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ABSTRACT

Aerosol Optical Depth (AOD) is a crucial parameter for monitoring
air quality, but satellite-based measurements often suffer from
significant gaps due to cloud cover and other obstructions. These
missing data, usually categorized as Missing Not At Random
(MNAR), pose challenges for accurate air quality assessments. This
study applies a Generative Adversarial Imputation Network
(GAIN) to impute missing AOD data from the MODIS MAIAC
dataset across the Northeast United States, addressing the MNAR
challenge by leveraging relevant meteorological covariates, such as
cloud cover, relative humidity, and temperature.

The GAIN model was trained using data from 2021 to 2022, with
hyperparameter tuning conducted to optimize performance. The
tuning process revealed that a low learning rate and minimal weight
decay yielded the most stable and accurate results. The model was
validated against AERONET data, achieving a correlation
coefficient (R) of 0.89, demonstrating strong alignment between
imputed and observed AOD values. The GAIN model also
demonstrated strong predictive accuracy, achieving an average R?
of 0.94, MSE of 0.0046, and RMSE of 0.0676. Cross-validation
confirmed the robustness and generalizability of the model across
various datasets. The model’s performance was compared with
traditional imputation methods like MICE and MissForest. GAIN
outperformed both models, superiorly handling MNAR data and
minimizing error across all metrics. This comparative analysis
emphasizes the GAIN model's ability to capture complex spatial
and temporal dependencies in the dataset effectively. In addition to
filling data gaps, the GAIN model preserved the spatial distribution
of AOD, showing higher concentrations in urban areas and regions
with elevated pollution. During the 2023 Canadian wildfire event,
the model successfully imputed AOD levels, capturing the sharp
rise in aerosol concentrations. This study demonstrates the
effectiveness of GAIN in handling complex MNAR scenarios,
offering a reliable solution for improving AOD data coverage and
enhancing the accuracy of air quality assessments.
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1 Introduction

In recent years, there has been an increasing focus on generative
models, driven by the limitations of traditional supervised learning
[11]. Supervised learning requires large quantities of labeled data
and often demands substantial human effort to annotate millions of
examples to achieve high performance [4]. In response, researchers
have focused on unsupervised or semi-supervised learning methods
to minimize the need for human supervision and the number of
training examples, frequently utilizing generative models. Among
these, Generative Adversarial Networks (GANSs), proposed by lan
Goodfellow, have emerged as a compelling approach [4]. GANs
consist of two neural networks - the generator and the discriminator
- that adopt an adversarial framework to learn complex data
distributions effectively, making them an ideal choice for tasks
such as image generation [22], image inpainting [34], imputation
[12], and more.

One significant challenge in many fields is the issue of missing data,
which can hinder the accuracy and effectiveness of data-driven
studies [39]. For example, in the field of optical remote sensing,
satellite observations have gaps due to various factors, such as
cloud cover obstructing the sensors [27]. This is particularly
problematic when measuring Aerosol Optical Depth (AOD), an
essential parameter for monitoring air quality and assessing the
impacts of climate change. However, these gaps in satellite
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observations can lead to missing data points that significantly
impact the accuracy and reliability of studies related to air quality
and climate monitoring.

Previous studies have found that more than 70% of AOD data can
be missing due to persistent cloud cover and other obstructions,
creating substantial gaps in satellite datasets [3]. This missing data
falls under the category of Missing Not At Random (MNAR),
where the likelihood of data being missing is related to the
unobserved values themselves [39]. In the case of AOD
measurements, the missingness is influenced by atmospheric
conditions that also affect aerosol concentrations. For instance,
conditions like high humidity and pollution levels, which lead to
increased cloud cover, can also contribute to higher AOD values [7,
28]. As a result, when satellites cannot observe AOD due to cloud
cover, the missing data is more likely to occur in areas or times with
elevated aerosol levels, illustrating an MNAR scenario. These
situations pose significant challenges because they introduce biases
that traditional imputation methods may not adequately address
[40]. Advanced imputation methods, such as the Generative
Adversarial Imputation Network (GAIN), can address these
challenges. [35] has shown that GAIN can outperform other state-
of-the-art imputation methods in MNAR settings, demonstrating its
ability to handle the complexities associated with missing data that
depend on unobserved values [35]. To our knowledge, this is the
first study that applied GAIN for AOD imputation to address the
challenge of non-random missingness in MAIAC AOD data,
particularly in scenarios where atmospheric conditions like cloud
cover frequently obscure measurements. The motivation to impute
AOD data stems from the necessity of having continuous, reliable
datasets for air quality studies, particularly for predicting ground-
level PM2s. Imputation of AOD is, therefore, a crucial step to
ensure complete data coverage, which is essential for accurate
public health analysis and environmental policymaking. To address
the concern about the accuracy of using imputed AOD data for
PM:z 5 predictions, we validate the imputed AOD against ground-
based measurements, such as AERONET. This minimizes potential
biases introduced by the imputation process, providing a reliable
foundation for PMas predictions. Various studies show that
adequately validated imputed AOD can significantly enhance air
quality estimates, particularly in areas with limited ground-based
monitoring [14, 20]. We chose GAIN for this study because it
particularly excelled at handling Missing Not At Random (MNAR)
data. While newer models exist, GAIN's adversarial approach
balances accuracy and computational efficiency, making it suitable
for our large-scale AOD imputation task.

