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Abstract
Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations 
that have nearly tripled since pre-industrial times. Wetlands account for a large share 
of global CH4 emissions, yet the magnitude and factors controlling CH4 fluxes in tidal 
wetlands remain uncertain. We synthesized CH4 flux data from 100 chamber and 9 eddy 
covariance (EC) sites across tidal marshes in the conterminous United States to assess 
controlling factors and improve predictions of CH4 emissions. This effort included creat-
ing an open-source database of chamber-based GHG fluxes (https://​doi.​org/​10.​25573/​​
serc.​14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4 
m−2 year−1, with a median of 3.9 g CH4 m−2 year−1, and only 25% of sites exceeding 18 g 
CH4 m−2 year−1. The highest fluxes were observed at fresh-oligohaline sites with daily 
maximum temperature normals (MATmax) above 25.6°C. These were followed by fre-
quently inundated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C, and 
mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4 flux 
and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 
5 ± 3 nmol m−2 s−1 at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, 
or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor 
of annual CH4 fluxes, while within sites, temperature, gross primary productivity (GPP), 
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1  |  INTRODUC TION

Tidal wetlands play a critical role in global carbon (C) cycling 
(Bianchi, 2006; Odum, 2002). They have the potential to provide 
major feedbacks to the Earth's climate system as they exchange 
greenhouse gasses (GHGs) with the atmosphere, store large soil C 
pools, and have the potential to sequester C through continuous 
vertical accretion, allochthonous sediment deposition, and biomass 
accumulation (Duarte et al., 2013). Low rates of organic matter de-
composition in their waterlogged soils promote the preservation of 
large quantities of soil organic C (also known as blue carbon) for cen-
turies to millennia, contributing to the long-term removal of carbon 
dioxide (CO2) from the atmosphere (Chmura et al., 2003).

However, the anaerobic conditions that promote soil C stor-
age also lead to microbial methane (CH4) production (Megonigal 
et al., 2004). Methane, with 32–45 times the warming potential of 
CO2 over a 100-year time horizon, is second behind CO2 in con-
tributing to increases in atmospheric GHGs associated with re-
cent warming (Forster et al., 2021; Neubauer & Megonigal, 2015). 
When considered in the timeframe relevant to meeting the Paris 
Agreement's target of limiting warming to 1.5°C, the CH4 global 
warming potential is even higher, reaching 75 times that of CO2 
(Abernethy & Jackson, 2022). A recent compilation of global CH4 
emissions identified wetlands as among the primary natural sources 
of atmospheric CH4, second only to freshwaters, with emissions 
ranging between 150 and 180 Tg CH4 year−1 (Saunois et al., 2020) 
and likely contributing to growing atmospheric CH4 concentrations 
as the climate becomes warmer and wetter (Zhang et al., 2023), and 
anthropogenic wetland modifications increase (Kroeger et al., 2017; 
Rosentreter, Borges, et  al., 2021). Global atmospheric CH4 contri-
butions from coastal wetlands, like tidal marshes, have been less 
studied (Rosentreter, Borges, et  al.,  2021), and recent bottom-up 
estimates (1–3.5 Tg CH4 year−1; Saunois et  al., 2020) are not well 
constrained due to the lack of systematic observations, data qual-
ity (i.e., primarily discrete measurements with few high-frequency 
continuous measurements), uncertainties associated with coastal 
wetland area, and the risk of double counting of ecosystem types 
(e.g., tidal and non-tidal riverine, floodwater or estuarine wetlands) 
(Rosentreter et  al.,  2023; Rosentreter, Borges, et  al.,  2021; Roth 
et al., 2022; Saunois et al., 2020).

Global-scale controls on wetland CH4 dynamics are reason-
ably known, including climatic zones, the presence of permafrost, 
peat, or mineral soils, groundwater, and surface water inputs in 
addition to precipitation, and the influence of salinity (Bridgham 
et al., 2013; Turetsky et al., 2014). These large spatial-scale charac-
teristics subsequently control plant composition and the soil attri-
butes that drive anaerobic C cycling and CH4 dynamics. However, 
in tidal wetlands, where the tidal influence can dominate over 
other global factors, it remains unclear whether CH4 responses 
to commonly studied predictors in non-tidal freshwater wetlands 
also apply. Tidal wetlands experience unique spatial and temporal 
variation in tides, redox conditions, and the influence of seawater 
(Cloern & Jassby, 2012; Seyfferth et  al., 2020). These variations 
contribute to spatial gradients in plant species and traits, microbial 
communities, and processes such as soil accretion, primary produc-
tion, respiration, and decomposition (Borde et al., 2020; Campbell 
& Kirchman, 2013; Morris et  al., 2002; Watson & Byrne, 2009). 
Any or all of these factors substantially influence CH4 emissions, 
highlighting the complexity of predicting CH4 fluxes from these 
ecosystems.

On a local scale, rates of methanogenesis in wetland soils are 
primarily governed by the balance of electron donors and termi-
nal electron acceptors. In general, saline tidal wetlands have high 
concentrations of porewater sulfate, typically leading to low rates 
of methanogenesis as acetate and hydrogen, primary substrates 
for methanogens, are utilized by sulfate reducers to decompose or-
ganic matter anaerobically (Megonigal et al., 2004). However, other 
pathways like methylotrophic methanogenesis can also be import-
ant in saline environments where non-competitive substrates are 
degraded to methyl compounds, producing CH4 even when sulfate 
reduction co-occurs (Oremland et al., 1982; Seyfferth et al., 2020). 
Once CH4 is produced, it can reach the atmosphere by physical (dif-
fusion and ebullition) and plant-mediated processes. Some plants 
efficiently vent CH4 to the atmosphere through aerenchymatous 
tissue. For example, in species such as Phragmites australis, Typha 
latifolia, and T. angustifolia, convective gas transport during light con-
ditions allows CH4 produced in soils to bypass CH4 oxidation zones 
and escape to the atmosphere at greater rates (Bendix et al., 1994; 
Sanders-Demott et  al.,  2022; Van der Nat & Middelburg,  1998; 
Vroom et al., 2022).

and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP 
preceded temperature in importance for predicting CH4 flux changes, while the opposite 
was observed at the seasonal scale. Water levels influenced the timing and pathway of 
diel CH4 fluxes, with pulsed releases of stored CH4 at low to rising tide. This study pro-
vides data and methods to improve tidal marsh CH4 emission estimates, support blue 
carbon assessments, and refine national and global GHG inventories.

K E Y W O R D S
contiguous United States, eddy covariance, flux chamber, methane, open-source database, 
predictors, synthesis, tidal wetlands
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Previous syntheses have identified important drivers of CH4 
emissions in tidal wetlands, including salinity and sulfate concentra-
tions (Poffenbarger et al., 2011), temperature, and the quality and 
quantity of organic matter (Al-Haj & Fulweiler, 2020). Additionally, 
tidal pumping (Call et  al.,  2015; Trifunovic et  al., 2020), dominant 
vegetation types and hydrology (Derby et al., 2022), plant pheno-
logical phases (Vázquez-Lule & Vargas, 2021), and functional trait 
composition (Mueller et al., 2020; Tong et al., 2018; Van der Nat & 
Middelburg, 1998) have been shown to play significant roles. While 
recent syntheses (Al-Haj & Fulweiler,  2020; Rosentreter, Al-Haj, 
et  al.,  2021; Rosentreter, Borges, et  al.,  2021) have qualitatively 
discussed these biogeochemical (e.g., salinity, temperature, organic 
matter) and biotic (e.g., plant-mediated transport) drivers, they have 
not resolved the relative influence of overlapping predictors in a 
quantitative fashion. This may be partly attributed to the reliance 
of syntheses on literature values, which often represent summa-
rized flux averages or temporally upscaled estimates that can mask 
a wealth of processes and important variations evident in original 
disaggregated measurements. In contrast, this study focuses on 
original, disaggregated data and metadata obtained directly from re-
searchers, allowing for a more detailed and in-depth analysis of CH4 
fluxes and their influencing factors.

Measuring CH4 emissions from tidal marshes has primarily 
depended on chamber methods, especially static chambers sam-
pled manually, due to their low cost, simplicity of application, 
and ease of deployment in areas without power (Rolston, 1986; 
Yu et  al.,  2013). The fine spatial resolution of chamber flux 
measurements, their generally low detection limits, and their 
compatibility with concurrent surface and porewater sampling 
of relevant analytes (salinity, pH, dissolved gas concentrations, 
or alternate electron acceptors) have made them an invaluable 
resource for process-based research and for measuring small 
fluxes and instances of net CH4 oxidation. However, due to 
logistical constraints, chamber methods introduce limitations 
as they encourage sampling at low tide, during daylight hours, 
and on an intermittent sampling schedule (typically monthly). 
As a result, pulse events triggered by diurnal and tidal cycles, 
changes in atmospheric pressure, or sediment disturbances are 
often unobserved or filtered out to remove ebullition (Altor 
& Mitsch,  2006; Morin et  al.,  2014; Podgrajsek et  al.,  2014; 
Rosentreter et al., 2018).

To address the low resolution of daytime static chamber mea-
surements, some studies have employed custom gas exchange 
models that incorporate continuous air temperature or water table 
depth, among other factors, to model CH4 fluxes between sam-
pling events (Krauss et al., 2016; Neubauer, 2013; Sanders-Demott 
et al., 2022; Schultz et al., 2023; Weston et al., 2014). In the absence 
of continuous measurements of predictor variables, others have 
used scaling factors to convert average daily fluxes into annual emis-
sions (Bartlett & Harriss, 1993; Bridgham et al., 2006; Poffenbarger 
et  al., 2011). These factors are based on studies that report both 
annual and daily rates and represent the ratio of annual CH4 flux to 
average daily flux (Bridgham et al., 2006).

