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HIGHLIGHTS

e Hourly smart-meter data of 160,000 homes were used to construct diurnal load profiles.
o Disparities in hourly loads between households were measured using the Gini index.

e The top 20% of households consumed about 40% of the daily electricity load.

o The bottom half of consumers used <25% of the daily electricity load.

o Customers in mild climates show less seasonal variability than those in hot climates.
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Understanding how and when residential electricity is used throughout the day is integral to the successful
implementation of potential residential demand management strategies. Our analysis characterizes the daily
hourly load profiles of approximately 160,000 residential electricity customers across the Southern California
Edison (SCE) service area during the period spanning 2015 to 2016 and 2018 to 2019 across weekends, week-
days, seasons, and climate zones. We find that total daily electricity usage was highest in the hottest months of
the year compared to milder months, particularly for households located in the hottest climate zones. The most
energy-consumptive hours occurred during the mid-afternoon during the hottest months, in contrast to early
evening high consumption in cooler months. We find that customers with average daily consumption at or above
the 80th percentile cumulatively consume over 40% of electricity during the hottest months of the year resi-
dential load, while the bottom half of customers cumulatively consume <25% of the total residential load. The
disparities in electricity usage across SCE households are higher in the mid-day, especially in milder months
across all regions, and in mild climate zones compared to hotter climate zones since loads are not as dependent

on high HVAC loads.

1. Introduction

In recent years, the global energy landscape has begun a trans-
formative shift towards less carbon-intensive forms of electricity gen-
eration in efforts to mitigate the negative consequences of climate
change [1]. Renewable electricity is projected to be the largest source of
global electricity generation by early 2025 and is the only electricity
generation source whose share is expected to grow [2]. Renewables are
expected to displace fossil fuels in the United States electric power sector
due to declining renewable technology costs for renewable power
through 2050 [3]. Unlike conventional thermal generators, wind and
solar PV generators have variable power outputs that create operational
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challenges in balancing supply to meet demand [4]. To deal with these
challenges, utilities around the United States and internationally have
implemented new strategies to better forecast and manage energy sup-
plies and demands [5].

In California, this challenge of balancing supply and demand is
already growing more difficult because of a changing climate and
changes in demand patterns due to increased electrification. Solar gen-
eration within the service territory overseen by California Independent
System Operator (CAISO, which covers 80% of California’s bulk power
transmission [6]), represented 17% of total system electricity generated
in 2022 [7]. In CAISO, high penetrations of solar power have created a
so-called “duck curve” that is characterized by a deep daytime net-load
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(where net load is the total load less variable renewable electricity) dip
followed by a steep increase in net load that occurs as solar resources go
offline in the early evening and CAISO simultaneously enters its evening
peak [8]. The duck curve can lead to overgeneration and curtailment of
renewables during the midday “belly” of the curve, while the “neck” of
the curve requires conventional generators to rapidly ramp operations to
address peak demand in the early evening, leading to higher costs and
more emissions [9]. As California continues to grow its solar power
portfolio, CAISO’s midday net load continues to dip lower year over
year, exacerbating issues with overgeneration and ramping challenges
[10]. While CAISO’s battery storage capacity, which increased tenfold
from 2020 to 2023, provided key net peak capacity and energy during
the summer of 2022, its deployment is still relatively limited and not yet
sufficient to fully ameliorate the challenges of managing CAISO’s duck
curve. Thus, grid managers must still contend with a deepened duck
curve in the early afternoon as coincident with increases in the resi-
dential electricity demand.

Because grid operators must match supply constraints with elec-
tricity demand, systems like CAISO have moved from a paradigm of
“matching available supply with dynamic demand” to “matching dy-
namic supply with dynamic demand” through demand-side manage-
ment strategies, like demand response [11]. Demand response strategies
are designed to influence customer use of electricity in order to
encourage customers to use less power during peak times, or to shift
energy use to off-peak hours [12]. Demand response strategies, as
defined by the United States Federal Energy Regulatory Commission, are
“changes in electric usage by demand-side resources from their normal
consumption patterns in response to changes in the price of electricity
over time, or to incentive payments designed to induce lower electricity
at times of high wholesale market prices or when system reliability is
jeopardized” [13]. Demand response programs can include voluntary or
incentive-based demand response programs, such as direct load control,
emergency demand response programs, or interruptible/curtailable
rates [14].

While most demand-side management strategies have historically
been targeted at larger electricity customers in non-residential sectors,
state policies in California have accelerated the implementation of new
time-of-use (TOU) rates in recent years [15]. In 2003, a residential TOU-
pilot program was designed and implemented with the help of the three
major investor-owned utilities in California: Pacific Gas and Electric
Company (PG&E), Southern California Edison, and San Diego Gas and
Electric Company [16]. Since then, a 2016 rulemaking effort has been
put into place an effort to analyze the electricity load of CAISO and
develop analyses to develop new TOU designs [17], with a pilot study
commissioned in 2018 proposing the implementation of default TOU
pricing for all residential electricity customers [18]. Time-of-use rates
have been implemented as the default pricing scheme for customers in
PG&E [19] and SDG&E [20] since 2019 and SCE since 2021 [21].
However, while there has been a concerted effort to develop such rates
and understand the impact of such pricing rates on decreasing the load
at peak hours, understanding the load shape of the residential sector
remains a key gap in the literature.