The rest of this paper is organized as follows: Section 2 provides a
comprehensive literature review, covering previous work on AOD
imputation and related methodologies. Section 3 details the study
area, discusses the use case and outlines the data used in this
research. Section 4 elaborates on the workflow, including the
model architecture, training process, hyperparameter tuning, and
accuracy assessment. Section 5 presents the results and provides a
detailed discussion of the findings, and Section 6 concludes the

paper.
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2 Literature Review

Several studies have addressed the issue of missing AOD using
various imputation methods. Traditional approaches include
statistical methods, such as maximum likelihood estimation, and
interpolation techniques, like ordinary kriging, to fill gaps and
minimize the prediction error [19, 33, 41]. To overcome these
limitations, advanced spatial statistical techniques like Spatial
Statistical Data Fusion (SSDF) and spatiotemporal kriging have
been developed, offering improved accuracy by accounting for
spatial variability and efficiently managing large-scale data [8, 18,
33]. Multiple Imputation (MI) models address missing values by
generating plausible estimates based on the dataset's distributions
and relationships of the observed variables. Studies have
demonstrated MI's effectiveness, with R? values ranging from 0.77
to 0.86, aligning with AERONET observations [31, 32]. Al and
machine learning (ML) models have proven effective for AOD
imputation due to their ability to handle large, complex datasets and
capture intricate non-linear relationships between variables [40].
Among these models, gradient-based models optimize predictions
by iteratively adjusting parameters to minimize errors, making
them highly effective in imputation tasks. A comparative study [2]
reported that an XGBoost model validation with AERONET
achieved a correlation coefficient of 0.83 and RMSE of 0.06 [19],
while a LightGBM model showed strong agreement with
AERONET, yielding an R? of 0.8 and RMSE of 0.15 [37], and
another achieving a correlation coefficient of 0.84, RMSE of 0.19
[36]. Deep learning models excel at capturing complex spatial-
temporal patterns, offering better generalization and more accurate
simulation of spatial variations in AOD data. [14] developed an
autoencoder-based deep residual network with the imputed
MAIAC AOD strongly correlating with  AERONET AOD,
showing a correlation coefficient of 0.83, an R? of 0.69, and an
RMSE of 0.04. [13] used a full residual deep network with
improved generalization, showing a correlation of R? = 0.78 when
validated against AERONET data.

While reviewed studies demonstrate strong imputation
performance using various methods, several limitations should be
considered. Traditional interpolation methods, including kriging,
often struggle with large datasets and complex spatial correlations,
leading to less precise AOD predictions [19, 33, 41].
Spatiotemporal kriging depends heavily on the availability of
satellite data, and when data is insufficient, it may generate
unrealistic features or result in over-smoothed outputs [18, 33].
Some studies fail to achieve full spatial coverage, leaving gaps in
AOD estimates [2, 8, 33]. Other potential weaknesses include
limited validation sites and daily-level models, which restrict the
generalizability and scalability of the findings. Other possible
limitations include limited validation sites [13, 21, 36].

GAIN provides a robust solution to many challenges observed in
previous studies. It ensures complete spatial coverage, eliminates
gaps that hinder comprehensive analysis, and can incorporate
relevant meteorological covariates to capture complex spatial and
temporal patterns. GAIN’s flexibility allows it to generalize
effectively across diverse regions and timeframes, addressing the
scalability issues seen in daily-level models. Its ability to accurately
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model extreme and localized aerosol events, such as wildfires,
makes it ideal for AOD imputation in dynamic and challenging
atmospheric conditions.

