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Abstract

Methane (CH,) is a potent greenhouse gas (GHG) with atmospheric concentrations
that have nearly tripled since pre-industrial times. Wetlands account for a large share
of global CH, emissions, yet the magnitude and factors controlling CH, fluxes in tidal
wetlands remain uncertain. We synthesized CH, flux data from 100 chamber and 9 eddy
covariance (EC) sites across tidal marshes in the conterminous United States to assess
controlling factors and improve predictions of CH, emissions. This effort included creat-
ing an open-source database of chamber-based GHG fluxes (https://doi.org/10.25573/
serc.14227085). Annual fluxes across chamber and EC sites averaged 26+53g CH,
m?year™, with a median of 3.9g CH, m2year™, and only 25% of sites exceeding 18g
CH, m2year ’. The highest fluxes were observed at fresh-oligohaline sites with daily
maximum temperature normals (MATmax) above 25.6°C. These were followed by fre-
quently inundated low and mid-fresh-oligohaline marshes with MATmax <25.6°C, and
mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH,, flux
and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below
5-+3nmolm™s™! at sulfate concentrations >4.7 +0.6 mM, porewater salinity >21 + 2 psu,
or surface water salinity >15+3psu. Across sites, salinity was the dominant predictor

of annual CH, fluxes, while within sites, temperature, gross primary productivity (GPP),
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1 | INTRODUCTION

Tidal wetlands play a critical role in global carbon (C) cycling
(Bianchi, 2006; Odum, 2002). They have the potential to provide
major feedbacks to the Earth's climate system as they exchange
greenhouse gasses (GHGs) with the atmosphere, store large soil C
pools, and have the potential to sequester C through continuous
vertical accretion, allochthonous sediment deposition, and biomass
accumulation (Duarte et al., 2013). Low rates of organic matter de-
composition in their waterlogged soils promote the preservation of
large quantities of soil organic C (also known as blue carbon) for cen-
turies to millennia, contributing to the long-term removal of carbon
dioxide (CO,) from the atmosphere (Chmura et al., 2003).

However, the anaerobic conditions that promote soil C stor-
age also lead to microbial methane (CH,) production (Megonigal
et al., 2004). Methane, with 32-45 times the warming potential of
CO, over a 100-year time horizon, is second behind CO, in con-
tributing to increases in atmospheric GHGs associated with re-
cent warming (Forster et al., 2021; Neubauer & Megonigal, 2015).
When considered in the timeframe relevant to meeting the Paris
Agreement's target of limiting warming to 1.5°C, the CH, global
warming potential is even higher, reaching 75 times that of CO,
(Abernethy & Jackson, 2022). A recent compilation of global CH,
emissions identified wetlands as among the primary natural sources
of atmospheric CH,, second only to freshwaters, with emissions
ranging between 150 and 180 Tg CH, year'1 (Saunois et al., 2020)
and likely contributing to growing atmospheric CH, concentrations
as the climate becomes warmer and wetter (Zhang et al., 2023), and
anthropogenic wetland modifications increase (Kroeger et al., 2017,
Rosentreter, Borges, et al., 2021). Global atmospheric CH, contri-
butions from coastal wetlands, like tidal marshes, have been less
studied (Rosentreter, Borges, et al., 2021), and recent bottom-up
estimates (1-3.5 Tg CH,, year™%; Saunois et al., 2020) are not well
constrained due to the lack of systematic observations, data qual-
ity (i.e., primarily discrete measurements with few high-frequency
continuous measurements), uncertainties associated with coastal
wetland area, and the risk of double counting of ecosystem types
(e.g., tidal and non-tidal riverine, floodwater or estuarine wetlands)
(Rosentreter et al., 2023; Rosentreter, Borges, et al.,, 2021; Roth
et al., 2022; Saunois et al., 2020).

and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP
preceded temperature in importance for predicting CH, flux changes, while the opposite
was observed at the seasonal scale. Water levels influenced the timing and pathway of
diel CH, fluxes, with pulsed releases of stored CH,, at low to rising tide. This study pro-
vides data and methods to improve tidal marsh CH, emission estimates, support blue

carbon assessments, and refine national and global GHG inventories.

contiguous United States, eddy covariance, flux chamber, methane, open-source database,
predictors, synthesis, tidal wetlands

Global-scale controls on wetland CH, dynamics are reason-
ably known, including climatic zones, the presence of permafrost,
peat, or mineral soils, groundwater, and surface water inputs in
addition to precipitation, and the influence of salinity (Bridgham
et al., 2013; Turetsky et al., 2014). These large spatial-scale charac-
teristics subsequently control plant composition and the soil attri-
butes that drive anaerobic C cycling and CH, dynamics. However,
in tidal wetlands, where the tidal influence can dominate over
other global factors, it remains unclear whether CH, responses
to commonly studied predictors in non-tidal freshwater wetlands
also apply. Tidal wetlands experience unique spatial and temporal
variation in tides, redox conditions, and the influence of seawater
(Cloern & Jassby, 2012; Seyfferth et al., 2020). These variations
contribute to spatial gradients in plant species and traits, microbial
communities, and processes such as soil accretion, primary produc-
tion, respiration, and decomposition (Borde et al., 2020; Campbell
& Kirchman, 2013; Morris et al.,, 2002; Watson & Byrne, 2009).
Any or all of these factors substantially influence CH, emissions,
highlighting the complexity of predicting CH, fluxes from these
ecosystems.

On a local scale, rates of methanogenesis in wetland soils are
primarily governed by the balance of electron donors and termi-
nal electron acceptors. In general, saline tidal wetlands have high
concentrations of porewater sulfate, typically leading to low rates
of methanogenesis as acetate and hydrogen, primary substrates
for methanogens, are utilized by sulfate reducers to decompose or-
ganic matter anaerobically (Megonigal et al., 2004). However, other
pathways like methylotrophic methanogenesis can also be import-
ant in saline environments where non-competitive substrates are
degraded to methyl compounds, producing CH, even when sulfate
reduction co-occurs (Oremland et al., 1982; Seyfferth et al., 2020).
Once CH, is produced, it can reach the atmosphere by physical (dif-
fusion and ebullition) and plant-mediated processes. Some plants
efficiently vent CH, to the atmosphere through aerenchymatous
tissue. For example, in species such as Phragmites australis, Typha
latifolia, and T. angustifolia, convective gas transport during light con-
ditions allows CH, produced in soils to bypass CH, oxidation zones
and escape to the atmosphere at greater rates (Bendix et al., 1994;
Sanders-Demott et al.,, 2022; Van der Nat & Middelburg, 1998;
Vroom et al., 2022).
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Previous syntheses have identified important drivers of CH,
emissions in tidal wetlands, including salinity and sulfate concentra-
tions (Poffenbarger et al., 2011), temperature, and the quality and
quantity of organic matter (Al-Haj & Fulweiler, 2020). Additionally,
tidal pumping (Call et al., 2015; Trifunovic et al., 2020), dominant
vegetation types and hydrology (Derby et al., 2022), plant pheno-
logical phases (Vazquez-Lule & Vargas, 2021), and functional trait
composition (Mueller et al., 2020; Tong et al., 2018; Van der Nat &
Middelburg, 1998) have been shown to play significant roles. While
recent syntheses (Al-Haj & Fulweiler, 2020; Rosentreter, Al-Haj,
et al., 2021; Rosentreter, Borges, et al., 2021) have qualitatively
discussed these biogeochemical (e.g., salinity, temperature, organic
matter) and biotic (e.g., plant-mediated transport) drivers, they have
not resolved the relative influence of overlapping predictors in a
quantitative fashion. This may be partly attributed to the reliance
of syntheses on literature values, which often represent summa-
rized flux averages or temporally upscaled estimates that can mask
a wealth of processes and important variations evident in original
disaggregated measurements. In contrast, this study focuses on
original, disaggregated data and metadata obtained directly from re-
searchers, allowing for a more detailed and in-depth analysis of CH,,
fluxes and their influencing factors.

Measuring CH, emissions from tidal marshes has primarily
depended on chamber methods, especially static chambers sam-
pled manually, due to their low cost, simplicity of application,
and ease of deployment in areas without power (Rolston, 1986;
Yu et al.,, 2013). The fine spatial resolution of chamber flux
measurements, their generally low detection limits, and their
compatibility with concurrent surface and porewater sampling
of relevant analytes (salinity, pH, dissolved gas concentrations,
or alternate electron acceptors) have made them an invaluable
resource for process-based research and for measuring small
fluxes and instances of net CH, oxidation. However, due to
logistical constraints, chamber methods introduce limitations
as they encourage sampling at low tide, during daylight hours,
and on an intermittent sampling schedule (typically monthly).
As a result, pulse events triggered by diurnal and tidal cycles,
changes in atmospheric pressure, or sediment disturbances are
often unobserved or filtered out to remove ebullition (Altor
& Mitsch, 2006; Morin et al.,, 2014; Podgrajsek et al., 2014;
Rosentreter et al., 2018).

To address the low resolution of daytime static chamber mea-
surements, some studies have employed custom gas exchange
models that incorporate continuous air temperature or water table
depth, among other factors, to model CH, fluxes between sam-
pling events (Krauss et al., 2016; Neubauer, 2013; Sanders-Demott
etal., 2022; Schultz et al., 2023; Weston et al., 2014). In the absence
of continuous measurements of predictor variables, others have
used scaling factors to convert average daily fluxes into annual emis-
sions (Bartlett & Harriss, 1993; Bridgham et al., 2006; Poffenbarger
et al.,, 2011). These factors are based on studies that report both
annual and daily rates and represent the ratio of annual CH,, flux to
average daily flux (Bridgham et al., 2006).

