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Abstract—NASA’s Cyclone Global Navigation Satellite System
(CYGNSS) mission has gained significant attention within the land
remote sensing community for estimating soil moisture (SM) using
the Global Navigation System Reflectometry technique. Multiple
algorithms have been developed to generate global SM data prod-
ucts from CYGNSS observations in combination with other re-
motely sensed geophysical data products. However, different algo-
rithms exhibit variations in performance concerning both time and
space due to model capabilities, complexities, and loss calculations.
To address these limitations, the fusion of various SM products
can be an effective solution. In this study, we explore different
fusion algorithms, including the minimum variance estimator, best
linear unbiased estimator, and linear weight fusion, to fuse dis-
tinct global CYGNSS-based SM products. We consider three SM
data products publicly available from the Geosystems Research
Institute at Mississippi State University. To assess our model’s
performance, we compare our fused data product with the Soil
Moisture Active Passive (SMAP) mission’s enhanced SM products
at a resolution of 9 km X 9 km. Our findings reveal notable perfor-
mance enhancements in several regions when combining different
SM data products. The results demonstrate that the minimum
variance estimator achieves a mean unbiased root-mean-square
difference of 0.0359 m® /m?® with a correlation coefficient of 0.91 for
SMAP-recommended grids and also linear weight fusion achieves
0.0389 m? /m? with a correlation coefficient of 0.90 when no label
data are used in the training of fusion.

Index Terms—DBest linear unbiased estimator (BLUE), Cyclone
Global Navigation Satellite System (CYGNSS), linear weight fusion
(LWF), minimum variance estimator (MVE), soil moisture (SM)
fusion, triple collocation (TC).

I. INTRODUCTION

OIL moisture (SM) plays an essential role in many ar-
eas, such as crop yields, agricultural water management,
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weather forecasts, hydrology, natural disasters monitoring, en-
ergy and water exchanges at the atmosphere/land surface in-
terface, and different Earth science applications [1], [2], [3].
NASA launched a mission in December 2016 called Cy-
clone Global Navigation Satellite System (CYGNSS), which
leverages Global Navigation Satellite System-Reflectometry
(GNSS-R), a technology gaining much attention within the
scientific community due to its great potential to provide higher
spatio—temporal coverage measurements over traditional mi-
crowave remote sensing techniques. GNSS-R operates by cap-
turing signals reflected from the Earth’s surface through bistatic
scattering, effectively bridging the spatio—temporal gaps inher-
ent in monostatic active or passive satellite missions. This ap-
proach involves cross-correlating GNSS signals received from a
scattering surface with either a direct signal reception or areplica
of the GNSS signal. GNSS-R enables the determination of vari-
ous geophysical parameters of the observed surface, rendering it
highly effective for monitoring sea surface roughness and wind
vectors using both spaceborne and airborne systems [4], [5],
[6]. GNSS-R is also the subject of extensive research for appli-
cations, such as biomass retrieval [ 7], sea ice monitoring [8], [9],
ocean altimetry [10], and SM estimation [11], [12], [13], [14],
[15], [16], [17].

One of the main advantages of using the CYGNSS mission
is to utilize its high spatial and temporal coverage. CYGNSS
operates with eight small microsatellites, each equipped to
receive GNSS-R measurements from 32 channels during its
95-min orbital period. This configuration allows for a mean
revisit time as short as 7 h, offering a spatial resolution of 25
km across ocean surfaces, primarily under diffuse scattering
conditions. The primary objective of the CYGNSS mission is to
enhance hurricane forecasting by deepening our understanding
of the interactions between the atmospheric conditions near the
core of a storm and the underlying sea surface. Remarkably,
CYGNSS covers a wide geographical range, spanning from
38° north to 38° south latitudes, encompassing both land and
ocean areas. This wide coverage provides valuable observations
not only over water but also over terrestrial surfaces. CYGNSS
works at L-band frequency, which can penetrate up to 5 cm
from the Earth’s surface providing observations suitable for SM
estimation.

Several efforts have been conducted to retrieve surface SM
using CYGNSS observations [12], [14], [15], [16], [18], [19],
[20], [21], [22], [23], [24]. Out of these, the authors have
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previously developed several CYGNSS-based SM prod-
ucts [16], [18], [25] and made the global SM products pub-
licly available.! These algorithms exhibit performance variation
concerning time and space based on model capability, model
complexity, and evaluation methods. In order to overcome these
challenges, a fused SM product is needed that can combine
multiple products and keep the properties of individual products.
The primary research question we are trying to answer is “Can
we fuse SM products in such a way that the fused products
can achieve better estimation performance and can have the
desired properties of each individual product? If we can fuse
them, what will be the best approach?” Therefore, the main
goal of this article is to create a fused SM product that will
provide high-resolution SM with comparatively less error than
the individual products and publicly accessible SM products. In
this study, we apply fusion algorithms using CYGNSS-based
SM products obtained from the Geosystems Research Institute
(GRI) at Mississippi State University (MSU). These products,
namely, MSU-GRI-V1.0A [18], MSU-GRI-V1.0B [16], and
MSU-GRI-V1.0C [26], are publicly available. Additional details
about these data products can be found in Section II.