Currently, the end-use load profile models developed to understand
California’s demand in end-use sectors give a poor understanding of how
residential electricity demand fluctuates throughout the day. Until
2017, the residential load profile used by the California Energy Com-
mission was informed by the CEC’s Hourly Electric Load Model (HELM)
[22], which was based on a small number of metered homes in the late
1980s. The most recent California end-use load shape report uses
aggregated smart meter data from various houses to develop average
daily residential load profiles [23]. However, the report only details an
annual load profile and does not offer detailed insights into differences
between customers within the residential sector (e.g., by housing type,
by climate zone, by season, etc.). Hence, there are key gaps in our un-
derstanding of the differences in how customers within the same or
adjacent geographic regions contribute to the aggregate residential load
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curve.

Understanding customer load curves is critical to several residential
electricity policies. While demand response strategies incentivize
behavioral changes in individuals, the primary goal of demand response
strategies is to reduce net demand during peak times [24]. While most
conventional electricity rate structures are priced on the quantity of
electricity consumed, these tariffs have to cover both the costs of gen-
eration and the larger fixed costs of delivering electricity such as dis-
tribution and transmission infrastructure [25]. Thus, utilities need to
equitably balance pricing the fixed portion of costs associated with
electricity consumption with incentivizing energy efficiency and
reducing electricity use during peak times [26]. Understanding how
different customers contribute to the overall load curve can help utilities
design more effective and equitable residential demand response pro-
grams. Further, modulating this challenge has been the increase in
rooftop solar in California, which has grown from 1200 MW in 2014 to
10,500 MW in 2024 [27]. While customers selected in our study
occurred in 2015, when <5% of SCE customers had rooftop solar in-
stallations [28,29] solar adoption has been found to be growing fastest
for the largest electricity consumers in wealthy neighborhoods, who
gain the most benefits from new installations [30]. Thus, developing
methods to construct load profiles through smart metering infrastruc-
ture can help to provide insights into how to better structure incentives
equitably.

This study develops a longitudinal data-based approach that con-
structs aggregate residential load curves and evaluates the contributions
of utility customers based on their annual net electricity consumption
across different day types (i.e., weekday vs weekend), seasons, and
climate zones. It uses a real-world hourly smart meter data consisting of
over two billion hourly readings from a statistically representative
sample of 160,000 electricity users within Southern California Edison’s
service area to answer three major research questions regarding resi-
dential load curves:

a. What are the diurnal and seasonal characteristics in the aggregate
residential load curve in Southern California Edison’s service area?

b. How do customers within different electricity consumption decile
bins contribute to the overall load curve throughout seasons, and do
higher consumption deciles have an outsized contribution to resi-
dential electricity load during specific hours of the day?

c. How do customers in different climate zones contribute to the overall
load curve (i.e., in terms of shape and magnitude)?

In this study, we evaluate a large, multi-year smart meter dataset to
create average electricity consumption profiles for households in
Southern California. We classify utility customers into one of ten elec-
tricity consumption decile bins, which represent the percentile ranking
of each household based on its typical daily electricity consumption.
These deciles are determined by computing the average daily electricity
consumption for each customer based on all their records in our multi-
year dataset, which could span up to four years depending on the
household. This study develops average load profile shapes for cus-
tomers in Southern California that can be used to assess differences in
the shape of the electricity load by season, day of the week, climate zone,
and consumption-based decile bins. We then use a GINI metric to
characterize disparities in the contribution of the overall load curve by
customers in different decile bins [31]. Thus, this study not only char-
acterizes the load shape of the residential sector electricity load profile
in Southern California but also gives insight into the disparate contri-
bution that customers who use different amounts of electricity or live in
different geographic locations have on the diurnal patterns of the resi-
dential load profile. These insights can help enable (a) the tracking of
how the residential electricity consumption shifts over time and (b)
more equitable demand response targeted policies.

In the following sections, we review the state of the literature in the
load profiling community and identify existing knowledge gaps. Then,
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we present our methods to construct load profiles, characterize
disparity, and describe the results of our study by analyzing the load
profiles in Southern California by season, decile bin, and climate zone.
Finally, we discuss the implications of the load profile shapes and how
they can be used to inform improved demand response strategies.

2. Literature review
2.1. Load profiles

Load Profiles (also referred to as load shapes, demand shapes, load
curves, demand curves, etc.) are a way of characterizing the variation of
demand and electrical load over a specific period. In the academic
literature, these have been largely referred to the diurnal hourly or sub-
hourly graph of electricity use of individual customers (i.e. individual
meters), groups of individuals, or different customer sectors (i.e. resi-
dential, commercial, industrial). The construction of load profiles has
been used for a number of different tasks ranging from supply man-
agement requirements, such as electricity forecasting [32-35], and
system design [36-38], to demand-side analyses, like tariff design
[39-41]. Load profiles can generally be divided into two general models,
one that characterizes a large group of potential customers to establish
standard load profiles, an aggregate electricity profile that represents
the overall behavior of the residential sector, and one that characterizes
the behaviors of subgroups of customers that have similar behaviors
[421.

