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Abstract—The use of radio-frequency (RF) sensors in systems
centered around humans, such as human-computer interfaces or
smart environments, is an emerging field that aims to recognize
human motion in real-time. While various RF sensors such as
radar, transceivers at various center frequencies and Wi-Fi, are
used in this area of research, their performance have not been
compared under the same scenarios. To address this gap, this
study collects datasets using mmWave Radar and Wi-Fi, creates
spectrograms, and conducts a side-by-side comparison to assess
the efficiency of both systems for the same scenarios. The dataset
is obtained using 77 GHz mmWave FMCW TI Radar and a
Raspberry Pi 3B+ equipped with Nexmon firmware, and both
the datasets and the associated code are made publicly accessible.
The findings reveal that the Radar accuracy outperforms the
Wi-Fi in terms of a 7-class human activity recognition (HAR)
scenario by 32.7%. These results underscore the superiority of
radar technology in the field of HAR while also highlighting the
potential of Wi-Fi for indoor activity monitoring.

Index Terms—Wi-Fi, CSI, HAR, Radar, Channel State Infor-
mation, Human Activity Recognition, Raspberry Pi 3B+, Nexmon

I. INTRODUCTION

Ue to the advancement in solid-state transceiver technol-

ogy, the cost of radio frequency (RF) sensors has become
affordable making it easily accessible for a wide range of
applications such as HAR [I]-[5], defense and security [6],
[7], mini-UAV classification [8], advanced driver assistance
systems (ADAS) [9]-[! 1], indoor monitoring [|2], and health
monitoring [13] etc. Furthermore, the introduction of low-
cost software-defined RF sensors has spurred new radar-based
HAR research in areas like [14] and [15]. Unlike cameras,
these sensors do not capture biometric information, making
them an excellent choice for HAR. RF sensors can detect
human motion through backscattering signals, independent
of clothing, making them suitable for environments where
constant video camera surveillance is not desirable.

With the popularity of research in HAR using Wi-Fi, we
embarked on a comparative exploration between two distinct
RF technologies: Wi-Fi Channel State Information (CSI) and
Radar. HAR using Wi-Fi and Radar comprises the detection
and categorization of physical activities by analyzing the
signals coming from Wi-Fi devices like smartphones, laptops,
etc and Radar. By training machine learning algorithms, we
can discover distinctive patterns that correlate with various
human activities.

Wi-Fi and Radar technologies operate on different principles
, and offer a different perspective. CSI, in particular, provides
us with a comprehensive understanding of the channel state.
This extends beyond just the frequency response, encompass-
ing the phase response while also furnishing data on channel
gain, delay, and Doppler shift. CSI has been used for device
fingerprinting [16] and location fingerprinting [17] [18] and
has wide use cases. Whereas radar uses a transceiver to
obtain the reflected signal with a micro-Doppler shift to detect
activity. Our examination of these two technologies illuminates
their unique potential and limitations in the domain of HAR.

While there are wearable devices capable of identifying
motion, particularly falls, they are battery-operated and can
be turned off at any time. They rely on either accelerometers
to detect motion or require the individual wearing the device
to press a button, which is not always reliable. In contrast,
the two sensors used in this study, Radar and Wi-Fi, offer
non-obtrusive passive motion-sensing technology, providing
real-time notifications to caregivers and first responders about
critical events related to the health and well-being of the
monitored individual.

Previous work [19] has done some comparison between
three sensors: Camera, Radar, and Wi-Fi. [20] has done an
amazing job explaining different types of sensors such as
Radar, Wi-Fi, Camera, etc. However, all of the literature re-
viewed during this writing lacked a direct comparison of these
sensors. Our proposed work aims to evaluate and compare
the efficiency of two distinct technologies, Radar and Wi-
Fi, for HAR, testing both sensors on the same scenarios.
This comparative analysis will shed light on the distinctive
features and advantages of each approach, contributing to
the uniqueness and novelty of this research. By examining
these two methods, we seek to provide valuable insights into
their respective capabilities, which will help researchers and
practitioners make informed decisions when choosing the most
suitable technology for their specific applications.

