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ABSTRACT

Single photon emission computed tomography (SPECT) can enable the quantification of activity uptake in lesions
and at-risk organs in α-particle-emitting radiopharmaceutical therapies (α-RPTs). However, this quantification
is challenged by the extremely low detected photon counts, complicated isotope physics, and the image-degrading
effects in α-RPT SPECT. Thus, strategies to optimize the SPECT system and protocol designs for the task of
regional uptake quantification are much needed. Objectively performing this task-based optimization requires a
reliable (accurate and precise) regional uptake quantification method. Conventional reconstruction-based quan-
tification (RBQ) methods have been observed to be erroneous for α-RPT SPECT. Projection-domain quantifica-
tion methods, which estimate regional uptake directly from SPECT projections, have demonstrated potential in
providing reliable regional uptake estimates, but these methods assume constant uptake within the regions, an
assumption that may not hold. To address these challenges, we propose Wiener INtegration Projection-Domain
Quantification (WIN-PDQ), a Wiener-estimator-based projection-domain quantitative SPECT method. The
method accounts for the heterogeneity within the regions of interest while estimating mean uptake. An early-
stage evaluation of the method was conducted using 3D Monte Carlo-simulated SPECT of anthropomorphic
phantoms with 223Ra uptake and lumpy-model-based intra-regional uptake heterogeneity. In this evaluation
with phantoms of varying mean regional uptake and intra-regional uptake heterogeneity, the WIN-PDQ method
yielded ensemble unbiased estimates and significantly outperformed both reconstruction-based and previously
proposed projection-domain quantification methods in terms of normalized root ensemble mean squared error.
In conclusion, based on these preliminary findings, the proposed WIN-PDQ method is showing potential for esti-
mating mean regional uptake in α-RPTs and towards enabling the objective task-based optimization of SPECT
system and protocol designs.

Keywords: Single photon emission computed tomography (SPECT), α-particle-emitting radiopharmaceutical
therapies (α-RPTs), projection-domain quantification, Wiener estimator, intra-regional uptake heterogeneity.

1. INTRODUCTION

Alpha-particle-emitting radiopharmaceutical therapies (α-RPTs) have become increasingly important as a cancer
treatment modality.1–3 Characterized by their short emission range and high linear energy transfer, α-particles
can effectively ablate the regions where they are deposited, with minimal damage to adjacent tissues.3 However,
the systemic administration of these radiopharmaceuticals results in their dispersion throughout the patient
body, leading to unknown levels of accumulation at sites of diseases and within radiosensitive critical organs.
Thus, it is important to quantify the absorbed doses of the lesions and different organs of the patient treated with
these potent agents. Such dose quantification can help with adapting treatment regimens, predicting therapy
outcomes, and monitoring adverse events.4,5

Often, α-emitting isotopes also emit X- and γ-ray photons, which are detectable by a γ-camera. Thus, single-
photon emission computed tomography (SPECT) could provide a mechanism for quantifying activity uptake in
organs and lesions of patients undergoing α-RPTs. The quantified regional activity uptake can subsequently
serve as input to dosimetry techniques to perform organ and lesion-level dosimetry, a key reason for conducting
quantitative SPECT in α-RPTs.6,7 However, the SPECT-based regional activity uptake quantification task is
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challenging in α-RPTs. In addition to the complicated image-degrading effects, the primary challenge is the
extremely low number of photon count detections with conventional SPECT system and protocol designs. This
is due to the up to 1000 times lower administered activity in α-RPTs than conventional radionuclide therapies.
To enable reliable quantification given such very low administered activity, it is important to develop strategies
to optimize the SPECT system and protocol designs based on the task of regional uptake quantification in
α-RPTs. To objectively perform such task-based optimization, a reliable (accurate and precise) quantitative
SPECT method to estimate the regional uptake is needed.