3 Study Area and Data

3.1 Study region and use case

The study focuses on the Northeast region of the United States, as
designated by the National Centers for Environmental Information
(NCEI) [10]. This region includes 11 states: Connecticut, Delaware,
Maine, Maryland, Massachusetts, New Hampshire, New Jersey,
New York, Pennsylvania, Rhode Island, Vermont, and Washington
D.C. Figure 1 illustrates the study area, showing the location of
AERONET stations across these states. The Northeast is chosen
due to its relevance to current air quality research interests,
particularly urban air quality dynamics and trends.

This region includes major metropolitan areas such as New York
City, Boston, and Washington D.C., which is crucial for studying
air quality in densely populated areas. The Northeast region was
notably affected by the 2023 Canadian wildfires [29, 30], during
early June of 2023, when dense smoke plumes significantly
deteriorated air quality across the region.

® Aeronet Stations
Nartheast

= Northern Rockies
Northvest

= Ohio Valley

Figure 1: Study area showing the location of
AERONET stations in the Northeast region of
the United States

3.2 Data

In this study, we utilized satellite-derived aerosol data from
MODIS MAIAC, aerosol species data from MERRA-2, and
meteorological variables from the ERAS dataset, complemented by
geographical variables. These datasets provided critical inputs for
aerosol optical depth (AOD) imputation and subsequent model
validation. Full details on data sources and processing can be found
in Appendix A.
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4 Methods

4.1 Pre-processing of MODIS MAIAC AOD

In this study, daily MAIAC AOD images at 550 nm were collected,
consisting of 5 tiles per day that provided full coverage of the study
area. Pre-processing involved rigorous QA/QC procedures and
reprojection to maintain data quality and consistency. To ensure
high data reliability, only AOD values with precise cloud masking
and best quality were selected [15]. The AOD data, initially in
sinusoidal projection, was reprojected to the USA Contiguous
Lambert Conformal Conic projection and interpolated to a 1 km
spatial resolution. Finally, the five tiles were mosaicked into a
single image, comprehensively covering the entire study area.

For consistent analysis, covariates must be spatially and temporally
matched with the MAIAC AOD data. To achieve this,
meteorological variables from ERA-5 ECMWF and aerosol species
data from MERRA-2 were aligned with the Terra and Aqua
MODIS satellite overpasses, which occur daily at approximately
10:30 and 13:30 local time. Daily averages of the hourly data were
calculated within the satellite overpass windows. These variables
were then reprojected to the USA Contiguous Lambert Conformal
Conic projection and resampled to a 1 km X 1 km resolution to
match the MAIAC AOD data for seamless integration.

4.2 GAIN model architecture diagram

The GAIN, adapted from its original framework [35], is modified
here for aerosol optical depth (AOD) imputation, specifically
supporting spatial data. GAIN operates with two key components:
the generator and the discriminator. The generator takes three
inputs: a satellite AOD data with gaps X, a mask matrix M indicates
the locations of missing values, and a noise vector Z introduces
randomness into the imputation process. The generator is defined
as:

X=6X M (1-MO2)

where O denotes element-wise multiplication, and (1 - M) masks
the noise vector Z, ensuring that noise is applied only to missing
values. The imputed data vector X contains the generator’s
predictions for both observed and missing components. The final
imputed data vector X is given by:

X=MOX+(1-MOX

On the other hand, the discriminator evaluates the generator's
output by attempting to distinguish between observed and imputed
values. It takes the completed data X and a hint matrix H as inputs,
where the hint matrix provides partial information about the mask.
The discriminator aims to improve imputation quality by guiding
the generator to predict missing values that resemble observed data.
The adversarial loss function is fundamental to the GAIN
framework, facilitating the interaction between the generator and
discriminator. This loss function allows the generator to improve
its imputation process by minimizing the discrepancy between
observed and imputed values. The adversarial loss for the
discriminator D is expressed as:

Lp(m, M, b) = Xip,=olm; log(,) + (1 —m;) log(1 — my)]
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where mi represents the observed mask, and 7, represents the
discriminator’s predicted probability that a value is observed. The
loss measures the discriminator’s ability to distinguish between
observed (real) and imputed (fake) values. The discriminator is
trained to maximize this loss, while the generator is trained to
minimize it. The generator is penalized when the discriminator
successfully identifies imputed values, encouraging it to generate
more plausible imputations over time.
The total loss function used to train the generator is a weighted
combination of the adversarial loss, L, and the reconstruction loss,
Ly The adversarial loss, Lg, becomes smaller when the generator
successfully fools the discriminator into classifying imputed values
as observed. On the other hand, the reconstruction loss, Ly,
ensures that the generator’s output for observed features remains
close to the observed values. This term, typically expressed as a
Mean Squared Error (MSE) between the observed features and the
generator’s output for those features, is minimized when the
imputed data for the observed entries is close to the true values.
The generator, G, is trained to minimize the weighted sum of these
two loss terms:

kg

min )" L6(m(), (), bG)) + aLac (), 2(1)
=1

Imputed data.
H% WSE Loas o
[]
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Figure 2: GAIN model architecture diagram