In our research, we have made significant contributions to
the field of HAR by utilizing Wi-Fi and Radar technology and
introducing novel approaches. Our contributions include:

o Open Access Datasets and Code: We have collected and
shared Radar and Wi-Fi datasets [2 1], along with the cor-
responding code, to help further research in this domain,
making these valuable resources publicly accessible.



o Spectrogram Comparison: Our paper is the first to com-
pare Radar and Wi-Fi technologies using spectrogram
analysis, followed by deep-learning based classification,
providing a unique perspective on their performance and
potential applications in HAR.

In the upcoming sections of this paper, we will explore
the essential components of our study. In Section II, we will
discuss the Wi-Fi signal model and its application in HAR,
specifically through CSI. Similarly, Section III will introduce
the Radar signal model, providing details on how Radar data
can be effectively used in our research. Moving forward,
Section IV will outline the experimental setup employed
for the collection of both Radar and Wi-Fi data. Section V
will present our performance comparison results, offering a
comprehensive evaluation of these two technologies. Finally,
in Section VI, we will draw conclusions based on our findings
and outline potential future works.

II. Wi-FI SIGNAL MODEL

In terms of human activity in the presence of Wi-Fi, the
signals can be affected by the motion due to any activity. When
a person moves, the movement causes the body to reflect and
scatter Wi-Fi signals, causing a slight change in the frequency
of the signal, hence resulting in a Doppler shift. In other words,
what exactly happens is when a subject moves, the signal
reflected from the said subject contains a Doppler shift in the
original signal which can be observed in the Wi-Fi CSI. CSI
signal is represented in the form of a complex-valued matrix,
with one matrix element corresponding to each subcarrier in
the Wi-Fi signals.

The Doppler effect is the main component of this system. It
is the change in frequency or wavelength of a wave in relation
to an observer who is moving relative to the wave source. The
Doppler effect causes a shift in the frequency of the waves
which can be detected by measuring the change in wavelength
or frequency of the wave. The Doppler shift is given by the
equation:

r_ v
f —f(lic) (1)

where f is the frequency of the wave in Hz, v is the relative
velocity of the source and observer in meters, c is the speed
of the wave, and £ is when the source is moving towards or
away from the observer.

Wi-Fi uses Orthogonal Frequency Division Multiplexing
(OFDM) in which the bandwidth is divided equally into
subcarriers as shown in Fig. 1. Each subcarrier contains either
the user data or the pilot (for phase synchronization) or
null tone(reference signal). In a hardware configuration with
t number of transmit antennas and r number of receiving
antennas, the data looks as follows:
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Fig. 1: Frequency-Time representative of OFDM signal

where H, , represents a vector containing complex pairs cap-
tured for each subcarrier. The number of subcarriers depends
on the hardware configuration as well as the bandwidth of the
Wi-Fi protocol. For this experiment, SGHz Wi-Fi with OMHz
bandwidth is used to extract CSI using Raspberry Pi using
Nexmon. With 80 MHz of bandwidth, we get 256 subcarriers
and the number of packets depends on how busy the channel
is and how long it is sampled. Additional information is
discussed in section IV-A.

III. RADAR SIGNAL MODEL
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Fig. 2: Block diagram of radar signal processing for u-D
signature generation [11]

The INRAS Radarbook2 functions as a frequency-
modulated continuous wave (FMCW) radar system, with an
operating frequency range spanning from 76 GHz to 80 GHz.
This system emits chirp signals directed towards the radar’s
field of view. Initially, these transmitted signals bounce off
the target, specifically in our case, humans. Consequently, the
radar receives a signal that has undergone frequency shifts
and time delays, relative to the initially transmitted signal.
The kinematic characteristics of each human target movement
give rise to a dynamic sequence of micro-motions, such as
vibrations and rotations, as outlined in [22]. Each unique ges-
ture generates its own distinct patterns, which can be analyzed
effectively through time-frequency analysis techniques. The p-
D spectrogram is then calculated from the square modulus of
the Short-Time Fourier Transform (STFT) of the continuous-
time input signal z[k] and may be described in terms of the
window function, h[k].