Conventional quantitative SPECT methods are based on reconstruction-based quantification (RBQ). This
approach involves obtaining reconstructed SPECT images, followed by defining volumes of interest (VOIs) cor-
responding to different lesions and organs. Regional mean activity uptake is then calculated by averaging voxel
values within each VOI. However, the RBQ methods were observed to be not optimal given the low counts and
complicated SPECT physics in α-RPTs, yielding considerable bias and variability in uptake estimates.8–12 The
major challenge in RBQ methods is that the regional uptake estimation is performed from reconstructed SPECT
images. Reconstructing the images requires estimating a large number of voxel values from the projection data,
an inherently ill-posed problem that becomes even more challenging when the number of detected counts is small.
Further, the image reconstruction process is also subject to information loss.13,14 In this context, we recognize
that for the task of estimating the regional uptake, voxel-based image reconstruction is an intermediary step, and
notably, the number of VOIs requiring uptake estimation is significantly less than the total number of voxels.
Thus, direct quantification of mean uptake in VOIs from projection data is a less ill-posed problem and it also
could avoid the information loss arising in the reconstruction process.

Given the above considerations, projection-domain quantitative SPECT methods, which estimate the up-
take values in lesions and different organs directly from SPECT projections—including scanning-linear,15,16

Wiener,13,17,18 and maximum-likelihood (ML) estimator-based approaches12,19–21—have shown potential in prior
studies. Notably, a low-count quantitative SPECT (LC-QSPECT) approach using ML estimation12,20,21 has been
developed for direct activity uptake estimation in VOIs from α-RPT SPECT projections. This method can effec-
tively compensate for the complicated SPECT physics in α-RPTs and address the stray-radiation-related noise
that becomes significant at low counts. The method has been observed to deliver precise and accurate regional
activity uptake estimates in α-RPTs, given VOI definitions with uniform intra-regional uptake.12,22 However,
existing projection-domain quantification methods assume constant uptake within the regions when estimating
the mean uptake and thus are not able to account for potential intra-regional activity uptake heterogeneity.
Previous studies23,24 have demonstrated the presence of considerable heterogeneous activity uptake within var-
ious regions of patients treated with α-RPT, especially in lesions. Further, studies have shown that neglecting
significant intra-regional uptake heterogeneity can lead to unreliable estimates of the mean regional uptake.20

Therefore, there is an important need for a method to estimate mean regional uptake from the SPECT pro-
jections while effectively accounting for intra-regional uptake heterogeneity. Once developed, this method will
provide an important tool to objectively optimize SPECT system and protocol designs for the task of mean
regional uptake estimation, even in the presence of intra-regional uptake heterogeneity.

Towards addressing this need, we propose and evaluate a Wiener-estimator-based projection-domain quan-
titative SPECT method, named Wiener INtegration Projection-Domain Quantification (WIN-PDQ), which es-
timates mean regional uptake directly from SPECT projections while accounting for the intra-regional uptake
heterogeneity.

2. METHOD

2.1 Theory

Let f(r|θ) be the activity uptake distribution within a patient, where r = (x, y, z) denotes the 3D spatial
coordinates, and θ represents parameters describing intra-regional uptake heterogeneity. For a SPECT system
imaging the patient, denote g as the measured M -dimensional projection data, H the SPECT system operator,
and Ψ anM -dimensional vector representing stray-radiation-related noise that becomes significant at low counts.
We assume that the mean value of this noise is uniformly distributed across all the projection bins within a specific
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energy window. Thus, each element of Ψ equals ψ, the mean value of this noise in each projection bin. Then, g
is Poisson distributed with mean Hf +Ψ, and the imaging system equation is

g = Hf +Ψ+ n, (1)

where n represents the Poisson noise.

Denote λk and ϕk(r) as the mean regional uptake value and VOI function for the kth VOI in a patient with
K total VOIs, respectively. Similar to the conventional Wiener estimator, the WIN-PDQ method requires prior
knowledge of the first and second-order statistics of the λ and g. Denote the mean of each element in λ and the
average of the projection data over all randomness, including those caused by the intra-regional heterogeneity, as

λ =< λ >λ and g =<<< g >g|λ,θ>θ|λ>λ, respectively, where < • >x denotes
∫
dx•pr(x) when x is continuous

or
∑

x •Pr(x) when x is discrete. The general form of a globally unbiased linear estimator, characterized by a
M ×K dimensional matrix W , is given by:

λ̂(g) = λ+W t(g − g). (2)

For estimators of this form, the ensemble mean squared error (EMSE) of the estimates, considering all random-
ness, is given by:

