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Characterizing residential sector load curves from smart meter datasets 
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H I G H L I G H T S  

• Hourly smart-meter data of 160,000 homes were used to construct diurnal load profiles. 
• Disparities in hourly loads between households were measured using the Gini index. 
• The top 20% of households consumed about 40% of the daily electricity load. 
• The bottom half of consumers used <25% of the daily electricity load. 
• Customers in mild climates show less seasonal variability than those in hot climates.  
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A B S T R A C T   

Understanding how and when residential electricity is used throughout the day is integral to the successful 
implementation of potential residential demand management strategies. Our analysis characterizes the daily 
hourly load profiles of approximately 160,000 residential electricity customers across the Southern California 
Edison (SCE) service area during the period spanning 2015 to 2016 and 2018 to 2019 across weekends, week
days, seasons, and climate zones. We find that total daily electricity usage was highest in the hottest months of 
the year compared to milder months, particularly for households located in the hottest climate zones. The most 
energy-consumptive hours occurred during the mid-afternoon during the hottest months, in contrast to early 
evening high consumption in cooler months. We find that customers with average daily consumption at or above 
the 80th percentile cumulatively consume over 40% of electricity during the hottest months of the year resi
dential load, while the bottom half of customers cumulatively consume <25% of the total residential load. The 
disparities in electricity usage across SCE households are higher in the mid-day, especially in milder months 
across all regions, and in mild climate zones compared to hotter climate zones since loads are not as dependent 
on high HVAC loads.   

1. Introduction 

In recent years, the global energy landscape has begun a trans
formative shift towards less carbon-intensive forms of electricity gen
eration in efforts to mitigate the negative consequences of climate 
change [1]. Renewable electricity is projected to be the largest source of 
global electricity generation by early 2025 and is the only electricity 
generation source whose share is expected to grow [2]. Renewables are 
expected to displace fossil fuels in the United States electric power sector 
due to declining renewable technology costs for renewable power 
through 2050 [3]. Unlike conventional thermal generators, wind and 
solar PV generators have variable power outputs that create operational 

challenges in balancing supply to meet demand [4]. To deal with these 
challenges, utilities around the United States and internationally have 
implemented new strategies to better forecast and manage energy sup
plies and demands [5]. 

In California, this challenge of balancing supply and demand is 
already growing more difficult because of a changing climate and 
changes in demand patterns due to increased electrification. Solar gen
eration within the service territory overseen by California Independent 
System Operator (CAISO, which covers 80% of California’s bulk power 
transmission [6]), represented 17% of total system electricity generated 
in 2022 [7]. In CAISO, high penetrations of solar power have created a 
so-called “duck curve” that is characterized by a deep daytime net-load 

* Corresponding author. 
E-mail address: ktsanders@usc.edu (K.T. Sanders).  

Contents lists available at ScienceDirect 

Applied Energy 

journal homepage: www.elsevier.com/locate/apenergy 

https://doi.org/10.1016/j.apenergy.2024.123316 
Received 9 February 2024; Received in revised form 14 April 2024; Accepted 22 April 2024   

mailto:ktsanders@usc.edu
www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2024.123316
https://doi.org/10.1016/j.apenergy.2024.123316
https://doi.org/10.1016/j.apenergy.2024.123316
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2024.123316&domain=pdf


Applied Energy 366 (2024) 123316

2

(where net load is the total load less variable renewable electricity) dip 
followed by a steep increase in net load that occurs as solar resources go 
offline in the early evening and CAISO simultaneously enters its evening 
peak [8]. The duck curve can lead to overgeneration and curtailment of 
renewables during the midday “belly” of the curve, while the “neck” of 
the curve requires conventional generators to rapidly ramp operations to 
address peak demand in the early evening, leading to higher costs and 
more emissions [9]. As California continues to grow its solar power 
portfolio, CAISO’s midday net load continues to dip lower year over 
year, exacerbating issues with overgeneration and ramping challenges 
[10]. While CAISO’s battery storage capacity, which increased tenfold 
from 2020 to 2023, provided key net peak capacity and energy during 
the summer of 2022, its deployment is still relatively limited and not yet 
sufficient to fully ameliorate the challenges of managing CAISO’s duck 
curve. Thus, grid managers must still contend with a deepened duck 
curve in the early afternoon as coincident with increases in the resi
dential electricity demand. 

Because grid operators must match supply constraints with elec
tricity demand, systems like CAISO have moved from a paradigm of 
“matching available supply with dynamic demand” to “matching dy
namic supply with dynamic demand” through demand-side manage
ment strategies, like demand response [11]. Demand response strategies 
are designed to influence customer use of electricity in order to 
encourage customers to use less power during peak times, or to shift 
energy use to off-peak hours [12]. Demand response strategies, as 
defined by the United States Federal Energy Regulatory Commission, are 
“changes in electric usage by demand-side resources from their normal 
consumption patterns in response to changes in the price of electricity 
over time, or to incentive payments designed to induce lower electricity 
at times of high wholesale market prices or when system reliability is 
jeopardized” [13]. Demand response programs can include voluntary or 
incentive-based demand response programs, such as direct load control, 
emergency demand response programs, or interruptible/curtailable 
rates [14]. 

While most demand-side management strategies have historically 
been targeted at larger electricity customers in non-residential sectors, 
state policies in California have accelerated the implementation of new 
time-of-use (TOU) rates in recent years [15]. In 2003, a residential TOU- 
pilot program was designed and implemented with the help of the three 
major investor-owned utilities in California: Pacific Gas and Electric 
Company (PG&E), Southern California Edison, and San Diego Gas and 
Electric Company [16]. Since then, a 2016 rulemaking effort has been 
put into place an effort to analyze the electricity load of CAISO and 
develop analyses to develop new TOU designs [17], with a pilot study 
commissioned in 2018 proposing the implementation of default TOU 
pricing for all residential electricity customers [18]. Time-of-use rates 
have been implemented as the default pricing scheme for customers in 
PG&E [19] and SDG&E [20] since 2019 and SCE since 2021 [21]. 
However, while there has been a concerted effort to develop such rates 
and understand the impact of such pricing rates on decreasing the load 
at peak hours, understanding the load shape of the residential sector 
remains a key gap in the literature. 