There are different approaches for merging different remote
sensing-based products, but only a few of them are related
to SM fusion [27], [28], [29]. Recently, Hodges et al. [30]
developed algorithms [minimum variance estimator (MVE) and
hash lookup] for fusing multiple CYGNSS-based SM products.

Most of the existing techniques depend on statistical ap-
proaches on a constrained linear estimation [31] with varying
assumptions depending on the application. In this article, we
compare three different techniques i.e., MVE, best linear unbi-
ased estimator (BLUE), and linear weight fusion (LWF) to fused
CYGNSS-based SM products.

We will apply these three different algorithms to our MSU-
GRI SM data products and evaluate their performance against
the Soil Moisture Active Passive (SMAP) SM. The contributions
of this article are summarized as follows.

1) Three different fusion algorithms have been proposed to

combine CYGNSS-based SM data products.

2) We demonstrate the models’ capability with and without

using the reference/label (SMAP SM) data product.

3) The fused SM products are evaluated against SMAP mis-

sion’s enhanced SM products at a 9 km x 9 km resolution.

4) MVE provides best performance when combining mul-

tiple products and shows an unbiased root-mean-square
difference (ubRMSD) of 0.0359 m? /m3 with a correlation
coefficient of 0.91. On the other hand, LWF method shows
better performance with ubRMSD of 0.0389 m?/m? with
a correlation coefficient of 0.90 when reference SM value
is not considered.

The rest of this article is organized as follows. Section II
summarizes input datasets and the reference dataset for fusion
algorithms. Details of the different fusion approaches are de-
scribed in Section III. Results are presented in Section I'V. The
findings, difficulties, and implications for further research are
discussed in Section V. Finally, Section VI concludes this article.

![Online]. Available: https://ssm.hpc.msstate.edu/
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Fig. 1. MSU-GRI CYGNSS-based SM product generation using different

approaches.

II. DATASET

For the analysis of fusion performance, three different
CYGNSS-based SM products are considered [15], [16], [25].
These products are generated using different machine learning
(ML) [16], [18] and deep learning [32] approaches using the
available CYGNSS data and other auxiliary data from differ-
ent sources. The overall SM product generation processes are
illustrated in Fig. 1. Table I gives the general information, i.e.,
trained models, label source, resolution, and the reference for
individual SM data products. All considered SM products have
global coverage and are publicly available.? It is important to
note that the input data products are chosen based on their
availability and similar generation assumptions. Before applying
the fusion model to each input dataset, we ensure that similar
quality control flags are applied and that the datasets are in
comparable resolutions. The products’ details are described in
the following sections.

A. MSU-GRI-VI1.0A

This version of the product is trained using in situ SM data
from the International Soil Moisture Network (ISMN) sites,
along with various space-borne ancillary data [15], [18]. Ini-
tially, CYGNSS observables within the contiguous United States
are employed to train the model. This ML-based SM product
uses three features derived from CYGNSS, i.e., specular point
incidence angle, trailing edge slope (TES), and the reflectiv-
ity [33]. In addition to CYGNSS measurements, five ancillary
datasets are employed as input features for the ML model:
1) normalized difference vegetation index, 2) vegetation water
content, 3) elevation, 4) soil clay ratio, and 5) soil silt ratio. In
order to generate this product, a supervised learning problem
ML model is used that maps a set of input features to the SM
value, which is the final output label. Subsequently, the trained
model is applied to predict global SM estimates. This approach

2[Online]. Available: https://www.gri.msstate.edu/research/ssm/naca-uas-
ssm-datasets.php
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TABLEI
CYGNSS-BASED SM DATA PRODUCTS FROM GRI AT MSU

Products Trsinied Model | Labél source | Dialusedby | CNPUbIDAtal [ CYGNSS Prodact [ pog Main reference
resolution version
MSU-GRI-V1.0A RF ISMN ISMN and SMAP 9 km L1 version 2.1 20172022 | Senyurek et al. [15]
MSU-GRI-V1.0B RF SMAP | 1SMN and SMAP 9 km L1 version 21 | 2017-2022|  Lei eval. [16]
MSU-GRI-V1.0C Deep learning SMAP ISMN and SMAP 9 km L1 version 3.1 2017-2022 | Nabi et al, [25], [26]

yields daily SM retrievals, which are then gridded to resolutions
of 3 and 9 km, corresponding to the CYGNSS spatial coverage.

The model’s performance is independently assessed at various
temporal scales, including daily, three-day, weekly, and monthly
intervals, against both ISMN data and the enhanced SMAP
mission’s SM products, which have a resolution of 9 km x 9
km. The level-1 (L1) version 2.1 product CYGNSS data are used
to generate the SM product. Random forest (RF) is used as an
ML model. The training set is constructed using 170 ISMN sites
over the globe. As the ground truth data availability is less for
this method, the global error is slightly higher when compared
with SMAP SM.