On the contrary, the continuous, high-frequency eddy covari-
ance (EC) technique offers promising datasets for understanding 
tidal marsh CH4 fluxes, which often involve nonlinear and asyn-
chronous processes across multiple timescales (Reid et  al.,  2013; 
Sturtevant et  al., 2016). However, EC studies in tidal marshes are 
less common than chamber studies and are not as widespread as 
in other ecosystems, such as inland freshwater wetlands, rice pad-
dies, and tundra. Unlike chambers, EC systems are less effective in 
discerning the influence of factors operating at small spatial scales, 
such as plant traits and microtopography, and often lack support-
ing water level (Knox et  al., 2019), salinity (Delwiche et  al., 2021), 
and porewater data such as sulfate or nitrate concentrations that 
may pose important controls on CH4 production. Nevertheless, they 
offer ecosystem-scale fluxes and are better suited for assessing the 
influence of plant C assimilation on CH4 fluxes and pulsed events.

Drawing on data from both flux monitoring techniques increases 
the quantity of data available and leverages the benefits of both ap-
proaches to better understand the variability of CH4 fluxes across 
time and space (Yuan et  al.,  2024). However, while EC data are 
available through global and national networks such as AmeriFlux 
and FLUXNET, chamber fluxes disaggregated by sampling event 
and supporting environmental covariates remain widely dispersed 
and frequently unavailable. In the context of the Coastal Carbon 
Network (CCN) Methane Working Group, we compiled, synthesized, 
and standardized chamber-based CH4 fluxes across the contermi-
nous United States (CONUS) and created an open-source database 
focused on tidal marsh ecosystems that host chamber-based GHG 
fluxes with supporting observations and porewater biogeochemis-
try (Arias-Ortiz et al., 2024).

Our primary objective was to assess controlling factors and im-
prove predictions of CH4 emissions in tidal marshes across CONUS. 
Here, we provide an in-depth analysis of tidal marsh CH4 flux pat-
terns and the factors influencing the variation in flux magnitudes 
and timing. Specifically, we address the following questions: (i) What 
are the primary predictors of CH4 flux in tidal marshes across sites 
in CONUS? (ii) How does the variability in CH4 fluxes change across 
daily to seasonal timescales, and what are the dominant predictors 
at each timescale? (iii) Can improved scaling factors for annualizing 
discrete chamber measurements be developed, and to what extent 
do daily and seasonal variations in CH4 fluxes affect these factors? 
Finally, (iv) how can the identified relationships and gained informa-
tion be used to improve monitoring and predictions of CH4 emis-
sions in tidal marshes?

2  |  METHODS

2.1  |  Dataset description

The database contains 35 contributed CH4 flux datasets of 122 tidal 
marsh sites measured with chambers across CONUS (Arias-Ortiz 
et al., 2024). Details on the data acquisition process and database 
structure can be found in Supporting Information sections 1 and 2. 
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For the analysis in this study, we selected chamber plots without any 
experimental treatment, except for those involving salinity. These 
treatments consisted of slight changes from fresh to oligohaline 
conditions, resembling the seasonal variations in salinity that tidal 
marshes may naturally experience. This resulted in a total of 100 
marsh sites with discrete CH4 flux measurements disaggregated by 
sampling event, spanning from 1 day to 4 years, and accompanied 
by ancillary data, including porewater biogeochemistry. Analyses 
of the chamber dataset were complemented with nine independent 
EC tidal marsh datasets available through FLUXNET-CH4 (US-LA1, 
US-LA2, US-Srr), AmeriFlux (US-EDN, US-Dmg, US-StJ), and tower-
site PIs (US-MRM, US-HPY, and US-PLM) (Table S1), all of which ad-
here to standards and data QA/QC procedures explained elsewhere 
(Chu et al., 2023; Delwiche et al., 2021; Knox et al., 2019). Gap-filled 
fluxes were obtained from site PIs if missing in the original datasets. 
Likewise, when absent, water quality parameters, including conduc-
tivity or salinity and dissolved nitrate concentrations, were sourced 
from the USGS National Water Information System or National 
Estuarine Research Reserves online databases (NOAA, 2023; USGS 
NWIS 11180770, 2023). See Supporting Information section 1 and 
Table S1 for details on tower sites, including fraction of gap-filled 
CH4 flux data.

Eddy covariance and chamber sites were classified using a multi-
faceted classification system described in Table 1 and the Supporting 
Information section 2. The definition of “site” differs between cham-
ber and EC studies. Eddy covariance sites are represented by the 
flux footprint rather than by gradients in biotic and abiotic factors 
such as elevation, species composition, or substrate type (channel, 
mudflat, or vegetated area). In this study, we defined chamber sites 
as distinct locations within a tidal wetland that could consist of sev-
eral chamber plots. Adjacent areas, if composed of different wetland 
vegetation, salinity, elevation, or disturbance classes, were consid-
ered different chamber sites in our database.

2.1.1  |  Chamber flux QA/QC and filtering

Submitted chamber-based CH4 fluxes were assigned quality flags 
based on details reported during the data submission process or in 
the original publication (Table 2). These flags indicate if any thresh-
olds (R2 and/or p-value) were used to test, modify, or remove flux 
rates in the original studies. 65% of the submitted CH4 fluxes were 
accompanied by R2 and/or p-values (24% had both reported), and 
35% had no associated statistics. Chamber flux measurements 
across studies in the synthesis varied in methodology. Some were 
based on syringe headspace samples, while others used continuous 
gas analyzers, which provide a more accurate assessment of con-
centration changes over time. To harmonize data quality control 
procedures across the dataset for analysis in this study, we filtered 
the data using percentiles (to remove outliers) and flux quality flags 
(Table  2). For the entire dataset, CH4 fluxes below and above the 
1st and 99th percentiles were excluded if statistics supporting these 
extreme values were not reported or if the R2 of the regression was 

lower than 0.90 (Figure S2a). Furthermore, CH4 flux rates flagged 
as “Not Significant” or “Not Tested” with reported statistics were 
further filtered out based on p-values, R2, and the number of sample 
points (n) used to fit the regression model, all conditional on flux 
magnitude. Briefly, CH4 flux rates with a p-value >0.10 were filtered 
out if they exceeded 10 nmol m−2 s−1 (the mean flux rate estimated 
for fluxes flagged as not significantly different from zero). If p-values 
were not provided but R2 and n were available, we filtered out fluxes 
exceeding 10 nmol m−2 s−1, those with R2 < 0.80 and n < 4, or R2 < 0.55 
and n < 6. Rates <10 nmol m−2 s−1 were retained even if they did not 
meet the R2 requirements because samples with low CH4 concen-
trations generally have low R2 values reflecting the low fluxes from 
those chambers rather than a poor measurement quality. Of 8980 
individual chamber CH4 fluxes, 156 were filtered out because they 
exceeded the 1st and 99th percentiles with no supporting statis-
tics. An additional 60 measurements were discarded based on p, 
R2, and n values (Figure S2b). The result is a vetted dataset without 
unsubstantiated outliers of 8764 observations. We acknowledge 
that fluxes driven by nonlinear processes such as ebullition may be 
underrepresented.

2.2  |  Annual CH4 flux estimates and scaling factors

We estimated annual tidal marsh CH4 fluxes where there was a full 
year of tower or chamber data. At EC sites, we calculated annual 
sums using gap-filled data. At chamber sites, we used published es-
timates where available. At sites where CH4 fluxes had been meas-
ured across all months but annual estimates had not been reported, 
we integrated daytime fluxes using linear interpolation between 
year-round measurements after calculating the median of CH4 flux 
rates within replicate chambers.

Most chamber sites (82 out of 100) did not have a full year of 
sampling coverage (i.e., one or more monthly measurements were 
missing). Additionally, two EC sites did not have a full year of data 
(US-PLM) or lacked gap-filled meteorological and flux variables (US-
HPY). For these and the chamber sites lacking annual CH4 flux mea-
surements, we developed scaling factors to upscale measurements 
to annual estimates. Scaling factors were calculated from the ratio 
between annual flux (in units of g CH4 m−2 year−1) and average daily 
flux (in mg CH4 m−2 day−1) using sites with a full year of sampling 
coverage (Bridgham et  al.,  2006). Scaling factors were calculated 
for both chamber and EC sites. At EC sites, we used non-gap-filled 
mean daily flux measurements against the annual sum calculated 
with gap-filled data. If a specific site-year had more than 2 consec-
utive months of missing data, we excluded it from the computation 
of scaling factors.

Particularly, we were interested in developing a scaling factor 
specific to the peak emission period (annual flux/average daily 
flux between June and August) since chamber studies in temper-
ate marshes do not often include winter sampling when plant pro-
ductivity is at its lowest (e.g., Bartlett, 1985; Weston et al., 2014) 
and most sites in the database met the condition of having data 
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during this period. For sites lacking annual CH4 flux measure-
ments, we provided a first-order estimation of their annual CH4 
flux using the scaling factor derived from June–August mean daily 
CH4 fluxes (without gap-filling for EC sites). We refrained from 
scaling mean daily CH4 fluxes to annual estimates at chamber sites 
with a study duration ≤1 day (sites = 4). We averaged annual fluxes 
when there was more than 1 year of data for a given chamber or 
EC site. Additionally, we added two sites for which disaggregated 
data could not be synthesized (i.e., not in the dataset) but measured 

annual CH4 fluxes had been published (Neubauer et  al.,  2000; 
Segarra et al., 2013).

We treated annual CH4 flux estimates from chambers and EC as 
comparable, making no distinction between the two when estimat-
ing mean, median, and geometric mean annual CH4 fluxes across tidal 
marshes in the CONUS. Previous synthesis works have also com-
bined chamber and EC annual CH4 flux estimates due to the limited 
number of EC sites in tidal or coastal settings compared with those 
of chambers (Al-Haj & Fulweiler, 2020; Rosentreter et al., 2023).

TA B L E  1 Attribute categories used to classify chamber and EC sites in according to wetland type, vegetation, salinity, relative elevation, 
and disturbance conditions.