Currently, the end-use load profile models developed to understand 
California’s demand in end-use sectors give a poor understanding of how 
residential electricity demand fluctuates throughout the day. Until 
2017, the residential load profile used by the California Energy Com
mission was informed by the CEC’s Hourly Electric Load Model (HELM) 
[22], which was based on a small number of metered homes in the late 
1980s. The most recent California end-use load shape report uses 
aggregated smart meter data from various houses to develop average 
daily residential load profiles [23]. However, the report only details an 
annual load profile and does not offer detailed insights into differences 
between customers within the residential sector (e.g., by housing type, 
by climate zone, by season, etc.). Hence, there are key gaps in our un
derstanding of the differences in how customers within the same or 
adjacent geographic regions contribute to the aggregate residential load 

curve. 
Understanding customer load curves is critical to several residential 

electricity policies. While demand response strategies incentivize 
behavioral changes in individuals, the primary goal of demand response 
strategies is to reduce net demand during peak times [24]. While most 
conventional electricity rate structures are priced on the quantity of 
electricity consumed, these tariffs have to cover both the costs of gen
eration and the larger fixed costs of delivering electricity such as dis
tribution and transmission infrastructure [25]. Thus, utilities need to 
equitably balance pricing the fixed portion of costs associated with 
electricity consumption with incentivizing energy efficiency and 
reducing electricity use during peak times [26]. Understanding how 
different customers contribute to the overall load curve can help utilities 
design more effective and equitable residential demand response pro
grams. Further, modulating this challenge has been the increase in 
rooftop solar in California, which has grown from 1200 MW in 2014 to 
10,500 MW in 2024 [27]. While customers selected in our study 
occurred in 2015, when <5% of SCE customers had rooftop solar in
stallations [28,29] solar adoption has been found to be growing fastest 
for the largest electricity consumers in wealthy neighborhoods, who 
gain the most benefits from new installations [30]. Thus, developing 
methods to construct load profiles through smart metering infrastruc
ture can help to provide insights into how to better structure incentives 
equitably. 

This study develops a longitudinal data-based approach that con
structs aggregate residential load curves and evaluates the contributions 
of utility customers based on their annual net electricity consumption 
across different day types (i.e., weekday vs weekend), seasons, and 
climate zones. It uses a real-world hourly smart meter data consisting of 
over two billion hourly readings from a statistically representative 
sample of 160,000 electricity users within Southern California Edison’s 
service area to answer three major research questions regarding resi
dential load curves:  

a. What are the diurnal and seasonal characteristics in the aggregate 
residential load curve in Southern California Edison’s service area?  

b. How do customers within different electricity consumption decile 
bins contribute to the overall load curve throughout seasons, and do 
higher consumption deciles have an outsized contribution to resi
dential electricity load during specific hours of the day?  

c. How do customers in different climate zones contribute to the overall 
load curve (i.e., in terms of shape and magnitude)? 

In this study, we evaluate a large, multi-year smart meter dataset to 
create average electricity consumption profiles for households in 
Southern California. We classify utility customers into one of ten elec
tricity consumption decile bins, which represent the percentile ranking 
of each household based on its typical daily electricity consumption. 
These deciles are determined by computing the average daily electricity 
consumption for each customer based on all their records in our multi- 
year dataset, which could span up to four years depending on the 
household. This study develops average load profile shapes for cus
tomers in Southern California that can be used to assess differences in 
the shape of the electricity load by season, day of the week, climate zone, 
and consumption-based decile bins. We then use a GINI metric to 
characterize disparities in the contribution of the overall load curve by 
customers in different decile bins [31]. Thus, this study not only char
acterizes the load shape of the residential sector electricity load profile 
in Southern California but also gives insight into the disparate contri
bution that customers who use different amounts of electricity or live in 
different geographic locations have on the diurnal patterns of the resi
dential load profile. These insights can help enable (a) the tracking of 
how the residential electricity consumption shifts over time and (b) 
more equitable demand response targeted policies. 

In the following sections, we review the state of the literature in the 
load profiling community and identify existing knowledge gaps. Then, 
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we present our methods to construct load profiles, characterize 
disparity, and describe the results of our study by analyzing the load 
profiles in Southern California by season, decile bin, and climate zone. 
Finally, we discuss the implications of the load profile shapes and how 
they can be used to inform improved demand response strategies. 

2. Literature review 

2.1. Load profiles 

Load Profiles (also referred to as load shapes, demand shapes, load 
curves, demand curves, etc.) are a way of characterizing the variation of 
demand and electrical load over a specific period. In the academic 
literature, these have been largely referred to the diurnal hourly or sub- 
hourly graph of electricity use of individual customers (i.e. individual 
meters), groups of individuals, or different customer sectors (i.e. resi
dential, commercial, industrial). The construction of load profiles has 
been used for a number of different tasks ranging from supply man
agement requirements, such as electricity forecasting [32–35], and 
system design [36–38], to demand-side analyses, like tariff design 
[39–41]. Load profiles can generally be divided into two general models, 
one that characterizes a large group of potential customers to establish 
standard load profiles, an aggregate electricity profile that represents 
the overall behavior of the residential sector, and one that characterizes 
the behaviors of subgroups of customers that have similar behaviors 
[42]. 

