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1 Introduction 
In recent years, there has been an increasing focus on generative 
models, driven by the limitations of traditional supervised learning 
[11]. Supervised learning requires large quantities of labeled data 
and often demands substantial human effort to annotate millions of 
examples to achieve high performance [4]. In response, researchers 
have focused on unsupervised or semi-supervised learning methods 
to minimize the need for human supervision and the number of 
training examples, frequently utilizing generative models. Among 
these, Generative Adversarial Networks (GANs), proposed by Ian 
Goodfellow, have emerged as a compelling approach [4]. GANs 
consist of two neural networks - the generator and the discriminator 
- that adopt an adversarial framework to learn complex data
distributions effectively, making them an ideal choice for tasks
such as image generation [22], image inpainting [34],  imputation
[12], and more.
One significant challenge in many fields is the issue of missing data,
which can hinder the accuracy and effectiveness of data-driven
studies [39]. For example, in the field of optical remote sensing,
satellite observations have gaps due to various factors, such as
cloud cover obstructing the sensors [27]. This is particularly
problematic when measuring Aerosol Optical Depth (AOD), an
essential parameter for monitoring air quality and assessing the
impacts of climate change. However, these gaps in satellite
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ABSTRACT 
Aerosol Optical Depth (AOD) is a crucial parameter for monitoring 
air quality, but satellite-based measurements often suffer from 
significant gaps due to cloud cover and other obstructions. These 
missing data, usually categorized as Missing Not At Random 
(MNAR), pose challenges for accurate air quality assessments. This 
study applies a Generative Adversarial Imputation Network 
(GAIN) to impute missing AOD data from the MODIS MAIAC 
dataset across the Northeast United States, addressing the MNAR 
challenge by leveraging relevant meteorological covariates, such as 
cloud cover, relative humidity, and temperature. 

The GAIN model was trained using data from 2021 to 2022, with 
hyperparameter tuning conducted to optimize performance. The 
tuning process revealed that a low learning rate and minimal weight 
decay yielded the most stable and accurate results. The model was 
validated against AERONET data, achieving a correlation 
coefficient (R) of 0.89, demonstrating strong alignment between 
imputed and observed AOD values. The GAIN model also 
demonstrated strong predictive accuracy, achieving an average R² 
of 0.94, MSE of 0.0046, and RMSE of 0.0676. Cross-validation 
confirmed the robustness and generalizability of the model across 
various datasets. The model’s performance was compared with 
traditional imputation methods like MICE and MissForest. GAIN 
outperformed both models, superiorly handling MNAR data and 
minimizing error across all metrics. This comparative analysis 
emphasizes the GAIN model's ability to capture complex spatial 
and temporal dependencies in the dataset effectively. In addition to 
filling data gaps, the GAIN model preserved the spatial distribution 
of AOD, showing higher concentrations in urban areas and regions 
with elevated pollution. During the 2023 Canadian wildfire event, 
the model successfully imputed AOD levels, capturing the sharp 
rise in aerosol concentrations. This study demonstrates the 
effectiveness of GAIN in handling complex MNAR scenarios, 
offering a reliable solution for improving AOD data coverage and 
enhancing the accuracy of air quality assessments. 
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observations can lead to missing data points that significantly 
impact the accuracy and reliability of studies related to air quality 
and climate monitoring. 
Previous studies have found that more than 70% of AOD data can 
be missing due to persistent cloud cover and other obstructions, 
creating substantial gaps in satellite datasets [3]. This missing data 
falls under the category of Missing Not At Random (MNAR), 
where the likelihood of data being missing is related to the 
unobserved values themselves [39]. In the case of AOD 
measurements, the missingness is influenced by atmospheric 
conditions that also affect aerosol concentrations. For instance, 
conditions like high humidity and pollution levels, which lead to 
increased cloud cover, can also contribute to higher AOD values [7, 
28]. As a result, when satellites cannot observe AOD due to cloud 
cover, the missing data is more likely to occur in areas or times with 
elevated aerosol levels, illustrating an MNAR scenario. These 
situations pose significant challenges because they introduce biases 
that traditional imputation methods may not adequately address 
[40]. Advanced imputation methods, such as the Generative 
Adversarial Imputation Network (GAIN), can address these 
challenges. [35] has shown that GAIN can outperform other state-
of-the-art imputation methods in MNAR settings, demonstrating its 
ability to handle the complexities associated with missing data that 
depend on unobserved values [35].  To our knowledge, this is the 
first study that applied GAIN for AOD imputation to address the 
challenge of non-random missingness in MAIAC AOD data, 
particularly in scenarios where atmospheric conditions like cloud 
cover frequently obscure measurements. The motivation to impute 
AOD data stems from the necessity of having continuous, reliable 
datasets for air quality studies, particularly for predicting ground-
level PM2.5. Imputation of AOD is, therefore, a crucial step to 
ensure complete data coverage, which is essential for accurate 
public health analysis and environmental policymaking. To address 
the concern about the accuracy of using imputed AOD data for 
PM2.5 predictions, we validate the imputed AOD against ground-
based measurements, such as AERONET. This minimizes potential 
biases introduced by the imputation process, providing a reliable 
foundation for PM2.5 predictions. Various studies show that 
adequately validated imputed AOD can significantly enhance air 
quality estimates, particularly in areas with limited ground-based 
monitoring [14, 20]. We chose GAIN for this study because it 
particularly excelled at handling Missing Not At Random (MNAR) 
data. While newer models exist, GAIN's adversarial approach 
balances accuracy and computational efficiency, making it suitable 
for our large-scale AOD imputation task. 
The rest of this paper is organized as follows: Section 2 provides a 
comprehensive literature review, covering previous work on AOD 
imputation and related methodologies. Section 3 details the study 
area, discusses the use case and outlines the data used in this 
research. Section 4 elaborates on the workflow, including the 
model architecture, training process, hyperparameter tuning, and 
accuracy assessment. Section 5 presents the results and provides a 
detailed discussion of the findings, and Section 6 concludes the 
paper. 

