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Abstract—Radar-based technologies have become ubiquitous
in recent years, playing vital roles in many civilian and military
applications, ranging from navigation to electronic warfare.
With the widespread adoption of these technologies, several
notable challenges have emerged, especially concerning spectrum
congestion and the complicated interplay between radar and
telecommunications signals. As such, accurate and fast recog-
nition of radar waveforms is a necessity. Traditional techniques
for waveform recognition, which often depend heavily on trans-
forming raw RF data into alternative feature spaces such as
time-frequency domain, have limitations due to low feature rep-
resentation fidelity and high computational expense. To mitigate
these issues, we propose a filter-based deep learning framework
that learns directly from raw RF data. Unlike more conventional
deep learning models, this framework includes parameterized
filters with learnable cutoff frequencies. The inclusion of these
filters enables the network to learn high-level features with clear
physical interpretations. The initial validation of this model,
including cases for both Sinc filters and Gabor filters, is done on
a set of synthetic RF waveform receptions and achieves state-of-
the-art performance with an overall accuracy of 97.4%, without
any extensive data preprocessing.

Index Terms—Radar waveform recognition, CVCNN, CV-
SincNet, CV-GaborNet, RF sensing, learnable filter, micro-
Doppler.

I. INTRODUCTION

In modern society, radar-based technology has been inte-
grated into numerous aspects of everyday life, ranging from
various applications like human activity recognition (HAR)
[11-[7], defense and security [*]-["], aviation and maritime
navigation ["'], mini-UAV classification [!//], advanced driver
assistance systems (ADAS) [! [ ]-[! °], indoor monitoring [ ],
[1 7], health monitoring [!1], [/ '] and weather monitoring
[1~]. However, this proliferation has led to several noteworthy
challenges, including the congestion of spectrum environments
where radar systems must compete for access in a disorganized
tangle of spectrum uses, especially against telecommunications
[17]. This situation is even further complicated by the consid-
eration of military-centric radar applications, such as threat
detection, radar identification, jamming response, and other
electronic warfare applications ['']. To assist in navigating
this issue and developing strategic responses, waveform recog-
nition in the RF spectrum has been given significant attention
in research communities. The RF spectrum is a challenging
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environment consisting of various radar and telecommunica-
tion waveforms. Detecting and understanding the features of
these waveforms across both time and frequency domains is
critical, especially with the emergence of software-defined RF
waveforms and 5G/6G telecommunications [ '].

Current techniques for RF waveform recognition are often
like those utilized in modulation recognition, as summarized
in [77], [77]. These approaches primarily involve the trans-
formation of raw complex RF data into some processed
feature space, where engineered features may be extracted and
prepared for the application of pattern recognition or machine
learning techniques. A common feature space selected is some
time-frequency domain representation, often in image format.
This type of transformation may be explored more completely
in related works such as [ /]-[©]. However, these approaches
face significant limitations due to the low fidelity of feature
representation, which may often fail to capture the diverse
and complex characteristics of RF waveforms fully. Also, the
transformation of raw data into different domains can incur
high computational costs, making these types of techniques
ill-suited for real-time or close-to-real-time applications. Thus,
it is desirable to instead develop techniques that can learn
optimal features from complex raw data directly.

The emergence of deep learning frameworks, such as con-
volutional neural networks (CNN), provides the capability to
learn directly from raw data. Several recent works [ /]-[ "]
have leveraged this capability to great effect in waveform
recognition. However, the performance and interpretability of
such approaches remain refinable at this task. As such, we
propose the application of a novel filter-based deep learning
framework on raw complex RF data. Fundamentally, this
approach is like the work done in [ '], which utilizes a similar
approach to perform radar-based human activity recognition.
As such, the proposed approach is characterized by the in-
clusion of parameterized filters, which are intended to act
as band-pass filters with learnable cutoff frequencies. This
design allows the networks to learn high-level features with
clear physical interpretations, boosting both the performance
and interpretability of the model. To validate the proposed
approach, a simulated RF data environment has been used to
create an initial dataset and the performance of the model with
Sinc and Gabor filters has been evaluated.
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Fig. 1: Example of Sinc and Gabor filter in time and frequency domain

II. PROPOSED METHODOLOGY

In this section, we describe the formulation of real and
complex-valued learnable filters designed to handle complex-
valued input signal. To accommodate this, we incorporate
structural changes in the filter definitions. These filters are
characterized by two key learnable parameters: the center
frequency f. and the bandwidth B.