EMSE = tr(W tKgW )− 2tr(KλgW ) + tr(Kλ), (3)

where tr(K) is the trace of a matrix K; Kg, Kλg, and Kλ are the covariance of g, cross covariance of λ
and g, and covariance of λ, respectively. We note here that these covariance matrices consider all sources
of randomness including the randomness due to intra-regional heterogeneity. Obtaining the matrix W that
minimizes this EMSE value gives the estimator matrix of the WIN-PDQ method. The analytical solution of W
is given by differentiating Eq. (3) with respect to W and settiing the derivative to zero, yielding:

W = K−1
g Kt

λg. (4)

Given the high dimensionality of g, statistically obtaining Kg and Kλg presents significant challenges. Con-
sequently, further derivations to simplify these covariance matrices are needed. To obtain more analytically
tractable expressions for computing these matrices, we describe the activity uptake distribution of the patient
by

f(r|θ) =
K∑

k=1

λkφk(r|θk), (5)

where φk(r|θk) is the normalized heterogeneous uptake distribution within the kth region, parameterized by θk.
We assume that θ is independent of λ. Denote g =<< g >g|λ,θ>θ, then:

g =

K∑
k=1

λkHk +Ψ, (6)

where Hk= H <φk(r|θk) >θ can be interpreted as the response of the system to the averaged intra-regional
heterogeneity in the kth region. Denote the matrix with Hk as the kth column by H. We can derive Kλg as:

Kλg = KλH
t. (7)

Next, we can express Kg as:
Kg = Kn +Kg +HKλH

t, (8)

Given that the data g follows a Poisson distribution with independent elements, Kn is a diagonal matrix with
diagonal elements from the vector Hλ + Ψ. Denote g =< g >g|λ,θ. Denote φ as a K-dimensional vector

comprised of function elements. Specifically, the kth element of φ, denoted as φk, is φk(r|θk). Derived from
Eqs. (1) and (5), and making use of the linearity of the system operator, we obtain:

Kg =<< [g − g][g − g]t >θ>λ=< λt < [Hφ−Hφ][Hφ−Hφ]t >θ λ >λ, (9)
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Table 1. The mean and standard deviation of the regional uptake across the phantom realizations.

Unit: kBq/ml Background Bone Kidney Large intestine Small intestine Lesion
Mean 0.07 0.35 0.35 1 1 0.7

Std. dev. 0.02 0.1 0.1 0.3 0.3 0.2

where Hφ is a K-dimensional vector. The elements of Hφ are vectors, with the kth element given by Hφk.
Additionally, φ =< φ >θ. With this theoretical framework, given prior knowledge of φk(r|θk) for any θk and
k, in addition to the distribution of θ, we could solve the estimator matrix W . We also note that under the
homogeneous intra-regional uptake distribution model, Kg becomes a zero matrix, then, the proposed method
reduces to the conventional Wiener estimator.

2.2 Experiments

2.2.1 Phantom design

We evaluated the WIN-PDQ method using 3D anthropomorphic phantoms for patients with bone metastatic
castrate-resistant prostate cancer (bmCRPC) treated with 223Ra-based α-RPT, the first α-RPT approved by
the U.S. FDA.25 All phantoms in this study were generated from a standard patient model, but with varying
mean regional uptake and intra-regional uptake heterogeneity. The attenuation and region maps of the standard
patient model were created using the XCAT software. Six regions of the patient were considered, including the
bone (cortical bone only), kidney, large intestine, small intestine, and a vertebral lesion, along with an additional
background region encompassing all other low uptake regions in the patient.26 Both the region and attenuation
maps had dimensions of 256 × 256 × 180, with a voxel side length of 2.209 mm. The torso region of a patient
with middle body size (representative of the 50th percentile male in the U.S.) and a lesion with a diameter of
33.75 mm, reflecting the average lesion size reported in a clinical study,27 was considered. The region maps of
such a patient model are shown in Fig. 1 (a).

