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ABSTRACT

Modern digital color cameras depend on Color Filter Arrays (CFA) for capturing color information. The majority
of the commercial CFAs are designed by hand with different physical and application-specific considerations. The
available machine learning (ML)-based CFA learning architectures dismiss the considerations of a physical camera
device. This study aims to develop an alternative approach to jointly learn binary Color Filter Arrays (CFA)
in a deep learning-based filtering-demosaicing pipeline. The proposed approach provides higher reconstruction
performance than the compared hand-designed filters while learning physically applicable CFAs. This paper
includes the learned binary CFAs for various color configurations and training data size, their analysis with
common reconstruction metrics, and a short discussion on future works.

Keywords: color filter array, deep learning, demosaicing, hard thresholding, straight through estimator, gradient
estimation

1. INTRODUCTION

In order to capture specific color information from visible light, digital color cameras require Color Filter Arrays
(CFA).! CFAs are physical filters that facilitate the acquisition of a specific color channel per pixel. The CFAs
currently found in digital cameras today are generally hand-designed patterns with different considerations
depending on the camera’s characteristics, perception characteristics of the human eye, and the environment and
objective in which the camera is used.'™

After receiving the reflected light from the environment through a CFA, the raw input corresponds to an
image in which each pixel contains the intensity information of only one color and lacks the rest. The following
process in image capture is called demosaicing, which estimates the unknown channel values in raw camera
returns for each pixel.® There are various demosaicing algorithms, from simpler ones such as k-nearest-neighbor,
bilinear, and bicubic interpolations® 7 to more sophisticated demosaicing approaches for specific applications and
different CFA patterns.®'1° The papers'!''? include detailed reviews of the classical demosaicing algorithms for
various CFAs.

These hand-crafted CFAs might not exploit the actual features of natural images for a high-quality full-color
image. Moreover, demosaicing may cause serious artifacts in the final image due to the lack of correlation
information between the estimated channels and the collected ones. Each unique CFA design requires its own
demosaicing algorithm depending on the filter pattern and available information from the captured scene, thus
requiring prior knowledge of the captured information.

A few studies propose learning a CFA directly from natural images using deep learning (DL)-based meth-
ods.!'®14 These models learn CFAs that employ the full digital color spectrum; the learned filters acquire a
linear combination of all color channels at each pixel as a single measurement. That is impractical in commercial
cameras, where each pixel in a physical CFA observes a single color from a few available channels in the digital
image. Some other studies assume working in the multispectral domain, and they learn multispectral filter arrays
(MSFA).1%16 Although the work on building commercial cameras with MSFAs in ongoing, these cameras are
still in the research phase due to their high production cost, the available interpolation techniques for MSFA
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filtered raw images are more prone to quality drops, and their raw image formats cost a lot more computation
to get the usual RGB images as the final product.

This situation calls for a new, physically realizable CFA learning method that performs better than the
hand-crafted filters. To the best of our knowledge, there is one method that learns a binary CFA using images
in the RGBW configuration. This study'” uses a set of weights for each pixel with a weight coefficient fed into
a SoftMax function. The weight coefficient controls the output of SoftMax; larger coeflicients give weights like a
pseudo-binary mask.

In this study, we propose an alternative differentiable binary selection layer as a binary CFA module in a
joint CFA learning-demosaicing framework. This joint framework is an end-to-end structure with two modules;
the initial module learns a constrained binary CFA, and the second module reconstructs a color image from the
CFA output. The learned CFAs can be directly implemented in physical camera array systems since the learned
filters are physically applicable. The CFA learning module implements a hard thresholding operation compatible
with backpropagation via gradient estimation.

The paper is structured in the following way. Section 2 describes the proposed CFA filter learning method
and the whole training and testing procedure. Section 3 explains the hardware and software setup used in
training and evaluation. Section 4 presents learned filters, obtained performance metrics and comparisons with
the existing methods. Section 5 draws the conclusion and provides future work.

2. PROPOSED METHOD

We propose an end-to-end joint DNN architecture for simultaneous constrained filter learning and demosaicing.
The proposed architecture has an initial binary channel selection layer and a demosaicing model based on available
image reconstruction networks. This section explains each part of the proposed joint learning framework in detail.