B. MSU-GRI-V1.0B

In this version of the product, a daily quasi-global SM estimate
ata 9-km resolution is produced using the RF ML technique [16].
This approach differs significantly from MSU-GRI-V1.0A,
which predominantly relied on a single ML algorithm applied to
all available data for SM product generation. Instead of relying
on localized information from in situ sites to represent a spatial
grid, this work explores the use of multiple separately trained
models, each employing distinct data stratification strategies to
determine SM and assess its accuracy, with SMAP SM data
serving as the base reference.

Multiple remote sensing land surface products characterizing
the land surface conditions are incorporated to describe the
nonlinear relationship between CYGNSS signals and SM. The
ML-based model, optimally constructed for this purpose, has
been designed to be adaptable for future SM retrieval efforts.
Its effectiveness is assessed through year-based cross-validation
and independent validation using data from sparsely distributed
in sifu measurement networks.

In addition, this quasi-global CYGNSS product is subjected
to a rigorous and independent evaluation using the triple collo-
cation (TC) technique. This comprehensive assessment ensures
the reliability and robustness of the SM estimates derived from
CYGNSS-based observations.

C. MSU-GRI-V1.0C

This product is generated [25] using one of the important
observations from the CYGNSS mission along with other land
surface data products. Delay-Doppler maps (DDMs) are used
primarily as input features for this version of the CYGNSS-based
SM product. A novel deep learning framework is introduced that
considers entire DDMs (analog power, effective scattering area,
and bistatic radar cross section) as input and other additional
features as secondary inputs. In previous works, instead of using
the whole DDMs, a few features were extracted, such as peak
reflectivity, TES, leading edge slope, etc. Also, similar to the

previous research [16], whole regions are stratified into several
boxes, and a deep learning model is applied individually to each
box. Instead of one single model, several models are generated
that show improved performance and reduce the computational
complexity [26].

Although all MSU-GRI products are developed using an ML
or deep learning model, they are distinguished by differences
in input data or features, ML models, and labeled data. Both
MSU-GRI-V1.0A and MSU-GRI-V1.0B are developed using
the RF model. but they are trained with ISMN (in situ SM)
and SMAP (remotely sensed SM) data, as their true label data,
respectively. However, due to the limited availability of ISMN
sites worldwide, global SM retrieval in MSU-GRI-V1.0A is not
as comprehensive as in MSU-GRI-V1.0B. Both of these versions
consider only a few generated features from CYGNSS DDMs.
The primary distinction between MSU-GRI-V1.0C and the pre-
viously mentioned versions lies in its consideration of full DDMs
as the input to ML model. In MSU-GRI-V1.0C, the entire DDM
images are utilized for SM retrieval. To directly employ the entire
DDM dataset, a deep learning model is developed, which learns
features from DDM images itself instead of designed features
for other models. This shift to utilizing the complete DDM
dataset represents a significant advancement in methodology,
addressing the limitations of previous versions, and improving
the reliability of SM retrieval on a global scale. Specifications
on the ML model architecture for each SM product can be found
in their respective publications.

D. SMAP Radiometer SM Data

The SMAP Enhanced L3 Radiometer Global Daily 9-km
EASE-Grid SM product is used as a reference value for the
fusion algorithms to evaluate the performance. SMAP uses the
L-band microwave radiometer to collect brightness tempera-
ture data and produces SM estimates. Although the SMAP
SM product is generated at 36-km resolution, it has also a
9-km enhanced grid product by using Backus—Gilbert optimal
interpolation techniques [34]. SMAP datasets containing the
associated coordinates for the descending (A.M.) and ascending
(P.M.) overpasses are combined to obtain daily SM results. With
the help of a 1000-km swath width, a daily SMAP product can
cover about 70% of all land areas within the CYGNSS coverage
(£38° latitudes). The SMAP product also contains quality flags
that indicate whether the SM retrieval is recommended or not.
The data are freely available through the National Snow and Ice
Data Center.’ In this study, SMAP SM with a 9-km EASE-Grid
product is used and CYGNSS specular points location is used
to obtain the SM value from the SMAP data.

3[Online]. Available: https://nsidc.org/data/SPL3SMP_E/versions/3


https://nsidc.org/data/SPL3SMP_E/versions/3

NABI et al.: BEST LINEAR UNBIASED ESTIMATORS FOR FUSION OF MULTIPLE CYGNSS SOIL MOISTURE PRODUCTS

III. METHODS

In this study, our goal is to combine MSU-GRI CYGNSS-
based SM products to achieve an unbiased and minimum vari-
ance estimate of the underlying true SM parameter. To achieve
this goal, we will explore the following statistical fusion models.

1) BLUE.

2) MVE.

3) LWF using TC.

These three statistical models are chosen for their widespread
adoption and inherent linearity, enabling them to efficiently
minimize variance while fusing multiple data products. Despite
their robustness, these models are relatively simple and easy to
implement.

Let us assume that z;[n] represents the nth SM product for
the th spatial grid. Here,n € {1,2, 3} corresponds to the three
different SM products described in Section II. Each statistical
fusion model mainly has different data models relating the
underlying true SM parameter to the observations and achieves
this with different goals and constraints. Although we have
three SM products to combine in this study, BLUE and MVE
approaches are flexible enough to combine any more given
SM product. Next, the working principle of each statistical
estimation approach is described.