ST e L

On the contrary, the continuous, high-frequency eddy covari-
ance (EC) technique offers promising datasets for understanding
tidal marsh CH, fluxes, which often involve nonlinear and asyn-
chronous processes across multiple timescales (Reid et al., 2013;
Sturtevant et al., 2016). However, EC studies in tidal marshes are
less common than chamber studies and are not as widespread as
in other ecosystems, such as inland freshwater wetlands, rice pad-
dies, and tundra. Unlike chambers, EC systems are less effective in
discerning the influence of factors operating at small spatial scales,
such as plant traits and microtopography, and often lack support-
ing water level (Knox et al., 2019), salinity (Delwiche et al., 2021),
and porewater data such as sulfate or nitrate concentrations that
may pose important controls on CH, production. Nevertheless, they
offer ecosystem-scale fluxes and are better suited for assessing the
influence of plant C assimilation on CH, fluxes and pulsed events.

Drawing on data from both flux monitoring techniques increases
the quantity of data available and leverages the benefits of both ap-
proaches to better understand the variability of CH, fluxes across
time and space (Yuan et al., 2024). However, while EC data are
available through global and national networks such as AmeriFlux
and FLUXNET, chamber fluxes disaggregated by sampling event
and supporting environmental covariates remain widely dispersed
and frequently unavailable. In the context of the Coastal Carbon
Network (CCN) Methane Working Group, we compiled, synthesized,
and standardized chamber-based CH, fluxes across the contermi-
nous United States (CONUS) and created an open-source database
focused on tidal marsh ecosystems that host chamber-based GHG
fluxes with supporting observations and porewater biogeochemis-
try (Arias-Ortiz et al., 2024).

Our primary objective was to assess controlling factors and im-
prove predictions of CH, emissions in tidal marshes across CONUS.
Here, we provide an in-depth analysis of tidal marsh CH, flux pat-
terns and the factors influencing the variation in flux magnitudes
and timing. Specifically, we address the following questions: (i) What
are the primary predictors of CH, flux in tidal marshes across sites
in CONUS? (ii) How does the variability in CH,, fluxes change across
daily to seasonal timescales, and what are the dominant predictors
at each timescale? (iii) Can improved scaling factors for annualizing
discrete chamber measurements be developed, and to what extent
do daily and seasonal variations in CH, fluxes affect these factors?
Finally, (iv) how can the identified relationships and gained informa-
tion be used to improve monitoring and predictions of CH, emis-
sions in tidal marshes?

2 | METHODS

2.1 | Dataset description

The database contains 35 contributed CH, flux datasets of 122 tidal
marsh sites measured with chambers across CONUS (Arias-Ortiz
et al., 2024). Details on the data acquisition process and database
structure can be found in Supporting Information sections 1 and 2.
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For the analysis in this study, we selected chamber plots without any
experimental treatment, except for those involving salinity. These
treatments consisted of slight changes from fresh to oligohaline
conditions, resembling the seasonal variations in salinity that tidal
marshes may naturally experience. This resulted in a total of 100
marsh sites with discrete CH, flux measurements disaggregated by
sampling event, spanning from 1day to 4years, and accompanied
by ancillary data, including porewater biogeochemistry. Analyses
of the chamber dataset were complemented with nine independent
EC tidal marsh datasets available through FLUXNET-CH, (US-LA1,
US-LA2, US-Srr), AmeriFlux (US-EDN, US-Dmg, US-StJ), and tower-
site Pls (US-MRM, US-HPY, and US-PLM) (Table S1), all of which ad-
here to standards and data QA/QC procedures explained elsewhere
(Chu et al., 2023; Delwiche et al., 2021; Knox et al., 2019). Gap-filled
fluxes were obtained from site Pls if missing in the original datasets.
Likewise, when absent, water quality parameters, including conduc-
tivity or salinity and dissolved nitrate concentrations, were sourced
from the USGS National Water Information System or National
Estuarine Research Reserves online databases (NOAA, 2023; USGS
NWIS 11180770, 2023). See Supporting Information section 1 and
Table S1 for details on tower sites, including fraction of gap-filled
CH, flux data.

Eddy covariance and chamber sites were classified using a multi-
faceted classification system described in Table 1 and the Supporting
Information section 2. The definition of “site” differs between cham-
ber and EC studies. Eddy covariance sites are represented by the
flux footprint rather than by gradients in biotic and abiotic factors
such as elevation, species composition, or substrate type (channel,
mudflat, or vegetated area). In this study, we defined chamber sites
as distinct locations within a tidal wetland that could consist of sev-
eral chamber plots. Adjacent areas, if composed of different wetland
vegetation, salinity, elevation, or disturbance classes, were consid-

ered different chamber sites in our database.

2.1.1 | Chamber flux QA/QC and filtering

Submitted chamber-based CH, fluxes were assigned quality flags
based on details reported during the data submission process or in
the original publication (Table 2). These flags indicate if any thresh-
olds (R? and/or p-value) were used to test, modify, or remove flux
rates in the original studies. 65% of the submitted CH, fluxes were
accompanied by R? and/or p-values (24% had both reported), and
35% had no associated statistics. Chamber flux measurements
across studies in the synthesis varied in methodology. Some were
based on syringe headspace samples, while others used continuous
gas analyzers, which provide a more accurate assessment of con-
centration changes over time. To harmonize data quality control
procedures across the dataset for analysis in this study, we filtered
the data using percentiles (to remove outliers) and flux quality flags
(Table 2). For the entire dataset, CH, fluxes below and above the
1st and 99th percentiles were excluded if statistics supporting these
extreme values were not reported or if the R? of the regression was

lower than 0.90 (Figure S2a). Furthermore, CH, flux rates flagged
as “Not Significant” or “Not Tested” with reported statistics were
further filtered out based on p-values, R2, and the number of sample
points (n) used to fit the regression model, all conditional on flux
magnitude. Briefly, CH, flux rates with a p-value >0.10 were filtered
out if they exceeded 10nmolm™2s™ (the mean flux rate estimated
for fluxes flagged as not significantly different from zero). If p-values
were not provided but R? and n were available, we filtered out fluxes
exceeding 10 nmol m2 5’1, those with R><0.80 and n <4, or R?<0.55
and n< 6. Rates <10nmolm2s™* were retained even if they did not
meet the R? requirements because samples with low CH, concen-
trations generally have low R? values reflecting the low fluxes from
those chambers rather than a poor measurement quality. Of 8980
individual chamber CH,, fluxes, 156 were filtered out because they
exceeded the 1st and 99th percentiles with no supporting statis-
tics. An additional 60 measurements were discarded based on p,
R?, and n values (Figure $2b). The result is a vetted dataset without
unsubstantiated outliers of 8764 observations. We acknowledge
that fluxes driven by nonlinear processes such as ebullition may be

underrepresented.

2.2 | Annual CH, flux estimates and scaling factors

We estimated annual tidal marsh CH, fluxes where there was a full
year of tower or chamber data. At EC sites, we calculated annual
sums using gap-filled data. At chamber sites, we used published es-
timates where available. At sites where CH, fluxes had been meas-
ured across all months but annual estimates had not been reported,
we integrated daytime fluxes using linear interpolation between
year-round measurements after calculating the median of CH, flux
rates within replicate chambers.

Most chamber sites (82 out of 100) did not have a full year of
sampling coverage (i.e., one or more monthly measurements were
missing). Additionally, two EC sites did not have a full year of data
(US-PLM) or lacked gap-filled meteorological and flux variables (US-
HPY). For these and the chamber sites lacking annual CH, flux mea-
surements, we developed scaling factors to upscale measurements
to annual estimates. Scaling factors were calculated from the ratio
between annual flux (in units of g CH, m’zyear’l) and average daily
flux (in mg CH, m™ day™) using sites with a full year of sampling
coverage (Bridgham et al., 2006). Scaling factors were calculated
for both chamber and EC sites. At EC sites, we used non-gap-filled
mean daily flux measurements against the annual sum calculated
with gap-filled data. If a specific site-year had more than 2 consec-
utive months of missing data, we excluded it from the computation
of scaling factors.

Particularly, we were interested in developing a scaling factor
specific to the peak emission period (annual flux/average daily
flux between June and August) since chamber studies in temper-
ate marshes do not often include winter sampling when plant pro-
ductivity is at its lowest (e.g., Bartlett, 1985; Weston et al., 2014)
and most sites in the database met the condition of having data
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TABLE 1 Attribute categories used to classify chamber and EC sites in according to wetland type, vegetation, salinity, relative elevation,

and disturbance conditions.