Attribute Code Description

Wetland type Palustrine tidal Wetlands dominated by trees, shrubs, or emergents that occur in tidal areas 
where salinity is <0.5 psu (Cowardin et al., 1979)

Estuarine intertidal Tidal wetlands usually semi-enclosed by land but have open, partly 
obstructed, or sporadic access to the open ocean, and in which ocean water 
is diluted by freshwater runoff from the land. Salinities >0.5 psu (Cowardin 
et al., 1979)

Vegetation Class Mudflat Describes unvegetated areas exposed and flooded by tides

Emergent Describes wetlands dominated by persistent emergent vascular plants

Scrub/Shrub Describes wetlands dominated by woody vegetation ≤5 m in height

Forested Describes wetlands dominated by woody vegetation >5 m in height

Salinity class Fresh <0.5 psu

Oligohaline 0.5–5 psu

Mesohaline 5–18 psu

Polyhaline 18–30 psu

Mixoeuhaline 30–40 psu

Elevation Class High Elevation above the Mean Highwater mark (MHW), inundated infrequently. 
Could be defined by vegetation communities (e.g., Spartina patens, Distichlis 
spicata, Salicornia sp., Juncus sp., and bulrush species)

Mid Elevation in the relative middle of the tidal frame, frequently inundated, 
typically defined by vegetation communities (e.g., Spartina patens)

Low Elevation relatively low in the tidal frame, frequently inundated, typically 
defined by vegetation communities (e.g., Spartina alterniflora)

Levee Study-specific definition of a relatively high elevation zone built up on the 
edge of a river, creek, or channel

Back Study-specific definition of a relatively low elevation zone behind a levee

Disturbance class Undisturbed No disturbance or management has occurred on the site

Tidally restored Tidal flow has been restored by removing an artificial obstruction

Tidally restricted Tidal flow is muted or blocked by built structures. Includes impoundment

Ditched Tidal hydrology is altered because artificial ditches have been cut to promote 
tidal flooding and drainage

Species invasion Establishment of non-native species that compete with, displace, or even 
eliminate native species

Submergence-Salinization Caused by sea level rise and saltwater intrusion

Storm disturbance Major storms, including unusually high precipitation and/or wind events

Removal of invasive plants Natural plant communities have been restored by actively removing invasive 
plant species

Revegetation Wetland vegetation has been reintroduced by replanting on unvegetated 
surfaces

Wetland construction Constructed wetland using sediments such as dredge spoils or other 
sediment source
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Scaling factors and CH4 flux data had non-normal distributions; 
thus, we focused on comparing medians and used non-parametric 
tests such as paired-sample Signed test (S) for paired comparisons 
(i.e., year-round vs. June–August scaling factors), Mann–Whitney 
test (U) for two-group comparisons (e.g., scaling factors between 
EC and chambers), or a Kruskal–Wallis Dunn's test (H) using the 
Benjamini–Hochberg correction for multiple comparisons (i.e., fluxes 
between salinity, elevation, and disturbance classes). All statistical 
analyses were done at a level of significance of α < 0.05.

2.3  |  Analysis of predictors of CH4 fluxes 
across sites

2.3.1  |  Predictors of annual CH4 fluxes using 
broadly available data

To evaluate the predictors of annual CH4 fluxes across sites in 
CONUS, we combined chamber and EC annual CH4 flux estimates 
and used qualitative (e.g., salinity and elevation class) and long-term 
climatological data (i.e., climate normals), which were broadly avail-
able at all sites. These data were fit to classification and regres-
sion trees such as Conditional Inference Trees (CTree) (Hothorn 
et al., 2006) and Random Forests (RF) (Breiman, 2001). CTrees use a 
significance test procedure to select variables at each split to reduce 
overfitting and selection bias. The stopping criterion is implemented 
when the global null hypothesis of independence between the re-
sponse and any of the covariates cannot be rejected at a nominal 
level α, set at 0.05. The tree was constructed using the function 
“ctree” in the R package “Partykit” (Hothorn & Zeileis, 2015), limiting 
the tree depth to five levels. CTrees provide direct visualization of 
the splits at decision nodes, helping the interpretability of predic-
tors, and are similar to binary partitioning methods used for analyz-
ing soil CO2 efflux measurements in terrestrial ecosystems (Vargas 
et al., 2010). However, they may suffer from issues associated with 
single trees, such as overfitting, high variance, or bias toward domi-
nant classes.

For this reason, we added RF to our analysis. We trained a RF al-
gorithm for annual CH4 fluxes using R's “caret” package (Kuhn, 2008). 
Similar to CTrees, the RF model was trained on all available data (i.e., 
we did not create training and test data splits) since our objective was 
to determine the hierarchy of predictor importance of CH4 fluxes in 
tidal wetlands rather than to identify a predictive model that can 
generalize to new conditions (Knox et  al., 2021). Hyperparameter 
tuning was performed for mtry (number of predictors randomly sam-
pled at each decision node, selected at 6), and the number of trees 
was set to 400. For CTrees and RF models, we provide out-of-bag 
model fit metrics (coefficient of determination, mean absolute error, 
and root mean squared error) to further evaluate relative confidence 
in results.

Long-term average normals included in CTree and RF analyses 
were mean annual temperature and precipitation (MAT and MAP), 
mean daily maximum annual temperature and vapor pressure deficit 
(MATmax and VPDmax), and mean total daily shortwave solar ra-
diation (Soltotal), which were extracted from PRISM using specific 
site coordinates (PRISM Climate Group, Oregon State University, 
https://​prism.​orego​nstate.​edu, data generated November 10, 2022). 
For these analyses, back and levee elevation classes (Table 1) were 
grouped within the low and high elevation classes, respectively, due 
to their low representation (less than three sites each) across the 
dataset. Salinity class was converted to numeric format to run the RF 
algorithm. Mean annual surface water or porewater salinity was cal-
culated at sites with available data, while the midpoint of the salinity 
class range was used at sites with no salinity data.

2.3.2  |  Predictors of CH4 fluxes using discrete 
chamber measurements

To evaluate predictors of CH4 flux across sites using chamber-
disaggregated CH4 fluxes by sampling event and time-specific 
environmental parameters, we employed generalized additive 
models (GAMs) (Hastie & Tibshirani, 1990). We chose GAMs over 
regression trees like RF because we prioritized interpretability 

Flag Description

“Not Tested” (NT) Assigned to flux rates missing statistics or any flux not 
censored or modified based on R2 or P-values, even if 
these were provided in the original publication

“Not Significant” (NS) Assigned to flux rates considered not significantly 
different from zero by the authors, divided into two 
subcategories

NS_0: Used when authors replaced non-significant flux 
rates with zero

NS_NA: Assigned when authors removed non-
significant flux rates at specific sampling events

“Significant” (S) Assigned to all flux rates accompanied by linear 
regression statistics and considered significantly 
different from zero by authors, regardless of study-
specific thresholds

TA B L E  2 Flagging criteria for chamber 
CH4 flux analysis based on their statistical 
significance and treatment in original 
studies.

https://prism.oregonstate.edu
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over predictive performance. Additionally, discrete chamber data 
present challenges due to patchiness in recorded variables, high-
lighting a lack of standardization across chamber studies and, 
consequently, the need for developing models for each recorded 
variable individually when using the entire dataset. GAMs can de-
scribe linear and nonlinear relationships between CH4 fluxes and 
predictor variables, and they have the advantage of not needing 
data transformation. Before running GAMs and any of the fol-
lowing analyses, we transformed periodic variables such as day 
of year (DOY) and sample hour using their sine and cosine trans-
formations instead of their original values to linearize their cyclical 
pattern. First, we developed GAMs of CH4 flux using each pre-
dictor individually. Relative predictor importance was determined 
by comparing the deviance explained among predictors. From the 
entire database, we selected predictors that were available in five 
or more studies. Then multivariate GAMs were implemented using 
a combination of predictors that individually explained the largest 
variance and were present in at least five studies. Models were 
fit with restricted maximum likelihood (REML), and study ID (i.e., 
publication) was included as a random factor to account for non-
independence of multiple chamber fluxes extracted from the same 
study. Additionally, the presence or absence of flux R2 or p-values 
was used as an estimate of precision and was applied to weight 
flux rates so that studies in which statistics had supported CH4 
fluxes were given a higher weight (0.8 vs. 0.2). All GAMs were im-
plemented using the R “mgcv” package (Wood, 2011).

Leveraging nonlinear quantile regression, we established 
quantitative relationships between CH4 emissions and the top-
ranked predictor variables identified by GAMs, and estimated 
thresholds above which CH4 fluxes were negligible. Quantile re-
gression is valuable when assumptions like normality are not met. 
Additionally, this approach is adept at resisting the influence of 
outliers and is well suited for handling heteroscedasticity (i.e., 
where the variance of the CH4 fluxes varies across different levels 
of a predictor, e.g., salinity) (Koenker, 2005). It allows for more ac-
curate modeling of the varying spread of CH4 fluxes by estimating 
multiple slopes that describe the relationships between specific 
quantiles of the CH4 flux distribution and a predictor that regres-
sion methods, focused solely on predicting mean values, would 
otherwise overlook (Cade & Noon,  2003). Quantile regressions 
were fitted for the 0.1, 0.5, and 0.9 quantiles of CH4 fluxes using 
the nlrq() function within the R package “quantreg” (Koenker, 2023) 
due to the observed nonlinear relationships between CH4 fluxes 
and the tested predictor variables. The slopes of the fitted con-
ditional quantile regressions were used to estimate the predictor 
level required to decrease CH4 fluxes by half, based on an expo-
nential decay relationship (i.e., X1/2 = ln(2)/slope). Subsequently, 
threshold values were estimated as seven times X1/2, representing 
a 99% reduction of CH4 fluxes through interactions with increas-
ing predictor levels. We calculated these thresholds for the 50th 
and 90th percentiles of the conditional distribution of CH4 fluxes, 
representing the predictor thresholds below which the 50% and 
90% of the highest CH4 fluxes occur, respectively.

2.4  |  Analysis of predictors of CH4 fluxes across 
timescales

Half-hourly EC datasets were used to assess CH4 flux magnitude 
fluctuations at diel to seasonal scales and their controlling factors. 
Additionally, they provided insights into the significance of predictor 
variables not often evaluated in chamber studies, such as plant activ-
ity through GPP, net ecosystem exchange, or latent heat, as well as 
the effects of tidal pulsing on modulating CH4 exchange.

