a final classification of 
the hours during which a household’s AC is on.

We then determine a household’s AC Operation Rate, which is the 
fraction of hours that a home has its AC on (the number of hours clas
sified as AC on divided by the total hours). Recall that an “AC on” hour is 
an hour that demonstrates clear temperature dependence, and the 
classification does not capture the number or length of AC cycles that 
occur during the hour. Following the same method of matching house
holds to census tracts and climate zones as was used for AC Penetration 
Rate, we also find the average AC Operation Rate for a region by taking 
the mean of the AC Operation Rate for each household in the region. The 
household and average AC Operation Rates can be calculated for the 
entire study period or a subset of time (e.g., the AC Operation Rate in all 
hour 12s).

3.4. Calculation of Net AC Utilization (Step 3 in Fig. 1)

Finally, we use our regional estimates of AC Penetration Rate and AC 
Operation Rate to calculate the Net AC Utilization for a region as shown 
in Eq. 3. 

Net AC UtilitzationR = AC Penetration RateR × AC Operation RateR

(3) 

Eq. 3 defines the Net AC Utilization of a region R as the product of the 
region’s AC Penetration and Operation Rates. We find Net AC Utilization 
for the entire study region, as well as for each census tract and climate 
zone within the study region. Net AC Utilization is directly proportional 
to the number of per-household "AC on" hours in a region and better 
describes the AC use in a region than estimates of AC ownership or state 
in isolation.

4. Results and discussion

4.1. Comparison of AC penetration rates with other studies

Across the entire study region, AC was detected in 79 % of house
holds. In the California Residential Appliance Saturation Survey (RASS), 
75 % and 86 % of customers surveyed in SCE territory reported having 
central or room AC in the years 2009 and 2019, respectively. Our region- 
wide estimate is in alignment with the survey results considering that 
the smart meter records analyzed in this study (2015–2016) fell in be
tween the survey years, [16,42].

This study’s estimate of the region’s overall AC Penetration Rate is 
significantly higher than the value found in Chen et al. (69 %) [19]. 
There are multiple explanations that account for the difference. First, the 
methodology used in this study to classify AC households does not make 
assumptions regarding the electric heating status, and thus, is more 
likely to correctly identify homes that have and use both electric heating 
and cooling systems. Second, we expect this methodology to better 
capture households that use their AC infrequently and/or have other 
electric loads that contribute significantly to total demand, diluting the 
electricity-temperature signature at the daily level. This theory is in part 
validated by the breakdown of central versus room AC units reported in 
the RASS (58 %/18 % in 2009 and 68 %/18 % in 2019), indicating that 
the daily methodology utilized by Chen et al. might have accurately 
captured the central conditioners but failed to identify the room con
ditioners with smaller loads.

To gain an understanding of spatial differences in the results from 
this study and Chen et al. [19], the difference in AC Penetration Rate 
estimates in each census tract was plotted on a choropleth map shown in 
Fig. 4. The areas in blue were estimated to have higher AC Penetration 
Rates when the proposed hourly method was used in place of the pre
vious daily method, while areas shown in red were estimated to have 

Fig. 3. Top: Scatterplot of hourly electricity consumption and temperature for 
the two-year period for one household. Bottom: Results of the AC State Algo
rithm for four different weekday hours over the two-year period. For this home, 
we determined a cooling SPT of 81 ◦F, hence only hours with temperature 
above 81 ◦F can be classified as AC on.
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lower AC Penetration Rates. This study’s method of detecting AC found a 
higher penetration in the majority of census tracts across the region. We 
note that the households studied in this analysis were not evenly 
distributed across census tracts, and thus some of the census tracts that 
show large differences between methods in Fig. 4 are the result of having 
a small number of homes in that specific census tract. (Census tracts that 
are not statistically represented are indicated in Fig. 4 with cross 
hatching.)