Attribute

Wetland type

Vegetation Class

Salinity class

Elevation Class

Disturbance class

Code

Palustrine tidal

Estuarine intertidal

Mudflat
Emergent
Scrub/Shrub
Forested
Fresh
Oligohaline
Mesohaline
Polyhaline
Mixoeuhaline

High

Mid

Low

Levee

Back
Undisturbed
Tidally restored
Tidally restricted
Ditched

Species invasion

Submergence-Salinization
Storm disturbance

Removal of invasive plants

Revegetation

Wetland construction

Description
Wetlands dominated by trees, shrubs, or emergents that occur in tidal areas
where salinity is <0.5 psu (Cowardin et al., 1979)

Tidal wetlands usually semi-enclosed by land but have open, partly
obstructed, or sporadic access to the open ocean, and in which ocean water
is diluted by freshwater runoff from the land. Salinities >0.5 psu (Cowardin
et al.,, 1979)

Describes unvegetated areas exposed and flooded by tides

Describes wetlands dominated by persistent emergent vascular plants
Describes wetlands dominated by woody vegetation <5m in height
Describes wetlands dominated by woody vegetation >5m in height
<0.5psu

0.5-5psu

5-18psu

18-30psu

30-40psu

Elevation above the Mean Highwater mark (MHW), inundated infrequently.
Could be defined by vegetation communities (e.g., Spartina patens, Distichlis
spicata, Salicornia sp., Juncus sp., and bulrush species)

Elevation in the relative middle of the tidal frame, frequently inundated,
typically defined by vegetation communities (e.g., Spartina patens)

Elevation relatively low in the tidal frame, frequently inundated, typically
defined by vegetation communities (e.g., Spartina alterniflora)

Study-specific definition of a relatively high elevation zone built up on the
edge of ariver, creek, or channel

Study-specific definition of a relatively low elevation zone behind a levee
No disturbance or management has occurred on the site

Tidal flow has been restored by removing an artificial obstruction

Tidal flow is muted or blocked by built structures. Includes impoundment

Tidal hydrology is altered because artificial ditches have been cut to promote
tidal flooding and drainage

Establishment of non-native species that compete with, displace, or even
eliminate native species

Caused by sea level rise and saltwater intrusion
Major storms, including unusually high precipitation and/or wind events

Natural plant communities have been restored by actively removing invasive
plant species

Wetland vegetation has been reintroduced by replanting on unvegetated
surfaces

Constructed wetland using sediments such as dredge spoils or other
sediment source

during this period. For sites lacking annual CH, flux measure-
ments, we provided a first-order estimation of their annual CH,
flux using the scaling factor derived from June-August mean daily
CH, fluxes (without gap-filling for EC sites). We refrained from
scaling mean daily CH, fluxes to annual estimates at chamber sites
with a study duration <1day (sites =4). We averaged annual fluxes
when there was more than 1 year of data for a given chamber or
EC site. Additionally, we added two sites for which disaggregated
data could not be synthesized (i.e., not in the dataset) but measured

annual CH, fluxes had been published (Neubauer et al., 2000;
Segarra et al., 2013).

We treated annual CH,, flux estimates from chambers and EC as
comparable, making no distinction between the two when estimat-
ing mean, median, and geometric mean annual CH,, fluxes across tidal
marshes in the CONUS. Previous synthesis works have also com-
bined chamber and EC annual CH, flux estimates due to the limited
number of EC sites in tidal or coastal settings compared with those
of chambers (Al-Haj & Fulweiler, 2020; Rosentreter et al., 2023).
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Flag Description

“Not Tested” (NT)

Assigned to flux rates missing statistics or any flux not
censored or modified based on R? or P-values, even if

TABLE 2 Flagging criteria for chamber
CH, flux analysis based on their statistical
significance and treatment in original
studies.

these were provided in the original publication

“Not Significant” (NS)

Assigned to flux rates considered not significantly

different from zero by the authors, divided into two

subcategories

NS_0: Used when authors replaced non-significant flux

rates with zero

NS_NA: Assigned when authors removed non-
significant flux rates at specific sampling events

“Significant” (S)

Assigned to all flux rates accompanied by linear

regression statistics and considered significantly
different from zero by authors, regardless of study-

specific thresholds

Scaling factors and CH,, flux data had non-normal distributions;
thus, we focused on comparing medians and used non-parametric
tests such as paired-sample Signed test (S) for paired comparisons
(i.e., year-round vs. June-August scaling factors), Mann-Whitney
test (U) for two-group comparisons (e.g., scaling factors between
EC and chambers), or a Kruskal-Wallis Dunn's test (H) using the
Benjamini-Hochberg correction for multiple comparisons (i.e., fluxes
between salinity, elevation, and disturbance classes). All statistical

analyses were done at a level of significance of a<0.05.

2.3 | Analysis of predictors of CH, fluxes
across sites

2.3.1 | Predictors of annual CH, fluxes using
broadly available data

To evaluate the predictors of annual CH, fluxes across sites in
CONUS, we combined chamber and EC annual CH,, flux estimates
and used qualitative (e.g., salinity and elevation class) and long-term
climatological data (i.e., climate normals), which were broadly avail-
able at all sites. These data were fit to classification and regres-
sion trees such as Conditional Inference Trees (CTree) (Hothorn
et al., 2006) and Random Forests (RF) (Breiman, 2001). CTrees use a
significance test procedure to select variables at each split to reduce
overfitting and selection bias. The stopping criterion is implemented
when the global null hypothesis of independence between the re-
sponse and any of the covariates cannot be rejected at a nominal
level a, set at 0.05. The tree was constructed using the function
“ctree” in the R package “Partykit” (Hothorn & Zeileis, 2015), limiting
the tree depth to five levels. CTrees provide direct visualization of
the splits at decision nodes, helping the interpretability of predic-
tors, and are similar to binary partitioning methods used for analyz-
ing soil CO, efflux measurements in terrestrial ecosystems (Vargas
et al., 2010). However, they may suffer from issues associated with
single trees, such as overfitting, high variance, or bias toward domi-
nant classes.

For this reason, we added RF to our analysis. We trained a RF al-
gorithm for annual CH,, fluxes using R's “caret” package (Kuhn, 2008).
Similar to CTrees, the RF model was trained on all available data (i.e.,
we did not create training and test data splits) since our objective was
to determine the hierarchy of predictor importance of CH, fluxes in
tidal wetlands rather than to identify a predictive model that can
generalize to new conditions (Knox et al., 2021). Hyperparameter
tuning was performed for mtry (number of predictors randomly sam-
pled at each decision node, selected at 6), and the number of trees
was set to 400. For CTrees and RF models, we provide out-of-bag
model fit metrics (coefficient of determination, mean absolute error,
and root mean squared error) to further evaluate relative confidence
in results.

Long-term average normals included in CTree and RF analyses
were mean annual temperature and precipitation (MAT and MAP),
mean daily maximum annual temperature and vapor pressure deficit
(MATmax and VPDmax), and mean total daily shortwave solar ra-
diation (Soltotal), which were extracted from PRISM using specific
site coordinates (PRISM Climate Group, Oregon State University,
https://prism.oregonstate.edu, data generated November 10, 2022).
For these analyses, back and levee elevation classes (Table 1) were
grouped within the low and high elevation classes, respectively, due
to their low representation (less than three sites each) across the
dataset. Salinity class was converted to numeric format to run the RF
algorithm. Mean annual surface water or porewater salinity was cal-
culated at sites with available data, while the midpoint of the salinity

class range was used at sites with no salinity data.

2.3.2 | Predictors of CH, fluxes using discrete
chamber measurements

To evaluate predictors of CH, flux across sites using chamber-
disaggregated CH, fluxes by sampling event and time-specific
environmental parameters, we employed generalized additive
models (GAMs) (Hastie & Tibshirani, 1990). We chose GAMs over
regression trees like RF because we prioritized interpretability
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over predictive performance. Additionally, discrete chamber data
present challenges due to patchiness in recorded variables, high-
lighting a lack of standardization across chamber studies and,
consequently, the need for developing models for each recorded
variable individually when using the entire dataset. GAMs can de-
scribe linear and nonlinear relationships between CH, fluxes and
predictor variables, and they have the advantage of not needing
data transformation. Before running GAMs and any of the fol-
lowing analyses, we transformed periodic variables such as day
of year (DOY) and sample hour using their sine and cosine trans-
formations instead of their original values to linearize their cyclical
pattern. First, we developed GAMs of CH, flux using each pre-
dictor individually. Relative predictor importance was determined
by comparing the deviance explained among predictors. From the
entire database, we selected predictors that were available in five
or more studies. Then multivariate GAMs were implemented using
a combination of predictors that individually explained the largest
variance and were present in at least five studies. Models were
fit with restricted maximum likelihood (REML), and study ID (i.e.,
publication) was included as a random factor to account for non-
independence of multiple chamber fluxes extracted from the same
study. Additionally, the presence or absence of flux R? or p-values
was used as an estimate of precision and was applied to weight
flux rates so that studies in which statistics had supported CH,
fluxes were given a higher weight (0.8 vs. 0.2). All GAMs were im-
plemented using the R “mgcv” package (Wood, 2011).