The residential sector presents several unique challenges that make it
harder to characterize load profiles. The decentralized nature of resi-
dential customers makes it difficult to characterize their consumption.
While residential customers represent 39% of end-use electricity con-
sumption in the United States, they represent approximately 87% of
utility customers [43]. Electricity customers have a high diversity in
building characteristics and occupant demographics that lead to dra-
matic differences in the load profiles of different households [44]. Even
with nearly identical houses with the same appliances and similar de-
mographic occupants, the load profiles of two different homes can be
very different [45]. By contrast, other sectors, such as commercial, in-
dustrial, agriculture, and transportation, generally attract more signifi-
cant financial motivation to analyze and understand their electricity
usage patterns and have more centralized platforms from their respec-
tive industries to compare patterns of behavior [46]. Historically, load
profiles of the residential sector can either be surveyed by utilities
themselves (typically limited to a small number of voluntary survey
participants), or the load profile of a customer group can be measured at
the transformer or branch feeder level [47].

Several reviews have reviewed methods for developing load profiles
in the residential sector [42,48-50]. Because of data limitations, two
main archetypes have been used to interpolate the load profile, bottom-
up and top-down strategies. Top-down approaches rely on aggregate
data from utility operators, such as the all-sector load curve, and apply
statistical methods and models to make inferences about what the res-
idential sector may look like [51,52]. One approach to top-down
modeling is Conditional Demand Analysis, which uses actual smart
meter and appliance data to train models that disaggregate residential
electricity use into functions of specific appliances, without the need for
direct appliance measurement, and scales it up to the overall electricity
load profile. This approach is exemplified in studies by Parti and Parti
[53] and Aigener et. Al. [54] Bottom-up approaches rely on detailed
data from individual customers or appliances and use simulation models
or other engineering methods to aggregate a residential load profile
[55]. For example, Capasso et al. implemented a Monte-Carlo simulation
based on various factors such as weather, time of day, and household
appliance curves to create an aggregate total load [56]. While top-down
approaches have high uncertainty regarding the actual behavior and
preferences of individual customers, bottom-up approaches may not
capture the true nature of customers because of their limited sample
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sizes. Thus, generating data-driven load profiles, which have been
enabled by the proliferation of smart meters, can provide a real-world-
based analysis of electricity customers.

2.2. Smart meters data analysis in the residential sector

Smart meters, or Automated Metering Infrastructure (AMI), that
provide hourly or sub-hourly information about electricity usage, are
being installed in households in many regions. The growth of AMI has
largely been driven by the operational benefits to utilities as automated
metering can reduce the number of site visits to read meters, identify
disruptions to service quickly, and more accurate and timely billing
[57]. Because these operational benefits have been the driver of the
implementation of smart meters, the use of smart meters as informa-
tional tools to understand how customers consume electricity has been
underexplored [58].

Past reviews of smart meter analyses have found the large majority
use relatively small numbers of smart-meter readings for their analysis,
with many using small open-source residential datasets on the order of
thousands of unique meters [59,60]. The use of massive datasets with
>100,000 users that have been applied to academic literature has been
limited to only a small number of distinct datasets [61-68]. Of these
aforementioned papers, two papers were published directly by the
utilities regarding internal operational research to improve the fore-
casting of electricity usage [62] or to improve automated customer
feedback in billing [61]. By contrast, most of the papers that analyze
these large datasets seek to understand how customers use electricity
through the construction of load profiling and load analysis techniques
[63-67].

One key topic of research is to understand how individual electricity
customer’s electricity load is affected by the use of different installed
appliances. For example, Chen et al. used a dataset of over 180,000
customers in Southern California to analyze the existence of air condi-
tioning within households by analyzing the temperature sensitivity of
electricity usage [68]. Other analyses use smart meter electricity data-
sets tagged with the presence of different appliance technologies to
analyze the impact of those technologies on the electricity profiles of
houses. Anderson et al. studied a dataset of 667,373 houses in Denmark,
with smart meter data matched to data about each household regarding
the income and age of occupants, heating technology, and the presence
of electric vehicles to understand differences in the level and timing of
consumption throughout the day [63].

Load analyses have largely focused on characterizing load profiles in
the residential sector by first segmenting customers by their similar
electricity load profiles through clustering techniques. Generally, these
methods characterize load profiles for groups of customers. Kwac, Flora,
and Rajagopal (2014) first proposed and applied a method to segment
households based on their hourly electricity consumption patterns using
a dictionary of load shapes to characterize similar load profiles in
218,090 homes in Northern California [69]. A similar clustering method
simplifies the load shapes by developing average load profiles for each
user by month and for 2.5 million Illinois customers [70]. More so-
phisticated versions of this clustering methodology have been applied as
well. For example, Ushakova and Mikhaylov propose a Guassian-
Mixture model to encode individuals’ energy consumption over time
based on 400,000 homes in the United Kingdom [67].

While the aforementioned group of papers characterized homes by
similar behaviors, fewer papers have aggregated multiple customers
based on temporal factors, such as seasonal and day-of-week differences,
or subsets of the population before describing their load. A study
analyzing the impacts of COVID-19 restrictions on residential electricity
usage used 230,000 smart meters to analyze week-long hourly resolu-
tion smart meter load profiles in Santiago, Chile, finding that median
household loads were formed for individual neighborhoods to compare
residential demand [65]. Gunkel et al. (2023) [71] used the aforemen-
tioned Danish smart meter dataset in [63] to analyze the contributions
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of individual customers within a customer class to the aggregate profiles
of that class.