Through this methodology, we also estimated that 25 % of house
holds have electric heating. In the 2009 RASS, only 4 % and 1 % of 
customers reported an electric heater as their primary and auxiliary 
space heating appliance. The percentages of primary and auxiliary space 
heating appliances increased to 17 % and 6 % in the 2019 RASS. Since 
our smart meter records fall in between the survey years, the method
ology used in this study likely overestimates the portion of electric 
heaters present in Southern California. One explanation for the 
discrepancy in values is that households may be supplementing their 
natural gas heating with electric room space heaters that were not sur
veyed in RASS. Elmallah et al. detected electric heating in 27 % of 
homes, which was higher than the value reported for RASS in some of 
climate zones located in their dataset; similarly, the authors pointed to 
the use of room space heaters as an explanation [28]. It is important to 
note that Southern California has more cooling degree days (CDDs) than 
heating degree days (HDDs) [50], and demand for space conditioning is 
driven by cooling needs rather than heating needs.

4.2. Tracking temporal patterns of AC operation rate

One of the major advantages of the method described in this study is 
the ability to track patterns of AC operation. While the AC Penetration 
Rate is an important metric to characterize who has access to AC in a 
community and inform where the power grid may experience spikes in 
demand, information about how people use their AC is also necessary to 
quantify cooling demand. Here, we analyze variations in customer AC 
Operation Rate, including how often and when their AC unit is on, and 
explore how these behaviors create regional differences in cooling 

behavior.
The results of this study found the average customer with AC has an 

AC Operation Rate of 8.3 % calculated across the entire two-year study 
period. The bar chart shown in Fig. 5 depicts how AC Operation Rates 
vary across and within the climate zones in SCE’s territory. In the cooler, 
coaster climate zones (e.g., climate zones 6 and 8) the AC Operation Rate 
across the full study period is generally lower than for customers in the 
hot, desert climate zones (e.g., climate zones 14 and 15). For example, in 
climate zone 15 which is characterized by a hot, desert climate, only 5 % 
of customers have an AC Operation Rate less than 3 %, compared to 23 
% of customers in the coastal climate zone 6.

In addition to knowing how often utility customers use their AC, we 
can capture the timing of when customers use their AC and how that 
varies across the region. The heat maps in Fig. 6 show the average AC 
Operation Rate in each hour and month combination for each of the 
study region’s seven climate zones. Across all climate zones, the AC 
Operation Rate is higher in the afternoon and early evening, as well as in 
the hot, summer months. In climate zones that experience relatively cool 
temperatures (e.g., climate zones 6 and 8) the range of hours and months 
with notable AC Operation Rates is smaller, and the AC Operation Rate 
itself is, in those time periods, generally lower than in the hotter, desert 
climate zones, such as 14 and 15.

4.3. Spatial trends in AC penetration rate, AC operation rate, and net AC 
utilization

To observe how trends in cooling behavior vary across the study 
region, study results were aggregated to the census tract level. In Fig. 7, 
panel a) depicts AC Penetration Rates, lending insight into which areas 
have higher rates of AC ownership. Panel b) displays AC Operation 
Rates, which measure how often the average customer in each census 
tract used their AC during the study period. In general, the cooler, 
coastal and mountainous regions have lower rates of ownership and use 
their AC less frequently than the hotter, inland and desert regions (also 
shown in Section 4.2).

While AC Penetration Rates and AC Operation Rates separately 

Fig. 4. Choropleth maps depicting the difference between census tract level AC Penetration Rates estimated with the hourly method proposed method in this study 
and the daily method developed by Chen et al. [19]. Generally, the AC Penetration Rate computed with the new method is higher (blue) than when the previous 
method was used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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provide important information about the cooling demand of a commu
nity, we can better estimate the locations that are likely to have high 
cooling demand by combining these factors into one metric. Thus, Net 
AC Utilization, which accounts for both the percentage of households in 
a specified area that have AC and how often those customers have their 
AC on was computed for the entire study region by census tract, with the 
results shown in Fig. 7, panel c). The Net AC Utilization of a census tract 
is directly proportional to the expected number of hours of AC use that 

an average household selected from our data in that census tract would 
have and thus is useful for evaluating local cooling need and the location 
of demand surges during extreme heat events. In Fig. 7, we report Net 
AC Utilization by decile because there is not a clear physical meaning of 
the metric as a percentage value (in contrast to AC Penetration and AC 
Operation Rates).