A. Complex Sinc filter banks

The Sinc layer involves learning a complex filter-bank,
which consists of single-sided rectangular band-pass filters.
The time-domain formulation of the complex Sinc filter is
expressed as:

h-‘?[an: fc] = QBST.RC(QTI'BT],) X ejgﬂ—fcﬂ (l)

The designed filter is differentiable concerning its learnable
parameters: the center frequency f. and the bandwidth B,
making it compatible with backpropagation. Each complex-
valued Sinc filter is structured with equally-sized real and
imaginary components, denoted as hy = hgr + jhsi.

her = 2BSine(2nBn) X cos(27 f.n) (2)

hei = 2BSinc(2nBn) x sin(27 fon) (3)

B. Complex Gabor filter banks

The impulse response of Gabor is defined by a sinusoidal
wave multiplied by a Gaussian function. The time-domain
formulation of complex Gabor filter is expressed as:

2
n .
e 22T X e_;r2'.lrf,:n

4)

h el =
g {ﬂﬁ a, f c] g
where the o is the variance. The relationship between sigma
and -3dB bandwidth is given as follows,

027\’&’9(2) (5)
wx B

so, the final equation of the complex Gabor filter having f.
and B as learnable parameter is,

Each complex-valued Gabor filter is structured with equally-
sized real and imaginary components, denoted as iy = hgr +

jhgi-
Bg = 4 / 2 3_2%27 x cos(2m fon) )]
NLt
hgi = 1/ 2 e_zL:’f x sin(2m fon) (8)
Vo

The derivation of the Sinc filter h, and Gabor filter hg
can be observed from Equation (1) and (6) respectively. An
example of the Sinc and Gabor filter is shown in Fig. 1. Where
-3dB bandwidth for the Gabor is 400 Hz and bandwidth of the
Sinc is 300 Hz. The center frequency of the Gabor and Sinc are
490 and 510 Hz respectively. Equation (7) and (2) present the
formulations of the real-valued versions of Gabor and Sinc
filters respectively. The filters have a fixed window length
L = 125 and the only learnable parameters are bandwidth
B and center frequency f.. For complex-valued operations
fe is initialized in the complete frequency range [-f./2,f./2],
where f, is the sampling frequency. For real-valued case f, is
initialized in the range [0, f./2]. In Fig. 2 the parametric filter
block is shown.

1

» o

» i foa. _atlhy il =
5 VAl v -
- 'r\. ."’I I| ’ -l‘r Illl fm -vl'%”llll - 0

= B e e Bemes :
=9 fa.By fezBy f3.B3  foazeBizs °
- I =

Ez X Num of filters: 128 5
] g § Sinc/Gabor layer Filter length- 125 <
g - T c

Fig. 2: The CV-Sinc/CV-Gabor Block

C. Complex Neural Network Layer Definitions

Complex neural network layers are adapted to complex
algebra using real-number representations for complex values,
with theoretical foundations supported by various studies [ 1].
A complex-valued tensor with N channels is represented by
2N channels: the first N for real parts and the next N for

bl A = 2y/m x };'v'e_:%:5 « i2nfen ©) imaginary parts. Operations like convolution, activation, and
s V1og(2) pooling are adapted accordingly.
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Fig. 3: Spectrogram result of different types of waveform.

1) Complex Fully Connected Layer: This layer uses com-
plex algebra with real-number representations. For M neurons,
it employs a complex weight matrix W € CV*M and a
complex bias vector 3 € CM. Given a complex input = € CV,
the operation is:

warr= 3w | [se) 56 ©

2) Complex Convolution Layer: Complex convolution uses
real-valued representations for complex inputs and kernel
weights. For a complex kernel matrix W = Wg + jWr and
input = zg + jzr, the operation is:

Wz = (Wrpxzp—Wrxzp)+j(Wr*zr+Wr*zg) (10)

3) Complex Activations: The complex ReLU function,
CReLU, applies the ReLU function separately to the real and
imaginary parts of a complex input z:

ReLU(S{(m))} i3

CReLU(z) = [ReLU(EB‘(m)}

The complex SoftMax function applies the standard Soft-
Max to the magnitudes of the complex output elements.

4) Complex MaxPooling Layer: This layer pools the com-
plex value with the maximum magnitude to the next layer.

5) Complex Batch and Layer Normalization: Complex
batch normalization shifts the mean to zero and scales by the
inverse square root of the covariance matrix of the real and
imaginary parts, using learnable parameters 8 (shift) and
(scaling matrix):

T=yz+ 8 (12)

IT1. DATASET GENERATION

To facilitate the evaluation of the proposed methodology,
it is necessary to obtain a collection of received raw RF
data with a known waveform shape upon transmission. For
the initial validation of applying this type of methodology
to this task, we elect to utilize purely simulated data; that
is, we develop a reasonably-sized dataset of synthetic noisy
waveform receptions.

A. Waveform Selection

The generated dataset consists of five common waveform
modulations: linear frequency modulation (LFM), rectangular,
Costas code, Barker code (binary phase code), Frank code
(polyphase code). The example of each waveform is shown
in Fig. 3. In this initial work, we include 500 samples of
each of these modulations for a total of 2500 waveforms with
corresponding ground truth labels. Each of these waveform
types has several variables that are randomly varied to generate
2500 distinct waveforms to ensure the breadth of the dataset.
Table 1 offers a full accounting of the parameters available
for modulation, as well as the extent of their variation. This
table also includes the range of added noise, which will be
explained in the next section.