Current load profiling methods that utilize massive volume smart
meter datasets have key limitations that we address in this study. No
high-volume smart meter dataset analysis has tracked customers across
a span of five years. Our study addresses a key gap in understanding how
a household’s load shape might vary across climate zones. Furthermore,
no paper has analyzed the contribution of utility customers, binned
according to their typical household electricity consumption, to the
aggregate residential load profile of SCE. We then analyze the diurnal
patterns of disparity in hourly electricity consumption of these binned
customers. In the following section, we describe our methodology of
creating data-driven load profiles and analyzing the contributions of and
disparities between different users.

3. Methods
3.1. Data description

Our data was sourced from Southern California Edison, a large
investor-owned utility serving the greater Los Angeles area. We obtained
hourly electricity data from 200,000 residential smart meters, randomly
selected so that the dataset is statistically representative of 5% of the
SCE’s 4.5 million residential households in their service area which
spans the Greater Los Angeles [See Supplemental 1].

Each residential smart meter was associated with a unique service-
account ID, representing data for one utility customer account. Data
spanned from 2015 to 2016 and 2018-2019. Customers were initially
requested and randomly selected from the SCE service area for the
2015-2016 period, and customer data was updated for the 2018-2020
period. Data from 2017 was not available due to privacy regulations
required deletions by the utility before we requested updated data in
2021. Thus, some customers may have dropped out between years if the
residents of that household moved. Data from 2020 was excluded due to
the COVID-19-related changes in residential electricity usage. All elec-
tricity data were stored on USC’s Center for High-Performance
Computing with a highly secure HPC Secure Data Account, to remain
in line with the security and confidentiality requirements of SCE. In our
analysis, we only consider the electricity load profiles of sub-metered
residential units (e.g. apartment buildings where each apartment has a
meter) and filter out master-metered properties (e.g. apartment build-
ings or trailer parks with one master meter).

3.2. Individual load profile definition

In this paper, we begin by analyzing the individual load profiles of all
utility customers (each representing a household with a smart meter)
within our dataset. The dataset was organized into customer-day re-
cords, where each day is represented by a unique hourly electricity load
profile. Each individual load profile record, [, is represented by a set
where [, represents the electricity used in a one-hour period, measured
in kWh, at the hour, starting at h, of day, d, for an individual customer i
[Eq. (1)]. Meter readings represent hourly net consumption, and no
smart meter record can indicate negative electricity use in a given hour
in our dataset (i.e. the meter will read zero, even in the case that solar
electricity produced from a home is higher than the electricity
consumed). Unlike the traditional electric industry-wide term “hour
ending”, we will refer to hours by the starting hour of the electricity
consumption. For example, hour h=16 will refer to the electricity
consumed during the hour starting at 4:00 pm and ending at 5:00 pm.
We then calculate the total daily electricity, e, measured in kWh, for an
individual load profile.

I(i,d) = [lo, b, ... L, ..., bs] (@)

eli,d) =31, @
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For each individual utility customer, i, the set D; is the set of all
complete sets of full-day records in a customer’s dataset. Throughout

this analysis, we will use the prime notation (D'i) to describe the subset
after filtering.

3.3. Filtering of non-residential and outlier residential electricity customer

In the dataset provided by SCE, each customer is identified by a
service-account ID which is unique to each customer and is affiliated
with a postal address. This address was parsed and matched with
building assessor data in Los Angeles, San Bernadino, Orange, and
Riverside Counties, and found that <1.5% of households were matched
to non-residentially zoned parcels [Supplemental Methods — Section 2.
D] The addresses were then attached to a geographic coordinate and
tagged with a California Energy Commission Building Climate Zone.

The set D;, is the set of all complete sets of full-day records, d,
available for an individual customer, i,across Y;, the set of all years, y, in
which that customer has data. We include customer-years of data that
meet the following conditions: First, the set of customer-day records for
a customer in a given year must contain >200 customer-day load pro-
files. Second, the total electricity consumption in that given customer-
year must be >20 kW-hours (Eq. (3)). If a customer does not have at

4
least one qualifying year of data (i.e. Y; is an empty set), that customer is
excluded from our analysis.

i

Y, ={y€eY:|Dy|>2007>" - e(u,d)>20kwh ®3)
iy

We performed a manual assessment of the largest electricity cus-
tomers in our dataset, whose average annual electricity usage was
>100,000 kWh, to check if these customers represented one household.
Records that were associated with addresses where more than one
household was collectively measured by one meter (e.g., trailer parks or
housing communities with only one SCE meter) were excluded [See
Supplemental 2.D]. After all filtering steps were completed, our final
dataset constituted 184 million customer-days of hourly smart meter
readings data from 163,403 customers over 514,370 customer-years.

3.4. Customer electricity consumption decile bins

For each customer, we calculate the average daily electricity use

value, a(i,y), for each year y which satisfies our inclusion criteria Y: (Eq.
(4)). Because meter readings in our dataset represent hourly net-
consumption, a(i,y), represents the average electricity consumed from
the grid by a given customer. Averaging to the daily level reduces the
influence of potentially missing data in each year and allows comparison
between different customers. We then calculate the average annual-
daily average electricity net consumption, A(i), by averaging the set of
eligible customer-years (Eq. (5)). Thus, A(i), measured in kWh per day is
the mean-annually-averaged daily net electricity consumption across
the period of study for each customer.