We employed wavelet time series decomposition to identify 
major timescales of variation within the continuous CH4 flux time 
series. Then, we used mutual information (I) to find the relative 
importance of each predictor variable and identify both synchro-
nous and asynchronous interactions (Ruddell et al., 2013). Mutual 
information (I) measures the amount of information shared by 
two variables, X and Y, or the reduction in uncertainty of one 
variable given the knowledge of the other variable (Fraser & 
Swinney, 1986). The degree of mutual information between X and 
Y is increased by adding a time lag (positive or negative) in series Y 
relative to X, thereby allowing the identification of both synchro-
nous and asynchronous interactions. Using the ProcessNetwork 
Software (v1.5, Ruddell et al., 2008) and the Wavelet Methods for 
Time Series Analysis (WMTSA) toolkit (Cornish et  al., 2003), we 
decomposed gap-filled CH4 flux and explanatory variables in four 
general timescales of variation: hourly (1–2 h), diel (4 h–1.3 days), 
multiday (2.7–21.3 days), and seasonal (42.7–341 days). These 
timescales of variation represented short-term perturbations such 
as wind gusts or overpassing clouds, day-night changes in meteo-
rological variables and tidal fluctuations, neap-spring tidal cycles, 
and seasonal courses of solar movement and vegetation phenol-
ogy, respectively. Wavelet decomposition was performed on gap-
filled, half-hourly data using the maximal overlap discrete wavelet 
transform (MODWT), summing the detail over adjacent scales to 
yield the latter four timescales of variation (details in Sturtevant 
et al., 2016). Wavelet decomposed data were then used to com-
pute the mutual information between CH4 fluxes and biophysical 
variables within each timescale over a range of time lags (from half 
a day at the diel scale to 60 days at the seasonal scale). Original 
gaps in the reconstructed time series were reintroduced before 
mutual information calculation for all except the seasonal analy-
sis following (Knox et  al., 2021). Results were interpreted using 
the relative mutual information (IR) metric, a normalized measure 
of the statistical dependence of CH4 flux on a range of predic-
tor variables, with larger values indicating higher dependence. 
To determine the relative importance of each predictor variable, 
we ranked the normalized IR values across sites, and we did that 
within each timescale of interest. In this study, we followed the 
methods described by Knox et al. (2021) (i.e., 10 bins and 50 ran-
dom reshufflings to calculate significance thresholds at each lag) 
and focused on results for the predictors of diel, multiday, and 
seasonal timescales. The hourly wavelet scale is often dominated 
by noise (Hollinger & Richardson,  2005) and was only produced 
to show the distribution of CH4 flux variability across timescales.
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3  |  RESULTS

The final database contained 44 contributed datasets with 109 (100 
chamber and 9 EC) tidal marsh sites, with measurements from 1980 
to 2022. The dataset was dominated by CH4 fluxes from tidal meso-
haline wetlands with emergent vegetation, predominantly located 
on the US East Coast (Figure 1). Similar proportions (~30%–40%) of 
high, mid, and low tidal marsh environments were represented, with 
fewer sites located in environments affected by banks, berms, or 
levees. Half of the sites corresponded to undisturbed tidal marshes, 
followed by tidally restored (20%), ditched (8%), and other distur-
bance classes with a minority representation (<5%), including tidally 
restricted sites and species invasion (4%). Chamber-based data were 
unequally distributed throughout the year, with more observations 

concentrated from June to August (Figure S3). Five of the nine EC 
tower sites had paired chamber CH4 flux measurements. Carbon 
dioxide and N2O fluxes were also compiled alongside CH4 and are 
available in 52% and 30% of the sites, respectively, but they were 
not the focus of this synthesis.

3.1  |  Scaling factors

A total of 29 site-years (11 from EC, 18 from chambers) had data 
covering all months of the year; hence, they were used to com-
pute annual CH4 flux scaling factors. Median scaling factors (s.f.) 
differed significantly when calculated based on daily fluxes aver-
aged year-round (0.38, IQR = 0.10) compared to when considering 

F I G U R E  1 Location of sites included in this synthesis (a) and characteristics of CH4 flux rates contained in the database. Sites are 
classified based on wetland vegetation type (b), salinity (c), elevation (d), and disturbance (e).
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June–August daily average fluxes (0.21, IQR = 0.06) (S = 3, z = 3.97, 
P < 0.001) (Figure 2a). Scaling factors estimated using year-round 
daily averages were significantly lower for EC (s.f. = 0.32) than for 
chamber measurements (s.f. = 0.39) (U(NEC = 11, Nchamber = 18) = 42, 
z = −2.54, p = .01), but no significant differences in the scaling fac-
tor were observed between methods when using daily averages 
from June to August (U(NEC = 10, Nchamber = 18) = 69, z = −0.98, 
p = .33). For the 29 site-years (EC and chamber combined), the 
annual CH4 fluxes estimated using the June–August scaling fac-
tor closely agreed with the measured values (Figure 2b). We did 
not find significant differences in annual scaling factors between 
wetland types (U(Nestuarine intertidal = 23, Npalustrine tidal = 5) = 53, 
z = −0.24, p = .81), salinity classes (H(4) = 2.0, p = .74), elevation 
classes (H(4) = 2.8, p = .60), or disturbance classes (H(4) = 4.8, 
p = .30) (Tables S2–S5).

3.2  |  Tidal Marsh annual CH4 flux estimates

Using available full site-year data, published fluxes, and scaling 
factors at sites where the sampling coverage was shorter than 
a year, we estimated annual CH4 fluxes from tidal marshes in 
CONUS. From a total of 108 sites including chamber and EC data-
sets, mean ± SD annual CH4 fluxes were 26 ± 53 g CH4 m−2 year−1, 
but the central tendency of the estimates represented by the me-
dian and the geometric mean were seven to five times lower, at 
3.9 and 5.4 g CH4 m−2 year−1, respectively (note that the geomet-
ric mean excludes sites with negative or zero annual CH4 fluxes) 
(Figure 3a). Median CH4 fluxes were significantly higher at freshwa-
ter sites than at mesohaline, polyhaline, and mixoeuhaline marshes 
(H(4) = 28.06, p < .001) (Figure  3b). Statistical overlap of annual 

CH4 fluxes existed between fresh and oligohaline, oligohaline and 
mesohaline, and polyhaline and mixoeuhaline conditions. However, 
when using chamber flux data disaggregated by sampling event, 
differences between salinity classes were more pronounced, with 
only fresh and oligohaline conditions showing statistical overlap 
(z = −1.93, p = .27) (Figure 3c). The variance of CH4 fluxes at fresh 
and oligohaline sites was 27, 700, and >5000 times larger than at 
mesohaline, polyhaline, and mixoeuhaline sites, respectively. No 
statistical differences were observed between the distributions of 
chamber- and EC-derived annual fluxes across CONUS or when ag-
gregated by salinity class (Table S6).

The wide numerical range and the right-skewed nature of 
the CH4 flux data were also observed in annual CH4 fluxes when 
separated by salinity class, which additionally showed a slight 
bimodal distribution (Figure  S4). In fresh-oligohaline and meso-
haline conditions, there was a trend of higher CH4 fluxes in low 
than high marsh environments, but this pattern was not observed 
in more saline sites (Figure S5). The assessment of disparities in 
CH4 flux between disturbance classes was limited due to the un-
even distribution of sites across salinity classes. When sites were 
grouped by salinity, tidally restored mesohaline marshes exhib-
ited significantly lower CH4 fluxes than Phragmites-invaded sites 
(Figure S5). Upon exploring chamber CH4 fluxes disaggregated by 
sampling event grouped by salinity and species, chambers fea-
turing Phragmites exhibited higher CH4 fluxes than those where 
other species were present (Figure S6). This trend was only no-
table in mesohaline and polyhaline marshes, where most data 
were available. However, the generalizability of these results to 
CH4 fluxes from other salinity classes could not be assessed due 
to the incomplete representation of disturbance classes in non-
mesohaline salinity conditions.

F I G U R E  3 Tidal marsh CH4 fluxes. 
Histogram of annual CH4 fluxes (a), 
annual CH4 fluxes grouped by salinity 
class (b), and chamber-based CH4 fluxes 
disaggregated by sampling event grouped 
by salinity class (c). Panel (a) and (b) 
combine results from chamber and eddy 
covariance sites. On panel a, vertical lines 
(or rug) across the x-axis project individual 
data points and their distribution. On 
panels b and c, red dots indicate outliers 
and different lower-case letters represent 
significant differences between salinity 
classes as a result of a Kruskal–Wallis 
Dunn's multiple comparison test with 
p < .05 adjusted using the Benjamini–
Hochberg procedure (p < α/2). Values on 
the box plot in panel (b) represent median 
annual CH4 fluxes at each salinity class.
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3.3  |  Predictors of CH4 flux across sites

3.3.1  |  Predictors of annual CH4 flux

Results of both the CTree and RF methods were similar, ranking sa-
linity as the most important predictor of the magnitude of annual 
CH4 fluxes, followed by mean daily maximum annual temperature 
(MATmax) and, to a minor extent, elevation class and mean daily 
maximum annual vapor pressure deficit (Figure 4; Figure S7). These 
rankings were obtained using EC and chamber-based annual esti-
mates combined. Average model performance was highest for RF 
with an out-of-bag R2 of 0.94, MAE (mean absolute error) of 7.9 g CH4 
m−2 year−1, and RMSE of 14 g CH4 m−2 year−1 (Figure S7). The best re-
sulting CTree (R2 = 0.66, MAE = 17, RMSE = 31 g CH4 m−2 year−1) was 
achieved when fresh and oligohaline, and polyhaline and mixoeuha-
line classes were combined. This CTree was composed of 11 deci-
sion nodes, with salinity at the root of the tree, followed by MATmax 
and elevation class. The highest annual CH4 fluxes were observed 
at fresh and oligohaline sites with MATmax above 25.6°C, followed 
by frequently inundated low and mid-fresh-oligohaline marshes with 
MATmax ≤25.6°C, and mesohaline sites with MATmax above 19°C. 
Methane fluxes at sites with salinities >18 psu were consistently low 
regardless of MATmax or elevation class (Figure 4). The represen-
tation of elevation classes was similar among fresh-oligohaline sys-
tems with MATmax ≤25.6°C, mesohaline sites with MATmax ≤19°C, 
and polyhaline and mixoeuhaline marshes (Figure S8). However, el-
evation could not be assessed as a predictor of annual CH4 fluxes 

at warmer fresh-oligohaline (>25.6°C) and mesohaline (>19°C) 
sites due to the lack of variation in elevation classes within these 
categories.

