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SHORT COMMUNICATION

BENTHIC AND EPIBENTHIC INVERTEBRATE ASSEMBLAGES ASSOCIATED
WITH ESTUARINE SUBMERGED AQUATIC VEGETATION DIFFER BETWEEN

NATIVE AND INVASIVE PLANTS?

Marissa Hall"?, Kathryn A. O’Shaughnessy', Bethany Kiley'?, Ashley M. McDonald!, Taber Faurie'?, Zoey Hendrickson'?,
Anna Reimer!?, Samantha Smith"?, and Charles W. Martin**

'Dauphin Island Sea Lab, 101 Bienville Blud, Dauphin Island, AL 36528, USA; *Stokes School of Marine and Environmental Sciences,
University of South Alabama, Mobile, AL 36688, USA; *Corresponding author, email: cmartin@disl.org
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INTRODUCTION

Estuarine submerged aquatic vegetation (SAV) plays a cru-
cial role in maintaining coastal ecosystem health and stability.
These underwater plants provide habitat and food for a diverse
mix of freshwater, estuarine, and marine organisms, includ-
ing fish (Rozas and Odom 1988, Martin and Valentine 2019),
invertebrates (Alford and Rozas 2019), and waterfowl (Zhou et
al. 2020). SAV serves as nursery habitat for many commercially
important species (Chesney et al. 2000, Castellanos and Rozas
2001, Martin et al. 2021), supporting biodiversity and fisheries
(Lazzari et al. 2006, Brzozowski and Petechaty 2025), and aids
in improving water quality by stabilizing sediments (Han et al.
2024), reducing turbidity (Hestir et al. 2016), and mitigating
excess nutrients (Zhou et al. 2018). However, many estuaries
now contain non—native and invasive SAV (McDonald et al.
2023), known to cause negative ecological and economic im-
pacts, primarily due to their rapid growth (Brundu 2015), high
reproduction (Engelhardt 2011), and ability to outcompete na-
tive species (Stiers et al. 2011), leading to altered ecosystem
structure and function (Lloret et al. 2004).

Eurasian milfoil, Myriophyllum spicatum L., is a problemat-
ic invasive species in freshwater and brackish systems across
North America, with documented ecological, economic, and
recreational issues (Frodge et al. 1990, Boylen et al. 1999).
Myriophyllum spicatum has now successfully established and
proliferated in many estuaries in the northern Gulf of Mex-
ico (Frazer et al. 2006, Valinoti et al. 2011, Alford and Rozas
2019), including the Mobile—Tensaw Delta (hereafter MTD)
in coastal Alabama (Chaplin and Valentine 2009, Martin
and Valentine 2014). First discovered in the area in the 1950s
(Beshears 1982), M. spicatum is now the most abundant SAV,
covering up to 80—85% of surveyed locations (USACE 2019).
Studies in freshwater systems indicate that M. spicatum out-
competes native macrophytes by developing an extensive can-
opy, impacting adjacent plants by out—shading (Bruce et al.
2018, Verhoeven et al. 2020), and thus poses a direct threat to
the most abundant native SAV in the MTD, wild celery Val-

lisneria americana Michx. (often referred to as V. neotropicalis)

(Kauth and Biber 2014, Lawrence et al. 2024).

Different macrophyte species are known to support differ-
ent associated biological communities, particularly when their
morphology (i.e., structural complexity) differs (Kovalenko et
al. 2010). Myriophyllum spicatum has highly dissected leaflets
that grow in a whorl pattern at 2 cm increments along long,
flexible branching stems. This species therefore has greater
structural complexity compared to the other abundant and na-
tive species, V. americana (Chaplin and Valentine 2009) which
has simple, non—branching ribbon—like leaves that grow to-
wards the water surface from a basal rosette. The distinct struc-
tures of these SAVs may support different biological assemblag-
es and food webs via differences in surface area for epiphyte
growth and interstitial spaces for organisms to occupy (Martin
and Valentine 2011, 2019). The displacement of V. americana
by M. spicatum, therefore, may result in differential macroin-
vertebrate communities, which could have ecosystem—wide
consequences.