TABLE I: Parameter ranges for different types of waveform

Types Parameters | Range of Values |

ALL fe (center freg.) U _cht %
A (Amphitude) 0T, 10]
s (sampling freq.) 4000 Hz
SNR U0, 20]

i Ie

LFM B (Bandwidth) UL, fc-‘
Costas fstep (num of freq steps) U[5,20]
step_size Jstep/Ts

Barker L g (barker code length) {7,11,13}
Frank M (phase_steps) {6,7,8}

B. Noise Addition

To simulate the physical transmission and reception process,
a level of noise is added to the generated synthetic wave-
form receptions. This is done through a random dispersal of
Gaussian noise across the RF data for each waveform. The
magnitude of the added noise is determined by a randomly
selected signal-to-noise (SNR) ratio value between 0 and 20
dB, as shown in the parameters listing in Table L.

IV. PERFORMANCE ANALYSIS OF THE PROPOSED
METHOD

This paper compares the proposed approach with both a
2D CNN and a 1D CNN. The 2D CNN processes real 2D
spectrogram images, whereas the 1D CNN, in both its real
and complex versions, operates on 1D complex raw data. The
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dataset is divided into 80% for training and 20% for testing
across all architectures.

A. CNN2D architecture

The 2D CNN processes 128x128 p-D spectrograms in
grayscale. It consists of three convolutional layers (32, 32, and
64 filters, 3 x 3 kernel), each followed by max-pooling (3 x 3),
batch normalization, ReLU activation, and 0.3 dropout. After
flattening, it connects to a dense layer of size 128 with 0.5
dropout, leading to a softmax classifier outputting 5 classes.
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Fig. 4: Flow diagram of the Complex-valued Sinc-
Net/GaborNet architecture

B. 1D DCNN and Learnable Filter Based architectures

Six networks were implemented and tested on 1D raw data:
CNNI1D, SincNet (real), GaborNet (real), CV-CNNI1D, CV-
SincNet, and CV-GaborNet. These networks use input shapes
of 4000 x 2, representing real and imaginary values. The
Sinc and Gabor blocks in SincNet and GaborNet, respectively,
contain 128 filters of 125 points each, followed by a max-
pooling layer of size 1 x 5, normalization, ReLU activation,
and 0.2 dropout. CV-CNN1D, CV-SincNet, and CV-GaborNet
employ complex-valued computations in every layer. The main
difference between CV-CNNI1D and the learnable filter-based
CNNs (CV-SincNet and CV-GaborNet) is that CV-CNNI1D
uses a standard CNN layer as the first layer instead of a
Sinc/Gabor block. After the initial Sinc/Gabor block, the
model consists of five convolutional blocks, a flattening layer,
a dense layer of size 128, 0.3 dropout, and a softmax classifier.
The architecture of the complex-valued learnable filter-based
CNN is illustrated in Fig. 4.

C. Comparison Results

Table II presents the classification performance results for
various architectures. CV-SincNet and CV-GaborNet achieve
testing accuracies of 96.42% and 97.47%, respectively, outper-
forming CNN2D (RGB) by approximately 2.4% and 3.35%.
These models also demonstrate superior precision, recall, and
F1 scores compared to other models. SincNet and GaborNet
achieve testing accuracies of 90.74% and 90.39%, respectively,
which are about 8.68% and 10.08% lower than their complex-
valued counterparts, underscoring the significance of complex-
valued CNN networks. The relatively poor performance of
CNNI1D and CV-CNNID highlights the effectiveness of us-
ing learnable filter-based networks as initial layers in neural
network models.

TABLE II: Performance Comparison

Network eating ~ Precision Recall -
Accuracy Score
[ CNN2D [ 94.02 [966 | 9407 | 93.95 |
CNNI1D 62.84 72.76 61.68 62.57
SincNet 87.74 88.29 88.37 87.39
GaborNet 87.39 88.47 88.44 87.26
CV-CNNID 63.48 74.09 63.57 63.23
CV-SincNet 96.42 97.87 95.25 96.34
CV-GaborNet 97.47 08.24 95.98 97.54

V. CONCLUSION AND FUTURE WORK

In this work, we have explored the novel application of
a filter-based deep learning model on waveform recognition
and demonstrated its effectiveness in performing waveform
recognition on raw complex RF data without any significant
preprocessing. The proposed model achieved an overall ac-
curacy of more than 96% and 97% on the synthetic dataset
initially created for validation, using Sinc and Gabor filters
respectively.

To fully establish the potential of this line of investigation,
the simulated RF dataset must be extended to include a fuller
sampling of common waveform types and a larger variety of
noise additives. Additionally, work is being done to develop a
software-defined radio-based hardware-in-the-loop procedure
to generate pseudo-realistic waveform receptions in the labo-
ratory environment. With this, the approach can be evaluated
more thoroughly, including investigations of time costs and
computational efficiency in real-time scenarios. Based upon
these evaluations, a number of possible avenues of exploration
are evident, such the type of filter to be included in the model.
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