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Abstract—Human activity recognition plays a crucial role
in Advanced Driver-Assisted Systems (ADAS). A significant
challenge in achieving automotive autonomy lies in the difficulty
faced by self-driving cars in navigating roads without operational
traffic lights. In such scenarios, human intervention often involves
directing vehicles through signaling with appropriate signs or
gestures. This poses a considerable challenge for autonomous
vehicles to interpret these gestures effectively. This study focuses
on leveraging a dataset of traffic signaling motions obtained
through millimeter-wave (mmWave) radar, a technology com-
monly used in the US traffic system. In this paper, we developed
multimodal convolutional neural networks (CNN), considering
both data fusion and feature fusion of radar range profiles
and micro-doppler (µ-D) signatures, and compared the results
with Unimodal CNNs on range profile and µ-D signatures.
The findings indicate that the fusion-based CNNs outperform
unimodal CNNs based on individual radar range profiles and µ-
D signatures by about 10% and 6.5% respectively. Specifically,
the accuracy achieved through multimodal CNNs reached around
92% and 96% for data-level and feature-level fusion respectively,
showcasing the effectiveness of combining information from both
modalities in enhancing human gesture recognition in traffic-
directing scenarios.

Index Terms—Range Profile, Micro-Doppler (µ-D), traffic
gesture classification, CNN, Data fusion, ADAS, Feature fusion.

I. INTRODUCTION

IN recent years, due to the popularity of radio-frequency
(RF) sensors, sensing technologies have witnessed a re-

markable transformation. The introduction of affordable solid-
state transceivers and powerful graphics processing units
(GPUs) has fueled the adoption of RF sensors across a
wide range of applications. These sensors offer compelling
advantages, including advanced sensing capabilities, compact
size, and cost-effectiveness, making them an ideal choice
for applications such as ADAS and autonomous systems.
Simultaneously, deep learning (DL) has revolutionized various
domains, including human activity recognition (HAR), by
enabling the extraction of meaningful representations directly
from data. This capability has significantly enhanced the
performance of radar-based HAR systems, surpassing the
benchmarks achieved in previous decades [1]. Radar has expe-
rienced a notable surge in popularity in recent decades across
various applications. These applications encompass defense
and security [2],the classification of Unmanned Aerial Vehicles

(UAVs) [3], ADAS [4], indoor monitoring human activity
recognition [5]–[7], sign language recognition [8], and contact-
less health monitoring [9].

In Advanced Driver Assistance Systems (ADAS) and au-
tonomous vehicle (AV) systems, radar serves as a fundamental
sensing component [10], [11]. While AVs are currently trained
to operate effectively under optimal road conditions, real-
world scenarios often necessitate human guidance for safe and
efficient navigation. These instances are particularly prevalent
in dynamic traffic environments such as construction zones,
school areas, or congested intersections, where automated
traffic signals may be malfunctioning or unavailable. In such
situations, traffic officers, school officials, or construction
workers often provide directions to facilitate safe passage. To
navigate these scenarios autonomously, AVs must be equipped
with the capability to recognize and interpret human traffic
guidance [12].

Research has been conducted to comprehend the efficacy
of different sensor fusion, including mmWave automotive
radar and lidar system [13], for the purpose of recognizing
gestures made by human traffic directors. Combining data
from both lidar and radar systems can potentially provide
better results than relying on either technology individually,
but by enhancing the classification algorithm associated with
radar data, the system may achieve satisfactory results at a
lower cost compared to incorporating lidar technology. [14].

While optical sensing [15], range profile [16], range doppler
[17], [18] and µ-D [10] from radar signal have been inves-
tigated seperately in this domain, combining range profile
and µ-D signature has not been previously examined for this
specific problem. The study focuses on 12 distinct motions
commonly employed in directing traffic within the U.S. traf-
fic system. Initially, a dataset is gathered in a laboratory
setting involving 14 participants. This dataset is acquired
using mmWave radars and a motion-capture system, which
captures the positions of the participants’ body parts as they
execute traffic directions. The dataset focuses on scenarios
with individual human directors following pre-defined classes
of directions within the line of sight of the sensor suite.