Leveraging nonlinear quantile regression, we established
quantitative relationships between CH, emissions and the top-
ranked predictor variables identified by GAMs, and estimated
thresholds above which CH, fluxes were negligible. Quantile re-
gression is valuable when assumptions like normality are not met.
Additionally, this approach is adept at resisting the influence of
outliers and is well suited for handling heteroscedasticity (i.e.,
where the variance of the CH, fluxes varies across different levels
of a predictor, e.g., salinity) (Koenker, 2005). It allows for more ac-
curate modeling of the varying spread of CH, fluxes by estimating
multiple slopes that describe the relationships between specific
quantiles of the CH, flux distribution and a predictor that regres-
sion methods, focused solely on predicting mean values, would
otherwise overlook (Cade & Noon, 2003). Quantile regressions
were fitted for the 0.1, 0.5, and 0.9 quantiles of CH, fluxes using
the nlrq() function within the R package “quantreg” (Koenker, 2023)
due to the observed nonlinear relationships between CH, fluxes
and the tested predictor variables. The slopes of the fitted con-
ditional quantile regressions were used to estimate the predictor
level required to decrease CH, fluxes by half, based on an expo-
nential decay relationship (i.e., X;,,=In(2)/slope). Subsequently,
threshold values were estimated as seven times X, ,, representing
a 99% reduction of CH, fluxes through interactions with increas-
ing predictor levels. We calculated these thresholds for the 50th
and 90th percentiles of the conditional distribution of CH, fluxes,
representing the predictor thresholds below which the 50% and
90% of the highest CH,, fluxes occur, respectively.
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2.4 | Analysis of predictors of CH, fluxes across
timescales

Half-hourly EC datasets were used to assess CH, flux magnitude
fluctuations at diel to seasonal scales and their controlling factors.
Additionally, they provided insights into the significance of predictor
variables not often evaluated in chamber studies, such as plant activ-
ity through GPP, net ecosystem exchange, or latent heat, as well as
the effects of tidal pulsing on modulating CH, exchange.

We employed wavelet time series decomposition to identify
major timescales of variation within the continuous CH,, flux time
series. Then, we used mutual information (/) to find the relative
importance of each predictor variable and identify both synchro-
nous and asynchronous interactions (Ruddell et al., 2013). Mutual
information (I) measures the amount of information shared by
two variables, X and Y, or the reduction in uncertainty of one
variable given the knowledge of the other variable (Fraser &
Swinney, 1986). The degree of mutual information between X and
Y is increased by adding a time lag (positive or negative) in series Y
relative to X, thereby allowing the identification of both synchro-
nous and asynchronous interactions. Using the ProcessNetwork
Software (v1.5, Ruddell et al., 2008) and the Wavelet Methods for
Time Series Analysis (WMTSA) toolkit (Cornish et al., 2003), we
decomposed gap-filled CH, flux and explanatory variables in four
general timescales of variation: hourly (1-2h), diel (4h-1.3days),
multiday (2.7-21.3days), and seasonal (42.7-341days). These
timescales of variation represented short-term perturbations such
as wind gusts or overpassing clouds, day-night changes in meteo-
rological variables and tidal fluctuations, neap-spring tidal cycles,
and seasonal courses of solar movement and vegetation phenol-
ogy, respectively. Wavelet decomposition was performed on gap-
filled, half-hourly data using the maximal overlap discrete wavelet
transform (MODWT), summing the detail over adjacent scales to
yield the latter four timescales of variation (details in Sturtevant
et al., 2016). Wavelet decomposed data were then used to com-
pute the mutual information between CH, fluxes and biophysical
variables within each timescale over a range of time lags (from half
a day at the diel scale to 60days at the seasonal scale). Original
gaps in the reconstructed time series were reintroduced before
mutual information calculation for all except the seasonal analy-
sis following (Knox et al., 2021). Results were interpreted using
the relative mutual information (/%) metric, a normalized measure
of the statistical dependence of CH, flux on a range of predic-
tor variables, with larger values indicating higher dependence.
To determine the relative importance of each predictor variable,
we ranked the normalized IR values across sites, and we did that
within each timescale of interest. In this study, we followed the
methods described by Knox et al. (2021) (i.e., 10 bins and 50 ran-
dom reshufflings to calculate significance thresholds at each lag)
and focused on results for the predictors of diel, multiday, and
seasonal timescales. The hourly wavelet scale is often dominated
by noise (Hollinger & Richardson, 2005) and was only produced
to show the distribution of CH, flux variability across timescales.
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of sampling coverage.

3 | RESULTS

The final database contained 44 contributed datasets with 109 (100
chamber and 9 EC) tidal marsh sites, with measurements from 1980
to 2022. The dataset was dominated by CH, fluxes from tidal meso-
haline wetlands with emergent vegetation, predominantly located
on the US East Coast (Figure 1). Similar proportions (~30%-40%) of
high, mid, and low tidal marsh environments were represented, with
fewer sites located in environments affected by banks, berms, or
levees. Half of the sites corresponded to undisturbed tidal marshes,
followed by tidally restored (20%), ditched (8%), and other distur-
bance classes with a minority representation (<5%), including tidally
restricted sites and species invasion (4%). Chamber-based data were
unequally distributed throughout the year, with more observations

concentrated from June to August (Figure S3). Five of the nine EC
tower sites had paired chamber CH, flux measurements. Carbon
dioxide and N,O fluxes were also compiled alongside CH, and are
available in 52% and 30% of the sites, respectively, but they were

not the focus of this synthesis.

3.1 | Scaling factors

A total of 29 site-years (11 from EC, 18 from chambers) had data
covering all months of the year; hence, they were used to com-
pute annual CH,, flux scaling factors. Median scaling factors (s.f.)
differed significantly when calculated based on daily fluxes aver-
aged year-round (0.38, IQR=0.10) compared to when considering
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June-August daily average fluxes (0.21, IQR=0.06) (5=3,z=3.97,
P <0.001) (Figure 2a). Scaling factors estimated using year-round
daily averages were significantly lower for EC (s.f.=0.32) than for
chamber measurements (s.f.=0.39) (U(N =11, N =18)=

z=-2.54, p=.01), but no significant differences in the scalmg fac-

chamber ™

tor were observed between methods when using daily averages
from June to August (U(N.=10, N, .. =18)=69, z=-0.98,
p=.33). For the 29 site-years (EC and chamber combined), the
annual CH, fluxes estimated using the June-August scaling fac-
tor closely agreed with the measured values (Figure 2b). We did
not find significant differences in annual scaling factors between
wetland  types (U(Negyarine intertidal =23 Npatustrine tidal =) =33,
z=-0.24, p=.81), salinity classes (H(4)=2.0, p=.74), elevation
classes (H(4)=2.8, p=.60), or disturbance classes (H(4)=
p=.30) (Tables S2-S5).

3.2 | Tidal Marsh annual CH, flux estimates

Using available full site-year data, published fluxes, and scaling
factors at sites where the sampling coverage was shorter than
a year, we estimated annual CH, fluxes from tidal marshes in
CONUS. From a total of 108 sites including chamber and EC data-
sets, mean+SD annual CH, fluxes were 26+53g CH, myear ",
but the central tendency of the estimates represented by the me-
dian and the geometric mean were seven to five times lower, at
3.9 and 5.4g CH, m_zyear_i,
ric mean excludes sites with negative or zero annual CH, fluxes)

respectively (note that the geomet-

(Figure 3a). Median CH, fluxes were significantly higher at freshwa-
ter sites than at mesohaline, polyhaline, and mixoeuhaline marshes
(H(4)=28.06, p<.001) (Figure 3b). Statistical overlap of annual

ST e L

CH, fluxes existed between fresh and oligohaline, oligohaline and
mesohaline, and polyhaline and mixoeuhaline conditions. However,
when using chamber flux data disaggregated by sampling event,
differences between salinity classes were more pronounced, with
only fresh and oligohaline conditions showing statistical overlap
(z=-1.93, p=.27) (Figure 3c). The variance of CH, fluxes at fresh
and oligohaline sites was 27, 700, and >5000 times larger than at
mesohaline, polyhaline, and mixoeuhaline sites, respectively. No
statistical differences were observed between the distributions of
chamber- and EC-derived annual fluxes across CONUS or when ag-
gregated by salinity class (Table Sé).

The wide numerical range and the right-skewed nature of
the CH, flux data were also observed in annual CH, fluxes when
separated by salinity class, which additionally showed a slight
bimodal distribution (Figure S4). In fresh-oligohaline and meso-
haline conditions, there was a trend of higher CH, fluxes in low
than high marsh environments, but this pattern was not observed
in more saline sites (Figure S5). The assessment of disparities in
CH, flux between disturbance classes was limited due to the un-
even distribution of sites across salinity classes. When sites were
grouped by salinity, tidally restored mesohaline marshes exhib-
ited significantly lower CH, fluxes than Phragmites-invaded sites
(Figure S5). Upon exploring chamber CH, fluxes disaggregated by
sampling event grouped by salinity and species, chambers fea-
turing Phragmites exhibited higher CH, fluxes than those where
other species were present (Figure Sé). This trend was only no-
table in mesohaline and polyhaline marshes, where most data
were available. However, the generalizability of these results to
CH, fluxes from other salinity classes could not be assessed due
to the incomplete representation of disturbance classes in non-

mesohaline salinity conditions.
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FIGURE 4 Conditional inference tree based on salinity class (with fresh and oligohaline, and polyhaline and mixoeuhaline classes
combined), long-term mean daily maximum annual temperature (MATmax) and elevation class. MATmax represents the “normal” or average
maximum temperature for each day of the year based on 30-year historical data. Box plots show annual CH,, flux in g CH, m2year . Results

of the CTree include eddy covariance and chamber data.