2 Literature Review 
Several studies have addressed the issue of missing AOD using 
various imputation methods. Traditional approaches include 
statistical methods, such as maximum likelihood estimation, and 
interpolation techniques, like ordinary kriging, to fill gaps and 
minimize the prediction error [19, 33, 41]. To overcome these 
limitations, advanced spatial statistical techniques like Spatial 
Statistical Data Fusion (SSDF) and spatiotemporal kriging have 
been developed, offering improved accuracy by accounting for 
spatial variability and efficiently managing large-scale data [8, 18, 
33]. Multiple Imputation (MI) models address missing values by 
generating plausible estimates based on the dataset's distributions 
and relationships of the observed variables. Studies have 
demonstrated MI's effectiveness, with R² values ranging from 0.77 
to 0.86, aligning with AERONET observations [31, 32]. AI and 
machine learning (ML) models have proven effective for AOD 
imputation due to their ability to handle large, complex datasets and 
capture intricate non-linear relationships between variables [40]. 
Among these models, gradient-based models optimize predictions 
by iteratively adjusting parameters to minimize errors, making 
them highly effective in imputation tasks. A comparative study [2] 
reported that an XGBoost model validation with AERONET 
achieved a correlation coefficient of 0.83 and RMSE of 0.06 [19], 
while a LightGBM model showed strong agreement with 
AERONET, yielding an R² of 0.8 and RMSE of 0.15 [37], and 
another achieving a correlation coefficient of 0.84, RMSE of 0.19 
[36]. Deep learning models excel at capturing complex spatial-
temporal patterns, offering better generalization and more accurate 
simulation of spatial variations in AOD data. [14] developed an 
autoencoder-based deep residual network with the imputed 
MAIAC AOD strongly correlating with AERONET AOD, 
showing a correlation coefficient of 0.83, an R² of 0.69, and an 
RMSE of 0.04. [13] used a full residual deep network with 
improved generalization, showing a correlation of R² = 0.78 when 
validated against AERONET data.  
While reviewed studies demonstrate strong imputation 
performance using various methods, several limitations should be 
considered. Traditional interpolation methods, including kriging, 
often struggle with large datasets and complex spatial correlations, 
leading to less precise AOD predictions [19, 33, 41]. 
Spatiotemporal kriging depends heavily on the availability of 
satellite data, and when data is insufficient, it may generate 
unrealistic features or result in over-smoothed outputs [18, 33]. 
Some studies fail to achieve full spatial coverage, leaving gaps in 
AOD estimates [2, 8, 33]. Other potential weaknesses include 
limited validation sites and daily-level models, which restrict the 
generalizability and scalability of the findings. Other possible 
limitations include limited validation sites [13, 21, 36].  
GAIN provides a robust solution to many challenges observed in 
previous studies. It ensures complete spatial coverage, eliminates 
gaps that hinder comprehensive analysis, and can incorporate 
relevant meteorological covariates to capture complex spatial and 
temporal patterns. GAIN’s flexibility allows it to generalize 
effectively across diverse regions and timeframes, addressing the 
scalability issues seen in daily-level models. Its ability to accurately 
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model extreme and localized aerosol events, such as wildfires, 
makes it ideal for AOD imputation in dynamic and challenging 
atmospheric conditions. 