The residential sector presents several unique challenges that make it 
harder to characterize load profiles. The decentralized nature of resi
dential customers makes it difficult to characterize their consumption. 
While residential customers represent 39% of end-use electricity con
sumption in the United States, they represent approximately 87% of 
utility customers [43]. Electricity customers have a high diversity in 
building characteristics and occupant demographics that lead to dra
matic differences in the load profiles of different households [44]. Even 
with nearly identical houses with the same appliances and similar de
mographic occupants, the load profiles of two different homes can be 
very different [45]. By contrast, other sectors, such as commercial, in
dustrial, agriculture, and transportation, generally attract more signifi
cant financial motivation to analyze and understand their electricity 
usage patterns and have more centralized platforms from their respec
tive industries to compare patterns of behavior [46]. Historically, load 
profiles of the residential sector can either be surveyed by utilities 
themselves (typically limited to a small number of voluntary survey 
participants), or the load profile of a customer group can be measured at 
the transformer or branch feeder level [47]. 

Several reviews have reviewed methods for developing load profiles 
in the residential sector [42,48–50]. Because of data limitations, two 
main archetypes have been used to interpolate the load profile, bottom- 
up and top-down strategies. Top-down approaches rely on aggregate 
data from utility operators, such as the all-sector load curve, and apply 
statistical methods and models to make inferences about what the res
idential sector may look like [51,52]. One approach to top-down 
modeling is Conditional Demand Analysis, which uses actual smart 
meter and appliance data to train models that disaggregate residential 
electricity use into functions of specific appliances, without the need for 
direct appliance measurement, and scales it up to the overall electricity 
load profile. This approach is exemplified in studies by Parti and Parti 
[53] and Aigener et. Al. [54] Bottom-up approaches rely on detailed 
data from individual customers or appliances and use simulation models 
or other engineering methods to aggregate a residential load profile 
[55]. For example, Capasso et al. implemented a Monte-Carlo simulation 
based on various factors such as weather, time of day, and household 
appliance curves to create an aggregate total load [56]. While top-down 
approaches have high uncertainty regarding the actual behavior and 
preferences of individual customers, bottom-up approaches may not 
capture the true nature of customers because of their limited sample 

sizes. Thus, generating data-driven load profiles, which have been 
enabled by the proliferation of smart meters, can provide a real-world- 
based analysis of electricity customers. 

2.2. Smart meters data analysis in the residential sector 

Smart meters, or Automated Metering Infrastructure (AMI), that 
provide hourly or sub-hourly information about electricity usage, are 
being installed in households in many regions. The growth of AMI has 
largely been driven by the operational benefits to utilities as automated 
metering can reduce the number of site visits to read meters, identify 
disruptions to service quickly, and more accurate and timely billing 
[57]. Because these operational benefits have been the driver of the 
implementation of smart meters, the use of smart meters as informa
tional tools to understand how customers consume electricity has been 
underexplored [58]. 

Past reviews of smart meter analyses have found the large majority 
use relatively small numbers of smart-meter readings for their analysis, 
with many using small open-source residential datasets on the order of 
thousands of unique meters [59,60]. The use of massive datasets with 
>100,000 users that have been applied to academic literature has been 
limited to only a small number of distinct datasets [61–68]. Of these 
aforementioned papers, two papers were published directly by the 
utilities regarding internal operational research to improve the fore
casting of electricity usage [62] or to improve automated customer 
feedback in billing [61]. By contrast, most of the papers that analyze 
these large datasets seek to understand how customers use electricity 
through the construction of load profiling and load analysis techniques 
[63–67]. 

One key topic of research is to understand how individual electricity 
customer’s electricity load is affected by the use of different installed 
appliances. For example, Chen et al. used a dataset of over 180,000 
customers in Southern California to analyze the existence of air condi
tioning within households by analyzing the temperature sensitivity of 
electricity usage [68]. Other analyses use smart meter electricity data
sets tagged with the presence of different appliance technologies to 
analyze the impact of those technologies on the electricity profiles of 
houses. Anderson et al. studied a dataset of 667,373 houses in Denmark, 
with smart meter data matched to data about each household regarding 
the income and age of occupants, heating technology, and the presence 
of electric vehicles to understand differences in the level and timing of 
consumption throughout the day [63]. 

Load analyses have largely focused on characterizing load profiles in 
the residential sector by first segmenting customers by their similar 
electricity load profiles through clustering techniques. Generally, these 
methods characterize load profiles for groups of customers. Kwac, Flora, 
and Rajagopal (2014) first proposed and applied a method to segment 
households based on their hourly electricity consumption patterns using 
a dictionary of load shapes to characterize similar load profiles in 
218,090 homes in Northern California [69]. A similar clustering method 
simplifies the load shapes by developing average load profiles for each 
user by month and for 2.5 million Illinois customers [70]. More so
phisticated versions of this clustering methodology have been applied as 
well. For example, Ushakova and Mikhaylov propose a Guassian- 
Mixture model to encode individuals’ energy consumption over time 
based on 400,000 homes in the United Kingdom [67]. 

While the aforementioned group of papers characterized homes by 
similar behaviors, fewer papers have aggregated multiple customers 
based on temporal factors, such as seasonal and day-of-week differences, 
or subsets of the population before describing their load. A study 
analyzing the impacts of COVID-19 restrictions on residential electricity 
usage used 230,000 smart meters to analyze week-long hourly resolu
tion smart meter load profiles in Santiago, Chile, finding that median 
household loads were formed for individual neighborhoods to compare 
residential demand [65]. Gunkel et al. (2023) [71] used the aforemen
tioned Danish smart meter dataset in [63] to analyze the contributions 
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of individual customers within a customer class to the aggregate profiles 
of that class. 