While previous studies have documented differences in
above—ground macroinvertebrate assemblage between SAV
habitats in the MTD (e.g., Chaplin and Valentine 2009, Kauff
man et al. 2018, Alford and Rozas 2019), to date, belowground
assemblages are often overlooked. Investigating the composi-
tion of both above and belowground macroinvertebrates is
essential for gaining a complete understanding of the conse-
quences of the M. spicatum invasion of the MTD and wider
ecological impacts. Here, we investigate differences in above—
and belowground macroinvertebrate assemblages between na-
tive V. americana and invasive M. spicatum. We hypothesized
that there would be significant differences in the macroinver
tebrate assemblages between the SAV, with M. spicatum sup-
porting greater abundances and diversity of associated species,
while V. americana would support more even communities.

MATERIALS AND METHODS

Study Site

The Mobile—Tensaw Delta is the second largest river delta in
the contiguous United States (Szabo et al. 1988), and due to its

§ The first author conducted this research as part of the Dauphin Island Sea Lab’s Research Experience for Undergraduates in the coastal and nearshore marine
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rich diversity of wildlife, has been referred to as “America’s Am-
azon.” The lower reaches are comprised of several oligohaline
bays, bayous, marshes, and beds of SAV resulting from the input
of 5 major rivers (Chaplin and Valentine 2009). Our sampling
occurred in Chocolatta Bay (30°41'15.342”, —87°58'44.217"),
one of the larger bays in the lower MTD.

Experimental Design and Sampling Procedure

To investigate differences in macroinvertebrate communities
associated with native and invasive SAV within the MTD, epi-
faunal and infaunal samples were collected from monospecific
beds of V. americana and M. spicatum in Chocolatta Bay during
June 2024. A total of 12 paired epifauna and infauna samples
were collected haphazardly >5 m from each other, for a total of
24 samples of each SAV species. Epifauna samples were collect
ed by placing a 0.5—pm mesh bag over individual plants, which
were severed at the sediment surface (Sullivan et al. 2021). In-
fauna samples were collected using a 7 cm inner diameter core
inserted approximately 10 cm into the sediment and then re-
moved, retaining sediment and fauna contained within by hand
and then sieved in the field using a 0.5 mm sieve. While there
was potential to capture fauna residing on the sediment surface,
and as such may not reflect solely the infauna assemblage, we
applied this method consistently across both SAV beds. In the
laboratory, organisms were removed from SAV and transferred
to vials containing 70% ethanol for identification at the lowest
identifiable taxonomic level. For epifauna, dry weights of plants
per sample were obtained to standardize for plant biomass (i.e.,
counts of organisms per gram of plant) by drying plants in a
drying oven at 60°C for 72 h, at which time they were removed
and weighed.

Statistical Analyses

To test the hypothesis that V. americana and M. spicatum habitat
would support different macroinvertebrate communities, we
ran a one—way permutational multivariate analysis of variance
test (PERMANOVA) evaluating the effects of habitat (fixed,
2 levels: V. americana, M. spicatum) for epifauna (standardized
for count per gram of plant) and infauna (percent relative

abundance) separately after Bray—Curtis similarity matrices
were computed (using square root transformed data on both
datasets). Additionally, using a series of one—way analysis of
variance (ANOVA) tests, we analyzed differences in species
richness, abundance, Shannon—Weiner Diversity Index (H’)
and Pielou’s Evenness (J’, where ]’ ranges from 0—1 with greater
values indicating higher levels of evenness), and abundances of
major taxonomic groups (based on taxa contributions) between
habitats.

All statistical tests were conducted in PRIMER v7 with the
PERMANOVA + add—on (PRIMER—E Ltd, Anderson et al.
2008). Transformations were chosen with the aid of the Drafts-
man Plot function and PERMANOVAs were based on unre-
stricted permutation of raw data using 9999 permutations.
Multivariate data were visualized using non—metric multidi-
mensional scaling plots, and percent contributions of individu-
al organisms to differences between SAV habitats were assessed
using the similarity percentage (SIMPER) routine (Clarke and
Gorley 2015). Species richness, Shannon—Weiner diversity (H’),
and Pielou’s Evenness (]J’) indices were calculated using the DI-
VERSE routine, compared using PERMANOVAs, and visual-
ized in SigmaPlot v10. Treatments were considered significant
at p < 0.05.

ResuLts

Temperature (29.0—29.3°C) and salinity (2.2—2.4) were con-
sistent among vegetation at the time of sampling. A total of 16
macroinvertebrate taxa were recorded across the 2 species of
SAV, with 12 taxa associated with M. spicatum and 13 taxa in
V. americana (Supplemental Table S1). Two species were unique
to M. spicatum (bivalves and mysid shrimp) and 3 unique to V.
americana (Corophium species, Annelids, and the isopod Cyathu-
ra polita). Vallisneria americana supported more epifaunal (n = 12)
and infaunal (n = 10) species compared to M. spicatum (epifauna,
n = 11; infauna, n = 7).