We modeled heterogeneous activity uptake distributions within the lesion, kidney, large intestine, small
intestine, and background regions. The heterogeneity was simulated using a lumpy model with Gaussian lump
functions. More specifically, the lumpy model generates tissue-like objects by placing a random number of lumps
with arbitrary positions within a VOI, creating spatial variations in the uptake. Each lump is represented by
a function Λ(•), typically Gaussian. In this study, we use a normalized lumpy model, with Gaussian lump
functions:

φk(r|θk) = ϕk(r)
Ak

Nk + 1

Nk+1∑
n=1

Λ(r − ckn|sk)∫
dr′Λ(r′ − ckn|sk)ϕk(r′)

, (10)

where Ak =
∫
d3r ϕk(r) and θk = {Nk, c

k, sk}. In this model, Nk represents the number of lumps, ck the lump
center locations, and sk the lump size (standard deviation of the Gaussian lump function) in the kth VOI. We
model Nk as Poisson-distributed with mean Nk, and ckn as uniformly distributed within the kth VOI. Both Nk

and sk are constant for a specific type of region.

To generate multiple phantom realizations based on the standard patient model, we first generated 10 re-
alizations of these heterogeneous intra-regional uptake distributions. The standard deviation of the lumps, sk,
was set to 35 mm for the background, 9 mm for the kidney, 13 mm for the large intestine, 14 mm for the small
intestine, and 3 mm for the lesion. The mean number of lumps, Nk, was set as 100 for all regions. Then, from
each heterogeneous intra-regional uptake distribution realization, 50 additional phantom realizations were gen-
erated, each with different sampled mean regional uptake values. The regional uptake values were independently
sampled from Gaussian distributions, with parameters specified in Table 1, to simulate a clinically realistic count
level in α-RPTs. Activity maps of two representative phantom realizations are presented in Fig. 1 (b) and (c).

2.2.2 Modeling the SPECT system

Projection data corresponding to each phantom realization was obtained using a SIMIND-simulated dual-head
GE Discovery 670 SPECT system equipped with a high energy general purpose (HEGP) collimator.28,29 Pro-
jections were acquired at 60 angular positions spanning 360 degrees. The imaging duration for each phantom
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Figure 1. (a) region maps of the standard patient model. (b) and (c) show activity maps of two representative phantom
realizations with heterogeneous intra-regional uptake distributions. The dashed lines indicate the relative positions of the
other two planes.

was set to 30 minutes. The photopeak window was set as 85 keV ± 20%, accompanied by two scattering energy
windows, each 4 keV wide, positioned adjacent to either side of the photopeak energy window. All relevant
image-degrading processes were modeled, including attenuation, scatter, collimator response, septal penetration
and scatter, characteristic X-ray from both the α-emitting isotopes and the lead in the collimator, and finite
energy and position resolution of the detector. The energy dependency of these image-degrading processes was
also modeled. The mean of the stray-radiation-related noise in each bin, denoted as ψ, was modeled as 0.18.12

These simulation processes were validated in our previous study.12

2.2.3 Figure of merit

We evaluated the accuracy and overall error of the estimates using normalized ensemble bias (NEB) and normal-
ized root ensemble mean squared error (NREMSE), respectively. Denote the estimated uptake of the kth region

in the cth phantom realization, with in total C considered phantom realizations, as λ̂ck, and the true value as λck.
Denote λk =< λk >λ. We have

NEBk =
1

C

C∑
c

(λ̂ck − λck)

λk
(11)

and

NREMSEk =
1

λk

√√√√ 1

C

C∑
c

(λ̂ck − λck)
2. (12)

2.2.4 Evaluating the WIN-PDQ method

We evaluated the performance of the WIN-PDQ method by comparing its performance in estimating the regional
uptake against the OSEM-reconstruction-based method30 and the LC-QSPECT method.12
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Figure 2. The (a) absolute NEB and (b) NREMSE of estimated regional uptake across all phantoms realizations, yielded
by the considered quantitative SPECT methods. LI: large intestine, SI: small intestine, and BKGD: background.

3. RESULTS

Fig. 2 presents the absolute NEB and NREMSE of the WIN-PDQ method in estimating the regional uptake
across all phantom realizations, along with comparisons with other quantitative SPECTmethods. TheWIN-PDQ
method demonstrates ensemble unbiasedness and consistently outperforms other quantitative SPECT methods
considering the NREMSE values across all regions, especially for the lesion and kidney.