3 Study Area and Data 

3.1 Study region and use case 
The study focuses on the Northeast region of the United States, as 
designated by the National Centers for Environmental Information 
(NCEI) [10]. This region includes 11 states: Connecticut, Delaware, 
Maine, Maryland, Massachusetts, New Hampshire, New Jersey, 
New York, Pennsylvania, Rhode Island, Vermont, and Washington 
D.C. Figure 1 illustrates the study area, showing the location of 
AERONET stations across these states. The Northeast is chosen 
due to its relevance to current air quality research interests, 
particularly urban air quality dynamics and trends. 
This region includes major metropolitan areas such as New York 
City, Boston, and Washington D.C., which is crucial for studying 
air quality in densely populated areas. The Northeast region was 
notably affected by the 2023 Canadian wildfires [29, 30], during 
early June of 2023, when dense smoke plumes significantly 
deteriorated air quality across the region.  

 
Figure 1: Study area showing the location of 
AERONET stations in the Northeast region of 
the United States 

3.2 Data 
In this study, we utilized satellite-derived aerosol data from 
MODIS MAIAC, aerosol species data from MERRA-2, and 
meteorological variables from the ERA5 dataset, complemented by 
geographical variables. These datasets provided critical inputs for 
aerosol optical depth (AOD) imputation and subsequent model 
validation. Full details on data sources and processing can be found 
in Appendix A. 

 

 

 

4 Methods 

4.1 Pre-processing of MODIS MAIAC AOD 
In this study, daily MAIAC AOD images at 550 nm were collected, 
consisting of 5 tiles per day that provided full coverage of the study 
area. Pre-processing involved rigorous QA/QC procedures and 
reprojection to maintain data quality and consistency. To ensure 
high data reliability, only AOD values with precise cloud masking 
and best quality were selected [15]. The AOD data, initially in 
sinusoidal projection, was reprojected to the USA Contiguous 
Lambert Conformal Conic projection and interpolated to a 1 km 
spatial resolution. Finally, the five tiles were mosaicked into a 
single image, comprehensively covering the entire study area. 
For consistent analysis, covariates must be spatially and temporally 
matched with the MAIAC AOD data. To achieve this, 
meteorological variables from ERA-5 ECMWF and aerosol species 
data from MERRA-2 were aligned with the Terra and Aqua 
MODIS satellite overpasses, which occur daily at approximately 
10:30 and 13:30 local time. Daily averages of the hourly data were 
calculated within the satellite overpass windows. These variables 
were then reprojected to the USA Contiguous Lambert Conformal 
Conic projection and resampled to a 1 km × 1 km resolution to 
match the MAIAC AOD data for seamless integration. 

4.2 GAIN model architecture diagram 
The GAIN, adapted from its original framework [35], is modified 
here for aerosol optical depth (AOD) imputation, specifically 
supporting spatial data. GAIN operates with two key components: 
the generator and the discriminator. The generator takes three 
inputs: a satellite AOD data with gaps X�, a mask matrix M indicates 
the locations of missing values, and a noise vector Z introduces 
randomness into the imputation process. The generator is defined 
as: �̅  =  �(��,  �,  (1  2  �)  ⊙  �)            
where ⊙ denotes element-wise multiplication, and (1 - M) masks 
the noise vector Z, ensuring that noise is applied only to missing 
values. The imputed data vector �̅  contains the generator’s 
predictions for both observed and missing components. The final 
imputed data vector �̂ is given by: �̂ = �⊙ �� + (1 2 �)⊙ ��            
On the other hand, the discriminator evaluates the generator's 
output by attempting to distinguish between observed and imputed 
values. It takes the completed data �̂ and a hint matrix H as inputs, 
where the hint matrix provides partial information about the mask. 
The discriminator aims to improve imputation quality by guiding 
the generator to predict missing values that resemble observed data. 
The adversarial loss function is fundamental to the GAIN 
framework, facilitating the interaction between the generator and 
discriminator. This loss function allows the generator to improve 
its imputation process by minimizing the discrepancy between 
observed and imputed values. The adversarial loss for the 
discriminator D is expressed as: 3�(ÿ,ÿ�, �) = ∑ [ÿÿ log(ÿ��) + (1 2 ÿÿ) log(1 2 ÿ��)]ÿ:��=0   
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where mi represents the observed mask, and ÿ��  represents the 
discriminator’s predicted probability that a value is observed. The 
loss measures the discriminator’s ability to distinguish between 
observed (real) and imputed (fake) values. The discriminator is 
trained to maximize this loss, while the generator is trained to 
minimize it. The generator is penalized when the discriminator 
successfully identifies imputed values, encouraging it to generate 
more plausible imputations over time. 
The total loss function used to train the generator is a weighted 
combination of the adversarial loss, 3�, and the reconstruction loss, 33. The adversarial loss, 3�, becomes smaller when the generator 
successfully fools the discriminator into classifying imputed values 
as observed. On the other hand, the reconstruction loss, 33 , 
ensures that the generator’s output for observed features remains 
close to the observed values. This term, typically expressed as a 
Mean Squared Error (MSE) between the observed features and the 
generator’s output for those features, is minimized when the 
imputed data for the observed entries is close to the true values. 
The generator, G, is trained to minimize the weighted sum of these 
two loss terms: min� ∑3�(ÿ(�),ÿ�(�), �(�))ā�

Ā=1 + α33(ý̃(�), ý�(�)) 

 

Figure 2: GAIN model architecture diagram 

Figure 2 showcases the detailed architecture of the generator and 
discriminator networks, highlighting the convolutional layers and 
their specifications. In the generator network, each convolutional 
layer is followed by batch normalization, LeakyReLU activation, 
and dropout layers to maintain robust training. The first layer uses 
a kernel size 3x3 with 8 output channels (k3n8s1), meaning the 
filter is 3x3 with a stride of 1, producing eight feature maps. As the 
layers progress, the output channels increase to 16, with the kernel 
and stride remaining consistent at 3x3 and stride 1, respectively. 
Similarly, the discriminator network employs convolutional layers 
with varying numbers of output channels, starting with eight and 
increasing to 64 in the final layers. Each convolution operation 
applies a 3x3 kernel, maintains spatial features, and uses stride 1 to 
preserve resolution. This architecture ensures that both networks 
learn spatial features effectively while maintaining the integrity of 
the input data during the adversarial training process. 

 

4.3 Baseline models for imputation comparison 
Two baseline models, MissForest and MICE, were used to compare 
the performance of GAIN. MissForest is a non-parametric 
imputation method that uses random forests to handle both 
continuous and categorical data [26]. It iteratively builds random 
forests to predict missing values based on observed data. It is 
particularly effective for complex datasets with non-linear 
relationships and mixed variable types. MICE, on the other hand, 
is a widely used statistical method that imputes missing data by 
performing multiple iterations of regressions [1, 24]. Each variable 
with missing values is treated as the dependent variable in a 
regression model, while the other variables act as predictors. This 
process is repeated for each incomplete variable until the 
imputations stabilize. 

4.4 Training and Hyperparameter Tuning 
The input data for this study comprised daily MAIAC AOD 
observations along with meteorological variables from ERA-5 
ECMWF and aerosol species data from MERRA-2, covering the 
years 2021 and 2022. The data was randomly split into three 
subsets: training (65%), validation (15%), and test (20%). The 
randomization ensured that each subset maintained representative 
coverage of the spatiotemporal variability in the dataset, avoiding 
any potential biases. The training set was used for model fitting, the 
validation set was reserved for hyperparameter tuning, and the 
completely independent test set was used for final evaluation to 
assess the model's generalization capabilities. The year 2023 
dataset was designated to assess the model’s effectiveness in 
handling a real-world scenario by imputing AOD values during the 
2023 Canadian wildfire, which impacted air quality in the 
Northeast region, offering a critical use case for the model's ability 
to manage extreme air quality events. 

Table 1: Hyperparameter search space and their search 
algorithms for the GAIN model. 

Hyperparameter Search Space Algorithm 
learning rate 1e-4 - 1e-2 Log-uniform 

distribution 
Batch size 8, 16 Grid Search 
Optimizers Adam, AdamW, SGD Choice 
Activation 
function 

ReLU, LeakyReLU Choice 

Alpha 0.1, 0.01, 0.05 Choice 
Weight decay 1e-6 - 1e-4 Log-uniform 

distribution 
In this study, hyperparameter tuning was conducted to optimize the 
performance of the Generative Adversarial Imputation Network 
(GAIN) model by systematically searching for the best 
combination of hyperparameters. Table 1 summarizes the key 
hyperparameters such as learning rate, batch size, optimizers, 
activation functions, alpha and weight decay, their search space, 
and their search algorithm. The tuning process explored continuous 
and discrete hyperparameter spaces using a combination of log-
uniform distribution, grid search, and choice-based methods. 
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4.5 Accuracy assessment 
The performance of the AOD imputation models was evaluated 
using several metrics, including the coefficient of determination 
(R²), mean squared error (MSE), root mean squared error (RMSE), 
and mean absolute error (MAE). Each metric provides a distinct 
insight into the model's accuracy and reliability, offering a well-
rounded assessment of the imputation results. The formulas for 
these metrics are presented below. ý2 = 1 2 ∑ (þ�� 2 þÿ)2�ÿ=1∑ (þÿ 2 þ̅)2�ÿ=1  