2.1 The Joint Framework
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Figure 1: The full joint model (HMax-Demos) in forward passing in the RGBW configuration. The output of
the HardMax represents the raw sensor input and is passed to the Demosaicing Module as input.

The joint framework is composed of two subnetworks; the binary CFA learning module and the demosaicing
model. The training set consists of the 3P x 3P X Cjppyr image blocks collected from digital images with a stride of
P. The actual learnable CFA blocks have the P X P x Cjyp,: number of learnable weights. After being initialized,
the final P x P X Cjppye binary filters are expanded by tiling operation to cover the 3P X 3P X Cjppy: shape
image, then 3P x 3P x l-size image measurement is acquired by masking operation and shrinking the channel
dimension. This technique helps prevent reconstruction artifacts that appear at the edges of the reconstructed
blocks. With a heuristic analysis, the P value is selected as 8, while the input channel number Cjypy¢ depends
on the test cases (3 for RGB, 4 for RGBW).

2.2 Binary CFA Learning Module

The proposed binary CFA learning module applies hard thresholding on a group of weights as a means of binary
selection. In this module, the process begins with a set of weights of the same size as the expected full-color
input image; for a full-color input image block with P x Psize and Cj;,y,+ humber of channels, the binary CFA
learning module has P x P x Cjyp,: number of weights. For every pixel weight, the layer considers the index of
the greatest weight value as the selected channel. This operation can also be achieved by weight normalization
and hard thresholding operations, with the threshold value selected as 1. Thresholding the weights and replacing
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the only non-zero weight with 1 (or dividing the thresholded value by its value) directly gives a digital mask that
can be used as a CFA. The issue is that the thresholding operation is non-differentiable; therefore, it cannot be
used in the learning scheme of neural networks.

Some methods approximate the hard thresholding operation with differentiable functions, but non-differentiable
operations can be made directly applicable in gradient descent. A straight-through estimator (STE) is a gradient
estimation method that involves applying the derivative of a differentiable function to a non-differentiable yet
similarly behaving function.'® Assume a function that is non-differentiable on some, or all, of its domain. We can
observe the behavior of this function, find a differentiable function that behaves like the former function in the
concerned interval, and assume that the gradient of this new function is the gradient of the former function during
backpropagation. In the binary channel selection case, the hard thresholding operation is the non-differentiable
part of the overall ML model. However, after adding normalization, the right side of the threshold is identical
to the identity function. Therefore, the derivative of the hard thresholding is assumed as the derivative of the
identity function during backpropagation. Figure 1 illustrates CFA learning with the proposed binary CFA
learning approach.

2.3 Demosaicing Model
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Figure 2: Description of the proposed demosaicer model. The final loss includes intermediate reconstructions.

The DL-based demosaicing module implemented in the joint CFA learning-demosaicing structure is designed
based on the available works in demosaicing and image reconstruction models.'®2° The input of the demosaicing
model is the output of the CFA learning network; this represents the filtered raw camera measurements with the
shape 3P x 3P x 1. The output is a 3P X 3P X Cjy,qge-sized reconstructed image block with values in intervals
[0,255] corresponding to a full-color digital image. In this study, the reconstructed image is always in RGB
configuration, therefore Cipage is always 3. The reasoning behind using a nine times larger input patch area
than the filter is to use the features around the patch intended for reconstruction to reinforce the demosaicing
quality and prevent artifacts that occur around edges.

The pseudoimage is then sent into three consecutive refinement submodules, each of which is composed of
three convolutional layers with ReLU activation functions following. The first layer has 128 7 x 7 kernels, the
second layer has 64 5 x 5 kernels, and the third layer has 3 3 x 3 kernels. All layers apply padding to preserve the
image size and include an L2 regularizer. There are skip connections between refinement submodules added to
carry over the gradient. The model’s final layer is another convolutional layer with 3 3 x 3 kernels and a ReLU
activation function. The coarse reconstruction is guaranteed during training by including the pseudoimage and
the consecutive refinement outputs in the loss function.