Current load profiling methods that utilize massive volume smart 
meter datasets have key limitations that we address in this study. No 
high-volume smart meter dataset analysis has tracked customers across 
a span of five years. Our study addresses a key gap in understanding how 
a household’s load shape might vary across climate zones. Furthermore, 
no paper has analyzed the contribution of utility customers, binned 
according to their typical household electricity consumption, to the 
aggregate residential load profile of SCE. We then analyze the diurnal 
patterns of disparity in hourly electricity consumption of these binned 
customers. In the following section, we describe our methodology of 
creating data-driven load profiles and analyzing the contributions of and 
disparities between different users. 

3. Methods 

3.1. Data description 

Our data was sourced from Southern California Edison, a large 
investor-owned utility serving the greater Los Angeles area. We obtained 
hourly electricity data from 200,000 residential smart meters, randomly 
selected so that the dataset is statistically representative of 5% of the 
SCE’s 4.5 million residential households in their service area which 
spans the Greater Los Angeles [See Supplemental 1]. 

Each residential smart meter was associated with a unique service- 
account ID, representing data for one utility customer account. Data 
spanned from 2015 to 2016 and 2018–2019. Customers were initially 
requested and randomly selected from the SCE service area for the 
2015–2016 period, and customer data was updated for the 2018–2020 
period. Data from 2017 was not available due to privacy regulations 
required deletions by the utility before we requested updated data in 
2021. Thus, some customers may have dropped out between years if the 
residents of that household moved. Data from 2020 was excluded due to 
the COVID-19-related changes in residential electricity usage. All elec
tricity data were stored on USC’s Center for High-Performance 
Computing with a highly secure HPC Secure Data Account, to remain 
in line with the security and confidentiality requirements of SCE. In our 
analysis, we only consider the electricity load profiles of sub-metered 
residential units (e.g. apartment buildings where each apartment has a 
meter) and filter out master-metered properties (e.g. apartment build
ings or trailer parks with one master meter). 

3.2. Individual load profile definition 

In this paper, we begin by analyzing the individual load profiles of all 
utility customers (each representing a household with a smart meter) 
within our dataset. The dataset was organized into customer-day re
cords, where each day is represented by a unique hourly electricity load 
profile. Each individual load profile record, l, is represented by a set 
where lh represents the electricity used in a one-hour period, measured 
in kWh, at the hour, starting at h, of day, d, for an individual customer i 
[Eq. (1)]. Meter readings represent hourly net consumption, and no 
smart meter record can indicate negative electricity use in a given hour 
in our dataset (i.e. the meter will read zero, even in the case that solar 
electricity produced from a home is higher than the electricity 
consumed). Unlike the traditional electric industry-wide term “hour 
ending”, we will refer to hours by the starting hour of the electricity 
consumption. For example, hour h=16 will refer to the electricity 
consumed during the hour starting at 4:00 pm and ending at 5:00 pm. 
We then calculate the total daily electricity, e, measured in kWh, for an 
individual load profile. 

l(i, d) = [l0, l1, …, lh, …, l23] (1)  

e(i, d) =
∑23

h
lh (2) 

For each individual utility customer, i, the set Di is the set of all 
complete sets of full-day records in a customer’s dataset. Throughout 
this analysis, we will use the prime notation

(
Dʹ

i) to describe the subset 
after filtering. 

3.3. Filtering of non-residential and outlier residential electricity customer 

In the dataset provided by SCE, each customer is identified by a 
service-account ID which is unique to each customer and is affiliated 
with a postal address. This address was parsed and matched with 
building assessor data in Los Angeles, San Bernadino, Orange, and 
Riverside Counties, and found that <1.5% of households were matched 
to non-residentially zoned parcels [Supplemental Methods – Section 2. 
D] The addresses were then attached to a geographic coordinate and 
tagged with a California Energy Commission Building Climate Zone. 

The set Di, is the set of all complete sets of full-day records, d, 
available for an individual customer, i,across Yi, the set of all years, y, in 
which that customer has data. We include customer-years of data that 
meet the following conditions: First, the set of customer-day records for 
a customer in a given year must contain >200 customer-day load pro
files. Second, the total electricity consumption in that given customer- 
year must be >20 kW-hours (Eq. (3)). If a customer does not have at 
least one qualifying year of data (i.e. Yʹ

i is an empty set), that customer is 
excluded from our analysis. 

Yʹ
i =

⎧
⎨

⎩
y ∈ Y :

⃒
⃒Di,y

⃒
⃒ > 200 ∧

∑

d∈Di,y
e(u, d) > 20 kWh

⎫
⎬

⎭
(3) 

We performed a manual assessment of the largest electricity cus
tomers in our dataset, whose average annual electricity usage was 
>100,000 kWh, to check if these customers represented one household. 
Records that were associated with addresses where more than one 
household was collectively measured by one meter (e.g., trailer parks or 
housing communities with only one SCE meter) were excluded [See 
Supplemental 2.D]. After all filtering steps were completed, our final 
dataset constituted 184 million customer-days of hourly smart meter 
readings data from 163,403 customers over 514,370 customer-years. 

3.4. Customer electricity consumption decile bins 

For each customer, we calculate the average daily electricity use 
value, a(i, y), for each year y which satisfies our inclusion criteria Yí (Eq. 
(4)). Because meter readings in our dataset represent hourly net- 
consumption, a(i, y), represents the average electricity consumed from 
the grid by a given customer. Averaging to the daily level reduces the 
influence of potentially missing data in each year and allows comparison 
between different customers. We then calculate the average annual- 
daily average electricity net consumption, A(i), by averaging the set of 
eligible customer-years (Eq. (5)). Thus, A(i), measured in kWh per day is 
the mean-annually-averaged daily net electricity consumption across 
the period of study for each customer. 