While the mean difference between predicted and observed val-
ues was roughly equal to the average of annual CH4 fluxes across the 
dataset, CTree binary partitioning enabled a breakdown of annual 
CH4 fluxes across marsh categories based on salinity and daily maxi-
mum annual temperature, with additional consideration of elevation 
class specifically within the fresh-oligohaline category (Table 3).

3.3.2  |  Predictors of CH4 fluxes from disaggregated 
chamber data

We used chamber-based disaggregated data to understand CH4 flux 
variability across sites and to establish quantitative relationships 
between CH4 fluxes and predictor variables, particularly porewater 
biogeochemistry. Results from GAM models showed that porewater 
CH4, porewater sulfate concentrations, and porewater salinity ex-
plained the highest percentage of the variance (27%–16%), followed 
by surface water salinity and air temperature (13%–8%) (Table  4). 
Similar results were obtained if CH4 flux data were filtered to con-
sider emissions only (i.e., CH4 fluxes >0) (Table  S7). Surface and 
porewater nitrate concentrations and porewater temperature also 
explained some percentage of the deviance in CH4 fluxes (26%, 10%, 
and 18%, respectively); however, these results were based on a lim-
ited number of studies (n < 5) (Table S7). Adding study ID as a random 

F I G U R E  4 Conditional inference tree based on salinity class (with fresh and oligohaline, and polyhaline and mixoeuhaline classes 
combined), long-term mean daily maximum annual temperature (MATmax) and elevation class. MATmax represents the “normal” or average 
maximum temperature for each day of the year based on 30-year historical data. Box plots show annual CH4 flux in g CH4 m−2 year−1. Results 
of the CTree include eddy covariance and chamber data.
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effect increased the model performance between 6 and 32%, with 
the lowest increase observed for porewater salinity and the high-
est increase observed for surface water salinity. This highlights the 
intrinsic site-specific variability of CH4 fluxes when predicted using 
surface water salinity. It also emphasizes the disconnect between 
surface and porewater salinity. Multivariate GAM models combining 
porewater CH4 and sulfate concentrations, or surface salinity and air 
temperature, achieved the best performance with the highest devi-
ance explained, 73% and 67%, respectively. However, these models 
were representative of only five studies (Table 4).

To estimate effect sizes, we examined the individual relation-
ships between CH4 fluxes and porewater concentrations of CH4, 
sulfate, and salinity. All these variables, except for porewater CH4, 
had significant effects on the magnitude of CH4 fluxes, as shown by 
nonlinear quantile regression fits (Figure 5; Table S8). We observed 
a significant exponential decrease in CH4 fluxes as surface and pore-
water salinity or sulfate concentrations increased. Moreover, as sa-
linity and sulfate concentrations increased, the range of CH4 fluxes 

decreased, suggesting that the effects of salinity and sulfate on CH4 
emissions were not consistent across all study sites. At the median 
quantile, CH4 fluxes were significantly reduced when porewater sul-
fate and porewater salinity exceeded 2.8 ± 0.5 mM and 9.6 ± 1.1 psu, 
respectively. A 90% response, indicated by a significant reduction of 
the 0.9 quantile of the CH4 fluxes, was achieved when sulfate con-
centrations reached 4.7 ± 0.6 mM, and porewater and surface water 
salinity reached 21 ± 2 and 15 ± 3 psu, respectively (Figure 5). These 
values represent the mean estimated cutoff points below which ei-
ther the 50% or 90% of the highest CH4 fluxes occur.

Analysis of the quantile regression model residuals revealed 
that CH4 fluxes were not dependent on only one predictor variable. 
Several environmental covariates could explain variability in model 
residuals of the porewater or surface water salinity-CH4 relation-
ship. Primarily, the residual variance in CH4 fluxes modeled from sur-
face water salinity was notably influenced by porewater sulfate and 
CH4 concentrations. Likewise, sulfate concentrations and porewater 
temperature influenced the remaining variance in fluxes modeled 

TA B L E  3 Summary of annual CH4 fluxes (g CH4 m−2 year−1) grouped by salinity class, MATmax, and elevation class from the Conditional 
Inference Tree in Figure 4.

Salinity class MAT max
Elevation 
class N Distribution Mean SD SE Median

Geom. 
mean geoSD

Fresh-oligohaline >25.6 7 Normal 171.5 79.4 30 204 153 1.7

Fresh-oligohaline ≤25.6 Low, mid 20 Square root-normal 54.9 56 12.5 41.5 15 10.5

Fresh-oligohaline ≤25.6 High 10 Log-normal 5.3 6.3 2 3.2 3.8a 2.7

Mesohaline >19 8 Log-normal 21.5 19.5 6.9 19.2 15.8 2.3

Mesohaline ≤19 39 Log-normal 6.9 10.3 1.7 3.1 3.4a 3.6

Poly-mixoeuhaline 24 Log-normal 1.8 2.3 0.5 0.7 1.2a 2.9

Note: N is number of sites, SD and SE are standard deviation and error, respectively, geom.mean refers to geometric mean, and geoSD is the standard 
deviation of the latter.
aNegative flux values (n = 1 high fresh-oligohaline ≤25.6; n = 1 mesohaline ≤19°C) and fluxes equal to zero (n = 1; mesohaline ≤19°C; n = 3 poly-
mixoeuhaline) were removed to compute the geometric mean.

TA B L E  4 General additive model (GAM) results for chamber-disaggregated CH4 fluxes against time-specific predictor variables.

Variable R2 Deviance explained (%) d.f. AIC # studies

Porewater CH4 0.27 [0.33] 27 [34] 879 8420 [8336] 11

Porewater SO4
2− 0.21 [0.27] 22 [29] 310 4200 [4177] 6

Porewater salinity 0.16 [0.20] 16 [22] 1162 16,734 [16,680] 15

Surface water salinity 0.12 [0.46] 13 [46] 760 9463 [9088] 6

Air temperature 0.08 [0.26] 8 [26] 6729 88,747 [87,337] 28

cosHour 0.05 [0.32] 5.1 [32] 6229 85,370 [83305] 18

Porewater SO4
2− and porewater CH4 0.67 [0.71] 69 [73] 239 2097 [2065] 5

Surface water salinity and air 
temperature

0.60 [0.66] 61 [67] 654 7632 [7514] 5

Porewater salinity and porewater 
CH4

0.32 [0.36] 34 [39] 347 3594 [3576] 7

Notes: In brackets are GAM results with Study ID as a random effect. Results shown include relationships that explain >5% of the deviance in CH4 
fluxes, focusing on variables available in at least five studies. Table S7 contains GAM results for CH4 emissions (i.e., >0) against all time-specific 
predictor variables with a significant relationship (p < .05). d.f. stands for degrees of freedom, AIC is the Akaike information criterion, and # studies 
indicate the number of studies that recorded each predictor variable (the total number of studies is 35).



12 of 23  |     ARIAS-­ORTIZ et al.

from porewater salinity (Figures S9 and S10). In contrast, no predic-
tor variable was found to explain the variability in model residuals of 
the sulfate-CH4 flux relationship.

3.4  |  Predictors of CH4 flux across timescales

Mutual Information analysis using wavelet decomposed EC data-
sets revealed that CH4 responses to environmental covariates 
exhibited nonlinearity and were characterized by asynchronous 
interactions, particularly at the multiday and seasonal scales (com-
pare maximum IR heatmaps in Figure 6 with those of synchronous 
IR in Figure S11).

The diel timescale generally dominated CH4 flux variability 
across tidal marsh EC sites, except for microtidal sites in Louisiana 
(US-LA1 and US-LA2), where the seasonal scale prevailed 
(Figure 6a). For some sites, the proportion of variance in CH4 flux 
at the hourly scale appeared large (e.g., US-EDN). This was gener-
ally due to the higher signal-to-noise ratio at sites with low CH4 
fluxes or their low variation at other scales. The variance in CH4 
fluxes at the multiday scale was the lowest across all tidal marsh 
EC sites.

To assess the relative importance of CH4 flux predictors at each 
timescale, we first normalized relative mutual information (IR) values 
(Figure S12) within each site and then averaged normalized IR across 
sites. We did that within each timescale of interest (Figure 6b–d). At 

F I G U R E  5 Quantiles of CH4 fluxes as 
a function of best-ranked predictors in 
general additive models with the solid 
blue, black, and red lines representing 
the fitted regression for the 0.1, 0.5, and 
0.9 quantiles of CH4 fluxes, respectively. 
Only lines for significant fits are shown. 
Statistics for the regression lines are 
summarized in Table S8. Vertical dashed 
lines represent thresholds of predictor 
variables below which the highest 50% 
and 90% of CH4 fluxes occur. Data in 
the figure represent chamber-based CH4 
fluxes disaggregated by sampling event 
with matching porewater data. Points with 
emissions above 500 nmol m−2 s−1 are not 
displayed.
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F I G U R E  6 Variance of CH4 flux and 
dominant predictor variables across 
timescales. Variance of CH4 flux wavelet 
coefficients at each timescale of interest 
as a percentage of the total variance for all 
eddy covariance tower sites with at least 
a full year of gap-filled data (a). Heatmap 
of normalized (0 to 1 scale), maximum 
relative mutual information (IR) between 
methane flux and biophysical variables 
within sites for the (b) diel, (c) multiday, 
and (d) seasonal scale. All analyses were 
conducted on wavelet-transformed 
data. Light colors represent the lowest 
normalized IR, dark colors the highest 
normalized IR and non-significant IR values 
are shaded white. See Table S1 for tower 
site information. Predictor codes in (b) are 
spelled out in panels (c) and (d).
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the diel scale, the main predictors of CH4 flux were GPP, net ecosys-
tem exchange, and soil temperature. Latent heat and water table depth 
ranked 4th and 5th in importance. On a multiday scale, the hierarchy 
of predictors was led by air temperature, water table depth, and at-
mospheric pressure. At the seasonal scale, water and air temperature 
were among the top predictors, followed by GPP and incoming short-
wave radiation. Vapor pressure deficit and salinity ranked 5th and 6th, 
respectively, while water table depth was last in importance.