A. Best Linear Unbiased Estimator

A common approach in estimation theory is to restrict the
estimator to be linear in the data and find the linear estimator
that is unbiased and has the minimum variance, which is named
BLUE [31]. Our data model relating the underlying unknown
true parameter to the observed data product is

zi[n] = 0;s[n] +wifn] n=1,2,...,N (1)

where 6; is the true SM value for the ith grid location that we
would like to estimate. z; [n] are different independent data prod-
ucts that are achieved through different approaches, algorithms,
or sensing systems. Here, n corresponds to a different product
and we could have a total of N different ones. Inourcase N = 3,
since we are fusing the three different SM products but in general
we could have NV data samples. The data model in (1) relates the
data samples x;[n] to the underlying unknown true SM value 6;
through an unknown scalar s[n], and w;[n] is white Gaussian
noise with zero mean and unknown variance.
In BLUE, we restrict the estimator to be linear in data as

N N
0; =) anzin] 2)
n=1

where 6’3; is the estimate of the underlying true parameter 6;,
and a,’s are constants that are yet to be determined. De-
pending on various selections of a,,’s, different estimators can
be achieved, but BLUE is defined as the one that is unbi-
ased and has minimum variance. Letting the vector notations
a=[ay, az,...,an]%, s=[s[1], s[2],...,s[N]]¥, and x; =
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[x:[1], z:[2], ..., z:[N]]T, the unbiased constraint is

N
E@) =" anE(ziln]) =6

n=1

N
== Z ans[n)f; = 0;
n=1

N
=Y ansli] =1 3)
n=1

which can be simply stated as a”s = 1. The variance of the
estimator #; will be

var(@) = E[ (6~ E(3))”]
=E[(a’x; —aTE(x;))’]
=E[a” (x; — E(x1))(x: — E(x1))" a]
=a’ Cja 4)

where C; = (x; — E(x3))(x; — E(x;))7 is the covariance ma-
trix of the daggl. To find the BLUE, we need to minimize the
variance var(f;) = aT C;a subject to the unbiased constraint
a’s = 1. This can be done using the method of Lagrangian
multipliers where the Lagrangian function can be defined as
J = aTC;a+ A(aTs — 1). To solve for a, we take the gradient
of J with respect to a as dJ/0a = 2C;a + As. Setting the
gradient to zero and solving for a leads to a = —AC; !s/2.
The vector a is the weights used in the linear combination of
data products, and to fully determine it, we need to find the
Lagrangian multiplier A using the solved a in the unbiased
constraint as a’s = —As” C; 's/2 = 1. So, the Lagrangian
multiplier is A = —2/(s”C;'s). Finally, the solution to the
constraint minimization problem leading the optimal weights as

Ci_ls
sTCy s

Using the optimal weight vector agp¢ in our estimator in (1) will
lead to the BLUE, which can be directly computed as

é\ STCi_l}{i
£= T
sTC s

Computation of BLUE requires the covariance C; and the scaled
mean s to generate the fused SM product at the 7th spatial grid, as
shown in (6). Both C; and s need to be estimated from available
historical data.

Aopt (5)

(6)

B. Minimum Variance Estimator

Combining different individual estimates of a physical quan-
tity to achieve an enhanced estimate has been highly used in
the literature. One example is the MVE in [35] to combine five
individual estimates of the wind speed exploiting the degree of
decorrelation between the errors in the individual estimates to
minimize the rms error in its wind speed estimate. In fact, MVE
is a subcategory of BLUE where the scaled mean parameter is
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assumed as s[n] = 1 leading to a data model

ziln] =60; + wiln] n=1,2,...,N. (7
In this case, the unbiased constraint becomes aT1 = 1, which
fundamentally states that fusion weights should add up to one.
Following a similar solution outlined in Section III-A, the opti-
mal weights vector can be achieved as

Ci_ll

1TE"1 ®)

aopt

While MVE does not need to estimate a scaled mean parameter
s as BLUE does, it still needs to estimate the covariance C; from
historical data. Estimation performance of scaled mean and how
well the data products fit into the assumed data models in (1)
and (7) determines the performance of the fused data product,
which is discussed in Section I'V.

C. Linear Weight Fusion

TC analysis is a widely used technique for evaluating large-
scale remote sensing products by incorporating a minimum of
three mutually independent measurement systems. The data that
are considered as “true” or “label” values could also contain their
own measurement errors, biased calibration, and invalid valida-
tion errors. Assuming that each independent product is linearly
related to the underlying true parameter and measurement errors
for each product are uncorrelated with each other and the true
values, TC is used to estimate the errors as well as weights to
combine these products linearly [36], [37].