3.3 | Predictors of CH, flux across sites

3.3.1 | Predictors of annual CH, flux

Results of both the CTree and RF methods were similar, ranking sa-
linity as the most important predictor of the magnitude of annual
CH, fluxes, followed by mean daily maximum annual temperature
(MATmax) and, to a minor extent, elevation class and mean daily
maximum annual vapor pressure deficit (Figure 4; Figure S7). These
rankings were obtained using EC and chamber-based annual esti-
mates combined. Average model performance was highest for RF
with an out-of-bag R? of 0.94, MAE (mean absolute error) of 7.9 g CH,
m’2year_1, and RMSE of 14g CH, m_zyear’1 (Figure S7). The best re-
sulting CTree (R*=0.66, MAE=17, RMSE=31g CH, m?year™) was
achieved when fresh and oligohaline, and polyhaline and mixoeuha-
line classes were combined. This CTree was composed of 11 deci-
sion nodes, with salinity at the root of the tree, followed by MATmax
and elevation class. The highest annual CH, fluxes were observed
at fresh and oligohaline sites with MATmax above 25.6°C, followed
by frequently inundated low and mid-fresh-oligohaline marshes with
MATmax <25.6°C, and mesohaline sites with MATmax above 19°C.
Methane fluxes at sites with salinities >18 psu were consistently low
regardless of MATmax or elevation class (Figure 4). The represen-
tation of elevation classes was similar among fresh-oligohaline sys-
tems with MATmax <25.6°C, mesohaline sites with MATmax <19°C,
and polyhaline and mixoeuhaline marshes (Figure S8). However, el-
evation could not be assessed as a predictor of annual CH, fluxes

at warmer fresh-oligohaline (>25.6°C) and mesohaline (>19°C)
sites due to the lack of variation in elevation classes within these
categories.

While the mean difference between predicted and observed val-
ues was roughly equal to the average of annual CH, fluxes across the
dataset, CTree binary partitioning enabled a breakdown of annual
CH, fluxes across marsh categories based on salinity and daily maxi-
mum annual temperature, with additional consideration of elevation

class specifically within the fresh-oligohaline category (Table 3).

3.3.2 | Predictors of CH, fluxes from disaggregated
chamber data

We used chamber-based disaggregated data to understand CH,, flux
variability across sites and to establish quantitative relationships
between CH, fluxes and predictor variables, particularly porewater
biogeochemistry. Results from GAM models showed that porewater
CH,, porewater sulfate concentrations, and porewater salinity ex-
plained the highest percentage of the variance (27%-16%), followed
by surface water salinity and air temperature (13%-8%) (Table 4).
Similar results were obtained if CH, flux data were filtered to con-
sider emissions only (i.e., CH, fluxes >0) (Table S7). Surface and
porewater nitrate concentrations and porewater temperature also
explained some percentage of the deviance in CH, fluxes (26%, 10%,
and 18%, respectively); however, these results were based on a lim-
ited number of studies (n< 5) (Table S7). Adding study ID as a random
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TABLE 3 Summary of annual CH,, fluxes (g CH, m2year™) grouped by salinity class, MATmax, and elevation class from the Conditional

Inference Tree in Figure 4.

Elevation Geom.
Salinity class MAT max class N Distribution Mean SD SE Median mean geoSD
Fresh-oligohaline >25.6 7 Normal 171.5 79.4 30 204 153 1.7
Fresh-oligohaline <25.6 Low, mid 20 Square root-normal 54.9 56 12.5 41.5 15 10.5
Fresh-oligohaline <25.6 High 10 Log-normal 5.3 6.3 2 3.2 3.8% 2.7
Mesohaline >19 8 Log-normal 21.5 19.5 6.9 19.2 15.8 2.3
Mesohaline <19 39 Log-normal 6.9 10.3 1.7 3.1 3.4° 3.6
Poly-mixoeuhaline 24 Log-normal 1.8 2.3 0.5 0.7 1.2° 2.9

Note: N is number of sites, SD and SE are standard deviation and error, respectively, geom.mean refers to geometric mean, and geoSD is the standard

deviation of the latter.

“Negative flux values (n=1 high fresh-oligohaline <25.6; n=1 mesohaline <19°C) and fluxes equal to zero (n=1; mesohaline <19°C; n=3 poly-

mixoeuhaline) were removed to compute the geometric mean.

TABLE 4 General additive model (GAM) results for chamber-disaggregated CH,, fluxes against time-specific predictor variables.

Variable R? Deviance explained (%) d.f. AIC # studies
Porewater CH, 0.27[0.33] 27 [34] 879 8420 [8336] 11
Porewater 5042_ 0.21[0.27] 22 [29] 310 4200 [4177] 6
Porewater salinity 0.16 [0.20] 16 [22] 1162 16,734 [16,680] 15
Surface water salinity 0.12[0.46] 13 [46] 760 9463 [9088] 6
Air temperature 0.08 [0.2¢] 8 [26] 6729 88,747 [87,337] 28
cosHour 0.05[0.32] 5.1[32] 6229 85,370 [83305] 18
Porewater 5042’ and porewater CH, 0.67 [0.71] 69 [73] 239 2097 [2065] 5
Surface water salinity and air 0.60 [0.66] 61 [67] 654 7632 [7514] 5
temperature

Porewater salinity and porewater 0.32[0.36] 34 [39] 347 3594 [3576] 7

CH,

Notes: In brackets are GAM results with Study ID as a random effect. Results shown include relationships that explain >5% of the deviance in CH,
fluxes, focusing on variables available in at least five studies. Table S7 contains GAM results for CH, emissions (i.e., >0) against all time-specific
predictor variables with a significant relationship (p <.05). d.f. stands for degrees of freedom, AIC is the Akaike information criterion, and # studies
indicate the number of studies that recorded each predictor variable (the total number of studies is 35).

effect increased the model performance between 6 and 32%, with
the lowest increase observed for porewater salinity and the high-
est increase observed for surface water salinity. This highlights the
intrinsic site-specific variability of CH, fluxes when predicted using
surface water salinity. It also emphasizes the disconnect between
surface and porewater salinity. Multivariate GAM models combining
porewater CH, and sulfate concentrations, or surface salinity and air
temperature, achieved the best performance with the highest devi-
ance explained, 73% and 67%, respectively. However, these models
were representative of only five studies (Table 4).

To estimate effect sizes, we examined the individual relation-
ships between CH, fluxes and porewater concentrations of CH,,
sulfate, and salinity. All these variables, except for porewater CH,,
had significant effects on the magnitude of CH,, fluxes, as shown by
nonlinear quantile regression fits (Figure 5; Table S8). We observed
a significant exponential decrease in CH, fluxes as surface and pore-
water salinity or sulfate concentrations increased. Moreover, as sa-

linity and sulfate concentrations increased, the range of CH, fluxes

decreased, suggesting that the effects of salinity and sulfate on CH,
emissions were not consistent across all study sites. At the median
quantile, CH, fluxes were significantly reduced when porewater sul-
fate and porewater salinity exceeded 2.8+0.5mM and 9.6 +1.1psu,
respectively. A 90% response, indicated by a significant reduction of
the 0.9 quantile of the CH, fluxes, was achieved when sulfate con-
centrations reached 4.7 +0.6 mM, and porewater and surface water
salinity reached 21+2 and 15+ 3psu, respectively (Figure 5). These
values represent the mean estimated cutoff points below which ei-
ther the 50% or 90% of the highest CH,, fluxes occur.

Analysis of the quantile regression model residuals revealed
that CH, fluxes were not dependent on only one predictor variable.
Several environmental covariates could explain variability in model
residuals of the porewater or surface water salinity-CH, relation-
ship. Primarily, the residual variance in CH, fluxes modeled from sur-
face water salinity was notably influenced by porewater sulfate and
CH, concentrations. Likewise, sulfate concentrations and porewater
temperature influenced the remaining variance in fluxes modeled
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from porewater salinity (Figures S9 and $10). In contrast, no predic-
tor variable was found to explain the variability in model residuals of

the sulfate-CH, flux relationship.

3.4 | Predictors of CH, flux across timescales

Mutual Information analysis using wavelet decomposed EC data-
sets revealed that CH, responses to environmental covariates
exhibited nonlinearity and were characterized by asynchronous
interactions, particularly at the multiday and seasonal scales (com-
pare maximum I} heatmaps in Figure 6 with those of synchronous
IRin Figure S11).

The diel timescale generally dominated CH, flux variability
across tidal marsh EC sites, except for microtidal sites in Louisiana
(US-LA1 and US-LA2), where the seasonal scale prevailed
(Figure 6a). For some sites, the proportion of variance in CH, flux
at the hourly scale appeared large (e.g., US-EDN). This was gener-
ally due to the higher signal-to-noise ratio at sites with low CH,
fluxes or their low variation at other scales. The variance in CH,
fluxes at the multiday scale was the lowest across all tidal marsh
EC sites.