STFT[x[k]]m7w = X[m, W} = Z g;[k]h[k- — m]e—jUJk (3)
k=—o00
Spectrogram|z[k]],, o = |X[m,w]\2 )

Figure 2 illustrates the process of creating a u-D spectro-
gram from 2D raw radar data. Figure 3 presents examples
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Fig. 3: Spectrograms results of Radar and Wi-Fi for 7 activities

of u-D signatures for various activities, represented through
color-scaled images for both Wi-Fi and radar. Positive Doppler
frequencies are visualized above the horizontal axis, while
negative Doppler frequencies are depicted below the horizontal
axis, with the frequency scale starting from O Hz. The phase
contains noise due to synchronization issues resulting in a poor
quality spectrogram. So, only Wi-Fi amplitude data is utilized,
causing the Wi-Fi spectrograms to be symmetric.

IV. EXPERIMENTAL SETUP AND DATASET

To perform the data collection, three different sensors,
INRAS Radarbook2 Radar, Raspberry Pi 3B+, and Camera,
are used in the data collection to capture both kinematic
movement and visual data. The Raspberry Pi 3B+ is used
for Wi-Fi CSI data collection. The Azure Kinect Camera is
used as a reference for each data collected from Radar and
Raspberry Pi. In the upcoming section, the setup for radar
and Wi-Fi CSI data collection will be discussed.

A. Experimental Setup for Wi-Fi

It is unfortunate that the manufacturers of the Wi-Fi chips
have not made CSI accessible for researchers. So, to reduce the
effort and provide CSI easily, Atheros CSI [23], 802.11 Linux
CSI tool [24], and Nexmon [25] were developed. Among all
of these techniques, we used Nexmon firmware flashed into
Raspberry Pi 3B+ to collect CSI data. Our data collection
setup is shown in the figure 4.

Nexmon is the new C-based firmware patch that works for
several Broadcom/Cypress Wi-Fi chips. This tool is gaining
a lot of popularity in the present days due to its support
for bem43455c¢0 processor which is found in Raspberry Pi
3B+/4B. Raspberry Pi is a single-board embedded system with
a very low cost. Hence, it is an excellent choice to flash this
firmware to collect CSI data [26]. This method allows one
to extract CSI of 802.11a/g/n/ac up to 80 MHz bandwidth
Wi-Fi channel. Currently, GitHub for Nexmon supports kernel
version 5.10.92. However, the current kernel version is 5.15
which is not supported. So, in addition to the steps mentioned
in the creator’s repository, we had to perform a hold on the
kernel update to compile the firmware successfully.
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Fig. 4: Data collection testbed

Wi-Fi CSI data is collected using 5 GHz Wi-Fi with 80
MHz bandwidth which provides 256 subcarriers. Subcarrier
indices 90 - 120 are selected, as the data looked consistent
without pilot tones in between, to generate spectrograms for
each index. A pilot tone is a known signal that is transmitted
alongside the communication payload in a communication
system. It serves various purposes, such as aiding in channel
estimation, synchronization, or calibration of the receiver, and
has a blank spectrogram when plotted. Hence, the indices are
chosen in such an order that no pilot tones were used to
generate the spectrogram. Spectrograms are generated with
parameter NFFT=256, noverlap=240 using STFT for each
index mentioned before.

B. Experimental Setup for Radar

The INRAS Radarbook? is used for radar data collection.
The radar operates from 76 to 80 GHz, with two transmitters
(TX) and 16 receivers (RX). Since the radar is used only for
collecting the movements of the targets, only 1 TX-RX pair
has been used for the experiment. The device can be initialized
with different parameters depending on the situation. Table I
shows the parameters set for the INRAS Radarbook?2 radar for
the experiment.

The radar was positioned on top of a table with an elevation
of 1 meter prior to data collection. Participants were positioned
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TABLE I: AWR2243 Radar Parameters

Parameter Value
Number of ADC Samples 256
Number of TX Channels 1
Number of RX Channels 1
Starting Frequency 76 GHz
Frequency Slope 53.33 MHz/us
Bandwidth 4 GHz
Pulse Repetition Interval (PRI) 83.33 s
Sampling Rate 3.41 GHz
RX Gain 40 dB
Periodicity 100 ms
Number of Chirp Loops per Frame 1200
Number of Frames 100
Total Time 10 sec

at a distance of 2 meters (6.5 ft) in front of the radar. The data
was collected for 10 seconds for each sample.

C. Dataset

A dataset of 7 activities; fall, lie down, pick up, run, sit
down, stand up, and walk, is developed for this study. The
activities are chosen in such a way that they are distinct from
one another, and Fig. 3 shows the spectrograms of various
activities such as run, walk, fall, etc.