To characterize the relative consumption of electricity customers to
one another, we rank all electricity customers based on their average
annual electricity consumption, A(i). Annual electricity consumption is
then used to order all individual customers with eligible data through a
percentile function, P(i) (Eq. (6)). Once percentile is calculated, each
individual customer is assigned an electricity consumption tier, such
that each decile bin, B,, represents a decile of electricity usage, where
decile 1 (0-10%) represents the lowest consumption customers
consuming a daily average of 0.05 and 6.6 kWh and decile 10
(90-100%) represent the highest consumption customers consuming a
daily average of >33.4 kWh (Eq. (7)) [See Supplemental 3].

ZdeD,,ye(iv d)

@
}Di-y|

a(ivy) =
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3.5. Average daily load profiles

We define three season classifications primarily based on weather
patterns in Southern California’s Mediterranean climate: “Winter”
defined as November-December-January-February (NDJF), “Spring”
defined as March-April-May-June (MAMJ), and “Hottest Months”
defined as July-August-September-October (JASO). JASO, combining
summer and early fall, is the hottest period of the year, characterized by
extended heat and dryness typical of Southern California summers,
which often extend into the traditional autumn months. Because of di-
versity of climate zones contained within the SCE service area, these
seasonal categories do not necessarily capture all of the region’s micro-
climates but serve to capture its broad climate patterns.

To characterize net residential electricity consumption in SCE’s
service area, we create characteristic average daily load profiles that
show the typical electricity load of a given set of customers on a given
type of day. Throughout our analysis, we subset customers according to
California Energy Commission Climate Zone (z) and electricity con-
sumption decile bins (b). We subset customer-days by day of the week (i.
e. weekend vs weekday) and season (i.e. JASO, MAMJ, JASO). Thus,
average load profiles, L(s,w, b, z), represent the mean electricity in each
hour, Ly, from all customer-days for customers who lived in climate zone
() with consumption in decile (b), on weekday/weekend (w) days in
season (s) (Egs. (8) & (9)).

L(S,W,b,z):[Lo,Ll,...,Lh,...,ng] ®
Diet,, 2saer, It d)
L= TP ©
Ds,w,b,z

3.6. Gini coefficient calculation

To examine the distribution of electricity consumption among cus-
tomers and quantify their relative contributions to the SCE aggregate
residential electricity load, we derived average load profiles for each
customer, i, denoted as L(s, w, i), based on season (s) and day type (w). At
each hour of the day, we use the typical customer profiles to construct a
Lorentz curve [72] which shows the cumulative proportion of electricity
consumed at hour, h, up to the i _ranked customer by A(i) in ascending
order Cy(i):

1

> lu(sw.c)

Cu(i) =

o

Li(s,w, )

I
-

The Gini coefficient (GINI) is calculated using the differences be-
tween the Lorentz curve and a line of perfect equality [31] [See Sup-
plemental 5]. We calculate the Gini coefficient as the:

n

GINI(h) =1 - " (Pys) —Pui1) )(Ca(i) +Cn(i—1))
i1
In this case, the Gini coefficient is a value between 0 and 1, with
0 representing perfect equality (everyone consumes the same amount of
electricity) and 1 representing perfect inequality (one customer con-
sumes all electricity and no other customers consume any electricity).
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4. Results

In this section, we describe the average residential load profiles by
season and year. Because our data is statistically representative of the
SCE service area, the shape and magnitude of the load curves are
representative of the residential sector in SCE. (Fig. 1).

Weekend curves are similar in shape to weekday curves within the
same season. The average daily load of weekends is slightly higher than
that of weekdays within the same season. The majority of the differences
between electricity use between weekdays and weekends occur during
the 9 am through 5 pm workday, with 75% of the variability between
the two curves in the hottest months and 62% in spring and winter
months. During this 9 am to 5 pm period, there is higher weekend usage
within the same season.

Like CAISO’s all-sector electricity daily load profiles, the average
daily load in the hottest months is higher than the average daily load in
spring and winter months. In JASO, weekday average daily load is about
23.8 kWh across the period of study. By contrast, the MAMJ and NDJF
weekday average daily load is 17.0 kWh, 28% lower than the JASO daily
load. The seasonal load profiles are relatively similar in both shape and
magnitude throughout the late evening and early morning periods (6 pm
to 8 am) in all seasons. The biggest differences that drive the higher
electricity in JASO occur during the mid-day, presumably due to cooling
loads. In JASO, the residential load profile peaks at 17:00, two hours
earlier than the 19:00 peak in both MAMJ and NDJF. This JASO peak
hour electricity consumption is also significantly higher (1.47 kWh),
with non-JASO peak hour consumption <1 kWh about 35% lower in
electricity usage.

4.1. Average load profiles by electricity consumption decile bin

We analyzed diurnal electricity consumption profiles on weekdays in
NDJF, JASO, and MAMJ by electricity consumption decile bins (Fig. 2).
Each unique customer is assigned to the same decile bin in all seasons
based on their average daily usage across the entire time period of study.
Thus, some users may not be represented in all years. This figure shows
that the differences in electricity usage across utility customers at each
hour of the day can be large. For example, in JASO, customers in the
highest electricity consumption decile bin consume 59.5 kWh of elec-
tricity per day, more than twice the average daily load of the average
daily load of all users and >12 times the average daily load of the lowest
electricity consumption decile bin.