In general, the regional patterns are consistent across each of the 
panels shown in Fig. 7, meaning areas with higher AC Penetration Rates 

Fig. 5. Stacked bar chart showing the breakdown of AC Operation Rates over the study period for each climate zone. Each bin represents an AC Operation Rate 
range, with darker shades of blue indicating a higher AC Operation Rate (e.g., AC is classified on for more hours). The summer mean temperature for each climate 
zone is shown to the right of each bar. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Heat map depicting the average AC Operation Rate of each day and month of the year combination for a-g) each climate zone and h) full study region. The AC 
Operation Rate is averaged across all pertinent customers that were identified as having AC. The summer mean temperature for each climate zone is shown above 
each subplot.
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also have higher AC Operation Rates and Net AC Utilization. Although 
the regional trends are consistent, there are still census tracts where the 
AC Penetration Rate is relatively high, but the AC Operation Rate is 
relatively low (and vice versa), which demonstrates the limitation of 
relying on AC Penetration Rates alone when evaluating cooling demand.

If we compare the AC Penetration Rates and Net Utilization Rates, we 
can see how incorporating the AC Operation Rates impacts our evalu
ation of cooling demand. Table 1 provides the percentage of census 
tracts at each quantile of AC Penetration Rate that fall into each quantile 
of Net AC Utilization. For example, of the census tracts in the 20–40 % 
percentile of AC Penetration, it is more likely that they fall into a lower 
percentile of Net AC utilization than remain in the 20–40 % percentile 
range. This could be explained by the fact that these census tracts 
experience cool enough temperatures that they rarely need to use their 
AC, or that they are lower-income census tracts within that quantile that 
are more conscious of their electricity consumption.

A second interesting insight is that while most census tracts with high 
AC Penetration Rates also have high AC Operation Rates, roughly 23 % 
of census tracts in the top quantile of AC Penetration Rate shift into the 
bottom two Net AC Utilization quantiles. This could be explained by 
high-income census tracts that own ACs despite living in relatively 
cooler climates, thus not requiring cooling often, or low-income census 
tracts in hot regions where households forgo cooling to lower electricity 

Fig. 7. Choropleth maps depicting the a) AC Penetration Rate, b) AC Operation Rate, and c) Net AC Utilization (binned by decile) computed at the census tract level.

Table 1 
A transition matrix summarizing the AC Penetration Rates and Net AC Utiliza
tion percentile ranks of the census tracts in the study region, where 0–20 % 
indicates the lowest and 80–100 % indicates the highest AC Penetration Rate/ 
Net AC Utilization quantile. Each value represents the percent of census tracts 
that originally fell in each AC Penetration Rate quantile (denoted by row) that 
shift into the specified Net AC Utilization quantile (denoted by column), effec
tively showing the impact that including AC Operation Rates has on the cooling 
demand evaluation.

Net AC Utilization Percentiles

AC Penetration 
Rate 

Percentiles

0–20 
%

20–40 
%

40–60 
%

60–80 
%

80–100 
%

0–20 % 49 % 26 % 15 % 7 % 3 %
20–40 

% 29 % 25 % 21 % 15 % 10 %
40–60 

% 18 % 21 % 22 % 20 % 18 %
60–80 

% 13 % 18 % 21 % 24 % 24 %
80–100 

% 9 % 14 % 19 % 25 % 33 %
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costs despite high temperatures. The results of this section suggest that 
AC Penetration and AC Operation Rates are not always tightly correlated 
and warrants a further analysis of what factors cause diverging results in 
some regions, as those populations may either be underserved or 
consume a disproportionate amount of electricity making them a target 
for grid flexibility efforts.

4.4. Net AC utilization considering climate

While Net AC Utilization provides a useful metric of existing cooling 
demand in a region, we are also interested in the relationship between a 
household’s theoretical need for cooling and their actual AC behaviors. 
We approximate a single household’s theoretical cooling need by 
aggregating their hourly temperatures to the daily level and calculating 
their annual CDDs. In Fig. 8, we plot the mean household Net AC Uti
lization against the mean household CDDs at the census tract level.