To characterize the relative consumption of electricity customers to 
one another, we rank all electricity customers based on their average 
annual electricity consumption, A(i). Annual electricity consumption is 
then used to order all individual customers with eligible data through a 
percentile function, P(i) (Eq. (6)). Once percentile is calculated, each 
individual customer is assigned an electricity consumption tier, such 
that each decile bin, Bn, represents a decile of electricity usage, where 
decile 1 (0–10%) represents the lowest consumption customers 
consuming a daily average of 0.05 and 6.6 kWh and decile 10 
(90–100%) represent the highest consumption customers consuming a 
daily average of >33.4 kWh (Eq. (7)) [See Supplemental 3]. 

a(i, y) =

∑
d∈Di,y

e(i, d)
⃒
⃒Di,y

⃒
⃒

(4) 
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A(i) =

∑
y∈Yʹ

i
a(i, y)

⃒
⃒ai,y

⃒
⃒

(5)  

P(i) =
Rank(A(i) )

|Uʹ|
(6)  

B(i) = ⌈P(i)*10 ⌉ (7)  

3.5. Average daily load profiles 

We define three season classifications primarily based on weather 
patterns in Southern California’s Mediterranean climate: “Winter” 
defined as November–December-January-February (NDJF), “Spring” 
defined as March–April-May-June (MAMJ), and “Hottest Months” 
defined as July–August-September-October (JASO). JASO, combining 
summer and early fall, is the hottest period of the year, characterized by 
extended heat and dryness typical of Southern California summers, 
which often extend into the traditional autumn months. Because of di
versity of climate zones contained within the SCE service area, these 
seasonal categories do not necessarily capture all of the region’s micro- 
climates but serve to capture its broad climate patterns. 

To characterize net residential electricity consumption in SCE’s 
service area, we create characteristic average daily load profiles that 
show the typical electricity load of a given set of customers on a given 
type of day. Throughout our analysis, we subset customers according to 
California Energy Commission Climate Zone (z) and electricity con
sumption decile bins (b). We subset customer-days by day of the week (i. 
e. weekend vs weekday) and season (i.e. JASO, MAMJ, JASO). Thus, 
average load profiles, L(s, w, b, z), represent the mean electricity in each 
hour, Lh, from all customer-days for customers who lived in climate zone 
(z) with consumption in decile (b), on weekday/weekend (w) days in 
season (s) (Eqs. (8) & (9)). 

L(s, w, b, z) = [L0, L1, …, Lh, …, L23] (8)  

Lh =

∑
i∈Íb,z

∑
d∈Dś,w

lh(i, d)
⃒
⃒
⃒Dʹ

s,w,b,z

⃒
⃒
⃒

(9)  

3.6. Gini coefficient calculation 

To examine the distribution of electricity consumption among cus
tomers and quantify their relative contributions to the SCE aggregate 
residential electricity load, we derived average load profiles for each 
customer, i, denoted as L(s, w, i), based on season (s) and day type (w). At 
each hour of the day, we use the typical customer profiles to construct a 
Lorentz curve [72] which shows the cumulative proportion of electricity 
consumed at hour, h, up to the ith -ranked customer by A(i) in ascending 
order Ch(i): 

Ch(i) =

∑i

j=1
lh

(
s, w, cj

)

∑n

j=1
lh

(
s, w, cj

)

The Gini coefficient (GINI) is calculated using the differences be
tween the Lorentz curve and a line of perfect equality [31] [See Sup
plemental 5]. We calculate the Gini coefficient as the: 

GINI(h) = 1 −
∑n

i=1

(
Pu(i) − Pu(i−1)

)
(Ch(i) + Ch(i − 1) )

In this case, the Gini coefficient is a value between 0 and 1, with 
0 representing perfect equality (everyone consumes the same amount of 
electricity) and 1 representing perfect inequality (one customer con
sumes all electricity and no other customers consume any electricity). 

4. Results 

In this section, we describe the average residential load profiles by 
season and year. Because our data is statistically representative of the 
SCE service area, the shape and magnitude of the load curves are 
representative of the residential sector in SCE. (Fig. 1). 

Weekend curves are similar in shape to weekday curves within the 
same season. The average daily load of weekends is slightly higher than 
that of weekdays within the same season. The majority of the differences 
between electricity use between weekdays and weekends occur during 
the 9 am through 5 pm workday, with 75% of the variability between 
the two curves in the hottest months and 62% in spring and winter 
months. During this 9 am to 5 pm period, there is higher weekend usage 
within the same season. 

Like CAISO’s all-sector electricity daily load profiles, the average 
daily load in the hottest months is higher than the average daily load in 
spring and winter months. In JASO, weekday average daily load is about 
23.8 kWh across the period of study. By contrast, the MAMJ and NDJF 
weekday average daily load is 17.0 kWh, 28% lower than the JASO daily 
load. The seasonal load profiles are relatively similar in both shape and 
magnitude throughout the late evening and early morning periods (6 pm 
to 8 am) in all seasons. The biggest differences that drive the higher 
electricity in JASO occur during the mid-day, presumably due to cooling 
loads. In JASO, the residential load profile peaks at 17:00, two hours 
earlier than the 19:00 peak in both MAMJ and NDJF. This JASO peak 
hour electricity consumption is also significantly higher (1.47 kWh), 
with non-JASO peak hour consumption <1 kWh about 35% lower in 
electricity usage. 

4.1. Average load profiles by electricity consumption decile bin 

We analyzed diurnal electricity consumption profiles on weekdays in 
NDJF, JASO, and MAMJ by electricity consumption decile bins (Fig. 2). 
Each unique customer is assigned to the same decile bin in all seasons 
based on their average daily usage across the entire time period of study. 
Thus, some users may not be represented in all years. This figure shows 
that the differences in electricity usage across utility customers at each 
hour of the day can be large. For example, in JASO, customers in the 
highest electricity consumption decile bin consume 59.5 kWh of elec
tricity per day, more than twice the average daily load of the average 
daily load of all users and >12 times the average daily load of the lowest 
electricity consumption decile bin. 