The total daily load was highest in JASO for all decile bins of cus-
tomers. Thus, while the impact on the diurnal shape of electricity con-
sumption changes throughout seasons, the increase in the magnitude of
total daily load remains a consistent trend for all decile bins. Most bins
have about 40-50% lower weekday electricity consumption in non-
JASO months compared to the JASO months. The exception is the
smallest two deciles of customers where electricity differences hover
around 15-20% lower weekday electricity consumption. This suggests
that while there are seasonal differences in the magnitude of electricity
consumption, the smallest customers (by electricity usage) exhibit less
seasonal variability.

Generally, the average load profile of the middle 60% of customers is
similar in shape to the average residential weekday load profile of all
SCE customers. By contrast, the customers in the two highest con-
sumption decile bins vary from lower decile bins. These large consumers
have an average weekday load profile with a smooth singular peak in
JASO and a double peak (i.e., one in mid-day and one in the early
evening) in the Spring and Winter. For lower deciles, Spring and Winter
load profiles generally consist of a smaller morning peak and a more
pronounced evening peak. The timing of the peak hour shifts earlier in
the day (16:00 and 17:00) for most decile bins in JASO, but the peak
hour timing of the bottom three decile bins of customers stays consistent
around hours 19:00 and 20:00 across the whole year. Customers in the
bottom three decile bins have relatively flat profiles across seasons,
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Fig. 1. The average daily load of a residential electricity customer in the SCE service area is highest during the hottest months (i.e., in JASO; July, August, September
and October). Peak electricity usage occurs earlier and is much higher in hot months than other months. Daytime weekend usage is typically higher than weekday
usage. Data represent the average hourly load profiles of approximately 160,000 SCE customers spanning the time period January 2015 through December 2019.
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Fig. 2. The average load profiles of SCE customers segmented by electricity consumption decile bins show that the highest consuming customers represent a
disproportionate fraction of daily load. Note: Each unique customer is assigned to the same decile bin in all seasons based on their average daily usage across the

entire time period of study. Darker colors represent higher usage customers.

when compared with higher-usage customers. Like other customers, the
magnitude of their average electricity usage is highest in JASO, but the
difference in magnitude is smaller across seasons compared to higher
usage customers.

4.2. Dispersion of electricity customers throughout the seasons

Next, we measure the diurnal patterns in disparities in electricity
between the average electricity of customers. Cumulatively, the lower
half of electricity customers ranked by annual electricity consumption
consumed <25% of total JASO weekday usage. By contrast, the top 20 %
of electricity users comprised >40% of all JASO weekday electricity
usage.

The disparity of electricity usage is measured using the Gini

coefficient, which represents dispersion across a population on a scale
from O to 1, changes by the time of day (Fig. 3). Higher values of GINI
values represent higher dispersions across SCE customers (i.e. a smaller
number of high-consumption customers consuming more than others).
All three seasons generally show a similar pattern of low disparity be-
tween households in the late evening and early morning, and reach the
highest dispersion levels at around midday (i.e., prior to afternoon peak
hours). This result suggests that a relatively small proportion of high-
consuming households account for a disproportionate amount of
midday electricity usage across the year in SCE.

While the general shape of the diurnal disparity curve looks rela-
tively similar across seasons, the magnitude of disparity shows large
seasonal differences. The Gini coefficient is highest in magnitude during
the mild spring months (green in Fig. 3), particularly on weekdays, most
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Fig. 3. The GINI Coefficient of electricity users suggests that the largest dis-
parities in electricity usage across customers occur in the middle of the day, on
weekdays, and in mild months. (Higher values of GINI values represent higher
dispersions in electricity usage across SCE customers.)

likely due to large heterogeneities of HVAC usage and time spent at
home compared to hotter and colder seasons. Cooling dominates midday
loads across much of the customer base during the hottest months (red in
Fig. 3), reducing midday dispersion across customers using AC
compared to in mild weather months. The dispersion in the hottest
months is likely bigger than the dispersion in the coldest months because
space heating in California is dominated by natural gas units, which
cannot be seen in these electricity data. Hence, the larger disparity in
electricity consumption during hot months is being driven by large
differences in residential cooling loads, which can be impacted by home
size, home insulation and weatherization characteristics, AC unit tech-
nology, energy affordability concerns, etc. [73]. More generally, users
across SCE demonstrate the widest range in loads in the midday during
typical working days in every season. We conjecture that the disparity is
higher on weekdays during typical working hours because there are
bigger differences in time spent at home across populations of customers
compared to weekends.

4.3. Climate zone differences in electricity use

SCE encompasses many different climate zones. Each climate zone
represents a distinct geographic region, which encompasses not only
differences in the climate that customers experience, but also differences
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in housing stock, built infrastructure, and demographics. Cool climate
zones include CZ 6 (coastal) and CZ 8 (inland coast). By contrast, the two
climate zones in the valley, CZ 9 (Inland Valley) and CZ 10 (Interior
Valley), are classified as moderate climate zones, with CZ 10 having
summers that are classified as hot. CZ 14 (Low Desert) and CZ 15 (High
Desert) are the hottest and driest climate zones in the region. The cool
coastal climate zones maintain relatively similar load shapes year-
round, with only minor increases in peak height and total daily elec-
tricity usage in the summer. (See Figure 4) By contrast, total daily
electricity use during the hottest months significantly increases in
moderate and hot climate zones, and peak-hour electricity shifts earlier
in the afternoon during these hot periods. Decile breakdowns of resi-
dents within each climate zone can be found in Supplemental Informa-
tion Fig. 6 and 7. In climate zones 10 and 14, the ratio between decile 10
(i.e., the highest-use customers) and decile 5 electricity loads is lower in
the hottest months than compared to cooler months, suggesting that
there is more diversity in electricity consuming behavior when loads are
not being driven by cooling, which is consistent with the insights
derived in the Gini coefficient analysis. In cooler climate zones, by
contrast, the ratio between the decile 10 and decile 5 is higher in the
hottest months, likely because there are large disparities in if and how
households use AC during comparatively mild summers.