An affine error model [36] is commonly used in the TC
literature for relating the observed data x;[n] to an underlying
true geophysical variable 6; as

z;[n] = a[n)b; + Bln] + win] n=1,2,....N (9)
where «a[n] and B[n] are the deterministic coefficients of the
affine model and w;[n] is the random error with unknown
distribution. We assume that the errors from different
data products have zero mean (Cov(w;[n]) =0, ¥n) and
uncorrelated with each other (Cov(w;[n], w;[m]) =0, n # m)
and with true parameter 6; (Cov(w;[n],8;) =0, ¥n). In TC
analysis, the error variance values on the three independent SM
data products are estimated as

3 _ C12Ci

o? Ciy o
21 .— Ch12C

62 = ng — —1021:3 (10)
2 C1aC

03 033 — —1031223

where o2 is the error variance estimate of the nth data product
and Cy, is the Elth entry of the covariance matrix C. The LWF
approach combines the three SM products depending on the
error variance values of each data product. The weight vector
a = [a;, as,a3)T for TC in linearly combining data products
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as in (2) are given in [37] as

1/a2
ai 1/01+1/a§+1/a3
o 1/o
az( = 1jo+1/o5+1/0; (1

1/02

3 T BT am
1/oi+1/03+1/03

Note that the weights in (11) add up to one, a; +as +a3z =1,
similar to the unbiased constraint in MVE. Although TC is
practical to implement, the outlined form can only combine
three different products. However, several studies have utilized
TC to combine more than three products as well. For example,
in [29], a multistep TC approach is presented to merge five
active and passive microwave surface SM products. The process
was done in two steps where the combined data product from
the first step is used as another data product to combine with the
remaining two products in the second step. In our case, three
different SM data products are used to combine, hence it will
be a single-step process.

In this work, we consider three different fusion algorithms se-
lected for their straightforward implementation and potential for
improved fusion estimation accuracy. However, each algorithm
varies based on its underlying principles and assumptions, which
in turn influence its performance characteristics. The BLUE
algorithm aims to estimate a linear combination of the individual
data sources, which minimizes the mean squared error while
maintaining unbiasedness. Similarly, MVE seeks to minimize
the variance of the estimated parameters, assuming normally
distributed errors but with scaled mean assumed as one. In
contrast, the LWF algorithm, based on TC, assumes linearity
between each product and the underlying true parameter. It is
noteworthy that while both BLUE and MVE can accommodate
multiple input datasets simultaneously, LWF using TC is limited
to three inputs at a time due to the nature of TC computation and
a higher number of inputs can be fused three at a time in mul-
tiple stages. These distinctions highlight unique characteristics
and requirements of the presented approaches, influencing their
applicability and performance in various contexts.

IV. RESuLTS

In this section, we will present the performance of detailed
CYGNSS-based SM fusion algorithms. To evaluate the fusion
algorithm’s performance, we use SMAP as the reference or
label SM data. As performance metrics, we consider the root-
mean-square difference (RMSD) and ubRMSD. In addition,
we calculate the correlation coefficient (R-value) for individual
data products and fused data products with and without the
reference SMAP data. We also provide the fusion weights for
each SM product presenting how much each single data product
contributes to the final fused result.

Before applying the fusion algorithms, we aggregate three dis-
tinct SM products into separate vectors. For our analysis, we en-
compass the entire world, utilizing SM products spanning from
2017 to 2022 as input data products for various fusion methods
detailed in Section III. As previously mentioned, SMAP serves
as the reference dataset for calculating performance metrics. We
assess the performance of each individual product to validate
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TABLE II
PERFORMANCE ANALYSIS AGAINST SMAP SM FOR ALL AVAILABLE GRIDS ACROSS THE WORLD

Data categories Products RMSD | Bias ubRMSD | R-value
MSU-GRI-V1.0A | 0.0918 [ 0.0008 0.0821 0.87
Input Data Products MSU-GRI-VI.OB | 0.0538 | -0.0125 0.0527 0.93
MSU-GRI-VI.OC | 0.0518 | -0.02I5 | 0.0489 0.03
Fused data BLUE 0.1018 | -0.0551 0.0857 0.84
(not using SMAP data) MVE 0.0895 | -0.0218 0.0868 0.79
LWF 0.0552 | -0.00935 0.0544 0.92
Fagud it BLUE 0.0513 | 0.0004 0.0513 0.93
(using SMAP data) MVE 0.0514 | -0.0022 0.0441 0.93
LWF 0.0582 | -0.0120 0.0570 0.92

the efficacy of the fusion methods. Section IV is divided into
two parts. The first part applies a single estimator for the entire
world. Hence, we obtain a single-weight vector to combine SM
data products for all grids. The second part is applying fusion
regionwise or a small number of grids. For this part, different
estimators and corresponding weight vectors are obtained for
each region.