This paper concentrates specifically on the mmWave radar,
demonstrating its effectiveness in comprehending human traf-
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fic directions. Among various radar types, the Frequency
Modulated Continuous Wave (FMCW) radar has emerged as
the most extensively utilized for hand gesture recognition.
This radar system emits an RF signal that undergoes a linear
frequency sweep across its bandwidth, facilitating the capture
of both range and velocity data. The FMCW radar records
the Intermediate Frequency (IF) signal, storing the collected
information in a three-dimensional structure termed a radar
data cube (RDC) [19]. Several data representations can be
extracted using FMCW radar, including µ-D spectrograms,
range profile, and range-Doppler maps which can be used to
train a machine learning (ML) model for gesture classification.
These data representations or features extracted from them
can be used to train a gesture classifier [20]. At first, time-
frequency domain transformation [21] is done then range
profile and µ-D signatures have been generated from the
collected radar data cubes . Afterwards, the range profile data
and µ-D signatures have been converted to images and classi-
fied using the developed convolutional neural network (CNN)
architecture. The approach employed here is data-level fusion,
a technique that manages raw data at the foundational level of
the system with minimal loss and maximum reliability [22].
This method involves combining the resulting data and using
it as input for both the training and classification processes
in the model. Furthermore, the approach employs feature-
level fusion to enhance the correlation between corresponding
features in two distinct datasets while emphasizing differences
across various data points [23].

In the upcoming sections of this paper the analysis of the
dataset will be presented. The paper is organized as follows:
the experimental setup and dataset is provided in Section II,
mmWave FMCW radar signal model, range profile, and micro-
doppler spectrogram generation are discussed in the Section
III. The development of CNN architecture, unimodal and mul-
timodal neural network are defined in section IV, and Section
V presents the evaluation results of the proposed algorithm.
Finally, Section VI concludes the paper and discusses future
works.

II. EXPERIMENTAL SET UP & DATASET

A. Experimental set up

The dataset used for the purpose of this research was
collected from the authors of paper [10], [13]. Data collection
involved utilizing a Texas Instruments AWR2243 mmWave
automotive FMCW radar. Before data collection, the radar was
situated atop a table at an elevation of 1 meter. Participants
were positioned 3 meters in front of the radar. A computer
display, placed to the left of the radar but outside its field
of view (FOV), presented prompts specifying the required
gestures. Data collection spanned 155 seconds, during which
four distinct gestures were performed, each repeated five times.
A 1-second gap separated repetitions, and a 10-second interval
followed each gesture for previewing the next one. Each
sample had a duration of approximately 5 seconds.

Table I shows the parameters set for the AWR2243 radar
for the experiment.

TABLE I: AWR2243 Radar Parameters [10]

Parameter Value
Starting Frequency 77 GHz
Frequency Slope 66 MHz/µs

Bandwidth 3960 MHz
Pulse Repetition Interval (PRI) 161.29 µs

Sampling Rate 18750 kHz
ADC Samples No 256

Number of TX Channels 3
Number of RX Channels 4

RX Gain 48 dB
Periodicity 40 ms

Number of Chirp Loops per Frame 248
Number of Frames 3875

Total Time 155 sec

B. Dataset

The data collection experiment was conducted using 14
participants. The dataset comprises 840 samples, with each
of the 12 distinct gestures represented by 70 samples. For
this study, a dataset consisting 12 traffic signalling motions
are based on US traffic system. These motions are designed
to direct an oncoming vehicle to either stop, move from the
stopping point in one of three directions, or to have traffic in
any given position wait for other traffic to proceed onto the
road. The gestures involve movement of not only the arms of
the participants but also the hands, as well as the rotation of
the head to look in specific directions.

Short description of each motion is given below.

1) Stop – extending the right arm straight in front with an
open hand.

2) Go – extending both hands straight, then flex both
elbows towards the shoulders.

3) Continue – extending the right arm forward with the
elbow extended, then flex the right elbow towards the
right shoulder.

4) Left Turn – extending the right arm sideways and
pointing right. Simultaneously, extend the left arm and
flex the left elbow towards the left shoulder.

5) Right Turn – extending the left arm sideways and
pointing left. Simultaneously, extend the right arm and
flex the right elbow towards the left shoulder.

6) Stop Left, Go Front – Halt left traffic, then signal
forward by extending the right arm sideways. Simul-
taneously, extend the left arm forward and flex the left
elbow towards the right shoulder.

7) Stop Right, Go Front – Halt left traffic, then signal
forward by extending the right arm sideways. Simulta-
neously, extend the left arm forward and flex the left
elbow towards the right shoulder.

8) Stop Both Sides, Go Front –Halt both sides, then signal
forward by raising both shoulders and extending both
arms.

9) Stop Front, Go Right – Halt, then signal right by
extending the right hand forward with an open hand.
Simultaneously, raise the left arm and flex the left elbow
towards the shoulder.
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10) Stop Front, Go Left – Halt, then signal left by
extending the left hand forward with an open hand.
Simultaneously, raise the right arm and flex the right
elbow towards the shoulder.

11) Stop Front, Go Back – Halt, then signal backward by
extending the left hand forward. Turn the torso right,
raise the right arm, and flex the right elbow towards the
right shoulder.