5. Discussion

This paper highlights that there is a big breakdown in the magnitude
of electricity use across customers. We found that the top 20% of elec-
tricity customers use over 40% of the daily electricity load during
weekdays in the hottest months while the bottom half of electricity use
<25% of all net electricity consumption. During milder months (MAM.J),
the largest consuming households show disproportionally high usage
compared to the average customer, suggesting that these households
have more discretionary loads. For Californian utilities such as SCE,
most demand response efforts have targeted requests or incentives for
load reductions during the period spanning 4 pm to 9 pm, when solar
generation availability decreases and general residential electricity de-
mand climbs towards peak net load. During our study period, the default
rates for customers were standard tiered-rates based on monthly elec-
tricity usage with the ability to opt-in programs for time-of-use. Since
2021, customers have received time-of-use rates, with higher prices in
the 4-9 pm period, by default and have the ability to opt-out to receive
standard tiered rates [21]. Even so, during the hottest months of the
year, the disproportionality of electricity use during the critical 4-9 pm
period is greater in those hours compared to mild and winter months.
Thus, during the hottest months of the year, large consumers use a
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Fig. 4. Electricity load profiles differentiated by climate zone and season indicate that the hottest regions represent a disproportionate amount of electricity usage in
SCE, particularly during the hottest months. Note: The hottest climate zones are denoted in red, moderate in yellow, and the coolest in blue. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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disproportionate amount of electricity use during the critical 4-9 pm
period, suggesting that these customers are the most strategic for the
utility to target for leveraging reductions during DR events. If utilities
can get these customers to participate in DR activities, such as pre-
cooling, that shift loads from these late afternoon hours (when the grid is
dependent on expensive gas generators) to the midday (when the grid is
served primarily by low-cost variable renewable energy generators),
there will be valuable cost, emissions, and reliability benefits for the
utility and customer base [74].

In general, higher electricity usage is associated with higher-income
households and lower electricity with lower-income households, while
use intensity (energy use that is normalized by household square
footage) is generally higher in low-income households [75-78]. These
findings approximately match our analysis, but as found in the afore-
mentioned studies, these findings are not universally true. Within the
top decile bin, about 16% of households were in census tracts with an
average household income greater than $150,000 [See Supplemental 8].
About 3.1% of households within the top decile bin of electricity use
were in census tracts where the average household income was less than
the living wage for an individual in California [79]. Thus, there likely
exists some high electricity-consuming households with low household
income who could be disproportionately impacted by new demand
response initiatives, such as time-of-use rates.

However, designing rate structures requires not only balancing in-
centives for short-term load shifting, but also for social equity, public
health, long-term technology adoption, and/or energy efficiency ini-
tiatives. Low-income households may have less efficient appliances and
low insulation/weatherization interventions [80,81], higher energy
loads because of higher occupancy [82], or require electricity-
dependent medical equipment [83]. In the lowest decile bin, 13% of
users lived in census tracts where the average household income was less
than a living wage for an individual in California. These customers are
likely to be the most disproportionately impacted by rate changes yet
contribute little to the diurnal residential load profile, and potentially
lack the flexibility to adjust their electricity-consuming behaviors during
peak time. Recent work by Borenstein (2024) has found that a large
proportion of the difference in consumption of those who would be in
the top 20% of electricity use can be explained by the number of occu-
pants in the house, gross consumption inclusive of distributed solar,
differences in climate, electrified appliances, and the demographics of
the household [84]. Many of these characteristics, Thus, while changes
to pricing structures based on the amount of consumed electricity has
the potential to benefit the grid, pricing structures also can be regressive
in nature.

There are big trends in electricity use within California that could
markedly shift the trends noted in this analysis over time. California has
aggressive electrification efforts, including a goal to phase out gasoline
powered vehicles by 2035. (The state currently leads the United States in
electric vehicle registrations, with EV’s constituting one-fifth of Cali-
fornia’ new car sales in 2023 [85,86]). EV chargers increase the elec-
tricity use of a household an average of between 3 and 10 kWh on the
days vehicles are being charged, with higher power draws concentrated
during specific hours [87,88]. Furthermore, the state plans to implement
a ban on natural-gas appliances by 2030, with many municipalities
already banning or discouraging the use of gas-fueled appliances, such
as heaters, washers, dryers, and stoves. Currently the warmest months in
SCE show disproportionate electricity consumption, but trends towards
electrification will shift these trends diurnally and seasonally. For
example, compared to the rest of the United States, Californian house-
holds are less likely to have appliances that use electricity with only 28%
of space heaters (vs 40% nationwide) and 21% of water heaters (US:
47%) using electricity in 2023 [89]. Recent analysis of adoption of heat
pumps in Texas showed that such changes can shift peak demand from
the summer (driven by air-conditioning loads) to the winter (driven by
heating loads) [90]. These appliances have the possibility of increasing
and/or shifting the small morning peak currently seen in the Spring and
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Winter load profiles.