In the proposed architecture, the number of refinement submodules was selected as three to balance the
model complexity and the image reconstruction quality.
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2.4 Training Loss

The joint model’s final loss function is defined as the sum of all mean squared error (MSE) loss computed over
the total T training images for the final output, each refinement module outputs, and the pseudo image using
the corresponding label image as given in (1).

T 4
Etotal = Z Z(Iz - i'gn))Za (1)

i=1 n=0

where x; represents the i-th training sample and 535") is the pseudoimage or the n-th refinement module output
as shown in Fig.2. §:§4) denotes the final reconstructed image output of the model.

3. TRAINING SETUP

The training dataset was created from the 400 training and validation images from the BSDS500 dataset.
BSDS500 is an image dataset very frequently found in demosaicing studies. The training image patches were
created by fetching 24 x 24 patches with a stride value of 8 from the 400 training and validation images of the
BSDS500 dataset. The grayscale values were added as the intensity channel for the RGBW case. In total, the
training dataset consists of 881600 RGBW image patches.

Two different test datasets were used; 20 selected images from the test set of BSDS500, and the 24 images
of the Kodak dataset were analyzed separately. The test images were divided into 24 x 24 patches with a stride
value of 24. In the training scheme, the patches are filtered with a CFA, and then the filtered image patches
are fed into the corresponding demosaicing model and finally merged the full-color reconstructions back into a
full-scale image. The evaluation metrics were calculated with the full reconstructed image.

The training batch size for the models is 128, and the epoch number is 100. Jointly trained binary filtering
and demosaicing models with a fixed learning rate stuck after a few epochs. To help the demosaicing model
converge to a higher reconstruction performance, the learning step was exponentially decreased for each epoch,
from 0.001 to 0.00001. The Adaptive Movement Estimation (ADAM) optimizer was used during backpropagation
with decay rates (8; and B3) and division constant (€) values of ADAM optimizer being selected as 0.9, 0.999
and 107 respectively.

The code for the training and testing models is in Python 3. The TensorFlow and NumPy libraries were used
for implementing the model. The tests were conducted in Python3 with Scikit-Image and Matplotlib libraries.
All the models were trained in a dedicated machine with an Nvidia A6000 graphic card.

4. RESULTS
4.1 Evaluation

The reconstructed images are evaluated using the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) metrics.

PSNR is used to observe the distortion of the reconstruction as additional noise compared to the original
signal in terms of decibel units, and a higher PSNR, value indicates a better reconstruction performance. PSNR
can be computed as in (2) where the mean squared error (MSE) is computed over the whole reconstructed
image. 255 is the highest value that a digital image channel can take.

255

SSIM is used to compare a reconstruction with a ground truth signal in terms of localized similarity, and it
takes a value between 0 and 1, where a higher score indicates that the reconstructed image resembles the original
image more. Calculation of SSIM involves the means and variances of the original (u,, 02) and the reconstructed
(1, 02) images, along with the covariance of both (0,z). The division stabilizer constants ¢; and ¢y in the SSIM
definition in (3) are chosen as (255 * 0.01)? and (255 * 0.03)? respectively.
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(2ueps +c1) (2023 + c2)
(12 + p3 +c1)(02 + 02 + ¢2)

SSIM = (3)

In order to evaluate the proposed CFA learning method, we devised four tests. The first test involves
comparing the proposed demosaicing architecture with the alternative demosaicing architectures found in the
literature. The second test looks at the effect of the CFA size on the image reconstruction performance of the
joint network. The third test uses four common hand-crafted binary CFAs to compare their performance with
the same demosaicing model as used in the proposed joint architecture. The fourth test compares the proposed
joint CFA learning and demosaicing model with the available alternative.

4.2 Comparison of Demosaicing Models the Binary learned CFA

The first test looks into the performance of the proposed demosaicing model by comparing its performance with
different demosaicing models presented in the studies that are found to be used in similar joint architectures. In
this test, we selected three studies that have applied their own demosaicing models in joint CFA learning and
demosaicing frameworks, implemented their demosaicing architectures with our proposed CFA learning module,
and compared the images with respect to their PSNR and SSIM metrics.