One—way PERMANOVAs detected significant differences in
macroinvertebrate assemblages between SAV habitats for both

epifauna (F, ,, = 14.057, p <0.001) and infauna (F, ,, = 3.1429, p =
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FIGURE 1. Non—metric multidimensional scaling (nMDS) plots of communities associated with Myriophyllum spicatum and Vallisneria americana in

the Mobile Tensaw Delta, AL with a Spearman’s Rank Correlation vector overlaid. The length and direction of the lines on the vector overlay indicate

the strength and sign of the relationship between the SAV habitats and their associated species. Only vectors longer than 0.5 are shown. A. Epifauna

communities. B. Infaunal communities.
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FIGURE 2. Community difference measurements for macroinvertebrates
associated with Myriophyllum spicatum and Vallisneria americana in the
Mobile Tensaw Delta, AL. A. Mean (+ se) epifauna species richness. B.
Mean (* se) infauna species richness. C. Mean (+ se) epifauna Pielou’s
Evenness (J°). D. Mean (% se) infauna Pielou’s Evenness (J°). E. Mean (£
se) epifauna Shannon—Weiner Diversity Index (H’). F. Mean ( se) infauna
Shannon—Weiner Diversity Index (H’). Asterisk (*) denotes significant
difference between SAV species.

0.014) (Figure 1). An analysis of the contribution from individ-
ual taxa (SIMPER) showed that about 54% of the dissimilarity
observed between M. spicatum and V. americana for epifauna
was due to contributions from Gammarid amphipods, which
were 11.85 times more abundant in M. spicatum. For infauna,
24% of the dissimilarity between habitats was attributed to
polychaete species, which were 3.16 times more abundant in V.
americana (Supplemental Table S2).

Mean species richness in M. spicatum and V. americana did
not differ significantly for epifauna (M. spicatum, 5.25 + 0.54; V.
americana, 5.17 + 030; mean t se; Figure 2A; F,, =0.268,p=
0.729) nor infauna (M. spicatum, 2.64 + 0.53; V. americana, 3.17
+0.42; Figure 2B; FL22 =0.901, p = 0.371). For Pielou’s Evenness
(J"), epifaunal communities significantly differed between SAV

species, with communities in V. americana more even than M.
spicatum (Figure 2C; F,,= 65.103, p < 0.001); however, no sig-
nificant differences were detected in the infaunal communities
(Figure 2D; F = 3.064, p = 0.060). Shannon—Wiener Index
(H’) showed that V. americana supported significantly greater
epifaunal (Figure 2E; F ,, = 11.37, p < 0.001) but not infaunal
(Figure 2F; F ,, = 0.948, p = 0.343) diversity compared to M.
spicatum. Myriophyllum spicatum supported significantly higher
abundance of epifaunal individuals (n = 4.51 + 0.92) compared
to V. americana (n = 2.65 + 0.93; F,,,=22.235p< 0.001).
Analysis of abundances of major taxonomic groups within
the epifauna community showed that M. spicatum supported
significantly greater numbers of Gammarid amphipods (Fig-
ure 3A; F,,= 51.868, p < 0.001). No significant differences,
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FIGURE 3. Abundance of major taxonomic groups present on Myriophyl-
lum spicatum and Vallisneria americana in the Mobile Tensaw Delta, AL.
Presence based on % contribution from SIMPER analysis. A. Mean (+ se)
count/g plant of Gammaridae on epifauna. B. Mean (+ se) count/g plant
of Diptera on epifauna. C. Mean (* se) count/g plant of Nertiidae on epi-
fauna. D. Mean (+ se) percent of Gammaridae on infauna. E. Mean (+ se)
percent of Diptera on infauna. F. Mean (+ se) percent of polycheates on
infauna. Asterisk (*) denotes significant difference between SAV types.
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however, were detected between SAV types for Diptera (Fig-
ure 3B; F, , = 2.150, p = 0.152) nor Neritidae (Figure 3C; F .,
= 0.051, p‘= 0.868). For infaunal communities, no significant
differences in abundances were found between SAV types for
Gammarids (Figure 3D; F,,= 0.789, p = 0.410) nor Diptera
(Figure 3E; F ,, = 0.709, p = 0.4241), but there were significant-
ly higher abundances of polychaetes in V. americana compared
to M. spicatum (Figure 3F; F1,zz =4.615, p = 0.036).