A. Single Fusion Estimator for Entire World

In this part, we learn a single fusion estimator and hence a
single fusion weight vector a that is used to generate the fused
SM product for all grids. Note that all three fusion techniques
depend on the covariance matrix of the data, while BLUE also
needs to estimate an additional scaled mean parameter s. In
the estimation of these parameters, we follow two different
approaches. The first approach is unsupervised and only the
three data products are used with no reference data in this case.
To estimate the true covariance between different data products,
we use the sample covariance which can be stated as

N

o= ﬁ D (xn = X)(xn = %)"

n=1

(12)

where x,, is the 3 x 1 size vector holding the SM values for
the three different data products for a specific day and grid
location, X is the mean vector of all the data used in fusion, and N
represents the total number of data samples. For the supervised
case, we use the SMAP reference data while generating the
sample covariance matrix. For the supervised case, we randomly
split the dataset into 20% and 80% ratios. The 20% part of the
data are used in the fusion to estimate the sample covariance for
this case. After the fusion weights are determined, the remaining
80% of the data are used to evaluate the performance of the
fused product. For the supervised case, the sample covariance
estimation is done as

_ ; X
Lr'e N_1 (Xn — X51) (Xn — x5)7

n=1

(13)

where x™ is the reference vector containing the SMAP SM
values for the corresponding data sample.

The RMSD, bias, ubRMSD, and R-value metrics are
calculated for the individual data products and each fused data
product that is generated with the proposed fusion approaches
under both supervised and unsupervised settings. The resultant

performance metrics are provided in Table II for all available
grids across the world. When the individual input data products
are considered, it can be seen that the products that are trained
using the SMAP dataset perform better than the product gener-
ated using a model trained using ISMN station data. Even though
two of the data products have similar average performances,
the deep learning-based approach (MSU-GRI-V1.0C) achieves
lower RMSD and ubRMSD values. The next part of the table
presents fusion performance in an unsupervised scenario. It is
evident that when no reference data are used, best performing
fusion approach is LWF. However, in this case, none of the
fused products can provide lower ubRMSD or higher R-values
than the best individual product. The MVE approach results
in a high ubRMSD and a low R-value. The BLUE algorithm
exhibits a similar performance, providing a ubRMSD of
0.0857 m®m~3 and a slightly higher correlation than the
MVE algorithm. However, we observe comparatively better
performance for LWEF, which yields a global ubRMSD of
0.0544 m?m~3 and a correlation coefficient of 0.92 for the
unsupervised case. For the supervised fusion case, the achieved
performance metrics are better compared with the unsupervised
fusion case, specifically for BLUE and MVE approaches. We
observe that MVE produces an ubRMSD of 0.0441 m*m~—* and
a correlation of 0.93 when reference data are used for the fusion
algorithm. The fused product with the MVE approach shows
better performance than any of the individual data products.
BLUE shows slightly higher errors than MVE. LWF does not
seem to improve in this case compared to not using the reference
data.

Table III presents the performance for the SMAP recom-
mended grids. Similar to the previous table, we first present the
performance of each of our input data products and later present
the performance of the fusion algorithms, both for supervised
and unsupervised cases. We observe similar performance for
LWF when we do not use the reference value. It provides an
ubRMSD of 0.0389 m3m—2 and a correlation of 0.90, which
is comparatively higher than the individual data products. On
the other hand, when we consider the reference, MVE pro-
vides the best performance for fusion, with an ubRMSD of
0.0359 m*m~3. We observe that BLUE does not perform sig-
nificantly well for both cases.

Tables I and III present results for fusion algorithms
generated using individual weights for each single model and
multiplying them with individual products. This means that for
global SM fusion, there are three different weights for three
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TABLE I
PERFORMANCE ANALYSIS AGAINST SMAP SM FOR SMAP RECOMMENDED GRIDS

Data categories Products RMSD| Bias ubRMSD | R-value
MSU-GRI-V1.0A | 0.0693 | 9.78e-04 0.0693 0.71
Input Data Products MSU-GRI-VI.OB | 0.0429 -0.0080 0.0422 0.88
MSU-GRI-V1.0C | 0.0371 0.0025 0.0370 0.91
Prised: dada BLUE 0.0602 -0.0383 0.0465 0.90
(not using SMAP data) MVE 0.0442 -0.0078 0.0435 0.87
LWF 0.0393 -0.0051 0.0389 0.90
Fused data BLUE 0.0359 | -6.15e-04 0.0359 0.91
] MVE 0.0359 | -4.44e-04 0.0359 0.91
fusing AMAP dats) TWF 0.0380 | 00038 | 0.0378 | 090

TABLE IV
WEIGHT CONTRIBUTIONS FOR EACH PRODUCT AFTER
APPLYING THE FUSION ALGORITHMS

Weights | Weights | Weights

Products (BL%JE) (M\%E) (L“g%
MSU-GRI-VIOA | -0.0933 | -0.0355 | 0.0497
MSU-GRI-VI.OB | 0.2012 | 02890 | 0.2601
MSU-GRI-VI.OC | 08922 | 0.7465 | 0.6902

This table gives overall global weights values for all three
products when we consider supervised case,

TABLE V
WEIGHT CONTRIBUTIONS FOR EACH PRODUCT AFTER
APPLYING THE FUSION ALGORITHMS

Mean Weights | Mean Weights | Mean Weights
Products (BLUE% (Mvr-;)g (LWF}g
MSU-GRI-VI.0A 00477 00566 0.1042
MSU-GRI-VI.0B 0.4883 03716 0.5802
MSU-GRI-VI.OC 0.6003 0.6850 03156