The total daily load was highest in JASO for all decile bins of cus
tomers. Thus, while the impact on the diurnal shape of electricity con
sumption changes throughout seasons, the increase in the magnitude of 
total daily load remains a consistent trend for all decile bins. Most bins 
have about 40–50% lower weekday electricity consumption in non- 
JASO months compared to the JASO months. The exception is the 
smallest two deciles of customers where electricity differences hover 
around 15–20% lower weekday electricity consumption. This suggests 
that while there are seasonal differences in the magnitude of electricity 
consumption, the smallest customers (by electricity usage) exhibit less 
seasonal variability. 

Generally, the average load profile of the middle 60% of customers is 
similar in shape to the average residential weekday load profile of all 
SCE customers. By contrast, the customers in the two highest con
sumption decile bins vary from lower decile bins. These large consumers 
have an average weekday load profile with a smooth singular peak in 
JASO and a double peak (i.e., one in mid-day and one in the early 
evening) in the Spring and Winter. For lower deciles, Spring and Winter 
load profiles generally consist of a smaller morning peak and a more 
pronounced evening peak. The timing of the peak hour shifts earlier in 
the day (16:00 and 17:00) for most decile bins in JASO, but the peak 
hour timing of the bottom three decile bins of customers stays consistent 
around hours 19:00 and 20:00 across the whole year. Customers in the 
bottom three decile bins have relatively flat profiles across seasons, 
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when compared with higher-usage customers. Like other customers, the 
magnitude of their average electricity usage is highest in JASO, but the 
difference in magnitude is smaller across seasons compared to higher 
usage customers. 

4.2. Dispersion of electricity customers throughout the seasons 

Next, we measure the diurnal patterns in disparities in electricity 
between the average electricity of customers. Cumulatively, the lower 
half of electricity customers ranked by annual electricity consumption 
consumed <25% of total JASO weekday usage. By contrast, the top 20 % 
of electricity users comprised >40% of all JASO weekday electricity 
usage. 

The disparity of electricity usage is measured using the Gini 

coefficient, which represents dispersion across a population on a scale 
from 0 to 1, changes by the time of day (Fig. 3). Higher values of GINI 
values represent higher dispersions across SCE customers (i.e. a smaller 
number of high-consumption customers consuming more than others). 
All three seasons generally show a similar pattern of low disparity be
tween households in the late evening and early morning, and reach the 
highest dispersion levels at around midday (i.e., prior to afternoon peak 
hours). This result suggests that a relatively small proportion of high- 
consuming households account for a disproportionate amount of 
midday electricity usage across the year in SCE. 

While the general shape of the diurnal disparity curve looks rela
tively similar across seasons, the magnitude of disparity shows large 
seasonal differences. The Gini coefficient is highest in magnitude during 
the mild spring months (green in Fig. 3), particularly on weekdays, most 

Fig. 1. The average daily load of a residential electricity customer in the SCE service area is highest during the hottest months (i.e., in JASO; July, August, September 
and October). Peak electricity usage occurs earlier and is much higher in hot months than other months. Daytime weekend usage is typically higher than weekday 
usage. Data represent the average hourly load profiles of approximately 160,000 SCE customers spanning the time period January 2015 through December 2019. 

Fig. 2. The average load profiles of SCE customers segmented by electricity consumption decile bins show that the highest consuming customers represent a 
disproportionate fraction of daily load. Note: Each unique customer is assigned to the same decile bin in all seasons based on their average daily usage across the 
entire time period of study. Darker colors represent higher usage customers. 
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likely due to large heterogeneities of HVAC usage and time spent at 
home compared to hotter and colder seasons. Cooling dominates midday 
loads across much of the customer base during the hottest months (red in 
Fig. 3), reducing midday dispersion across customers using AC 
compared to in mild weather months. The dispersion in the hottest 
months is likely bigger than the dispersion in the coldest months because 
space heating in California is dominated by natural gas units, which 
cannot be seen in these electricity data. Hence, the larger disparity in 
electricity consumption during hot months is being driven by large 
differences in residential cooling loads, which can be impacted by home 
size, home insulation and weatherization characteristics, AC unit tech
nology, energy affordability concerns, etc. [73]. More generally, users 
across SCE demonstrate the widest range in loads in the midday during 
typical working days in every season. We conjecture that the disparity is 
higher on weekdays during typical working hours because there are 
bigger differences in time spent at home across populations of customers 
compared to weekends. 

4.3. Climate zone differences in electricity use 

SCE encompasses many different climate zones. Each climate zone 
represents a distinct geographic region, which encompasses not only 
differences in the climate that customers experience, but also differences 

in housing stock, built infrastructure, and demographics. Cool climate 
zones include CZ 6 (coastal) and CZ 8 (inland coast). By contrast, the two 
climate zones in the valley, CZ 9 (Inland Valley) and CZ 10 (Interior 
Valley), are classified as moderate climate zones, with CZ 10 having 
summers that are classified as hot. CZ 14 (Low Desert) and CZ 15 (High 
Desert) are the hottest and driest climate zones in the region. The cool 
coastal climate zones maintain relatively similar load shapes year- 
round, with only minor increases in peak height and total daily elec
tricity usage in the summer. (See Figure 4) By contrast, total daily 
electricity use during the hottest months significantly increases in 
moderate and hot climate zones, and peak-hour electricity shifts earlier 
in the afternoon during these hot periods. Decile breakdowns of resi
dents within each climate zone can be found in Supplemental Informa
tion Fig. 6 and 7. In climate zones 10 and 14, the ratio between decile 10 
(i.e., the highest-use customers) and decile 5 electricity loads is lower in 
the hottest months than compared to cooler months, suggesting that 
there is more diversity in electricity consuming behavior when loads are 
not being driven by cooling, which is consistent with the insights 
derived in the Gini coefficient analysis. In cooler climate zones, by 
contrast, the ratio between the decile 10 and decile 5 is higher in the 
hottest months, likely because there are large disparities in if and how 
households use AC during comparatively mild summers. 