We see that for a given number of CDDs, there is a large variety in the 
degree of Net AC Utilization across census tracts. This is of particular 
note for census tracts with a high number of CDDs, and thus a high 
theoretical cooling need, but a low Net AC Utilization. For example, 
there are 41 census tracts that rank above the 80th percentile of CDDs 
but fall below the 50th percentile of Net AC Utilization. These census 
tracts may be experiencing energy insecurity due to poor access to AC or 
lack the financial resources needed to use the AC that they do have 
(although there are confounding factors unrelated to enery insecurity, 
such as AC efficiency and a building’s thermal properties, that can in
fluence AC use). Additional analysis is needed to determine if these 
census tracts are particularly vulnerable to extreme heat. Lastly, a small 
number of census tracts display high Net AC Utilization despite rela
tively low theoretical cooling need, which may represent an opportunity 
for targeted demand response programs.

5. Conclusion

In this three-part framework, we first developed a novel methodol
ogy for identifying the presence of AC from household-level smart meter 
data and used the model to compute regional AC Penetration Rates. 
Unlike previous methods, our novel model used hourly, rather than 
daily, electricity consumption data and directly modeled electric heat
ing, which was a confounding or ignored variable in several previous 
studies. We believe our focus on hourly data allowed us to better identify 
homes with a variety of AC types and with intermittent AC use and find 

that our results align well with survey data from similar years in the 
same region. In the second part of this study, we predicted the hourly AC 
state at the household level using the AC State Algorithm and aggregated 
the results to observe trends in AC Operation Rates across spatial, 
temporal, and climatic ranges. Finally, we combined AC Penetration and 
AC Operation Rates to calculate each census tract’s Net AC Utilization 
and better characterize regional residential cooling behavior.

Unsurprisingly, we find higher rates of AC Operation Rates in the 
middle of the day and afternoon of summer months. We also find that 
some census tracts have surprisingly low Net AC Utilization when 
compared to adjacent areas and when compared to the amount we 
would expect for an area with significant climatic need for cooling. This 
phenomenon may be explained by the demographic or economic traits 
of the census tract (which is beyond the bounds of this analysis). 
Regardless of the cause, these areas would likely benefit from programs 
designed to increase AC access and/or address energy insecurity. In 
future work, we plan on conducting a more rigorous analysis of the 
factors that drive disparities in the cooling demand. For areas that 
already have high AC Penetration Rates and AC Operation Rates, these 
census-level estimates increase our understanding of where surges in 
demand are likely to occur during extreme heat events and high tem
peratures which is useful information for utilities and grid planners.

The authors would like to acknowledge several limitations of this 
study. First, there is no ground truth data of AC ownership or operation 
at the household level with which to validate our results, thus we cannot 
determine the accuracy of our algorithms that were used to determine 
the AC Penetration and AC Operation Rates. Furthermore, comparisons 
between methods also cannot speak to whether one method is more or 
less accurate for our dataset. Instead, we focus on comparing our AC 
Penetration estimates with relevant survey data for the same region. 
This study would also benefit from a sensitivity analysis that examined 
how algorithm specifications such as the range of potential STP tem
peratures, the error formula used, and the estimate of temperature- 
independent load impact the AC Penetration and AC Operation Rates. 
Unfortunately, the extensive runtime of the algorithms on our compu
tational resources makes parametric analysis impractical.

While our dataset contains nearly 160,000 homes after filtering, the 
large spatial extent of the data spreads these homes across many census 
tracts and creates a large range in the number of homes per census tract. 
As a result, the samples of homes in this dataset are only statistically 
representative for ~63 % of the census tracts. We believe our general 
method of relating electricity consumption and ambient temperature at 

Fig. 8. Scatter plot of normalized Net AC Utilization versus CDD experienced during the study period averaged by census tract. Census tracts that are not statistically 
represented by the households in our dataset are not included.
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the hourly level with models that represent distinct electric space con
ditioning technologies and usage patterns can be extrapolated to other 
regions. However, in other regions, the different climatic factors and 
relative frequencies of a variety of space heating and cooling technolo
gies may require modifications to the methodology presented here. For 
example, studies of other areas may find that a humid heat metric is 
more closely related to AC ownership and use than temperature alone. 
As large smart meter datasets become more widely available, these al
gorithms should be repeated on a variety of climate zones and pop
ulations. Lastly, in this study we discuss Net AC Utilization as a way to 
characterize AC behavior, but we acknowledge that a more complete 
study of cooling demand would consider the magnitude of AC electricity 
consumption, which is beyond the bounds of this analysis.
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