Figure 2 showcases the detailed architecture of the generator and
discriminator networks, highlighting the convolutional layers and
their specifications. In the generator network, each convolutional
layer is followed by batch normalization, LeakyReLU activation,
and dropout layers to maintain robust training. The first layer uses
a kernel size 3x3 with 8 output channels (k3n8s1), meaning the
filter is 3x3 with a stride of 1, producing eight feature maps. As the
layers progress, the output channels increase to 16, with the kernel
and stride remaining consistent at 3x3 and stride 1, respectively.
Similarly, the discriminator network employs convolutional layers
with varying numbers of output channels, starting with eight and
increasing to 64 in the final layers. Each convolution operation
applies a 3x3 kernel, maintains spatial features, and uses stride 1 to
preserve resolution. This architecture ensures that both networks
learn spatial features effectively while maintaining the integrity of
the input data during the adversarial training process.
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4.3 Baseline models for imputation comparison

Two baseline models, MissForest and MICE, were used to compare
the performance of GAIN. MissForest is a non-parametric
imputation method that uses random forests to handle both
continuous and categorical data [26]. It iteratively builds random
forests to predict missing values based on observed data. It is
particularly effective for complex datasets with non-linear
relationships and mixed variable types. MICE, on the other hand,
is a widely used statistical method that imputes missing data by
performing multiple iterations of regressions [1, 24]. Each variable
with missing values is treated as the dependent variable in a
regression model, while the other variables act as predictors. This
process is repeated for each incomplete variable until the
imputations stabilize.

4.4 Training and Hyperparameter Tuning

The input data for this study comprised daily MAIAC AOD
observations along with meteorological variables from ERA-5
ECMWF and aerosol species data from MERRA-2, covering the
years 2021 and 2022. The data was randomly split into three
subsets: training (65%), validation (15%), and test (20%). The
randomization ensured that each subset maintained representative
coverage of the spatiotemporal variability in the dataset, avoiding
any potential biases. The training set was used for model fitting, the
validation set was reserved for hyperparameter tuning, and the
completely independent test set was used for final evaluation to
assess the model's generalization capabilities. The year 2023
dataset was designated to assess the model’s effectiveness in
handling a real-world scenario by imputing AOD values during the
2023 Canadian wildfire, which impacted air quality in the
Northeast region, offering a critical use case for the model's ability
to manage extreme air quality events.
Table 1: Hyperparameter search space and their search
algorithms for the GAIN model.

Hyperparameter Search Space Algorithm

learning rate le-4 - le-2 Log-uniform

distribution

Batch size 8, 16 Grid Search
Optimizers Adam, AdamW, SGD Choice
Activation ReLU, LeakyReLU Choice

function

Alpha 0.1,0.01, 0.05 Choice

Weight decay le-6 - le-4 Log-uniform

distribution

In this study, hyperparameter tuning was conducted to optimize the
performance of the Generative Adversarial Imputation Network
(GAIN) model by systematically searching for the best
combination of hyperparameters. Table 1 summarizes the key
hyperparameters such as learning rate, batch size, optimizers,
activation functions, alpha and weight decay, their search space,
and their search algorithm. The tuning process explored continuous
and discrete hyperparameter spaces using a combination of log-
uniform distribution, grid search, and choice-based methods.
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4.5 Accuracy assessment

The performance of the AOD imputation models was evaluated
using several metrics, including the coefficient of determination
(R?), mean squared error (MSE), root mean squared error (RMSE),
and mean absolute error (MAE). Each metric provides a distinct
insight into the model's accuracy and reliability, offering a well-
rounded assessment of the imputation results. The formulas for
these metrics are presented below.

I —yi)?

Y —¥)?

n
1
MSE == (5.~ v’
i=1

R2=1-

2= 0h — yi)?
n

RMSE =

n
1
MAE=—§ 9. — y;
ni_llyl il

In these formulas, ¥, represents the predicted AOD values, y;
denotes the observed (true) AOD values and ¥ is the mean of the
observed AOD values across the dataset. The difference between
the predicted and true values ¥, — y; quantifies the error in each
prediction, which is then aggregated across all samples to assess the
overall model performance.