This table gives mean of weights for 144-km grid regions for all three products
considering supervised case.

different products. In each SM fusion algorithm, we have indi-
vidual weights for each SM product. In Table IV, we illustrate
how individual SM products contribute to the fusion algorithms
considering the supervised case. For the MVE algorithm, we
observe weight values of —0.0355, 0.2890, and 0.7465 for
MSU-GRI-V1.0A, MSU-GRI-V1.0B, and MSU-GRI-V1.0C,
respectively. In the case of the BLUE algorithm, approximately
90% of the weights are attributed to the MSU-GRI-V1.0C
product, whereas MSU-GRI-V1.0A has negative weights on the
fusion algorithm. This indicates that the MSU-GRI-V1.0C prod-
uct contributes more weight to MVE compared with the other
two SM products. For LWF, we observe a slightly lower contri-
bution from the MSU-GRI-V1.0C product, but it still maintains
a high contribution compared with the other two methods.

B. Applying Regionwise (144-Km) Fusion

All the previous results were generated using single-weight
values for individual products for the fusion algorithms. It is
difficult to observe the regionwise product contribution for
the fusion algorithm with this approach. To understand the
regionwise contribution, we divide the global data into 144-km
small regions and apply each fusion algorithm within those
regions. This allows us to determine the contribution of each
product in different regions. We hypothesize that all input data
products should not perform similar way for different regions.
Table V summarizes the mean contribution for each 144-km

Fig. 2.

Number of data samples for each 144-km grids globally.

small region. For the BLUE algorithm, we notice that the
MSU-GRI-V1.0B product contributes more weight compared
with MSU-GRI-V1.0A, but this method still predominantly uses
the MSU-GRI-V1.0C product.

For the MVE algorithm, we observe weight values of -0.0566,
0.3716, and 0.6850 for MSU-GRI-V1.0A, MSU-GRI-V1.0B,
and MSU-GRI-V1.0C, respectively. This mean result is slightly
different from the single-valued weight results presented in
Table IV. Still, the MSU-GRI-V1.0C product receives more
weight when considering the 144-km grid case.

On the other hand, we observe significantly different results
for the LWF method. The MSU-GRI-V1.0B product provides
more weight than the other two products during the fusion
algorithm in this context. LWF relies on the TC algorithm,
and it is highly data dependent with several assumptions. Since
we are considering a small region, there may not be enough
data for the model to execute the fusion algorithm, resulting in
the failure to generate the fusion product. Although the other
two algorithms work very similarly for a single model and the
144-km scenarios, LWF surprisingly provides different results.
There may be a question about choosing the 144-km grid case.
To address this, we need a sufficient amount of data for the fusion
algorithm. If we consider less than 144 km, the data sample size
becomes smaller, leading to significant discrepancies in results.
Therefore, we have chosen to continue with the 144-km case.
In Fig. 2, the data sample distributions for each 144-km region
are presented. This visualization helps us understand how the
models are affected by the data samples.

In Fig. 3, 144-km gridwise weight values are presented using
the BLUE algorithm. These maps are generated using MSU-
GRI-V1.0A, MSU-GRI-V1.0B, and MSU-GRI-V1.0C (from
top to bottom). As we can observe, the top map in Fig. 3
represents MSU-GRI-V1.0A, which indicates that the BLUE
algorithm does not use this product at all in the fusion process.
BLUE generated low weights for MSU-GRI-V1.0A. The MSU-
GRI-V1.0B gives relatively higher weight toward the Sahara
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Fig. 3. 144-km gridwise global weight values generated using the BLUE for
each data inputs. The top map is for MSU-GRI-V1.0A, the middle is MSU-GRI-
V1.0B, and the bottom one is MSU-GRI-V1.0C. It is evident that MSU-GRI-
V1.0C maintains high weight values compared to other two products.

Fig. 4. 144-km gridwise global weight values generated using the MVE for
each data inputs. The top map is for MSU-GRI-V1.0A, the middle is MSU-GRI-
V1.0B, and the bottom one is MSU-GRI-V1.0C. It is evident that MSU-GRI-
V1.0C maintains high weight values compared to other two products.

and Amazon regions, but the other parts of the world have
low weights compared to MSU-GRI-V1.0C. MSU-GRI-V1.0B
product shows comparatively high weights across the world,
which proves that it has a good contribution to the SM fusion
method.

In Fig. 4, 144-km gridwise weight values are presented for
each individual data product case for MVE. Similar to the BLUE,
MVE also generated low weights for MSU-GRI-V1.0A. Instead,
it primarily relies on MSU-GRI-V1.0B and MSU-GRI-V1.0C,
with MSU-GRI-V1.0C making a significant contribution to the
MVE algorithm.
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Fig. 5. 144-km gridwise global weight values generated using the LWF for
each data inputs. The top map is for MSU-GRI-V1.0A, the middle is MSU-
GRI-V1.0B, and the bottom one is MSU-GRI-V1.0C. Here, MSU-GRI-V1.0B
contributes more than the other two products.