Heatmaps in Figure 6b–d provide a more detailed depiction of 
the primary predictors determined by maximum IR between CH4 flux 
and biophysical variables. These heatmaps reveal site-specific pat-
terns not evident when averaging normalized IR values across sites. 
Notably, water table depth and GPP emerged as dominant predic-
tors at sites with large CH4 flux variance at the diel scale. Diurnal 
patterns, characterized by peak CH4 fluxes during midday hours and 
lower fluxes at night, as well as pulses of CH4 flux occurring within 
0 and 90 min after low tide, were commonly observed at these sites 
(Figures 7a–c and S13). On a multiday scale, increased CH4 fluxes 

aligned with either spring tide cycles (US-EDN) or atmospheric pres-
sure lows (US-LA1, US-LA2, US-StJ). At the seasonal scale, the dom-
inance of water and air temperature, followed by GPP was apparent 
in most sites (Figure  6c). In some cases, lows in dissolved oxygen 
(at US-StJ) or high precipitation, bringing pulses of fresh water (US-
LA1), manifested as key controls of CH4 flux (Figure 7g,i).

While the influence of temperature (air, soil, or water) and effects 
of plant activity (through GPP, net ecosystem exchange or latent heat) 
on CH4 fluxes were apparent across timescales and sites, the presence 
of a diel cycle marked by plant activity was site-specific. Heatmaps in 
Figure 6 support the point that there may not be a universal explana-
tion for flux variability; rather, CH4 fluxes appear to be conditional on 
time and location. Salinity was not a top predictor in continuous EC 
datasets when averaging normalized IR values across sites. However, 
it emerged as an important predictor at the seasonal timescale at sites 
that experienced a freshening during the growing season months (US-
LA1, US-MRM, and US-EDN) (Figure S14), or at the diel scale where it 
correlated with water table depth (US-StJ or US-MRM).

F I G U R E  7 Examples of diel and seasonal variation in the wavelet detail reconstruction for CH4 flux and predictor variables. Note that 
the mean is removed in wavelet detail reconstructions; therefore, the y-axes are relative rather than absolute. Panels (a) through (c) illustrate 
diel wavelet details, panels (d) and (e) show examples of multiday wavelet details, and panels (f) through (i) show seasonal wavelet details. 
Predictor variable abbreviations are those introduced in Figure 6. DO stands for dissolved oxygen. Wavelet details for CH4 flux, water table 
depth, and salinity at the diel and seasonal scales across all eddy covariance sites are in Figures S13 and S14, respectively.
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4  |  DISCUSSION

Our primary goal was to improve predictions of CH4 emissions from 
tidal marshes in CONUS. This discussion focuses on four research 
questions that align with this goal. Firstly, we identify the primary 
predictors of CH4 flux in tidal marshes across sites using broadly 
available data. Secondly, using EC sites with continuous CH4 flux 
data, we assess the effects of predictors across varying timescales. 
Third, we discuss the application of scaling factors to annualize 
short-term static chamber measurements and their limitations, con-
sidering daily and seasonal flux variations. Lastly, we highlight how 
the identified relationships and gained information can be applied 
to improve monitoring and predictions of CH4 emissions in tidal 
marshes, supporting blue carbon assessments and advancing our 
ability to constrain estimates of GHG emissions across diverse tidal 
wetlands.

4.1  |  Dominant predictors of CH4 flux in tidal 
marshes across CONUS

In our analysis of tidal marsh CH4 fluxes across CONUS, we ob-
served a wide range of flux magnitudes, varying from −150 to 
4120 nmol m−2 s−1, with an average of 82 nmol m−2 s−1 and a median 
significantly lower at 5.8 nmol m−2 s−1. When compared to available 
estimates from a recent synthesis, the median instantaneous CH4 
flux per unit area aligns with values reported for North American 
saltmarshes, yet it is approximately half of that observed for man-
groves, and about 10 times higher than figures reported for sea-
grasses (Rosentreter et  al.,  2023). Annual CH4 fluxes showed a 
positive skew with a mean of 26 ± 53 g CH4 m−2 year−1 and median 
and geometric means significantly lower, a reflection of the pre-
dominant data from mesohaline tidal marshes as well as the notori-
ously variable behavior of CH4, with hotspots of activity. This raises 
a question about the reliability of arithmetic, median, or geometric 
mean values as estimates for representing the regional scale mag-
nitude of annual CH4 emissions in tidal marshes or their emission 
factors globally. The adequacy of these metrics will largely depend 
on the actual distribution and proportion of various marsh salinity 
classes across different climatic zones (e.g., Table  3). However, at 
finer spatial and temporal scales, factors such as hydrology, plant ac-
tivity, and porewater biogeochemistry may become more influential 
than salinity in determining tidal marsh CH4 fluxes.

4.1.1  |  Influence of salinity, temperature, relative 
elevation, and alternate electron acceptors on 
CH4 fluxes

Across CONUS, we observed significant differences in median an-
nual CH4 fluxes among salinity classes, with a ~ threefold decrease 
in median CH4 fluxes for each increase in salinity class from fresh 
to mixoeuhaline (Figure 3b). Median CH4 fluxes in tidal freshwater 

marshes were 2, 8, 29, and 69 times higher than those of oligoha-
line, mesohaline, polyhaline, and mixoeuhaline marshes, respec-
tively. Previous studies by Bartlett et  al.  (1987) and Poffenbarger 
et  al.  (2011) demonstrated a significant relationship between CH4 
fluxes and salinity. Sites with salinities above 18 psu had significantly 
lower CH4 fluxes than less saline marshes, but this relationship was 
found to be less predictive at sites with salinities fresher than 18 psu 
(Poffenbarger et al., 2011; Windham-Myers et al., 2018). This agrees 
with our results when data were summarized at the annual level. 
When examining the data at the disaggregated level, CH4 fluxes 
from freshwater and oligohaline marshes (0–5 psu) were the only 
groups showing statistical overlap (Figure 3c). This suggests that the 
attenuation of CH4 fluxes by salinity primarily occurs beyond the oli-
gohaline threshold (>5 psu) and that variables other than salinity may 
dominate CH4 flux variance in fresh-oligohaline conditions.

Consistent with Poffenbarger et al. (2011), who found substan-
tial dispersion in annual CH4 fluxes at low salinities below 5 psu, we 
observed a great deal of variation in CH4 fluxes with the magnitude 
of the variance decreasing as salinity increased (Figure 3b,c). At fresh 
to mesohaline sites, variability in annual CH4 fluxes was partially at-
tributed to temperature. Additionally, elevation class, a qualitative 
measure of inundation frequency, also contributed to the variabil-
ity in annual CH4 fluxes across fresh-oligohaline sites. The highest 
fluxes were observed at fresh and oligohaline sites experiencing a 
daily maximum annual temperature normal (MATmax) above 25.6°C 
(~204 g CH4 m−2 year−1). These were followed by frequently inun-
dated low and mid-fresh-oligohaline marshes with MATmax ≤25.6°C 
(~42 g CH4 m−2 year−1), and mesohaline sites with MATmax above 
19°C (~19 g CH4 m−2 year−1) (Table 3). The fact that elevation class 
emerged as an important explanatory variable for CH4 fluxes at low 
salinity levels may reflect the decrease in soil oxygen availability as 
flooding increases from high to low elevations (Kirwan et al., 2013), 
enhancing methanogenesis and suppressing methanotrophy. This 
pattern, however, did not emerge in saline systems, possibly due 
to the overriding influence of sulfate availability compared to fresh 
sites (DeLaune et al., 1983; Martens & Berner, 1974). In saline envi-
ronments, CH4 fluxes could remain low regardless of inundation, as 
sulfate reduction precedes methanogenesis. However sample size 
limitations and high variability within groups could have also played 
a role.

Synthesizing chamber-disaggregated flux and ancillary vari-
ables by sampling event allowed us to evaluate further the effects 
of salinity, temperature, and porewater biogeochemistry on the 
magnitude and variability of CH4 fluxes in tidal wetlands. As per 
the well-established CH4 response to salinity observed in other 
studies (Bartlett et al., 1987; DeLaune et al., 1983; Poffenbarger 
et  al.,  2011; Sanders-Demott et  al.,  2022; Schultz et  al.,  2023; 
Windham-Myers et  al.,  2018), chamber flux data disaggregated 
by sampling event also showed a significant exponential decrease 
with increasing salinity, for both surface water and porewater 
(Figure 5c,d). Across the range of sites, fitted median CH4 fluxes 
fell below 1.6 ± 1.3 nmol m−2 s−1 at porewater salinities above 
9.6 ± 1.1 psu. However, some instances of high CH4 emissions 
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(50–170 nmol m−2 s−1) were still evident above this threshold. A 
more conservative threshold was identified at porewater salin-
ities of 21 ± 2 psu, incorporating the 90th percentile of the CH4 
fluxes. The latter threshold was 15 ± 3 psu if surface water salinity 
was considered instead. Surface water and porewater salinity are 
not always well correlated at a site, as surface water salinity is 
often more variable than porewater salinity (Wilson et al., 2015). 
Indeed, the salinity measured on the surface may not accurately 
reflect the salinity conditions experienced by methanogens or, 
more precisely, their competition with sulfate-reducing bacteria. 
Surface inputs of salts are modified by plant transpiration, while 
sulfate inputs are modified by the balance between consumption 
by sulfate-reducing bacteria and production by sulfide oxidation. 
Such process may explain the reduced predictability of CH4 emis-
sions when using surface water salinity as a standalone predictor; 
thus, porewater salinity is preferred. Methane emissions signifi-
cantly decreased with increasing porewater salinity across all con-
ditional quantile levels, whereas surface salinity only explained 
changes in CH4 emissions at the 90th percentile of the flux distri-
bution (Table S8; Figure 5).