DiscussioN
Results supported our hypotheses that epifaunal and
infaunal macroinvertebrate  assemblages would  vary

significantly between the native V. americana and the invasive
M. spicatum, where V. americana would support a more even
community (epifauna only), and M. spicatum would support
a greater abundance of individuals (epifauna only). However,
contrary to our hypotheses, Shannon—Weiner Diversity Index
showed that V. americana supported significantly greater
diversity compared to M. spicatum for epifauna.

Analysis of the epifaunal communities found that Gammarus
species drove the difference between SAV assemblages, with
this group significantly more abundant in M. spicatum. This
result is not surprising given that Gammarids have been shown
to preferentially choose more complex macrophyte habitats
(Hansen et al. 2011). Furthermore, Gammarids and other taxa
utilize the interstitial space of structurally complex plants to
avoid encounters with predators (Martin and Valentine 2011,
Valinoti et al. 2011) and Gammarids, specifically G. mucronatus,
have been previously documented in very high abundances
in M. spicatum (Chaplin and Valentine 2009, Kauffman et
al. 2018). The ultimate impact of this enhanced Gammarid
abundance on landscape—level food webs, however, remains
uncertain but we speculate that, given their 11 times greater
abundance in M. spicatum than V. americana, some alteration
of ecosystem services (e.g., organic matter and/or nutrient
cycling) are likely to occur.

Differences in infaunal communities were driven by the
polychaetes, with this group significantly more abundant
in V. americana. This result may be attributed to enhanced
recruitment of polychaetes to V. americana beds, differential
survivorship, or differences in food quantity/quality between
these SAV species. The role of belowground SAV biomass in
providing structural complexity and sediment oxygenation,
and the corresponding effects on infaunal community
structure is a topic requiring additional study. Gaining a better
understanding of mechanisms driving infaunal assemblages
and concomitant effects on plants may have utility for habitat
restoration and conservation (Heck 2019). Polychaetes provide

essential ecosystem services through aeration of sediment and
provision of food for higher trophic levels, and their burrowing
depths may be limited by root morphology (Pawlikowski and
Kornijow 2023). A loss or reduction in this group of species
through decreases in V. americana may thus have wider
ecological effects in the MTD.

With the continued decline in coverage of native species
such as V. americana, an ecologically vital species in the MTD,
our results provide baseline data to investigate potential
wider ecological consequences of the invasion of M. spicatum
across the MTD, especially given that V. americana supports
a more diverse and even community compared to M.
spicatum. Additionally, the substantially higher abundance
of Gammarids in M. spicatum (>10 times, on average) could
represent greater recruitment, higher survival rates, or merely
concentration of these amphipods in a preferred habitat.
Since these species are often preferred prey for higher trophic
level species (MacNeil et al., 1999), determining whether this
abundance is transferred to higher trophic levels could clarify
further functional distinctions between the two macrophyte
species (Martin and Valentine, 2019).

We acknowledge temporal and spatial limitations to this
study, with only one month sampled (June 2024); thus, the
results may not fully represent ecological impacts throughout
the year, and potential effects on ecosystem services can only
be considered within the context of this specific time point.
Additionally, we focused on assemblage differences between
two monospecific SAV beds at a single site (Chocolatta Bay).
A more comprehensive understanding of ecosystem impacts
would benefit from sampling additional monospecific beds
and bare sediment areas within Chocolatta Bay and the wider
Mobile Bay system, as natural variations across habitats are
likely due to factors such as water flow, salinity, and turbid-
ity. Additionally, macroinvertebrate identification to a lower
taxonomic level may show additional differences between the
2 SAV species. Thus, further investigations in space and time
are needed to clarify the impacts of M. spicatum on resident
biological assemblages and associated ecosystem services and
will contribute to a better understanding of external sources
of variation. Nevertheless, we provide important baseline data
on the ecological structure of epifaunal and infaunal com-
munities to support future research aimed at developing a
mechanistic understanding of the processes influencing SAV
assemblages. Specifically, future studies should aim to better
understand food web alterations by invasive species and the
broader implications of additional anthropogenic factors (e.g.,
hydrology, climate change, eutrophication) that may alter SAV
composition and affect faunal communities.
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