H Demosaicing Model H int? ‘ in” in?! ‘ Ours H
Kodak PSNR || 38.321 | 37.738 | 32.252 | 40.451
SSIM 97.671 | 97.142 | 93.663 | 98.439
PSNR || 38.247 | 36.721 | 30.591 | 40.054
BSDS500 SSIM 98.533 | 97.742 | 93.531 | 98.967

(a) RGB

H Demosaicing Model H in'? \ in'” \ in?T \ Ours H
Kodak PSNR 40.632 | 37.959 | 33.359 | 41.881
SSIM 98.629 | 97.385 | 94.578 | 98.707
PSNR 40.561 | 36.919 | 31.168 | 41.181
BSDS500 SSIM 99.188 | 97.896 | 93.92 | 99.183

(b) RGBW
Table 1: Comparison of different demosaicing models used alongside the proposed CFA learning module for (a)
RGB, and (b) RGBW configurations. Best performances for each metric and test dataset are shown with bold.

Table 1 shows the PSNR and SSIM performance of the compared demosaicers. The results show that our
proposed demosaicer shows the highest score for both Kodak and BSDS500 datasets. In RGB case, our model’s
reconstructed images have 2.13 dB higher score for Kodak and 1.807 dB higher score for BSDS500 compared to
the second highest model.

This test also shows that including the extra white channel improves the final image quality. The reconstruc-
tion quality of our model jumped by 1.43 dB for Kodak dataset and by 1.127 dB for BSDS500 dataset.

The two demosaicers, in™* and our demosaicer, follows a simple feed-forward deep network structure compared
to the models in'” and,?' which involve parallel architectures for processing different image information and
merging them later in the model. On top of simple feedforward design, our model implements ideas from the
image reconstruction studies,?? which reinforces the demosaicing process as two objectives are similar in nature.

As we proved that our demosaicer performs higher compared to the other available alternatives, in the
following sections, we will opt out for the proposed demosaicer model.

4.3 Analysis of the CFA Size

The second test involves training and testing joint models with different CFA sizes. For this test, four different
CFA sizes were tested; 4 x 4, 8 x 8, 12 x 12, and 16 x 16. For each tested size, one RGB and one RGBW model
were trained and evaluated.
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[ CFA Size [ 4x4 [ 8x8 [ 12x12 | 16x16 ||

Kodak | PSNR ][ 38561 | 40.451 | 39.535 | 38.865
oda SSIM || 97.77 | 98.439 | 98.236 | 98.125
PSNR || 37.57 | 40.054 | 38.676 | 37.880
BSD500 - —sornr 17 98.26 1 98.967 | 08.726 | 98.558

(a) RGB

[ CFA Size [ 4x4 | 8x8 [ 12x12 | 16x16 |
Kodar | PSNR [[40.189 | 41.881 | 39.89 | 38.088
SSIM || 98.421 | 98.707 | 98.247 | 98.143
PSNR || 39.700 | 41.181 | 38.59 | 37.878
BSD500 oo 198,014 1 99.183 | 98.609 | 98.481

(b) RGBW
Table 2: Comparison of different CFA sizes for (a) RGB and (b) RGBW configurations.

Table 2 shows the results for the second test. The joint model with 8 x 8 size filters provide the highest image
reconstruction performance. Any different size for CFA filters affect the final reconstruction performance nega-
tively. The results also reinforce the idea that the extra white channel reinforces the reconstruction performance.
Figure 3 shows the learned filters for this test.

(e) ()
Figure 3: The learned CFAs with different sizes. (a) 4 x 4, (b) 8 x 8, (c) 12 x 12, (d) 16 x 16 filters for RGB
configuration; (e) 4 x 4, (f) 8 x 8, (g) 12 x 12, (h) 16 x 16 filters for RGBW configuration.

4.4 Comparison of the Binary learned CFAs with Fixed CFAs

As we established the power of the proposed demosaicer and the optimal CFA size in the previous tests, in this
test we aim to observe the performance of the proposed CFA learning module with respect to the traditional
hand-crafted CFAs. For this test, we selected two RGB (Bayer? and Lukac') and two RGBW (RGBW and
CFZ?3) CFAs, shown in Figure 4. All these hand-crafted CFAs were trained and evaluated separately with our
proposed demosaicing architecture with exactly same parameters and random initialization.