�þ� = 1Ā∑(þ�� 2 þÿ)2�
ÿ=1  

ý�þ� = √∑ (þ�� 2 þÿ)2�ÿ=1 Ā  

��� = 1Ā∑|þ�� 2 þÿ|�
ÿ=1  

In these formulas, þ��  represents the predicted AOD values, þÿ 
denotes the observed (true) AOD values and þ̅ is the mean of the  
observed AOD values across the dataset. The difference between 
the predicted and true values þ�� 2 þÿ quantifies the error in each  
prediction, which is then aggregated across all samples to assess the 
overall model performance. 
The AOD imputation models were further validated using ground-
based AERONET measurements after the evaluation metrics. AOD 
retrievals from the MAIAC product were matched to the 
AERONET observations to ensure spatial and temporal 
consistency. For spatial matching, a 3.5 km radius was applied 
around each AERONET site, and the satellite pixels within this 
radius were averaged to generate a single value representing the 
AOD at that location. AERONET measurements within a 30-
minute window of the MODIS satellite overpass were averaged for 
temporal matching. The correlation between the imputed AOD 
values and the AERONET AOD was then calculated, providing a 

robust measure of the model's accuracy in reproducing ground-
truth observations. 

5 Experiments and Results 

5.1 Descriptive Statistics 
Table 2 shows the seasonal variation in mean AOD, standard 
deviation of AOD, and the mean missing rate for 2021, 2022, and 
2023. One significant observation from the data is the seasonal 
variation in the missing rates, particularly the consistently high 
ones during winter. Winter 2021 exhibits the highest missing rate 
at 85%, followed closely by Winter 2022 at 83%. These elevated 
rates reflect the challenges in satellite observation during winter, as 
cloud cover, snow, and fog are prevalent in colder climates, 
obstructing the collection of clear satellite data. This pattern is 
consistent with previous research, which has shown that missing 
rates tend to be higher during the winter season due to persistent 
cloud cover and adverse weather conditions [3, 21]. In contrast, the 
summer months generally show lower missing rates, with Summer 
2022 recording the lowest missing rate at 60%. This trend is likely 
due to clearer skies and fewer atmospheric disturbances in warmer 
months, which allow for more consistent satellite data collection. 
Meanwhile, summer also tends to have higher mean AOD values, 
such as 0.255 in Summer 2021 and 0.31 in Summer 2023, likely 
due to increased atmospheric activity like wildfires and human 
emissions. Winter months, by comparison, display lower mean 
AOD values, possibly due to reduced aerosol activity. These 
seasonal variations in AOD values and missing rates demonstrate 
the significant influence of atmospheric conditions on satellite-
derived data. The frequency of missing data during winter 
underscores the challenges posed by harsh weather conditions, 
while the more precise conditions in summer enable more reliable 
data collection. These patterns highlight the need to consider 
seasonal effects when analyzing AOD data carefully.

 
Table 2: Descriptive statistics on MAIAC AOD and missing rate

 
 

2021 2022 2023

Spring Summer Fall Winter Spring Summer Fall Winter Spring Summer Fall Winter

Mean AOD 0.15 0.255 0.104 0.079 0.110 0.142 0.088 0.105 0.17 0.31 0.12 0.10

SD AOD 0.020 0.075 0.022 0.039 0.028 0.014 0.029 0.017 0.10 0.15 0.08 0.02

Mean 
missing rate

67% 71% 65% 85% 71% 60% 0% 83% 63% 70% 61% 83%

5.2 Accuracy assessment 
We implemented a 10-fold cross-validation to ensure robust model 
evaluation and to guard against overfitting. Throughout the training, 
the learning process remained stable, and the model parameters 
converged effectively, with the generator and discriminator 
showing balanced performance, indicated by an average generator 
loss of 0.0377 and discriminator loss of 0.0342. The histograms in 

Figure 3, comparing imputed AOD data (left) and original AOD 
data (right), demonstrate the GAIN model's effectiveness in 
maintaining the original data distribution, even under conditions 
where the missingness is likely MNAR. The similarity between the 
distributions suggests that the model effectively accounted for 
systematic missingness, such as cloud cover, and captured the 
underlying aerosol patterns. By accurately replicating the original 
AOD distribution, the model demonstrates its capability to handle 
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the challenges posed by MNAR data linked to specific 
environmental conditions. The comparison further reveals that the 
range of values remains consistent across both the imputed and 
original datasets, with most AOD values clustered between 0.0 and 
0.4 and extending to 1.4 in both cases. Additionally, while the 
number of pixels increases due to the imputation process, the 
relative proportion of pixels within each range remains comparable 
to the original data. This indicates that the imputed data not only 
aligns with the overall distribution but also preserves the pattern of 
AOD values, ensuring that the imputation process accurately 
reflects the spatial and statistical characteristics of the original 
dataset. 