Causes of CH4 flux variation at low salinities have previously 
been explained by microsite spatial and temporal variability in the 
presence of alternate electron acceptors and the sensitivity of meth-
anogens to variations in their availability (Brooker et al., 2014; Galand 
et al., 2003). Because of the high abundance of sulfate in seawater, 
salinity has been used as a proxy of sulfate availability in tidal and 
salt marsh studies. However, we observed considerable variability 
in sulfate concentrations at a given salinity level, particularly when 
surface salinity was used to infer porewater sulfate concentrations 
(Figure S15a,b). Sulfate concentrations can change independently of 
salinity due to local sulfate depletion, leading to high CH4 emissions 
despite high salinity levels, as observed in Wilson et al. (2015), and at 
high (>10 psu) porewater salinities in this synthesis (Figure 5d).

The general inverse relationship between sulfate concentra-
tion and CH4 emissions is well-supported and upheld by studies 
through time (Bartlett et  al., 1987; DeLaune et  al., 1983; Martens 
& Berner, 1974; Poffenbarger et al., 2011). However, it is not well 
defined if there is a specific sulfate concentration above which 
tidal marsh CH4 emissions are negligible. Poffenbarger et al. (2011) 
found that porewater CH4 concentrations were negligible at sulfate 
concentrations >4 mM in marsh soils. However, they did not relate 
porewater sulfate concentration to CH4 emissions due to the lack 
of paired data to evaluate such a relationship. Our analysis suggests 
that median CH4 emissions were low across sites at porewater sul-
fate concentrations >2.8 ± 0.5 mM. However, considering the large 
spread of the response of CH4 emissions to sulfate at low (<5 mM) 
sulfate concentrations, a more stringent threshold of 4.7 ± 0.6 mM 
delineated CH4 emissions in the lowest 90th percentile of the data 
(Figure 5b). CH4 emissions displayed significant responses to sulfate 
concentrations at all quantile levels and exhibited a third of the re-
sidual variance observed in CH4 flux responses to porewater salinity. 
Residual analysis revealed that the modeled salinity–CH4 relation-
ship tended to overestimate CH4 emissions as porewater sulfate 

concentrations decreased, particularly within 0 to 5 mM, indicating a 
greater sensitivity to increasing sulfate availability than to increasing 
salinity. A similar trend was observed for residuals fitted to porewa-
ter CH4 concentrations, particularly within the range 0–100 μM CH4, 
highlighting the activity of sulfate reducers as a primary control on 
CH4 production in surface soils (0–30 cm).

We did not find a consistent significant relationship between 
porewater CH4 concentrations and CH4 fluxes (Figure 5a; Table S8). 
The discrepancy between CH4 production and emissions may be 
attributed to several factors. These include bacterial-mediated 
aerobic CH4 oxidation near the sediment surface during low tide 
or facilitated by plant rhizosphere oxygenation (Megonigal & 
Schlesinger, 2002; Van der Nat & Middelburg, 1998). Additionally, 
non-diffusive emission pathways like ebullition and plant-mediated 
transport (Hill & Vargas,  2022) are not always accounted for in 
chamber studies, as chambers may not include tall vegetation or 
headspace concentrations may be filtered to remove pulsed or er-
ratic emissions. Furthermore, tidal flooding could drive lateral trans-
port of dissolved porewater CH4 from the marsh, which would be 
missed by chamber and eddy flux methods (Kelley et al., 1995; Tong 
et al., 2010; Trifunovic et al., 2020).

Porewater nitrate concentrations are typically low in most 
coastal marshes (Valiela & Teal, 1974), but surface water concentra-
tions can be notably high at some sites due to agricultural intensifica-
tion and other anthropogenic sources (Galloway et al., 2003; Pardo 
et al., 2011) (Figure S15). Nitrate is a thermodynamically favorable 
electron acceptor used by anaerobic bacteria shown to enhance soil 
organic matter decomposition (Bulseco et al., 2019). Similarly to sul-
fate, methanogenesis can be inhibited in the presence of nitrate. In 
this synthesis, signals of this process might be observed from the 
decrease in EC and chamber-based CH4 fluxes with increasing dis-
solved nitrate concentrations (Figure S15c,d). However, the extent 
of CH4 emission reduction was less pronounced for nitrate than 
for porewater sulfate. This pattern emerged despite a small dataset 
(n = 3 studies), suggesting that nitrate inhibition of methanogenesis 
by nitrate reducers (denitrifiers) is a very strong biogeochemical sig-
nal that should be explored further given the fact that the process 
may also produce nitrous oxide (N2O), a potent GHG. Our dataset 
lacked contemporaneous measurements of N2O emissions at these 
sites.

4.2  |  Tidal marsh CH4 fluxes across timescales

Methane fluxes in tidal marshes, as measured by EC, exhibited 
strong variation at the diel scale (Figure 6a), although most of the 
CONUS sites experience a strongly seasonal temperate climate. 
Among the seven EC sites analyzed, US-Srr exhibited a unique diel 
pattern in CH4 flux wavelets. Peak fluxes occurred from late morn-
ing to mid-afternoon and were correlated with GPP, net ecosystem 
exchange, or incoming shortwave radiation. This pattern was likely 
due to its high marsh elevation, not frequently inundated in the 
flux footprint. In contrast, most sites showed less symmetric diel 
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patterns influenced by diurnal and tidal interactions, with additional 
peaks often lagging lows of sinusoidal tidal patterns (Figure 7a–c; 
Figure S13), representing the release of stored CH4 during brief and 
localized periods at low tide.

Higher daytime CH4 fluxes could stem from several factors, in-
creased soil and air temperatures (Bansal et al., 2018), enhanced root 
exudation with GPP stimulating methanogens and microbial prim-
ing (Bridgham et  al., 2013), or CH4 transport mediated by plants. 
This plant-mediated transport could either be driven by a pressure 
gradient that intensifies during daylight and coincides with active 
photosynthesis (Bansal et  al.,  2020; Dacey & Klug,  1979; Vroom 
et  al., 2022) or by stomatal control of diffusive transport (Garnet 
et al., 2005). The former might be particularly relevant in Phragmites-
dominated marshes (van den Berg et  al.,  2020; Van der Nat & 
Middelburg, 1998). Evidence from local studies focusing on individ-
ual site locations suggested that both impoundment and Phragmites 
invasion, separately or combined, could markedly increase CH4 
fluxes (Martin & Moseman-Valtierra,  2015; Mueller et  al.,  2016; 
Sanders-Demott et al., 2022).

The dominance of the diel scale over the seasonal scale in CH4 
flux variance is not limited to EC sites included in this synthesis; it 
has also been documented in other tidal ecosystems, such as in a 
subtropical estuarine mangrove (Liu et al., 2022). Chamber studies 
that conducted measurements over 12–24 h periods or consisted 
of automated chambers also noted diel CH4 fluctuations of vary-
ing frequency and nature. For instance, Kelley et al. (1995) noted 
that CH4 fluxes were higher when tidal waters were closest to the 
soil surface. Diefenderfer et al. (2018) observed that CH4 flux was 
greater at night, likely due to the effects of hydrostatic pressure 
on diffusion and ebullition processes influenced by water surface 
elevation dynamics. Capooci and Vargas  (2022) found that con-
fluences of peak daily temperatures and low to rising tides could 
cause CH4 pulses throughout the day. Tong et al. (2013) reported 
that plant activity controlled CH4 emissions during neap tide days 
when sites were exposed; when sites were flooded, other factors 
dominated. These findings suggest that while diel CH4 flux vari-
ability is expected in tidal marshes, the presence and strength of 
a daily cycle are site-specific depending on species, temperature, 
and tidal forcings.

Microtidal sites in Louisiana do not experience large tidal ampli-
tudes nor the sinusoidal pattern with tides; thus, peaks in wavelet 
analysis were not observed at diel scales related to semidiurnal tides 
or fortnightly neap-spring tidal cycles (Figure S13). Sites in Louisiana 
are wind-  and river-influenced, and atmospheric pressure changes 
and freshwater pulses driven by synoptic and mesoscale weather 
played a more significant role in CH4 flux variability. These results 
suggest that CH4 fluxes and their drivers at microtidal sites may 
align more closely with those of non-tidal wetlands found elsewhere 
(Knox et al., 2021; Sturtevant et al., 2016). In contrast, where tides 
are significant, they may strongly modulate the timing and pathway 
of CH4 emissions.

At the seasonal scale, water and air temperatures were the pri-
mary predictors of CH4 flux, followed by GPP. Salinity ranked 6th in 

importance, demonstrating greater relevance at this scale compared 
with other timescales. This may reflect the limitations of using sur-
face water salinity at EC sites to explain diel CH4 flux responses. It 
may also suggest that seasonal, rather than shorter-term diel changes 
in surface water salinity are required to affect CH4 emissions signifi-
cantly. Seasonal salinity changes, driven by reduced freshwater flow 
and increased seawater intrusion, typically elevate salinity during 
the summer and growing season. However, higher temperatures and 
enhanced GPP during these periods could offset potential CH4 flux 
inhibition due to increased sulfate availability. A distinct observation 
was that CH4 fluxes were largely enhanced when reduced salinity 
aligned with peak growing season conditions (Figure 7; Figure S14).

4.3  |  Daytime chamber CH4 fluxes: Temporal 
upscaling and limitations

Only a few chamber studies have shown the significant variability 
of CH4 fluxes at daily scales (Capooci & Vargas, 2022; Diefenderfer 
et al., 2018; Kelley et al., 1995; Tong et al., 2013), highlighting the 
limitations of temporally upscaling CH4 fluxes from discrete static 
chamber measurements (Hill & Vargas, 2022; Vargas & Le, 2023). 
Static chambers, predominantly deployed at low tide, are limited in 
their sensitivity to sudden pulse events and may not effectively cap-
ture CH4 responses to GPP dynamics. Assessments of GPP require 
consecutive measurements under both light and dark conditions 
that can be affected by chamber heating or an incomplete physi-
ological adaptation (e.g., stomatal closure) to dark conditions. While 
static chamber measurements offer the advantage of capturing CH4 
flux variability across sites, they are not well suited to capture the 
temporal variability of CH4 fluxes and their influencing factors.