5. Discussion 

This paper highlights that there is a big breakdown in the magnitude 
of electricity use across customers. We found that the top 20% of elec
tricity customers use over 40% of the daily electricity load during 
weekdays in the hottest months while the bottom half of electricity use 
<25% of all net electricity consumption. During milder months (MAMJ), 
the largest consuming households show disproportionally high usage 
compared to the average customer, suggesting that these households 
have more discretionary loads. For Californian utilities such as SCE, 
most demand response efforts have targeted requests or incentives for 
load reductions during the period spanning 4 pm to 9 pm, when solar 
generation availability decreases and general residential electricity de
mand climbs towards peak net load. During our study period, the default 
rates for customers were standard tiered-rates based on monthly elec
tricity usage with the ability to opt-in programs for time-of-use. Since 
2021, customers have received time-of-use rates, with higher prices in 
the 4–9 pm period, by default and have the ability to opt-out to receive 
standard tiered rates [21]. Even so, during the hottest months of the 
year, the disproportionality of electricity use during the critical 4–9 pm 
period is greater in those hours compared to mild and winter months. 
Thus, during the hottest months of the year, large consumers use a 

Fig. 3. The GINI Coefficient of electricity users suggests that the largest dis
parities in electricity usage across customers occur in the middle of the day, on 
weekdays, and in mild months. (Higher values of GINI values represent higher 
dispersions in electricity usage across SCE customers.) 

Fig. 4. Electricity load profiles differentiated by climate zone and season indicate that the hottest regions represent a disproportionate amount of electricity usage in 
SCE, particularly during the hottest months. Note: The hottest climate zones are denoted in red, moderate in yellow, and the coolest in blue. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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disproportionate amount of electricity use during the critical 4–9 pm 
period, suggesting that these customers are the most strategic for the 
utility to target for leveraging reductions during DR events. If utilities 
can get these customers to participate in DR activities, such as pre
cooling, that shift loads from these late afternoon hours (when the grid is 
dependent on expensive gas generators) to the midday (when the grid is 
served primarily by low-cost variable renewable energy generators), 
there will be valuable cost, emissions, and reliability benefits for the 
utility and customer base [74]. 

In general, higher electricity usage is associated with higher-income 
households and lower electricity with lower-income households, while 
use intensity (energy use that is normalized by household square 
footage) is generally higher in low-income households [75–78]. These 
findings approximately match our analysis, but as found in the afore
mentioned studies, these findings are not universally true. Within the 
top decile bin, about 16% of households were in census tracts with an 
average household income greater than $150,000 [See Supplemental 8]. 
About 3.1% of households within the top decile bin of electricity use 
were in census tracts where the average household income was less than 
the living wage for an individual in California [79]. Thus, there likely 
exists some high electricity-consuming households with low household 
income who could be disproportionately impacted by new demand 
response initiatives, such as time-of-use rates. 

However, designing rate structures requires not only balancing in
centives for short-term load shifting, but also for social equity, public 
health, long-term technology adoption, and/or energy efficiency ini
tiatives. Low-income households may have less efficient appliances and 
low insulation/weatherization interventions [80,81], higher energy 
loads because of higher occupancy [82], or require electricity- 
dependent medical equipment [83]. In the lowest decile bin, 13% of 
users lived in census tracts where the average household income was less 
than a living wage for an individual in California. These customers are 
likely to be the most disproportionately impacted by rate changes yet 
contribute little to the diurnal residential load profile, and potentially 
lack the flexibility to adjust their electricity-consuming behaviors during 
peak time. Recent work by Borenstein (2024) has found that a large 
proportion of the difference in consumption of those who would be in 
the top 20% of electricity use can be explained by the number of occu
pants in the house, gross consumption inclusive of distributed solar, 
differences in climate, electrified appliances, and the demographics of 
the household [84]. Many of these characteristics, Thus, while changes 
to pricing structures based on the amount of consumed electricity has 
the potential to benefit the grid, pricing structures also can be regressive 
in nature. 

There are big trends in electricity use within California that could 
markedly shift the trends noted in this analysis over time. California has 
aggressive electrification efforts, including a goal to phase out gasoline 
powered vehicles by 2035. (The state currently leads the United States in 
electric vehicle registrations, with EV’s constituting one-fifth of Cali
fornia’ new car sales in 2023 [85,86]). EV chargers increase the elec
tricity use of a household an average of between 3 and 10 kWh on the 
days vehicles are being charged, with higher power draws concentrated 
during specific hours [87,88]. Furthermore, the state plans to implement 
a ban on natural-gas appliances by 2030, with many municipalities 
already banning or discouraging the use of gas-fueled appliances, such 
as heaters, washers, dryers, and stoves. Currently the warmest months in 
SCE show disproportionate electricity consumption, but trends towards 
electrification will shift these trends diurnally and seasonally. For 
example, compared to the rest of the United States, Californian house
holds are less likely to have appliances that use electricity with only 28% 
of space heaters (vs 40% nationwide) and 21% of water heaters (US: 
47%) using electricity in 2023 [89]. Recent analysis of adoption of heat 
pumps in Texas showed that such changes can shift peak demand from 
the summer (driven by air-conditioning loads) to the winter (driven by 
heating loads) [90]. These appliances have the possibility of increasing 
and/or shifting the small morning peak currently seen in the Spring and 