To assess the relative importance of CH, flux predictors at each
timescale, we first normalized relative mutual information (I?) values
(Figure $12) within each site and then averaged normalized I? across
sites. We did that within each timescale of interest (Figure 6b-d). At
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the diel scale, the main predictors of CH, flux were GPP, net ecosys-
tem exchange, and soil temperature. Latent heat and water table depth
ranked 4th and 5th in importance. On a multiday scale, the hierarchy
of predictors was led by air temperature, water table depth, and at-
mospheric pressure. At the seasonal scale, water and air temperature
were among the top predictors, followed by GPP and incoming short-
wave radiation. Vapor pressure deficit and salinity ranked 5th and 6th,
respectively, while water table depth was last in importance.
Heatmaps in Figure 6b-d provide a more detailed depiction of
the primary predictors determined by maximum IR between CH, flux
and biophysical variables. These heatmaps reveal site-specific pat-
terns not evident when averaging normalized IR values across sites.
Notably, water table depth and GPP emerged as dominant predic-
tors at sites with large CH, flux variance at the diel scale. Diurnal
patterns, characterized by peak CH, fluxes during midday hours and
lower fluxes at night, as well as pulses of CH, flux occurring within
0 and 90 min after low tide, were commonly observed at these sites
(Figures 7a-c and S13). On a multiday scale, increased CH, fluxes

(@)
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aligned with either spring tide cycles (US-EDN) or atmospheric pres-
sure lows (US-LA1, US-LA2, US-StJ). At the seasonal scale, the dom-
inance of water and air temperature, followed by GPP was apparent
in most sites (Figure 6c). In some cases, lows in dissolved oxygen
(at US-StJ) or high precipitation, bringing pulses of fresh water (US-
LA1), manifested as key controls of CH,, flux (Figure 7g,i).

While the influence of temperature (air, soil, or water) and effects
of plant activity (through GPP, net ecosystem exchange or latent heat)
on CH, fluxes were apparent across timescales and sites, the presence
of a diel cycle marked by plant activity was site-specific. Heatmaps in
Figure 6 support the point that there may not be a universal explana-
tion for flux variability; rather, CH, fluxes appear to be conditional on
time and location. Salinity was not a top predictor in continuous EC
datasets when averaging normalized IR values across sites. However,
it emerged as an important predictor at the seasonal timescale at sites
that experienced a freshening during the growing season months (US-
LA1, US-MRM, and US-EDN) (Figure S14), or at the diel scale where it
correlated with water table depth (US-StJ or US-MRM).
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FIGURE 7 Examples of diel and seasonal variation in the wavelet detail reconstruction for CH, flux and predictor variables. Note that
the mean is removed in wavelet detail reconstructions; therefore, the y-axes are relative rather than absolute. Panels (a) through (c) illustrate
diel wavelet details, panels (d) and (e) show examples of multiday wavelet details, and panels (f) through (i) show seasonal wavelet details.
Predictor variable abbreviations are those introduced in Figure 6. DO stands for dissolved oxygen. Wavelet details for CH, flux, water table
depth, and salinity at the diel and seasonal scales across all eddy covariance sites are in Figures S13 and S14, respectively.



ARIAS-ORTIZ €T AL.

14 of 23
—I—Wl [B2A% Clobal Change Biology

4 | DISCUSSION

Our primary goal was to improve predictions of CH, emissions from
tidal marshes in CONUS. This discussion focuses on four research
questions that align with this goal. Firstly, we identify the primary
predictors of CH, flux in tidal marshes across sites using broadly
available data. Secondly, using EC sites with continuous CH, flux
data, we assess the effects of predictors across varying timescales.
Third, we discuss the application of scaling factors to annualize
short-term static chamber measurements and their limitations, con-
sidering daily and seasonal flux variations. Lastly, we highlight how
the identified relationships and gained information can be applied
to improve monitoring and predictions of CH, emissions in tidal
marshes, supporting blue carbon assessments and advancing our
ability to constrain estimates of GHG emissions across diverse tidal

wetlands.

4.1 | Dominant predictors of CH, fluxin tidal
marshes across CONUS

In our analysis of tidal marsh CH, fluxes across CONUS, we ob-
served a wide range of flux magnitudes, varying from -150 to
4120nmolm™s™!, with an average of 82nmolm™s™* and a median
significantly lower at 5.8nmolm™2s™. When compared to available
estimates from a recent synthesis, the median instantaneous CH,
flux per unit area aligns with values reported for North American
saltmarshes, yet it is approximately half of that observed for man-
groves, and about 10 times higher than figures reported for sea-
grasses (Rosentreter et al., 2023). Annual CH, fluxes showed a
positive skew with a mean of 26+53g CH, m2year ! and median
and geometric means significantly lower, a reflection of the pre-
dominant data from mesohaline tidal marshes as well as the notori-
ously variable behavior of CH,, with hotspots of activity. This raises
a question about the reliability of arithmetic, median, or geometric
mean values as estimates for representing the regional scale mag-
nitude of annual CH, emissions in tidal marshes or their emission
factors globally. The adequacy of these metrics will largely depend
on the actual distribution and proportion of various marsh salinity
classes across different climatic zones (e.g., Table 3). However, at
finer spatial and temporal scales, factors such as hydrology, plant ac-
tivity, and porewater biogeochemistry may become more influential

than salinity in determining tidal marsh CH,, fluxes.

41.1 | Influence of salinity, temperature, relative
elevation, and alternate electron acceptors on
CH, fluxes

Across CONUS, we observed significant differences in median an-
nual CH, fluxes among salinity classes, with a~threefold decrease
in median CH, fluxes for each increase in salinity class from fresh
to mixoeuhaline (Figure 3b). Median CH, fluxes in tidal freshwater

marshes were 2, 8, 29, and 69 times higher than those of oligoha-
line, mesohaline, polyhaline, and mixoeuhaline marshes, respec-
tively. Previous studies by Bartlett et al. (1987) and Poffenbarger
et al. (2011) demonstrated a significant relationship between CH,
fluxes and salinity. Sites with salinities above 18 psu had significantly
lower CH, fluxes than less saline marshes, but this relationship was
found to be less predictive at sites with salinities fresher than 18 psu
(Poffenbarger et al., 2011; Windham-Myers et al., 2018). This agrees
with our results when data were summarized at the annual level.
When examining the data at the disaggregated level, CH, fluxes
from freshwater and oligohaline marshes (0-5psu) were the only
groups showing statistical overlap (Figure 3c). This suggests that the
attenuation of CH,, fluxes by salinity primarily occurs beyond the oli-
gohaline threshold (>5 psu) and that variables other than salinity may
dominate CH, flux variance in fresh-oligohaline conditions.

Consistent with Poffenbarger et al. (2011), who found substan-
tial dispersion in annual CH, fluxes at low salinities below 5psu, we
observed a great deal of variation in CH, fluxes with the magnitude
of the variance decreasing as salinity increased (Figure 3b,c). At fresh
to mesohaline sites, variability in annual CH, fluxes was partially at-
tributed to temperature. Additionally, elevation class, a qualitative
measure of inundation frequency, also contributed to the variabil-
ity in annual CH,, fluxes across fresh-oligohaline sites. The highest
fluxes were observed at fresh and oligohaline sites experiencing a
daily maximum annual temperature normal (MATmax) above 25.6°C
(~204g CH, m2year™). These were followed by frequently inun-
dated low and mid-fresh-oligohaline marshes with MATmax <25.6°C
(~42g CH, m2year™?), and mesohaline sites with MATmax above
19°C (~19g CH, m2year™) (Table 3). The fact that elevation class
emerged as an important explanatory variable for CH, fluxes at low
salinity levels may reflect the decrease in soil oxygen availability as
flooding increases from high to low elevations (Kirwan et al., 2013),
enhancing methanogenesis and suppressing methanotrophy. This
pattern, however, did not emerge in saline systems, possibly due
to the overriding influence of sulfate availability compared to fresh
sites (DeLaune et al., 1983; Martens & Berner, 1974). In saline envi-
ronments, CH, fluxes could remain low regardless of inundation, as
sulfate reduction precedes methanogenesis. However sample size
limitations and high variability within groups could have also played
arole.

Synthesizing chamber-disaggregated flux and ancillary vari-
ables by sampling event allowed us to evaluate further the effects
of salinity, temperature, and porewater biogeochemistry on the
magnitude and variability of CH, fluxes in tidal wetlands. As per
the well-established CH, response to salinity observed in other
studies (Bartlett et al., 1987; Delaune et al., 1983; Poffenbarger
et al., 2011; Sanders-Demott et al., 2022; Schultz et al., 2023;
Windham-Myers et al., 2018), chamber flux data disaggregated
by sampling event also showed a significant exponential decrease
with increasing salinity, for both surface water and porewater
(Figure 5c,d). Across the range of sites, fitted median CH, fluxes
fell below 1.6+1.3nmolm72s™ at porewater salinities above
9.6+ 1.1psu. However, some instances of high CH, emissions
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(50-170nmolm™2s™) were still evident above this threshold. A
more conservative threshold was identified at porewater salin-
ities of 21+2psu, incorporating the 90th percentile of the CH,
fluxes. The latter threshold was 15 + 3 psu if surface water salinity
was considered instead. Surface water and porewater salinity are
not always well correlated at a site, as surface water salinity is
often more variable than porewater salinity (Wilson et al., 2015).
Indeed, the salinity measured on the surface may not accurately
reflect the salinity conditions experienced by methanogens or,
more precisely, their competition with sulfate-reducing bacteria.
Surface inputs of salts are modified by plant transpiration, while
sulfate inputs are modified by the balance between consumption
by sulfate-reducing bacteria and production by sulfide oxidation.
Such process may explain the reduced predictability of CH, emis-
sions when using surface water salinity as a standalone predictor;
thus, porewater salinity is preferred. Methane emissions signifi-
cantly decreased with increasing porewater salinity across all con-
ditional quantile levels, whereas surface salinity only explained
changes in CH, emissions at the 90th percentile of the flux distri-
bution (Table S8; Figure 5).