 
Figure 3: Comparison of the histograms of imputed AOD data 
(left) and original AOD data (right), demonstrating the 
distribution of values before and after imputation. 
The GAIN model performed well in terms of accuracy, achieving 
an average test MSE of 0.0046, an MAE of 0.0458, and an RMSE 
of 0.0676. The model also demonstrated strong predictive power, 
with an R2 value of 0.94, indicating a high correlation between 
observed and imputed AOD values. These results remained 
consistent across all cross-validation folds, demonstrating stability 
and generalizability. The imputation increased data coverage to 
100% by filling all missing AOD values, and the post-imputation 
AOD distribution maintained consistent spatial trends, with higher 
AOD values in urban regions compared to rural areas. As shown in 
Figures 4(a) to 4(d), the results highlight that AOD levels remain 
higher in urban areas across all seasons, especially during spring 
and summer, when aerosol concentrations are generally more 
elevated. Regions with high cloud cover exhibited lower 
imputation accuracy due to large proportions of missing data, 
leading to slightly lower R2 values in these areas.  
 

 
Figure 4(a): Imputed vs. original MODIS MAIAC AOD in 
spring (June 15, 2023) 
 

 
Figure 4(b): Imputed vs. original MODIS MAIAC AOD in 
summer (August 22, 2023). 

 
Figure 4(c): Imputed vs. original MODIS MAIAC AOD in fall 
(October 2, 2023). 

 
Figure 4(d): Imputed vs. original MODIS MAIAC AOD in 
winter (December 15, 2023). 
Figure 5 shows the scatterplot that illustrates the relationship 
between AERONET AOD (x-axis) and imputed MODIS MAIAC 
AOD (y-axis) values. The correlation between the two datasets is 
strong, as indicated by the R2 value of 0.899, demonstrating that the 
imputed MODIS values generally follow the trend of the 
AERONET observations. However, the slope of the regression line, 
0.735, indicates a systematic underestimation of AOD values by 
MODIS. Most of the data points fall below the 1:1 line, which 
would represent a perfect agreement between the two datasets, 
emphasizing this bias. The underestimation becomes more 
pronounced at higher AOD values, where the gap between the 
regression and 1:1 line widens. 
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Figure 5: Scatter plot of MODIS MAIAC AOD vs. AERONET 
AOD with a linear fit (black) and 1:1 line (red), showing R² = 
0.899. 
The highest density of points is observed at lower AOD values 
(below 0.5), where the imputed MODIS AOD values align more 
closely with AERONET. However, as the AOD values increase 
beyond 1.5, the data points have greater spread and variability, with 
some points deviating significantly from both the regression and 
1:1 lines. This suggests that while the imputation is more reliable 
for lower AOD values, it struggles with accuracy at higher values. 
The overall trend indicates that the imputation model performs well 
at capturing the general relationship but may need further 
adjustment to reduce bias and improve performance at higher AOD 
levels. 

5.3 Comparison across various imputation models 
 In this experiment, we simulated varying levels of missingness in 
the MAIAC AOD dataset, ranging from 10% to 80%, to evaluate 
how different imputation models handled increasing amounts of 
missing data. Two baseline imputation methods, MissForest and 
MICE, were included for comparison against the Generative 
Adversarial Imputation Networks (GAIN) model. Each model's 
performance was assessed using Mean Squared Error (MSE) and 
the coefficient of determination (R²). These metrics provided a 
comprehensive evaluation of each model's ability to accurately 
attribute missing data and maintain predictive reliability as the level 
of missingness increased. 
Figure 6, which plotted the MSE mean vs. missingness level, 
revealed that GAIN consistently delivered superior performance, 
maintaining the lowest MSE across all simulated missingness 
levels. Even as the percentage of missing data reached 80%, GAIN 
effectively controlled the error, indicating its robustness in dealing 
with high levels of missingness. MissForest, while competitive at 
lower levels of missingness, began to struggle as missingness 
exceeded 60%, resulting in a sharp increase in MSE, particularly at 
70% and 80%. This suggested that MissForest had a threshold 
beyond which its imputation quality declined significantly. 
Conversely, MICE showed the least effective performance across 
the entire range of missingness levels. Its MSE increased steadily 
as missingness rose, indicating its difficulty in managing high 
levels of missing data. This behavior demonstrated that traditional 

imputation models like MICE were less suited for handling 
extensive missingness in datasets like MAIAC AOD. 

 
Figure 6: MSE trends across varying missingness levels for 
MICE, MissForest, and GAIN models. 
Figure 7, which presented R² vs. missingness level, further 
illustrated the superiority of GAIN in these experiments. GAIN 
maintained the highest R² values across all levels of missingness, 
demonstrating that its imputation results remained closely aligned 
with the original data, even when large portions of the data were 
missing. MissForest showed stable performance at lower 
missingness levels, but its R² declined sharply as missingness 
increased beyond 60%, reflecting a loss of accuracy in its 
imputations. MICE, consistent with its performance in the MSE 
plot, exhibited the lowest R² values, with a noticeable drop-off as 
the missingness level increased. This indicated that MICE's 
imputations deviated more significantly from the original data as 
the proportion of missing data grew, making it less reliable for 
handling high levels of missingness. 