Table 3 shows the quality of the reconstructed images. The learned binary CFA gives the highest PSNR
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(a) (b) (c) (d)

Figure 4: Hand-crafted CFAs used in the evaluations: (a) Bayer, (b) Lukac, (c¢) RGBW, and (d) CFZ filters.

and SSIM scores in all comparisons. The average PSNR scores are 1.415 dB higher for Kodak and 0.47 dB
higher for BSDS500 test images compared to the second highest filter (Bayer) in RGB case. In RGBW case, the
difference is 0.83 dB for Kodak and 0.361 dB for BSDS500 test images compared to the second highest scoring
filter (RGBW).

H CFA H Bayer ‘ Lukac ‘ Proposed H
Kodak PSNR || 39.036 | 38.683 | 40.451
SSIM || 97.857 | 98.083 | 98.439
PSNR || 39.584 | 38.897 | 40.054
BSD500 SSIM || 98.769 | 98.732 98.967

(a) RGB

| CFA | RGBW | CFZ | Proposed ||
Kodak PSNR || 41.051 | 38.643 41.881
SSIM 98.657 | 98.093 98.707
PSNR || 40.820 | 37.981 41.181
BSD500 SSIM || 99.131 | 98.592 | 99.183

(b) RGBW
Table 3: Comparison between the performance of the learned CFAs with the proposed module and hand-crafted
CFAs with the same proposed demosaicing model. For (a) RGB and (b) RGBW configurations.

4.5 Comparison of the Binary learned CFAs with Alternative Learned CFAs

The final test compares the proposed binary CFA learning module with the only alternative model that was
previously presented in.'” The method in'” implements a soft-thresholding algorithm based on SoftMax function.
A set of randomly initialized weights for color channels for each pixel go through SoftMax operation controlled
with a weight value. As the training progresses, this weight is increased to approximate the SoftMax output to
binary mask.

H CFA Learning Module H In'” ‘ Ours H H CFA Learning Module H In'” ‘ Ours H
PSNR 39.034 | 40.451 PSNR 39.607 | 41.881
Kodak SSIM || 97.816 | 98.430 Kodak SSIM || 97.884 | 98.707
PSNR 37.819 | 40.054 PSNR 38.474 | 41.181
BSD500 SSIM 96.373 | 98.967 BSD500 SSIM 98.387 | 99.183

(a) (b)
Table 4: The comparison of performance between alternative learned CFAs. (a) for RGB configuration and (b)
for RGBW configuration.

Table 4 shows the results. Our proposed binary CFA learning method bests the model presented in'7 by
1.417 dB in Kodak and by 2.235 dB in BSDS500 test images in the RGB case. In RGBW case, our model gives
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2.274 dB higher score in Kodak and 2.707 dB higher in BSDS500 test images. We would like to note that the
original study of!'” did not include evaluations for RGB case and compared their model only with their proposed
hand-crafted CFA in.?3

5. CONCLUSION AND FUTURE WORK

This study presents an introductory work on developing an efficient and physically applicable binary CFA learning
method. The two primary goals of this work were to develop a method for learning CFAs that can be directly
implemented in commercial digital cameras and to provide a better performance compared to the available hand-
crafted filters and alternative methods. In this paper, we explained the background of the problem, introduced
our method, and included the analyses to show the effectiveness of the proposed method.

The proposed architecture is designed to implement binary CFA learning for multiple problems. A further
study may aim at learning binary CFAs for tasks different than reconstruction. One important example includes
implementing optimal cameras for object detection to be used in autonomous vehicles. The flexibility of the
overall proposed framework allows such modularity.

Future studies will include extensive analysis of the effects of different variables on the learned CFA and the
performance, such as the training dataset size, variance in the training dataset, the number of epochs, the joint
task, etc. The quality of the learned binary CFAs with the proposed method is an open question and further
analysis of the learned patterns might help to develop better-informed CFAs.
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