12) Stop Back, Go Front – Halt back traffic, then signal
forward by turning the torso right, raising the right arm,
and extending the elbow.Move the left hand forward,
flexing the left elbow towards the left shoulder.

III. DATA PROCESSING

A. Radar Signal Model

FMCW radar operation involves emitting continuous RF
chirps, with key components including transmitters, receivers,
mixers, and analog-to-digital converters (ADC) [24]. Reflected
signals from objects are mixed with a local oscillator sig-
nal to produce an IF signal, then converted from analog
to digital. Signal processing algorithms analyze the digital
signal to calculate range and velocity. The frequency shift
between transmitted and received signals determines distance,
and the rate of change indicates velocity. Processed data is
interpreted for insights into the target’s location, speed, and
other characteristics.

The chirp signal can be modeled as,

fc(t) = fs +
BW

τ
t, t ⊆ [0, τ ] (1)

fc(t) = The instantaneous frequency of the chirp signal in Hz.
fs = The initial frequency at time,t = 0s.
BW = The bandwidth in Hz.
τ = The sweep time in seconds.

The FMCW radar records received samples in a structure
known as the radar data cube (RDC). The RDC’s rows
correspond to fast-time samples or ADC values, while columns
represent slow-time samples or the chirp loops transmitted by
the radar. The third dimension of the RDC represents different
RX channels.

The raw radar signal was of the size N ×M × R, where,
N denotes the number of fast-time samples, M is the number
of pulses and R is no of receiver channels. We will only be
working with data from one channel. So, the value of R is 1.

Various RF data representations, such as range-profile (RP)
or µ-D signatures, can be generated through Fourier processing
over the radar data cube (RDC).

B. Range Profile Generation

A range profile in radar is a representation of the radar
return signal’s strength as a function of distance from the
radar antenna. It provides information about the distribution
of echoes along the radial direction, aiding in target detection,
localization, and identification [25].

The formula for the range profile P (n is typically expressed
as:

P (n) = |FFTs[n]| (2)

Where, s[n] = Windowed received radar signal power. and

s[n] = (x ∗ h)[n] =
∞∑
−∞

x[k] · h[t− k]

x[n]=The received radar signal.
h[n] =Window of length 256 along fast time.
So, the range profile was calculated as in equation (3)

P (n) =
FFT(s[n], N, dim)∑

h[n]
(3)

N = Order of FFT = 210.
dim = Dimension along which the Fourier transform (FT)
is taken, for our case, row-wise FT i.e., along the fast-time
samples of each column.∑

h[n] is used to scale down the received radar data after
windowing.

C. Micro-doppler Spectrogram Generation

µ-D in radar refers to frequency changes induced by small
oscillating movements in a target, such as the spinning pro-
pellers of an aircraft or the constant movement of a human’s
arms and legs during walking [26]. These movements result in
frequency modulations in the radar signal, providing valuable
information about the kinematic properties of the target.

The Fourier Transform (FT) is not suitable for analyzing
µ-D signals due to its inability to provide time-dependent fre-
quency information. To address this limitation, time-frequency
analysis techniques are employed, capturing both spectral and
temporal information of µ-D signals. The µ-D information
in radar signals is often visualized using a spectrogram, a
widely used method that simultaneously depicts changes in
both time and frequency domains. The µ-D spectrogram,
typically generated using the Short-Time Fourier Transform
(STFT) [27], allows for effective analysis of time-varying
spectral content.

The µ-D spectrogram can be generated by using the STFT
equations (4) and (5).

STFT[x[n]]m,ω = X[m,ω] =
∞∑

n=−∞
x[n]w[n−m]e−jωn

(4)
Spectrogram[x[n]]m,ω = |X[m,ω]|2 (5)

The STFT employs a Fourier Transform (FT) with a window-
ing function, as opposed to taking the FT of an entire signal
in one step. Window size = 256× 256;
Window shifting stride= 56; The spectrogram is derived from
the power output of the STFT.
The radar transmits chirp signals towards the radar field of
view. As the subject is in the radar field of view, some of the
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Fig. 1: Noise removal for µ-D generation from raw Radar data.

signal reflects from the subject and is received by the radar
as a time-delayed, frequency-shifted version of the transmitted
signal. Meanwhile, the transmitted signal travels beyond the
subject and reflects from the wall behind, which is also picked
up by the radar.

We can consider range bins closer to the subject as shown in
Figure 1. This way we can mitigate insertion of noise as the
large empty space behind the subject can contribute to noise
signals.

We have converted both range profile and µ-D images to
grayscale and resized them to 128 × 128 images for using
them as input to CNN model.