Causes of CH, flux variation at low salinities have previously
been explained by microsite spatial and temporal variability in the
presence of alternate electron acceptors and the sensitivity of meth-
anogens to variations in their availability (Brooker et al., 2014; Galand
et al., 2003). Because of the high abundance of sulfate in seawater,
salinity has been used as a proxy of sulfate availability in tidal and
salt marsh studies. However, we observed considerable variability
in sulfate concentrations at a given salinity level, particularly when
surface salinity was used to infer porewater sulfate concentrations
(Figure S15a,b). Sulfate concentrations can change independently of
salinity due to local sulfate depletion, leading to high CH, emissions
despite high salinity levels, as observed in Wilson et al. (2015), and at
high (>10 psu) porewater salinities in this synthesis (Figure 5d).

The general inverse relationship between sulfate concentra-
tion and CH, emissions is well-supported and upheld by studies
through time (Bartlett et al., 1987; DelLaune et al., 1983; Martens
& Berner, 1974; Poffenbarger et al., 2011). However, it is not well
defined if there is a specific sulfate concentration above which
tidal marsh CH, emissions are negligible. Poffenbarger et al. (2011)
found that porewater CH, concentrations were negligible at sulfate
concentrations >4 mM in marsh soils. However, they did not relate
porewater sulfate concentration to CH, emissions due to the lack
of paired data to evaluate such a relationship. Our analysis suggests
that median CH, emissions were low across sites at porewater sul-
fate concentrations >2.8 +0.5mM. However, considering the large
spread of the response of CH, emissions to sulfate at low (<5mM)
sulfate concentrations, a more stringent threshold of 4.7 +0.6mM
delineated CH, emissions in the lowest 90th percentile of the data
(Figure 5b). CH, emissions displayed significant responses to sulfate
concentrations at all quantile levels and exhibited a third of the re-
sidual variance observed in CH, flux responses to porewater salinity.
Residual analysis revealed that the modeled salinity-CH, relation-
ship tended to overestimate CH, emissions as porewater sulfate
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concentrations decreased, particularly within O to 5mM, indicating a
greater sensitivity to increasing sulfate availability than to increasing
salinity. A similar trend was observed for residuals fitted to porewa-
ter CH, concentrations, particularly within the range 0-100uM CH,,
highlighting the activity of sulfate reducers as a primary control on
CH, production in surface soils (0-30cm).

We did not find a consistent significant relationship between
porewater CH, concentrations and CH, fluxes (Figure 5a; Table S8).
The discrepancy between CH, production and emissions may be
attributed to several factors. These include bacterial-mediated
aerobic CH, oxidation near the sediment surface during low tide
or facilitated by plant rhizosphere oxygenation (Megonigal &
Schlesinger, 2002; Van der Nat & Middelburg, 1998). Additionally,
non-diffusive emission pathways like ebullition and plant-mediated
transport (Hill & Vargas, 2022) are not always accounted for in
chamber studies, as chambers may not include tall vegetation or
headspace concentrations may be filtered to remove pulsed or er-
ratic emissions. Furthermore, tidal flooding could drive lateral trans-
port of dissolved porewater CH, from the marsh, which would be
missed by chamber and eddy flux methods (Kelley et al., 1995; Tong
et al., 2010; Trifunovic et al., 2020).

Porewater nitrate concentrations are typically low in most
coastal marshes (Valiela & Teal, 1974), but surface water concentra-
tions can be notably high at some sites due to agricultural intensifica-
tion and other anthropogenic sources (Galloway et al., 2003; Pardo
et al., 2011) (Figure S15). Nitrate is a thermodynamically favorable
electron acceptor used by anaerobic bacteria shown to enhance soil
organic matter decomposition (Bulseco et al., 2019). Similarly to sul-
fate, methanogenesis can be inhibited in the presence of nitrate. In
this synthesis, signals of this process might be observed from the
decrease in EC and chamber-based CH, fluxes with increasing dis-
solved nitrate concentrations (Figure S15c,d). However, the extent
of CH, emission reduction was less pronounced for nitrate than
for porewater sulfate. This pattern emerged despite a small dataset
(n=3 studies), suggesting that nitrate inhibition of methanogenesis
by nitrate reducers (denitrifiers) is a very strong biogeochemical sig-
nal that should be explored further given the fact that the process
may also produce nitrous oxide (N,0), a potent GHG. Our dataset
lacked contemporaneous measurements of N,O emissions at these

sites.

4.2 | Tidal marsh CH, fluxes across timescales

Methane fluxes in tidal marshes, as measured by EC, exhibited
strong variation at the diel scale (Figure 6a), although most of the
CONUS sites experience a strongly seasonal temperate climate.
Among the seven EC sites analyzed, US-Srr exhibited a unique diel
pattern in CH, flux wavelets. Peak fluxes occurred from late morn-
ing to mid-afternoon and were correlated with GPP, net ecosystem
exchange, or incoming shortwave radiation. This pattern was likely
due to its high marsh elevation, not frequently inundated in the
flux footprint. In contrast, most sites showed less symmetric diel
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patterns influenced by diurnal and tidal interactions, with additional
peaks often lagging lows of sinusoidal tidal patterns (Figure 7a-c;
Figure $13), representing the release of stored CH, during brief and
localized periods at low tide.

Higher daytime CH, fluxes could stem from several factors, in-
creased soil and air temperatures (Bansal et al., 2018), enhanced root
exudation with GPP stimulating methanogens and microbial prim-
ing (Bridgham et al., 2013), or CH, transport mediated by plants.
This plant-mediated transport could either be driven by a pressure
gradient that intensifies during daylight and coincides with active
photosynthesis (Bansal et al., 2020; Dacey & Klug, 1979; Vroom
et al., 2022) or by stomatal control of diffusive transport (Garnet
et al., 2005). The former might be particularly relevant in Phragmites-
dominated marshes (van den Berg et al.,, 2020; Van der Nat &
Middelburg, 1998). Evidence from local studies focusing on individ-
ual site locations suggested that both impoundment and Phragmites
invasion, separately or combined, could markedly increase CH,
fluxes (Martin & Moseman-Valtierra, 2015; Mueller et al., 2016;
Sanders-Demott et al., 2022).

The dominance of the diel scale over the seasonal scale in CH,
flux variance is not limited to EC sites included in this synthesis; it
has also been documented in other tidal ecosystems, such as in a
subtropical estuarine mangrove (Liu et al., 2022). Chamber studies
that conducted measurements over 12-24h periods or consisted
of automated chambers also noted diel CH, fluctuations of vary-
ing frequency and nature. For instance, Kelley et al. (1995) noted
that CH, fluxes were higher when tidal waters were closest to the
soil surface. Diefenderfer et al. (2018) observed that CH, flux was
greater at night, likely due to the effects of hydrostatic pressure
on diffusion and ebullition processes influenced by water surface
elevation dynamics. Capooci and Vargas (2022) found that con-
fluences of peak daily temperatures and low to rising tides could
cause CH, pulses throughout the day. Tong et al. (2013) reported
that plant activity controlled CH, emissions during neap tide days
when sites were exposed; when sites were flooded, other factors
dominated. These findings suggest that while diel CH, flux vari-
ability is expected in tidal marshes, the presence and strength of
a daily cycle are site-specific depending on species, temperature,
and tidal forcings.

Microtidal sites in Louisiana do not experience large tidal ampli-
tudes nor the sinusoidal pattern with tides; thus, peaks in wavelet
analysis were not observed at diel scales related to semidiurnal tides
or fortnightly neap-spring tidal cycles (Figure S13). Sites in Louisiana
are wind- and river-influenced, and atmospheric pressure changes
and freshwater pulses driven by synoptic and mesoscale weather
played a more significant role in CH, flux variability. These results
suggest that CH, fluxes and their drivers at microtidal sites may
align more closely with those of non-tidal wetlands found elsewhere
(Knox et al., 2021; Sturtevant et al., 2016). In contrast, where tides
are significant, they may strongly modulate the timing and pathway
of CH,, emissions.

At the seasonal scale, water and air temperatures were the pri-
mary predictors of CH, flux, followed by GPP. Salinity ranked 6th in

importance, demonstrating greater relevance at this scale compared
with other timescales. This may reflect the limitations of using sur-
face water salinity at EC sites to explain diel CH, flux responses. It
may also suggest that seasonal, rather than shorter-term diel changes
in surface water salinity are required to affect CH, emissions signifi-
cantly. Seasonal salinity changes, driven by reduced freshwater flow
and increased seawater intrusion, typically elevate salinity during
the summer and growing season. However, higher temperatures and
enhanced GPP during these periods could offset potential CH, flux
inhibition due to increased sulfate availability. A distinct observation
was that CH, fluxes were largely enhanced when reduced salinity
aligned with peak growing season conditions (Figure 7; Figure S14).