Winter load profiles. 
As technologies such as rooftop solar and battery storage mature, 

designing rates and incentives for these technologies is becoming 
increasingly complicated. Small scale solar plays a growing role in the 
energy generation capacity in California, with a nameplate capacity of 
11.7 GW at the end of 2023, and an estimated 19.2 TWh of annual 
generation. Rooftop solar installations in the residential sector generally 
sit behind the meter, and thus reduce the net electricity consumed from 
utilities in houses with PV panels installed. Poorly specified incentives 
and pricing structures for rooftop solar can put the benefits of such 
programs towards higher-consuming and higher-income customers 
while higher costs are absorbed by lower- to middle- income utility 
customers [30]. In California, Net Metering 3.0 which covers new in
stallations of solar PV has also reduced the price paid for over-generated 
electricity (i.e., when solar generation exceeds electricity consumption 
for a given hour) for most solar PV customers, while increasing the 
potential benefits of Solar+Storage systems [91]. The use of smart me
ters has the potential to help the redesign of new pricing structures that 
can better balance the challenge of both equitable rates and incentiv
izing grid-efficient behavior. For example, in Denmark, smart meter data 
has been used to propose a new taxation policy that redistributes costs 
according to a household’s consumption and PV usage to support both 
occupant-dense households and grid-side flexible prosumers [92]. 

Climate change will also affect household electricity use, particularly 
in regions that currently have relatively low AC penetration. AC pene
tration across the region is estimated at 69%, with the coastal areas of 
California having the lowest air conditioning penetration [68]. While 
our analysis shows that the cool, coastal climate zones (CZ6 and CZ8) 
have generally flat electricity load profiles, households (which tend to 
be wealthier than average) within these climate zones have the potential 
to grow significantly especially in the hottest months, due to relatively 
low rates of existing air conditioning penetration that will likely increase 
as temperature increases due to climate change [93]. (Even in these 
more mild climate zones, temperatures have recently hit record highs 
that have exceeded 100 degrees Fahrenheit [94]). Using data-driven 
methods, researchers and utilities will be able to track in near-real 
time electricity use behaviors. 

Although smart meter data continues to grow more available, they 
are not yet ubiquitous and their distribution to third party researchers is 
often prohibited by utilities due to privacy concerns. However, as they 
become increasingly available, data-driven load profile studies like this 
one can offer critical insight into the actual distribution of electricity 
usage among customers, which cannot be generated from traditional 
bottom-up and top-down methods used to characterize residential load 
profiles. While physics-based models, like the Department of Energy’s 
ResStock, utilize detailed conditional probability tables to characterize 
variables such as square footage, building construction, and heating and 
cooling appliances to generate regional load profiles across the United 
States for current and future scenarios [95], this benefit is constrained 
by the models’ reliance on accurately representing the highly variable 
behaviors of individual users. Future research could integrate high- 
resolution smart meter data to validate the modeling of the residential 
load curve, especially for customers in different deciles of electricity use. 
Past research in customer behavior using customer segmentation and 
social science approaches have shown that customers may have 
dramatically different electricity use behaviors despite similar de
mographics, appliances, and building designs [45,69,96,97]. The results 
of this paper suggest that even when in the same service area, different 
customers have different load profiles because of differences such as by 
climate zones or electricity use bins. Therefore, data-driven models are 
essential in highlighting the divergences in behavioral patterns and the 
actual variances in electricity usage behaviors. Data-driven methods 
continue to grow in their capabilities (e.g., using smart meter data to 
deduce the presence and usage of appliances using non-intrusive load 
monitoring techniques [98,99]). As these methods improve, the insights 
from data-driven methods need to be integrated into bottom-up physics- 
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based models by providing more accurate representations of actual 
electricity consumption behaviors. 

6. Conclusion 

Developing insights into the patterns and magnitude of electricity 
usage in the residential sector is key for utility managers and policy 
makers to ensure the long-term reliability of the grid. To date, other 
studies developing load profiles of the residential sector have been 
limited by the size of available datasets. By using a statistically repre
sentative dataset of the Southern California Edison service area, we were 
able to characterize the load curves of statistically significant sub
populations of households across the SoCal Edison service area by 
characteristics such as total annual electricity usage, season, and climate 
zone. This work provides utility managers and policy makers in South
ern California insights into how residential electricity is being used 
throughout the day and over different seasons. 

This study provided a novel analysis of the contribution of groups of 
individual customers to the overall electricity curve and disparities in 
electricity use. We found that a small fraction of electricity users 
consume an outsized proportion of overall and peak electricity use. By 
contrast, the combined electricity use of the bottom half of household 
electricity consumers contributed to less than one-quarter of the elec
tricity use. The disparities in electricity usage across SCE households are 
higher in the mid-day, especially in Spring since loads are not as 
dependent on high HVAC loads. Hotter months have higher disparities 
in electricity use during peak hours than cooler months because of wide 
differences in cooling-driven loads. 

In the future, methods provided in this paper can give quick insights 
for utilities to understand how residential electricity may change across 
days, seasons, and climate zones, and how different groups across those 
spatio-temporal distinctions contribute to overall residential sector 
electricity usage. The region-specific trends identified in this study for 
Southern California are likely to change due to a warming climate, as 
well as climate mitigation policies promoting deep decarbonization and 
electrification [100,101]. However, researchers can build off the 
framework presented in this study to analyze diurnal changes in load 
profiles, both retrospectively to gain insight into how electricity load 
profiles may shift due to external circumstances (e.g. weather or local 
events) or to prospectively track trends and shifts in the residential load 
due to evolving factors affecting electricity consuming behaviors. 
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