 
Figure 7: R² trends for MICE, MissForest, and GAIN models 
across varying missingness levels. 
Overall, the results from these figures highlighted GAIN’s ability 
to effectively impute missing data across a wide range of 
missingness levels, outperforming both MissForest and MICE. 
While MissForest performed reasonably well up to moderate levels 
of missingness, it became less effective as the percentage of 
missing data increased. MICE, on the other hand, consistently 
struggled with missing data, particularly at higher levels. These 
findings underscored the importance of selecting robust imputation 
methods like GAIN, especially when dealing with datasets prone to 
high levels of missingness, such as satellite-derived AOD data. 

5.5 Use Case Evaluation 
The Canada wildfire event in June 2023 provides a valuable use 
case for applying the Generative Adversarial Imputation Network 
(GAIN) model in filling gaps in satellite-derived aerosol optical 
depth (AOD) data. Both MODIS MAIAC satellite data and ground-
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based AERONET measurements captured a significant rise in 
aerosol concentrations during the event, with AOD values 
exceeding 3.5 around June 6 - 7, 2023. This rapid increase in AOD 
levels, far above the typical range for the region, underscores the 
severity of the wildfire's impact on air quality. However, satellite 
observations are often limited by missing data, particularly during 
extreme events like wildfires, when cloud cover, smoke, and other 
atmospheric conditions can obstruct accurate readings. 

 
Figure 8: MODIS MAIAC AOD on June 6, 2023, during the air 
quality impact caused by the Canadian wildfire, showing the 
original data with gaps (left) and the imputed data after gap 
filling (right). 
 
In this context, the GAIN model proves particularly useful by 
imputing missing AOD values and ensuring complete datasets for 
such critical air quality events. The left panel of Figure 8 shows the 
MODIS MAIAC AOD data with significant gaps due to cloud 
cover and other interference during the wildfire. These missing 
values are problematic when attempting to monitor the full extent 
of the event’s impact. After applying the GAIN model, the right 
panel demonstrates the results, effectively filling in the 
gaps and providing a more comprehensive and continuous spatial 
representation of AOD levels across the region. 
The ability to impute missing data during a critical event like this 
wildfire is crucial for accurate air quality assessments and public 
health responses. By generating a complete AOD map, the GAIN 
model allows researchers to better understand the distribution and 
concentration of aerosols, even in areas where direct satellite 
observations were unavailable. This, in turn, improves the 
reliability of the overall dataset and ensures that no significant data 
is lost, particularly during periods of heightened pollution. 

Conclusion 
 In this study, we applied the Generative Adversarial Imputation 
Network (GAIN) for imputing missing aerosol optical depth 
(AOD) values from MODIS MAIAC satellite data, addressing the 
limitations of traditional imputation techniques, which assume data 
is Missing Completely at Random (MCAR) or Missing at Random 
(MAR). The GAIN model, designed to handle Missing Not at 
Random (MNAR) data, effectively filled significant gaps in AOD 
data, especially during critical air quality events like the 2023 
Canada wildfire. Our model consistently demonstrated strong 
performance, with an average test generator loss of 0.0377 and 
discriminator loss of 0.0342. It achieved a Mean Squared Error 
(MSE) of 0.0046, Mean Absolute Error (MAE) of 0.0458, Root 
Mean Squared Error (RMSE) of 0.0676, and an R² of 0.94. 

Furthermore, the imputed AOD data aligned well with ground-
based AERONET measurements, achieving a validation result of R 
= 0.89. 
Hyperparameter tuning was critical to maximizing model 
performance, involving optimizers, learning rates, and weight 
decay parameters. In Appendix B, we discuss the results of 
hyperparameter tuning. The tuning results showed that the 
RMSprop optimizer, with a low learning rate and minimal weight 
decay, provided the most stable and lowest error results. This 
configuration minimized fluctuations in MAE and MSE across all 
iterations. In contrast, the Adam optimizer with a higher learning 
rate exhibited higher variability, highlighting the model's 
sensitivity to learning rates. The trials reinforced the importance of 
careful hyperparameter selection to ensure optimal model 
performance and stability. 
Overall, this research highlights the effectiveness of GAIN in 
filling missing AOD values during periods of severe pollution 
events, demonstrating its capability to preserve the integrity of 
satellite data. Compared to traditional imputation methods, GAIN 
provided a more reliable representation of aerosol concentrations, 
supporting better monitoring and public health interventions during 
extreme air quality events. 
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APPENDIX 

A Data Description 
1. MAIAC AOD: The satellite Aerosol Optical Depth 

(AOD) data for this research is obtained from the MODIS 
MAIAC (Multi-Angle Implementation of Atmospheric 
Correction) algorithm. Developed by [16, 17], MAIAC is 
designed to retrieve AOD values from Terra and Aqua 
MODIS products over both bright and dark surfaces [38]. 
Terra and Aqua are polar-orbiting satellites, providing 
daily AOD products at a 1 km × 1 km spatial resolution 
at approximately 10:30 and 13:30 local time, respectively. 
MAIAC primarily relies on cloud-free pixels for quality 
control to ensure accurate aerosol-surface retrievals. 