4.3 | Daytime chamber CH, fluxes: Temporal
upscaling and limitations

Only a few chamber studies have shown the significant variability
of CH, fluxes at daily scales (Capooci & Vargas, 2022; Diefenderfer
et al., 2018; Kelley et al., 1995; Tong et al., 2013), highlighting the
limitations of temporally upscaling CH, fluxes from discrete static
chamber measurements (Hill & Vargas, 2022; Vargas & Le, 2023).
Static chambers, predominantly deployed at low tide, are limited in
their sensitivity to sudden pulse events and may not effectively cap-
ture CH, responses to GPP dynamics. Assessments of GPP require
consecutive measurements under both light and dark conditions
that can be affected by chamber heating or an incomplete physi-
ological adaptation (e.g., stomatal closure) to dark conditions. While
static chamber measurements offer the advantage of capturing CH,
flux variability across sites, they are not well suited to capture the
temporal variability of CH, fluxes and their influencing factors.
However, most flux measurements in tidal marshes are derived
from static chambers, often paired with sporadic recordings of tem-
perature, water table depth, or porewater geochemistry. Lacking
continuous predictor variables that would allow for confident tem-
poral scaling of discrete CH, flux measurements, we estimated
scaling factors based on sites with a full year of sampling coverage.
Significant differences emerged between factors derived from EC
(s.f.=0.32) and chamber (s.f.=0.39) methods when cumulative an-
nual fluxes were compared against daily measurements averaged
year-round. Daytime static chamber measurements hardly integrate
diel variations in CH, fluxes, which likely introduces bias into an-
nual estimates (Vargas & Le, 2023). Diel variations not only refer to
fluctuations between day and night due to temperature and plant
activity but can represent variations with tides, carbon substrates,
and/or ebullition. At sites with overlapping chamber and EC mea-
surements, chamber measurements were generally lower than EC,
except at microtidal sites in Louisiana (Figure S16). This difference
suggested that chamber measurements often miss episodic CH,, flux
events due to infrequent sampling and differing footprints, leading
to site-level CH, flux discrepancies between methods. However,
with chamber estimates of CH, fluxes ranging from less than half
(Hill & Vargas, 2022) to about twice as high as EC estimates (Krauss
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et al., 2016), disparities appeared to be site-specific and difficult to
reconcile at the regional level.

Building on the scaling factors discussed earlier, Bridgham
et al. (2006) found a similar ratio between annual and mean daily
CH, fluxes from chamber measurements in non-tidal freshwater
(s.f.=0.36) and estuarine (s.f.=0.34) wetlands across North America,
suggesting there is a~360-day emission season. Seasonality in CH,
fluxes is evident in many tidal wetland datasets (Figure S14a) (e.g.,
Derby et al., 2022; Neubauer, 2013; Vazquez-Lule & Vargas, 2021),
with CH, fluxes typically being low during winter. However, a sub-
stantial fraction (~15%) of annual CH, fluxes may occur during
cooler months, as observed in this study for sites with year-round
data and in temperate freshwater wetlands in Delwiche et al. (2021).
Specifically, in our dataset, CH, fluxes during January-March and
October-December accounted for 9 +5% and 20+ 6% of annual CH,
fluxes, respectively, highlighting the significance of winter fluxes in
the annual CH, budget.

Most static chamber studies in temperate marshes typically ex-
clude winter sampling. Traditionally, a common approach was to an-
nualize the average daily fluxes from the growing season, applying a
150-day emissions season and assuming negligible winter emissions
(Bartlett & Harriss, 1993; Magenheimer et al., 1996). More recently,
scaling factors, as described in Bridgham et al. (2006), have been
used to calculate annual CH,, fluxes from mean daily fluxes sampled
during the growing season (Bridgham et al., 2006; Poffenbarger
et al., 2011). However, this approach may lead to an apparent over-
estimation of annual CH, fluxes of up to ~50% due to the relative
seasonal increase in CH,, fluxes compared with baseline (Figure S17).
According to our results, an emission season of 210days (or a
s.f.=0.21) may be more accurate to consider if fluxes are sampled
during the peak emission period (June-August) (Figure 2). The vari-
ance of the June-August scaling factor across sites was lower than
that observed for the ratio of annual flux: mean daily flux averaged
year-round. Additionally, no significant differences were detected in
the June-August scaling factors between chamber and EC sites. This
might be due to the lower variability in within-site CH, fluxes during
the peak emission season compared with that observed year-round.
Consequently, the ratio of annual flux to June-August mean daily
flux may be less affected by how well the length and amplitude of

the seasonal cycle are captured by discrete chamber measurements.

4.4 | Advancing CH, flux assessments in tidal
marshes

Results of the present study could improve predictions of CH,
emissions in tidal marshes at the local and regional levels in vari-
ous ways. Porewater sulfate and salinity concentration thresholds
below which 90% of the highest CH, fluxes occur (4.7+0.6mM
5042’ and 21+2psu, respectively) may help determine whether a
site's CH, responses should be included in blue carbon assessments,
wetland restoration monitoring, or GHG inventories. Above these
thresholds, CH, emissions may be considered negligible. Despite
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porewater sulfate concentrations more accurately representing the
competition between methanogens and sulfate-reducing bacteria,
the practicality of porewater sulfate as a proxy for widespread appli-
cation may be limited due to the challenges associated with its meas-
urement. On the contrary, porewater salinity, which is relatively easy
to measure and also represents conditions experienced by methano-
gens, could be more applicable in real-world scenarios for estimating
the magnitude of CH, fluxes across a range of sites.

Estimated median annual CH, fluxes among salinity classes
(Figure 3b), which showed a consistent ~threefold decrease for
each increase in salinity class, could serve as CONUS-specific Tier
2 estimates, offering a more detailed approach to better constrain
CH, emissions factors beyond the global Tier 1 factors of the IPCC
Wetlands Supplement (IPCC, 2014). The current Tier 1 emission
factor relies on an 18 psu salinity threshold, below which CH, emis-
sions are set at 19g CH, m’2year’1 (based on range 1.1-539g CH,
m2year™), and above it are set at zero. However, the primary lim-
itation of the salinity-CH, flux relationship in predicting CH, fluxes
lies in the substantial variability in flux magnitudes observed at
low salinity conditions (< 18 psu). Our results suggest that the daily
maximum annual temperature normal (MATmax), along with eleva-
tion class, could be used to improve the accuracy of this relation-
ship. Table 3 proposes a new categorization of annual CH, fluxes
that distinguishes between warmer and cooler fresh-oligohaline and
mesohaline marshes. Additionally, it incorporates marsh elevation
classes within fresh-oligohaline conditions to better constrain CH,
fluxes at low salinity levels. This categorization, specific to US data,
could further improve Tier 2 estimates. This approach would adjust
median emission factors for fresh-oligohaline marshes with MATmax
>25.6°C to be 8-10 times higher than the current Tier 1 factor,
while those for frequently inundated, low- and mid-elevation fresh-
oligohaline marshes with MATmax below 25.6°C would be increased
by two times. Emission factors for warm mesohaline marshes
(MATmax >19°C) would remain unchanged. Conversely, the revised
median estimate for infrequently inundated colder fresh-oligohaline
high marshes (MATmax <25.6°C), and mesohaline marshes (MATmax
<19°C) would be one-sixth of the current Tier 1 factor. These emis-
sion factors could be viewed as Tier 2 estimates for implementing
national inventories rather than precise predictions of tidal marsh
CH, fluxes across temporal and spatial scales. Eddy covariance data-
sets identified GPP as a main predictor of CH, fluxes. If GPP data
were available across more tidal marsh sites, it could improve annual
CH, flux predictions and offer valuable insights for future studies.
Likewise, the hydrologic setting, often reported qualitatively as ei-
ther “high” or “low” marsh environments, could be made a stronger
predictor of annual CH, fluxes across sites by including a quanti-
tative metric of relative tidal elevation, such as elevation normal-
ized to tidal amplitude in future research (e.g. Z*,,,,,,» Holmquist &
Windham-Myers, 2022).

Daytime chamber measurements during the growing season cur-
rently represent the majority of available CH, flux data from tidal
wetlands and are likely to remain prevalent. Therefore, developing
carbon exchange models that combine discrete chamber CH, fluxes
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with continuous predictor variables or robust scaling factors to an-
nualize daytime chamber measurements would support the con-
tinuation of chamber monitoring approaches. This would enhance
efforts to achieve Tier 2 national inventories and implement carbon
finance protocols by reducing the data collection effort, which is
generally less available than carbon sequestration data. Despite its
limitations, we provide a scaling factor (s.f.=0.21) that can be used
to upscale growing season chamber-based CH, fluxes to first-order
annual CH, flux estimates. However, we caution about the limita-
tions of manual measurements in capturing the temporal variability
of CH, fluxes. The presence and symmetry of a diel cycle appeared
to be site-specific, suggesting that scaling factors should ideally be
assessed carefully on a site-specific basis. We propose that when
feasible, CH, flux measurements be collected over a 24-h cycle or
continuously using automated chambers or EC towers to capture the
diurnal variability of CH, flux, identify important site-specific driv-
ers, and improve scaling factors.

5 | CONCLUSIONS

We compiled, standardized, and synthesized chamber-based CH,
fluxes across tidal wetlands in CONUS and created an open-source
database (Arias-Ortiz et al., 2024, https://doi.org/10.25573/serc.
14227085). Chamber flux data disaggregated by sampling event
combined with available EC datasets improved the representation
of CH, fluxes and their variability across time and space in tidal
marshes. Porewater sulfate and salinity, along with mean daily maxi-
mum annual temperatures and elevation, were important predictors
of CH, emissions across sites. However, temperature, plant activ-
ity (through GPP), and tidal height significantly contributed to the
variability of CH, fluxes within individual sites, with tidal height in-
fluencing the timing and pathways of CH, fluxes at the diel scale.
Our analysis shows the large diel CH, flux variance observed in tidal
wetlands, emphasizing the need for integrated measurement ap-
proaches to capture the complexity of tidal marsh CH, dynamics.
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