The AOD imputation models were further validated using ground-
based AERONET measurements after the evaluation metrics. AOD
retrievals from the MAIAC product were matched to the
AERONET observations to ensure spatial and temporal
consistency. For spatial matching, a 3.5 km radius was applied
around each AERONET site, and the satellite pixels within this
radius were averaged to generate a single value representing the
AOD at that location. AERONET measurements within a 30-
minute window of the MODIS satellite overpass were averaged for
temporal matching. The correlation between the imputed AOD
values and the AERONET AOD was then calculated, providing a
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robust measure of the model's accuracy in reproducing ground-
truth observations.

5 Experiments and Results

5.1 Descriptive Statistics

Table 2 shows the seasonal variation in mean AOD, standard
deviation of AOD, and the mean missing rate for 2021, 2022, and
2023. One significant observation from the data is the seasonal
variation in the missing rates, particularly the consistently high
ones during winter. Winter 2021 exhibits the highest missing rate
at 85%, followed closely by Winter 2022 at 83%. These elevated
rates reflect the challenges in satellite observation during winter, as
cloud cover, snow, and fog are prevalent in colder climates,
obstructing the collection of clear satellite data. This pattern is
consistent with previous research, which has shown that missing
rates tend to be higher during the winter season due to persistent
cloud cover and adverse weather conditions [3, 21]. In contrast, the
summer months generally show lower missing rates, with Summer
2022 recording the lowest missing rate at 60%. This trend is likely
due to clearer skies and fewer atmospheric disturbances in warmer
months, which allow for more consistent satellite data collection.
Meanwhile, summer also tends to have higher mean AOD values,
such as 0.255 in Summer 2021 and 0.31 in Summer 2023, likely
due to increased atmospheric activity like wildfires and human
emissions. Winter months, by comparison, display lower mean
AOD values, possibly due to reduced aerosol activity. These
seasonal variations in AOD values and missing rates demonstrate
the significant influence of atmospheric conditions on satellite-
derived data. The frequency of missing data during winter
underscores the challenges posed by harsh weather conditions,
while the more precise conditions in summer enable more reliable
data collection. These patterns highlight the need to consider
seasonal effects when analyzing AOD data carefully.

Table 2: Descriptive statistics on MAIAC AOD and missing rate

2021 2022 2023
Spring | Summer | Fall | Winter | Spring | Summer Fall Winter | Spring | Summer Fall Winter
Mean AOD| 0.15 0.255 0.104 | 0.079 | 0.110 0.142 0.088 0.105 0.17 0.31 0.12 0.10
SD AOD | 0.020 0.075 0.022 | 0.039 | 0.028 0.014 0.029 0.017 0.10 0.15 0.08 0.02
Mean 67% 71% 65% | 85% 71% 60% 0% 83% 63% 70% 61% 83%
missing rate

5.2 Accuracy assessment

We implemented a 10-fold cross-validation to ensure robust model
evaluation and to guard against overfitting. Throughout the training,
the learning process remained stable, and the model parameters
converged effectively, with the generator and discriminator
showing balanced performance, indicated by an average generator
loss 0f 0.0377 and discriminator loss of 0.0342. The histograms in

Figure 3, comparing imputed AOD data (left) and original AOD
data (right), demonstrate the GAIN model's effectiveness in
maintaining the original data distribution, even under conditions
where the missingness is likely MNAR. The similarity between the
distributions suggests that the model effectively accounted for
systematic missingness, such as cloud cover, and captured the
underlying aerosol patterns. By accurately replicating the original
AOD distribution, the model demonstrates its capability to handle
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the challenges posed by MNAR data linked to specific
environmental conditions. The comparison further reveals that the
range of values remains consistent across both the imputed and
original datasets, with most AOD values clustered between 0.0 and
0.4 and extending to 1.4 in both cases. Additionally, while the
number of pixels increases due to the imputation process, the
relative proportion of pixels within each range remains comparable
to the original data. This indicates that the imputed data not only
aligns with the overall distribution but also preserves the pattern of
AOD values, ensuring that the imputation process accurately
reflects the spatial and statistical characteristics of the original
dataset.

Histograr of mputed A0D data Histogram of rigine ADD Gita
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Figure 3: Comparison of the histograms of imputed AOD data
(left) and original AOD data (right), demonstrating the
distribution of values before and after imputation.