As technologies such as rooftop solar and battery storage mature,
designing rates and incentives for these technologies is becoming
increasingly complicated. Small scale solar plays a growing role in the
energy generation capacity in California, with a nameplate capacity of
11.7 GW at the end of 2023, and an estimated 19.2 TWh of annual
generation. Rooftop solar installations in the residential sector generally
sit behind the meter, and thus reduce the net electricity consumed from
utilities in houses with PV panels installed. Poorly specified incentives
and pricing structures for rooftop solar can put the benefits of such
programs towards higher-consuming and higher-income customers
while higher costs are absorbed by lower- to middle- income utility
customers [30]. In California, Net Metering 3.0 which covers new in-
stallations of solar PV has also reduced the price paid for over-generated
electricity (i.e., when solar generation exceeds electricity consumption
for a given hour) for most solar PV customers, while increasing the
potential benefits of Solar+Storage systems [91]. The use of smart me-
ters has the potential to help the redesign of new pricing structures that
can better balance the challenge of both equitable rates and incentiv-
izing grid-efficient behavior. For example, in Denmark, smart meter data
has been used to propose a new taxation policy that redistributes costs
according to a household’s consumption and PV usage to support both
occupant-dense households and grid-side flexible prosumers [92].

Climate change will also affect household electricity use, particularly
in regions that currently have relatively low AC penetration. AC pene-
tration across the region is estimated at 69%, with the coastal areas of
California having the lowest air conditioning penetration [68]. While
our analysis shows that the cool, coastal climate zones (CZ6 and CZ8)
have generally flat electricity load profiles, households (which tend to
be wealthier than average) within these climate zones have the potential
to grow significantly especially in the hottest months, due to relatively
low rates of existing air conditioning penetration that will likely increase
as temperature increases due to climate change [93]. (Even in these
more mild climate zones, temperatures have recently hit record highs
that have exceeded 100 degrees Fahrenheit [94]). Using data-driven
methods, researchers and utilities will be able to track in near-real
time electricity use behaviors.

Although smart meter data continues to grow more available, they
are not yet ubiquitous and their distribution to third party researchers is
often prohibited by utilities due to privacy concerns. However, as they
become increasingly available, data-driven load profile studies like this
one can offer critical insight into the actual distribution of electricity
usage among customers, which cannot be generated from traditional
bottom-up and top-down methods used to characterize residential load
profiles. While physics-based models, like the Department of Energy’s
ResStock, utilize detailed conditional probability tables to characterize
variables such as square footage, building construction, and heating and
cooling appliances to generate regional load profiles across the United
States for current and future scenarios [95], this benefit is constrained
by the models’ reliance on accurately representing the highly variable
behaviors of individual users. Future research could integrate high-
resolution smart meter data to validate the modeling of the residential
load curve, especially for customers in different deciles of electricity use.
Past research in customer behavior using customer segmentation and
social science approaches have shown that customers may have
dramatically different electricity use behaviors despite similar de-
mographics, appliances, and building designs [45,69,96,97]. The results
of this paper suggest that even when in the same service area, different
customers have different load profiles because of differences such as by
climate zones or electricity use bins. Therefore, data-driven models are
essential in highlighting the divergences in behavioral patterns and the
actual variances in electricity usage behaviors. Data-driven methods
continue to grow in their capabilities (e.g., using smart meter data to
deduce the presence and usage of appliances using non-intrusive load
monitoring techniques [98,99]). As these methods improve, the insights
from data-driven methods need to be integrated into bottom-up physics-
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based models by providing more accurate representations of actual
electricity consumption behaviors.

6. Conclusion

Developing insights into the patterns and magnitude of electricity
usage in the residential sector is key for utility managers and policy
makers to ensure the long-term reliability of the grid. To date, other
studies developing load profiles of the residential sector have been
limited by the size of available datasets. By using a statistically repre-
sentative dataset of the Southern California Edison service area, we were
able to characterize the load curves of statistically significant sub-
populations of households across the SoCal Edison service area by
characteristics such as total annual electricity usage, season, and climate
zone. This work provides utility managers and policy makers in South-
ern California insights into how residential electricity is being used
throughout the day and over different seasons.

This study provided a novel analysis of the contribution of groups of
individual customers to the overall electricity curve and disparities in
electricity use. We found that a small fraction of electricity users
consume an outsized proportion of overall and peak electricity use. By
contrast, the combined electricity use of the bottom half of household
electricity consumers contributed to less than one-quarter of the elec-
tricity use. The disparities in electricity usage across SCE households are
higher in the mid-day, especially in Spring since loads are not as
dependent on high HVAC loads. Hotter months have higher disparities
in electricity use during peak hours than cooler months because of wide
differences in cooling-driven loads.

In the future, methods provided in this paper can give quick insights
for utilities to understand how residential electricity may change across
days, seasons, and climate zones, and how different groups across those
spatio-temporal distinctions contribute to overall residential sector
electricity usage. The region-specific trends identified in this study for
Southern California are likely to change due to a warming climate, as
well as climate mitigation policies promoting deep decarbonization and
electrification [100,101]. However, researchers can build off the
framework presented in this study to analyze diurnal changes in load
profiles, both retrospectively to gain insight into how electricity load
profiles may shift due to external circumstances (e.g. weather or local
events) or to prospectively track trends and shifts in the residential load
due to evolving factors affecting electricity consuming behaviors.
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