4. DISCUSSION AND CONCLUSION

We have proposed the WIN-PDQ method, an approach designed to directly quantify the mean regional activity
uptake in patients from SPECT projections while marginalizing intra-regional uptake heterogeneity. This method
was evaluated using 3D Monte Carlo-simulated SPECT of anthropomorphic phantoms with 223Ra uptake and
lumpy-model-based intra-regional uptake heterogeneity, simulating patients undergoing treatment with 223Ra-
based α-RPT.

Our preliminary results (Fig. 2) show the effectiveness of the WIN-PDQ method in reliably estimating mean
regional uptake in α-RPT SPECT, in the presence of intra-regional uptake heterogeneity. The proposed method
significantly outperformed all other considered quantitative SPECT methods. The WIN-PDQ method yielded
nearly ensemble unbiased estimates (Fig. 2a), aligning with the designs of the method. Notably, among all
the considered quantitative SPECT methods, the WIN-PDQ method consistently yielded the lowest NREMSE
across all regions (Fig. 2b). Compared with the LC-QSPECT, the WIN-PDQ method yielded significantly lower
NREMSE values in critical regions such as the lesion and the kidney. This finding is significant, considering the
importance of accurate and precise lesion uptake quantification in therapy efficacy prediction and the kidney as
a vital organ. However, it was observed that the improvement in NREMSE values by the WIN-PDQ method
was less significant in larger regions, such as the small and large intestines and bone, compared to LC-QSPECT.
These observations, which warrant further investigation, suggest that quantification in smaller regions may be
more sensitive to model mismatches related to intra-regional uptake heterogeneity.

The proposed WIN-PDQ method requires prior knowledge of the intra-regional uptake heterogeneity model
and the distribution of parameters that determine the intra-regional uptake heterogeneity (Eqs. (??) and (9)).
Previously developed statistical methods31 and deep learning-based approaches32 could potentially be adapted
to derive the required knowledge of intra-regional uptake heterogeneity from patient population data.

With more comprehensive evaluations and validations, the proposed method could serve as an important
tool for optimizing SPECT system designs. This can be achieved by modeling the impact of various system
designs on the system matrix in Eq. (3) and identifying the system design that can yield the lowest EMSE
value. A previous study used the conventional Wiener estimator for a similar purpose,33 while the proposed
WIN-PDQ method offers the opportunity to consider intra-regional uptake heterogeneity in such SPECT system
optimization processes.

A limitation of the evaluation in this study is its proof-of-concept nature. The patient phantoms used
were the same in body size and had identical lesion location and diameter. The promising results of this
study motivate more comprehensive evaluations of the proposed method, such as through a virtual imaging
trial. Furthermore, the parameters employed to simulate intra-regional uptake heterogeneity were not derived
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from clinical data. Future research would benefit from integrating more clinically realistic modeling of the
heterogeneity. Additionally, while the lumpy model has proven effective in modeling clinically realistic intra-
regional uptake heterogeneity,34,35 it is also important to extend the WIN-PDQ method to account for other
models of intra-regional uptake heterogeneity. Such expansions would enhance the applicability of the method
in a wider range of clinical scenarios.

To conclude, we proposed and evaluated Wiener INtegration Projection-Domain Quantification (WIN-PDQ),
a Wiener-estimator-based quantitative SPECT approach for α-particle-emitting radiopharmaceutical therapies
(α-RPTs) that directly estimates mean regional uptake from SPECT projections, accounting for intra-regional
uptake heterogeneity. Our preliminary evaluations using three-dimensional anthropomorphic phantoms, which
incorporated Gaussian-lump-based intra-regional heterogeneity, provide evidence that WIN-PDQ is ensemble
unbiased and significantly outperforms the OSEM-reconstruction-based method and the LC-QSPECT method
in terms of both bias and normalized root ensemble mean squared error. These promising results indicate the
potential of WIN-PDQ in estimating mean regional uptake in α-RPTs given significant intra-regional uptake
heterogeneity, motivating further development and evaluation of the method, as well as application of the method
to objectively optimize SPECT system and protocol designs for the task of mean regional uptake quantification.
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