2. AERONET AOD: This research utilizes ground-based 
measurements from AERONET (Aerosol Robotic 
Network). AERONET is a globally distributed ground-
based sun photometer designed to measure aerosol 
optical properties and atmospheric constituents precisely 
[6, 9]. In this study, we used level 2.0 data to validate 
imputed AOD values. Data was collected from 16 
AERONET stations dispersed throughout the NE region 
(Figure 1). It should be noted that AERONET did not 
make direct observations at 550 nm. To address this, the 
study employed the Ångström index corresponding to the 
440 nm – 675 nm wavelength, enabling the interpolation 
of the AOD Ångström index at 550nm (ɑ) [25].  

3. Aerosol species: In this study, we utilized the 
M2T1NXAER (or tavg1_2d_aer_Nx) dataset from 
MERRA-2 [23], an hourly collection of aerosol data 
provided at a spatial resolution of 0.5° × 0.625°. This 
product provides detailed diagnostics on aerosols, 
including the surface mass concentrations for various 
components such as black carbon, dust, sea salt, sulfate, 
and organic carbon. Additionally, it offers the total 
aerosol optical thickness (AOT) at 550 nm, capturing the 
extinction properties of aerosols. 

4. Meteorological variables: The meteorological variables 
required for this study were obtained from the ERA5 
dataset provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). This dataset 
offered comprehensive meteorological data with global 
coverage, utilizing a regular latitude-longitude grid 
projection [5]. The data was provided in GRIB file format, 
with a spatial resolution of 0.25° x 0.25° for atmosphere 
reanalysis. The meteorological variables used in this 
study included boundary layer height, total cloud cover 
(TCC), relative humidity, temperature at 2m, and wind 
speed. 
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5. Geographical variables. For this study, the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010) 
elevation data, with a spatial resolution of 30-arc seconds 
(approximately 1 km), was downloaded from the 
GMTED USGS (2023). Likewise, the land use and land 
cover (LULC) information was obtained from the 
National Land Cover Database (NLCD), available at 
MRLC (2023). The NLCD, developed with a 30 m 
resolution and utilizing a 16-class legend, adhered to a 
modified Anderson Level II classification system. 

B Hyperparameter Tuning 
Figure 9 shows the hyperparameter tuning results by tracking the 
Mean Absolute Error (MAE) and Mean Squared Error (MSE) over 
several training iterations for different combinations of optimizers, 
learning rates, and weight decay. The figure highlights the impact 
of these hyperparameters on model performance and training 
stability. The key findings from the tuning experiments are outlined 
below:  

1. The green line demonstrates the combination of 
RMSprop with a learning rate of 0.000064 and weight 
decay of 0.000001, consistently producing the lowest 
MAE and MSE across all training iterations. This 
configuration showed high model stability, with minimal 
fluctuations in error, indicating that the model responds 
well to small variations during training and maintains 
consistent performance with this set of hyperparameters.  

2. The orange line reveals that the Adam optimizer with a 
higher learning rate of 0.001842 introduced significant 
variability in MAE and MSE, particularly in the initial 
iterations. The high sensitivity to this learning rate caused 
considerable instability in the training process, leading to 
erratic behavior and slower convergence. This suggests 
that the model is highly sensitive to a learning rate that is 
too high.  

3. The red line for the SGD optimizer with a learning rate 
of 0.000016 and weight decay of 0.000002 exhibited high 
initial error and failed to show effective error reduction. 
The model's poor performance and inability to reduce 
MAE and MSE significantly indicate that this 
configuration leads to unstable and ineffective 
optimization, with sensitivity to low learning rates 
causing the model to stagnate.  

4. The blue line shows the Adam optimizer with a lower 
learning rate of 0.000058 and weight decay of 0.000021, 
which provided steady and relatively low MAE and MSE 
throughout the training iterations. However, while this 
configuration improved model stability, it did not 
achieve the same level of error minimization as RMSprop, 
indicating that the model remains sensitive to optimizer 
choice, even when using stable learning rates.  

 
 

Figure 9: Comparison of MAE and MSE over training 
iterations for different hyperparameter configurations. 