The GAIN model performed well in terms of accuracy, achieving
an average test MSE of 0.0046, an MAE of 0.0458, and an RMSE
of 0.0676. The model also demonstrated strong predictive power,
with an R? value of 0.94, indicating a high correlation between
observed and imputed AOD values. These results remained
consistent across all cross-validation folds, demonstrating stability
and generalizability. The imputation increased data coverage to
100% by filling all missing AOD values, and the post-imputation
AOD distribution maintained consistent spatial trends, with higher
AOD values in urban regions compared to rural areas. As shown in
Figures 4(a) to 4(d), the results highlight that AOD levels remain
higher in urban areas across all seasons, especially during spring
and summer, when aerosol concentrations are generally more
elevated. Regions with high cloud cover exhibited lower
imputation accuracy due to large proportions of missing data,
leading to slightly lower R? values in these areas.

6-15

Figure 4(a): Imputed vs. original MODIS MAIAC AOD in
spring (June 15, 2023)
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Figure 4(b): Imputed vs. original MODIS MAIAC AOD in
summer (August 22, 2023).
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Figure 4(c): Imputed vs. original MODIS MAIAC AOD in fall
(October 2, 2023).
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Figure 4(d): Imputed vs. original MODIS MAIAC AOD in
winter (December 15, 2023).

Figure 5 shows the scatterplot that illustrates the relationship
between AERONET AOD (x-axis) and imputed MODIS MAIAC
AOD (y-axis) values. The correlation between the two datasets is
strong, as indicated by the R? value of 0.899, demonstrating that the
imputed MODIS values generally follow the trend of the
AERONET observations. However, the slope of the regression line,
0.735, indicates a systematic underestimation of AOD values by
MODIS. Most of the data points fall below the 1:1 line, which
would represent a perfect agreement between the two datasets,
emphasizing this bias. The underestimation becomes more
pronounced at higher AOD values, where the gap between the
regression and 1:1 line widens.
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Figure 5: Scatter plot of MODIS MAIAC AOD vs. AERONET
AOD with a linear fit (black) and 1:1 line (red), showing R* =
0.899.

The highest density of points is observed at lower AOD values
(below 0.5), where the imputed MODIS AOD values align more
closely with AERONET. However, as the AOD values increase
beyond 1.5, the data points have greater spread and variability, with
some points deviating significantly from both the regression and
1:1 lines. This suggests that while the imputation is more reliable
for lower AOD values, it struggles with accuracy at higher values.
The overall trend indicates that the imputation model performs well
at capturing the general relationship but may need further
adjustment to reduce bias and improve performance at higher AOD
levels.

5.3 Comparison across various imputation models

In this experiment, we simulated varying levels of missingness in
the MAIAC AOD dataset, ranging from 10% to 80%, to evaluate
how different imputation models handled increasing amounts of
missing data. Two baseline imputation methods, MissForest and
MICE, were included for comparison against the Generative
Adversarial Imputation Networks (GAIN) model. Each model's
performance was assessed using Mean Squared Error (MSE) and
the coefficient of determination (R?). These metrics provided a
comprehensive evaluation of each model's ability to accurately
attribute missing data and maintain predictive reliability as the level
of missingness increased.

Figure 6, which plotted the MSE mean vs. missingness level,
revealed that GAIN consistently delivered superior performance,
maintaining the lowest MSE across all simulated missingness
levels. Even as the percentage of missing data reached 80%, GAIN
effectively controlled the error, indicating its robustness in dealing
with high levels of missingness. MissForest, while competitive at
lower levels of missingness, began to struggle as missingness
exceeded 60%, resulting in a sharp increase in MSE, particularly at
70% and 80%. This suggested that MissForest had a threshold
beyond which its imputation quality declined significantly.
Conversely, MICE showed the least effective performance across
the entire range of missingness levels. Its MSE increased steadily
as missingness rose, indicating its difficulty in managing high
levels of missing data. This behavior demonstrated that traditional
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imputation models like MICE were less suited for handling
extensive missingness in datasets like MAIAC AOD.

1 MSE Mean vs. Missingness Level for Different Imputation Models
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Figure 6: MSE trends across varying missingness levels for
MICE, MissForest, and GAIN models.

Figure 7, which presented R? vs. missingness level, further
illustrated the superiority of GAIN in these experiments. GAIN
maintained the highest R? values across all levels of missingness,
demonstrating that its imputation results remained closely aligned
with the original data, even when large portions of the data were
missing. MissForest showed stable performance at lower
missingness levels, but its R? declined sharply as missingness
increased beyond 60%, reflecting a loss of accuracy in its
imputations. MICE, consistent with its performance in the MSE
plot, exhibited the lowest R? values, with a noticeable drop-off as
the missingness level increased. This indicated that MICE's
imputations deviated more significantly from the original data as
the proportion of missing data grew, making it less reliable for
handling high levels of missingness.
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ingness Level for Different Imputation Models

.