In Fig. 5, 144-km gridwise weight values are presented
using the LWF algorithm. As we have already observed the
quantitative results in Table V for LWF, the maps demonstrate a
similar trend. MSU-GRI-V1.0C products receive lower weight
compared with the MSU-GRI-V1.0B. It is also evident that
MSU-GRI-V1.0A has some little weights for the LWF, whereas
we did not see any impact for BLUE and MVE. As we already
mentioned, LWF is data dependent and works based on several
assumption that might impact the fusion process.

V. DISCUSSION

SM is an essential property for Earth observation, hydrology,
and several other land surface applications. Space-borne GNSS-
R observations have gained popularity due to their wide coverage
and cost-effectiveness. NASA’s CYGNSS mission, developed
for its primary purpose of wind estimation, has had a significant
impact by providing crucial information for SM estimation. Re-
searchers have developed a wide range of techniques to estimate
SM and create the best global SM product. The estimation tech-
niques depend upon various factors, including data processing,
quality control, and model complexity, resulting in different
types of estimation outputs. Different global SM products de-
rived from the CYGNSS mission exhibit strong performance in
different regions. This underscores the importance of merging
or fusing multiple SM products. However, it is important to
note that not all CYGNSS-based SM data products are publicly
available for use. Therefore, this study focuses solely on the
publicly accessible data provided by the GRI at MSU. Over the
years, the GRI has developed various approaches. It has become
necessary to consolidate these efforts into a single official data
product for the institute, rather than relying on multiple versions.
Such an initiative can serve as a model for the CYGNSS-based
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SM community, facilitating the adoption of an official product
for the CYGNSS mission.

In this study, we demonstrate three different approaches for
merging various SM products. We selected these approaches
due to their straightforward implementation and common usage
in remote sensing-based data products. The MVE approach,
known for its effectiveness in merging wind speed estimation
products [35], provided excellent fusion results. Hence, we
introduce it for global SM fusion. This approach is renowned
for delivering lower or equal RMSD error compared with in-
dividual RMSD errors. In addition, we demonstrate the BLUE
algorithm [31], which is advantageous when full knowledge of
the probability density function is not required. Previously, the
BLUE algorithm was employed as an interpolation technique
for CYGNSS-based SM products [38], and it is now utilized for
SM fusion in this study. Although, as we observe in the results,
BLUE does not perform as well as MVE, its overall performance
is quite satisfactory. MVE does not require estimation of the
scaled mean parameter, unlike BLUE, which necessitates the
estimation of both the scaled mean and covariance. Instead,
MVE solely estimates the covariance from historical data. Since
the estimation performance is influenced by how well the data fit
into the model, the accuracy of the scaled mean estimation could
be a reason for enhanced MVE fusion performance compared
with BLUE.

Both MVE and BLUE approaches can be employed when
reference SM data (in situ or SMAP) are available. However, if
access to reference data is challenging, these approaches may
not perform optimally. To address the issue of reference data
unavailability, we can consider the LWF algorithm [29], which
uses a TC approach to estimate error variances, making ita viable
alternative for SM fusion.

We demonstrate two different analyses for fusion cases, one
is to generate product single weight globally for each product
and another is to generate multiple weights for each 144-km
small region. Generating global fusion is easier compared to
the 144-km grid scenarios. But to get the regionwise product
contribution, it is better to utilize small regions. If the data
availability is limited for the small, the fusion algorithm can
provide high error. So, it is important to note that choosing a
fusion algorithm needs to be carefully considered when merging
several products. In addition, these three methods can fuse data
within a fraction of a second if we perform a single global fusion.
However, performing fusion for small regions individually and
subsequently integrating them on a global scale will require
additional processing time for each region.

Although this study focuses on the fusion of various
CYGNSS-based SM products, the developed methodology
holds applicability to the fusion of any GNSS-R-based remotely
sensed data products. Several GNSS-R missions, including the
U.K. Disaster Monitoring Constellation satellite [39], U.K.
TechDemoSat-1 [40], Chinese BuFeng-1 A/B satellites [41], and
FSSCat [42], provide Earth surface information. By leveraging
our proposed fusion algorithm, researchers can enhance estima-
tion performance for different Earth observations by integrating
data from these diverse sources. Furthermore, our methodology
can be extended to fuse additional environmental parameters
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from the CYGNSS mission, such as wind speed data [43]
and freeze/thaw surface state products [44], offering a compre-
hensive approach for multisensor data fusion in environmental
monitoring and modeling.

VI. CONCLUSION

This study presented different SM fusion algorithms to com-
bine estimated CY GNSS-based SM data products. Three differ-
ent SM data products are utilized to demonstrate the capability
of three different fusion algorithms. Based on our analysis,
we observed that MVE showed a good potential for merging
different SM products. In order to evaluate the fusion meth-
ods, we utilized SMAP as a reference. This method achieved
an ubRMSD of 0.0359 m®m~2 and a correlation of 0.91 for
SMAP-recommended grids. This approach requires reference
SM data during the fusion process. It is observed that LWF can
achieve an ubRMSD of 0.0389 m®m~—2 with a correlation of
0.90 when reference SM data are not used. LWF shows good
potential when true data are not present.
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