In total, 700 samples were collected, encompassing 7 dis-
tinct gestures. Each gesture was represented by 100 individual
samples, which were collected from 5 different subjects. In
other words, each subject provided 20 samples for each class,
the first 16 samples (80%) were used for training and the
last 4 samples (20%) were used for testing. The upcoming
section will delve into the classification performance achieved
by employing both automotive Wi-Fi and FMCW radar data.
Additionally, it will provide an in-depth explanation of the 2D
Convolution Neural Network (CNN) architecture used for the
classification task.

V. PERFORMANCE COMPARISON
A. 2D CNN Architecture

For the classification of both Wi-Fi and radar u-D spectro-
grams, a 2D CNN structure has been designed. As depicted in
Fig. 5, this CNN architecture is composed of three convolution
blocks (CB), with each block featuring two convolution layers.
The convolution layers of the first two CBs are equipped
with 32 filters, while the last CB employs 64 filters for its
two convolution layers. Each convolution layer utilizes a 3x3
kernel size and a 1x1 stride. Following the two convolution
layers in each block, there is a sequence of operations: a
3x3 max-pooling, batch normalization, ReLU activation, and
dropout with a rate of 0.3. Subsequently, the tensor is flattened
and fed into a dense layer with a size of 128. Then a dropout
operation with a rate of 0.3 and ReLU activation are applied.
Finally, the network concludes with a softmax classifier.

B. Performance Evaluation

For performance evaluation, the dataset was divided into
80% for training and 20% for testing as mentioned in IV-C.
Spectrogram images derived from radar and Wi-Fi data were

= CB = ConvBlock
=]
= &l =] 2 é § Conv Layer 1
=] =
@m@gwmﬁgwﬁa Conv Layer 2
[97) w2
5 Maxpool Layer
128x128 D B B B BacthNorm.
Mic.ro'd()ppler Total params: 117,799 ReLU
Signatures Trainable params: 117,535
Non-trainable params: 256 Dropout

Fig. 5: The CNN architecture for classification

TABLE II: Performance Comparison

Network zesting Precision Recall F1 Score
ccuracy
| Wi-Fi [ 65.09 [ 67.91 [ 65.09 [ 65.72 ]
| Radar ] 97.78 ] 97.99 [ 97.68 [ 97.78 ]

saved as 128x128 grayscale images. The comparison results
between radar-based and Wi-Fi-based signatures are presented
in Table II. It’s evident from the table that radar exhibits higher
efficiency in HAR. Radar achieves a classification accuracy of
97.78%, while Wi-Fi achieves only 65.09%. This indicates
that radar outperforms Wi-Fi-based activity classification by a
significant margin of 32.7%.

Despite the dataset’s challenging nature, given the variabil-
ity in performed gestures among individuals, the confusion
matrix depicted in Fig. 6b illustrates how accurately the 2D
CNN distinguished between different classes for radar-based
spectrograms. Conversely, the confusion matrix in Fig. 6a
shows the performance of Wi-Fi-based HAR. While Wi-Fi
lags significantly behind radar in terms of accuracy, the results
suggest that there is substantial potential for Wi-Fi in this
domain. Further advancements in this field could open up new
opportunities across various applications for Wi-Fi.

VI. CONCLUSION AND FUTURE WORK

The aim of this research is to conduct an initial com-
parative analysis to assess the effectiveness of Wi-Fi and
Radar in recognizing various human activities. The findings
indicate that radar-based activity recognition outperformed Wi-
Fi-based recognition by a substantial margin of 32.7%. With
a testing accuracy of 97.78%, radar has proven to be highly
efficient in this context. While Wi-Fi yielded a more modest
accuracy rate of 65.09%, it offers promise for future improve-
ments in indoor monitoring with ongoing advancements in the
field. It’s worth noting that our initial study was conducted
within a controlled laboratory environment and under specific
guidance. Additionally, we have yet to explore data collected
from cameras. In our future works, we plan to undertake a
more extensive analysis that includes radar, cameras, and Wi-
Fi, using a larger and more diverse dataset encompassing a
wider range of typical indoor activities. Implementing real-
time classification techniques across these sensor modalities
is expected to open up new opportunities for investigating and
monitoring human body movements in indoor settings.
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