0 20 = w0
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Figure 7: R? trends for MICE, MissForest, and GAIN models
across varying missingness levels.

Overall, the results from these figures highlighted GAIN’s ability
to effectively impute missing data across a wide range of
missingness levels, outperforming both MissForest and MICE.
While MissForest performed reasonably well up to moderate levels
of missingness, it became less effective as the percentage of
missing data increased. MICE, on the other hand, consistently
struggled with missing data, particularly at higher levels. These
findings underscored the importance of selecting robust imputation
methods like GAIN, especially when dealing with datasets prone to
high levels of missingness, such as satellite-derived AOD data.

5.5 Use Case Evaluation

The Canada wildfire event in June 2023 provides a valuable use
case for applying the Generative Adversarial Imputation Network
(GAIN) model in filling gaps in satellite-derived aerosol optical
depth (AOD) data. Both MODIS MAIAC satellite data and ground-
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based AERONET measurements captured a significant rise in
aerosol concentrations during the event, with AOD values
exceeding 3.5 around June 6 - 7, 2023. This rapid increase in AOD
levels, far above the typical range for the region, underscores the
severity of the wildfire's impact on air quality. However, satellite
observations are often limited by missing data, particularly during
extreme events like wildfires, when cloud cover, smoke, and other
atmospheric conditions can obstruct accurate readings.

MODIS MAIAC AOD with gaps on 2023-06-06 MODIS MAIAC AOD with gaps filled on 2023-06-0t

Figure 8: MODIS MAIAC AOD on June 6, 2023, during the air
quality impact caused by the Canadian wildfire, showing the
original data with gaps (left) and the imputed data after gap
filling (right).

In this context, the GAIN model proves particularly useful by
imputing missing AOD values and ensuring complete datasets for
such critical air quality events. The left panel of Figure 8 shows the
MODIS MAIAC AOD data with significant gaps due to cloud
cover and other interference during the wildfire. These missing
values are problematic when attempting to monitor the full extent
of the event’s impact. After applying the GAIN model, the right
panel demonstrates the results, effectively filling in the
gaps and providing a more comprehensive and continuous spatial
representation of AOD levels across the region.

The ability to impute missing data during a critical event like this
wildfire is crucial for accurate air quality assessments and public
health responses. By generating a complete AOD map, the GAIN
model allows researchers to better understand the distribution and
concentration of aerosols, even in areas where direct satellite
observations were unavailable. This, in turn, improves the
reliability of the overall dataset and ensures that no significant data
is lost, particularly during periods of heightened pollution.

Conclusion

In this study, we applied the Generative Adversarial Imputation
Network (GAIN) for imputing missing aerosol optical depth
(AOD) values from MODIS MAIAC satellite data, addressing the
limitations of traditional imputation techniques, which assume data
is Missing Completely at Random (MCAR) or Missing at Random
(MAR). The GAIN model, designed to handle Missing Not at
Random (MNAR) data, effectively filled significant gaps in AOD
data, especially during critical air quality events like the 2023
Canada wildfire. Our model consistently demonstrated strong
performance, with an average test generator loss of 0.0377 and
discriminator loss of 0.0342. It achieved a Mean Squared Error
(MSE) of 0.0046, Mean Absolute Error (MAE) of 0.0458, Root
Mean Squared Error (RMSE) of 0.0676, and an R? of 0.94.
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Furthermore, the imputed AOD data aligned well with ground-
based AERONET measurements, achieving a validation result of R
=0.89.

Hyperparameter tuning was critical to maximizing model
performance, involving optimizers, learning rates, and weight
decay parameters. In Appendix B, we discuss the results of
hyperparameter tuning. The tuning results showed that the
RMSprop optimizer, with a low learning rate and minimal weight
decay, provided the most stable and lowest error results. This
configuration minimized fluctuations in MAE and MSE across all
iterations. In contrast, the Adam optimizer with a higher learning
rate exhibited higher variability, highlighting the model's
sensitivity to learning rates. The trials reinforced the importance of
careful hyperparameter selection to ensure optimal model
performance and stability.

Overall, this research highlights the effectiveness of GAIN in
filling missing AOD values during periods of severe pollution
events, demonstrating its capability to preserve the integrity of
satellite data. Compared to traditional imputation methods, GAIN
provided a more reliable representation of aerosol concentrations,
supporting better monitoring and public health interventions during
extreme air quality events.
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APPENDIX

A Data Description

1.