However, most flux measurements in tidal marshes are derived 
from static chambers, often paired with sporadic recordings of tem-
perature, water table depth, or porewater geochemistry. Lacking 
continuous predictor variables that would allow for confident tem-
poral scaling of discrete CH4 flux measurements, we estimated 
scaling factors based on sites with a full year of sampling coverage. 
Significant differences emerged between factors derived from EC 
(s.f. = 0.32) and chamber (s.f. = 0.39) methods when cumulative an-
nual fluxes were compared against daily measurements averaged 
year-round. Daytime static chamber measurements hardly integrate 
diel variations in CH4 fluxes, which likely introduces bias into an-
nual estimates (Vargas & Le, 2023). Diel variations not only refer to 
fluctuations between day and night due to temperature and plant 
activity but can represent variations with tides, carbon substrates, 
and/or ebullition. At sites with overlapping chamber and EC mea-
surements, chamber measurements were generally lower than EC, 
except at microtidal sites in Louisiana (Figure S16). This difference 
suggested that chamber measurements often miss episodic CH4 flux 
events due to infrequent sampling and differing footprints, leading 
to site-level CH4 flux discrepancies between methods. However, 
with chamber estimates of CH4 fluxes ranging from less than half 
(Hill & Vargas, 2022) to about twice as high as EC estimates (Krauss 
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et al., 2016), disparities appeared to be site-specific and difficult to 
reconcile at the regional level.

Building on the scaling factors discussed earlier, Bridgham 
et  al.  (2006) found a similar ratio between annual and mean daily 
CH4 fluxes from chamber measurements in non-tidal freshwater 
(s.f. = 0.36) and estuarine (s.f. = 0.34) wetlands across North America, 
suggesting there is a ~ 360-day emission season. Seasonality in CH4 
fluxes is evident in many tidal wetland datasets (Figure S14a) (e.g., 
Derby et al., 2022; Neubauer, 2013; Vázquez-Lule & Vargas, 2021), 
with CH4 fluxes typically being low during winter. However, a sub-
stantial fraction (~15%) of annual CH4 fluxes may occur during 
cooler months, as observed in this study for sites with year-round 
data and in temperate freshwater wetlands in Delwiche et al. (2021). 
Specifically, in our dataset, CH4 fluxes during January–March and 
October–December accounted for 9 ± 5% and 20 ± 6% of annual CH4 
fluxes, respectively, highlighting the significance of winter fluxes in 
the annual CH4 budget.

Most static chamber studies in temperate marshes typically ex-
clude winter sampling. Traditionally, a common approach was to an-
nualize the average daily fluxes from the growing season, applying a 
150-day emissions season and assuming negligible winter emissions 
(Bartlett & Harriss, 1993; Magenheimer et al., 1996). More recently, 
scaling factors, as described in Bridgham et  al.  (2006), have been 
used to calculate annual CH4 fluxes from mean daily fluxes sampled 
during the growing season (Bridgham et  al.,  2006; Poffenbarger 
et al., 2011). However, this approach may lead to an apparent over-
estimation of annual CH4 fluxes of up to ~50% due to the relative 
seasonal increase in CH4 fluxes compared with baseline (Figure S17). 
According to our results, an emission season of 210 days (or a 
s.f. = 0.21) may be more accurate to consider if fluxes are sampled 
during the peak emission period (June–August) (Figure 2). The vari-
ance of the June–August scaling factor across sites was lower than 
that observed for the ratio of annual flux: mean daily flux averaged 
year-round. Additionally, no significant differences were detected in 
the June–August scaling factors between chamber and EC sites. This 
might be due to the lower variability in within-site CH4 fluxes during 
the peak emission season compared with that observed year-round. 
Consequently, the ratio of annual flux to June–August mean daily 
flux may be less affected by how well the length and amplitude of 
the seasonal cycle are captured by discrete chamber measurements.

4.4  |  Advancing CH4 flux assessments in tidal 
marshes

Results of the present study could improve predictions of CH4 
emissions in tidal marshes at the local and regional levels in vari-
ous ways. Porewater sulfate and salinity concentration thresholds 
below which 90% of the highest CH4 fluxes occur (4.7 ± 0.6 mM 
SO4

2− and 21 ± 2 psu, respectively) may help determine whether a 
site's CH4 responses should be included in blue carbon assessments, 
wetland restoration monitoring, or GHG inventories. Above these 
thresholds, CH4 emissions may be considered negligible. Despite 

porewater sulfate concentrations more accurately representing the 
competition between methanogens and sulfate-reducing bacteria, 
the practicality of porewater sulfate as a proxy for widespread appli-
cation may be limited due to the challenges associated with its meas-
urement. On the contrary, porewater salinity, which is relatively easy 
to measure and also represents conditions experienced by methano-
gens, could be more applicable in real-world scenarios for estimating 
the magnitude of CH4 fluxes across a range of sites.

Estimated median annual CH4 fluxes among salinity classes 
(Figure  3b), which showed a consistent ~threefold decrease for 
each increase in salinity class, could serve as CONUS-specific Tier 
2 estimates, offering a more detailed approach to better constrain 
CH4 emissions factors beyond the global Tier 1 factors of the IPCC 
Wetlands Supplement (IPCC, 2014). The current Tier 1 emission 
factor relies on an 18 psu salinity threshold, below which CH4 emis-
sions are set at 19 g CH4 m−2 year−1 (based on range 1.1–539 g CH4 
m−2 year−1), and above it are set at zero. However, the primary lim-
itation of the salinity–CH4 flux relationship in predicting CH4 fluxes 
lies in the substantial variability in flux magnitudes observed at 
low salinity conditions (< 18 psu). Our results suggest that the daily 
maximum annual temperature normal (MATmax), along with eleva-
tion class, could be used to improve the accuracy of this relation-
ship. Table  3 proposes a new categorization of annual CH4 fluxes 
that distinguishes between warmer and cooler fresh-oligohaline and 
mesohaline marshes. Additionally, it incorporates marsh elevation 
classes within fresh-oligohaline conditions to better constrain CH4 
fluxes at low salinity levels. This categorization, specific to US data, 
could further improve Tier 2 estimates. This approach would adjust 
median emission factors for fresh-oligohaline marshes with MATmax 
>25.6°C to be 8–10 times higher than the current Tier 1 factor, 
while those for frequently inundated, low- and mid-elevation fresh-
oligohaline marshes with MATmax below 25.6°C would be increased 
by two times. Emission factors for warm mesohaline marshes 
(MATmax >19°C) would remain unchanged. Conversely, the revised 
median estimate for infrequently inundated colder fresh-oligohaline 
high marshes (MATmax ≤25.6°C), and mesohaline marshes (MATmax 
≤19°C) would be one-sixth of the current Tier 1 factor. These emis-
sion factors could be viewed as Tier 2 estimates for implementing 
national inventories rather than precise predictions of tidal marsh 
CH4 fluxes across temporal and spatial scales. Eddy covariance data-
sets identified GPP as a main predictor of CH4 fluxes. If GPP data 
were available across more tidal marsh sites, it could improve annual 
CH4 flux predictions and offer valuable insights for future studies. 
Likewise, the hydrologic setting, often reported qualitatively as ei-
ther “high” or “low” marsh environments, could be made a stronger 
predictor of annual CH4 fluxes across sites by including a quanti-
tative metric of relative tidal elevation, such as elevation normal-
ized to tidal amplitude in future research (e.g. Z*MHW, Holmquist & 
Windham-Myers, 2022).

Daytime chamber measurements during the growing season cur-
rently represent the majority of available CH4 flux data from tidal 
wetlands and are likely to remain prevalent. Therefore, developing 
carbon exchange models that combine discrete chamber CH4 fluxes 
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with continuous predictor variables or robust scaling factors to an-
nualize daytime chamber measurements would support the con-
tinuation of chamber monitoring approaches. This would enhance 
efforts to achieve Tier 2 national inventories and implement carbon 
finance protocols by reducing the data collection effort, which is 
generally less available than carbon sequestration data. Despite its 
limitations, we provide a scaling factor (s.f. = 0.21) that can be used 
to upscale growing season chamber-based CH4 fluxes to first-order 
annual CH4 flux estimates. However, we caution about the limita-
tions of manual measurements in capturing the temporal variability 
of CH4 fluxes. The presence and symmetry of a diel cycle appeared 
to be site-specific, suggesting that scaling factors should ideally be 
assessed carefully on a site-specific basis. We propose that when 
feasible, CH4 flux measurements be collected over a 24-h cycle or 
continuously using automated chambers or EC towers to capture the 
diurnal variability of CH4 flux, identify important site-specific driv-
ers, and improve scaling factors.

5  |  CONCLUSIONS

We compiled, standardized, and synthesized chamber-based CH4 
fluxes across tidal wetlands in CONUS and created an open-source 
database (Arias-Ortiz et  al.,  2024, https://​doi.​org/​10.​25573/​​serc.​
14227085). Chamber flux data disaggregated by sampling event 
combined with available EC datasets improved the representation 
of CH4 fluxes and their variability across time and space in tidal 
marshes. Porewater sulfate and salinity, along with mean daily maxi-
mum annual temperatures and elevation, were important predictors 
of CH4 emissions across sites. However, temperature, plant activ-
ity (through GPP), and tidal height significantly contributed to the 
variability of CH4 fluxes within individual sites, with tidal height in-
fluencing the timing and pathways of CH4 fluxes at the diel scale. 
Our analysis shows the large diel CH4 flux variance observed in tidal 
wetlands, emphasizing the need for integrated measurement ap-
proaches to capture the complexity of tidal marsh CH4 dynamics.
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