IV. THE CNN ARCHITECTURE DEVELOPMENT

Two unimodal 2D CNN model had been developed for the
classification of range profile and µ-D respectively. Two mul-
timodal 2D CNN networks had been developed to implement
data-level fusion and feature-level fusion of range profiles and
µ-D images. The total number of epochs were taken to be 100
for each CNN model. Adam optimizer was used to train the
epoch with a learning rate of 0.001.

A. Unimodal Neural Network

The same CNN-2D architecture was used for range pro-
file andµ-D. The range profiles and µ-D spectrograms were
saved as 128x128 grayscale images. The unimodal CNNs
are configured to handle input shapes of 128x128x1 for
grayscale images. The unimodal CNN consists of one feature
extraction module and one classification module. As shown

is Fig. 2(a) , the feature extraction module comprises four
convolutional layers, each having 3×3 kernels, a stride of 1×1,
and featuring 32, 32, 64, and 64 filters, respectively. After each
convolutional layer, batch normalization, ReLU activation, and
2×2 max-pooling operations are applied. Subsequently, the
tensor undergoes flattening, entering a dense layer with a size
of 128, a dropout of 0.2, and an activation with ReLU in the
classification module of Fig. 2(b). The architecture concludes
with a softmax classifier.

B. Multimodal Neural Network

1) Data-level fusion: Data-level fusion was applied by
concatenating both range profiles and µ-D images as two
channels of the CNN-2D input as shown in Fig. 2(c). Con-
sequently, the combined input dimensions for each sample in
the CNN became 128×128×2. The CNN-2D model employed
for data-level fusion maintains the identical architecture used
for unimodal classification with one feature extraction module
and one classification module as described in section IV-A.

2) Feature-level fusion: The architecture for feature-level
fusion takes range profile and µ-D signature as separate
inputs for two separate feature extraction modules shown in
Fig. 2(d). The output of the two feature extraction modules are
concatenated. Subsequently, a dense layer with a size of 128,
a ReLU activation layer, and a dropout layer with a rate of
0.2 was applied to the concatenate module output. The model
concludes with a softmax classification layer.
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Fig. 3: Confusion matrix of Feature Fusion CNN (gray-scale)
for 12 class traffic gestures’ data.

V. PERFORMANCE ANALYSIS

Regarding classification, the dataset was partitioned into an
80% training set and a 20% testing set.

The outcomes are presented in Table II. Specifically fo-
cusing on grayscale images, the unimodal model achieves
accuracy scores of 85.71%, 89.28% for range profile, µ-D re-
spectively. For data fusion, and feature fusion models, 91.67%,
and 95.83% accuracies are achieved respectively. Notably,
feature fusion exhibits the highest accuracy among all CNN
networks. Regarding precision, recall, and F1 score, the CNN
for feature fusion demonstrates best performance with scores

Fig. 4: The four traffic gestures that caused the network
confusion

of 95.93%, 95.47%, and 95.48%, respectively. The confusion
matrix in Fig. 3 illustrates the model’s promising performance
across most classes. For classes five, six, nine, and ten the
network performs worse compared to other classes. The Fig
4 shows the instances of these gestures. In correspondence
to the position of radar, these movements do not show much
variation, as the movements are parallel to the radar surface.
Specially, considering one channel of the radar, it is difficult
to pick up lateral movements.

Despite the dataset’s challenging nature due to movement
variations among individuals, as discussed in [10], the pro-
posed CNN model for feature fusion effectively addresses
the dataset’s complexities. This showcases significant potential
and underscores its importance as a valuable feature for
incorporation into ADAS systems.
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TABLE II: Performance Comparison

Network Testing
Accuracy Precision Recall F1

Score
Range Profile 85.71 85.51 85.15 87.74
Micro-doppler (µ-D) 89.28 89.10 89.49 88.60
Data Fusion 91.67 91.05 91.77 91.10
Feature Fusion 95.83 95.93 95.47 95.48

VI. CONCLUSION AND FUTURE WORK

The primary objective of this investigation is to conduct
an initial exploration into the efficacy of data fusion and
feature fusion techniques applied to range profile and µ-D data
obtained from radar systems. The focus is on autonomously
recognizing gestures from human traffic directors, facilitated
by Convolutional Neural Networks (CNNs). The analysis of
radar data reveals promising outcomes, demonstrating en-
hanced accuracy in classifying predefined traffic direction
categories. Notably, these initial findings pertain to single
traffic directions within a controlled laboratory setting.

Future works will encompass more realistic scenarios, incor-
porating multiple channels to improve classification accuracy
for lateral movements with respect to subject body. Addi-
tionally, there is a plan to perform classification using range-
Doppler data, The dataset used in this article also holds lidar
and camera data. Lidar and camera data can be incorporated
with radar data to improve classification accuracy as well.
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