MAIAC AOD: The satellite Aerosol Optical Depth
(AOD) data for this research is obtained from the MODIS
MAIAC (Multi-Angle Implementation of Atmospheric
Correction) algorithm. Developed by [16, 17], MAIAC is
designed to retrieve AOD values from Terra and Aqua
MODIS products over both bright and dark surfaces [38].
Terra and Aqua are polar-orbiting satellites, providing
daily AOD products at a 1 km x 1 km spatial resolution
at approximately 10:30 and 13:30 local time, respectively.
MAIAC primarily relies on cloud-free pixels for quality
control to ensure accurate aerosol-surface retrievals.
AERONET AOD: This research utilizes ground-based
measurements from AERONET (Aerosol Robotic
Network). AERONET is a globally distributed ground-
based sun photometer designed to measure aerosol
optical properties and atmospheric constituents precisely
[6, 9]. In this study, we used level 2.0 data to validate
imputed AOD values. Data was collected from 16
AERONET stations dispersed throughout the NE region
(Figure 1). It should be noted that AERONET did not
make direct observations at 550 nm. To address this, the
study employed the Angstrom index corresponding to the
440 nm — 675 nm wavelength, enabling the interpolation
of the AOD Angstrém index at 550nm (a) [25].

Aerosol species: In this study, we utilized the
M2TINXAER (or tavgl 2d aer Nx) dataset from
MERRA-2 [23], an hourly collection of aerosol data
provided at a spatial resolution of 0.5° x 0.625°. This
product provides detailed diagnostics on aerosols,
including the surface mass concentrations for various
components such as black carbon, dust, sea salt, sulfate,
and organic carbon. Additionally, it offers the total
aerosol optical thickness (AOT) at 550 nm, capturing the
extinction properties of aerosols.

Meteorological variables: The meteorological variables
required for this study were obtained from the ERAS
dataset provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). This dataset
offered comprehensive meteorological data with global
coverage, utilizing a regular latitude-longitude grid
projection [5]. The data was provided in GRIB file format,
with a spatial resolution of 0.25° x 0.25° for atmosphere
reanalysis. The meteorological variables used in this
study included boundary layer height, total cloud cover
(TCC), relative humidity, temperature at 2m, and wind
speed.
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5.

Geographical variables. For this study, the Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010)
elevation data, with a spatial resolution of 30-arc seconds
(approximately 1 km), was downloaded from the
GMTED USGS (2023). Likewise, the land use and land
cover (LULC) information was obtained from the
National Land Cover Database (NLCD), available at
MRLC (2023). The NLCD, developed with a 30 m
resolution and utilizing a 16-class legend, adhered to a
modified Anderson Level II classification system.

B Hyperparameter Tuning

Figure 9 shows the hyperparameter tuning results by tracking the
Mean Absolute Error (MAE) and Mean Squared Error (MSE) over
several training iterations for different combinations of optimizers,
learning rates, and weight decay. The figure highlights the impact
of these hyperparameters on model performance and training
stability. The key findings from the tuning experiments are outlined

below:
1.

The green line demonstrates the combination of
RMSprop with a learning rate of 0.000064 and weight
decay of 0.000001, consistently producing the lowest
MAE and MSE across all training iterations. This
configuration showed high model stability, with minimal
fluctuations in error, indicating that the model responds
well to small variations during training and maintains
consistent performance with this set of hyperparameters.

The orange line reveals that the Adam optimizer with a
higher learning rate of 0.001842 introduced significant
variability in MAE and MSE, particularly in the initial
iterations. The high sensitivity to this learning rate caused
considerable instability in the training process, leading to
erratic behavior and slower convergence. This suggests
that the model is highly sensitive to a learning rate that is
too high.

The red line for the SGD optimizer with a learning rate
0f'0.000016 and weight decay of 0.000002 exhibited high
initial error and failed to show effective error reduction.
The model's poor performance and inability to reduce
MAE and MSE significantly indicate that this
configuration leads to unstable and ineffective
optimization, with sensitivity to low learning rates
causing the model to stagnate.

The blue line shows the Adam optimizer with a lower
learning rate of 0.000058 and weight decay of 0.000021,
which provided steady and relatively low MAE and MSE
throughout the training iterations. However, while this
configuration improved model stability, it did not
achieve the same level of error minimization as RMSprop,
indicating that the model remains sensitive to optimizer
choice, even when using stable learning rates.
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Figure 9: Comparison of MAE and MSE over training

iterations for different hyperparameter configurations.



