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Abstract

This paper presents a numerical method for solving the inverse problem of reconstructing
the shape of periodic structures from scattering data. This inverse problem is motivated by
applications in the nondestructive evaluation of photonic crystals. The numerical method
belongs to the class of sampling methods that aim to construct an imaging function for the
shape of the periodic structure using scattering data. By extending the results of Nguyen,
Stahl, and Truong [Inverse Problems, 39:065013, 2023], we study a simple imaging function
that uses half the data required by the numerical method in the cited paper. Additionally,
this imaging function is fast, simple to implement, and very robust against noise in the data.
Both isotropic and anisotropic cases are investigated, and numerical examples are presented
to demonstrate the performance of the numerical method.

1 Introduction

We consider the inverse scattering problem for two-dimensional periodic structures which are
assumed to be unboundedly periodic in the horizontal direction and bounded in the vertical
direction. These periodic strutures are motivated by one-dimensional photonic crystals [7]. The
inverse scattering problem of interest aims to reconstruct the shape of these periodic struc-
tures from boundary scattering data. This inverse problem is motivated by applications of
nondestructive testing for photonic crystals.

During the past two decades, there has been a considerable amount of research on numerical
methods for this inverse problem, see [1-3,5, 8,10, 13, 16, 19, 20, 22, 24, 26, 27]. A significant
portion of these studies involves the factorization method [15]. This method, which belongs to
the class of sampling or qualitative methods, was introduced by D. Colton and A. Kirsch [6,14].
The factorization method aims to construct a necessary and sufficient characterization of the
unknown scatterer from multi-static scattering data. It is a fast and non-iterative method that
does not require advanced a priori information about the unknown scatterers. However, it is
not very robust against noise in the data when imaging periodic structures [1]. For periodic
scattering structures modeled by a smooth periodic function multiplied by a small surface
deformation parameter, the near-field imaging method [3,13] can provide reconstruction with
super resolution.

Inspired by the direct or orthogonality sampling methods [9,11,12,25], a sampling method
with novel imaging functions has been recently developed in [21,23] for imaging periodic struc-
tures from scattering data. Similar to the direct sampling method, this new sampling method
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is fast, stable, and simple to implement, avoiding the need to solve an ill-posed problem. Nu-
merical studies also show that this method is more accurate than the direct sampling method
and more stable than the factorization method for imaging periodic structures. This paper
extends the results in [21]. Specifically, we modify the imaging function developed in [21] to
use only half the data required by the original imaging function. Additionally, this imaging
function is fast, simple to implement, and very robust against noise in the data. We study the
modified imaging function for both isotropic and anisotropic cases of periodic scattering media.
Numerical examples are presented to demonstrate the performance of the numerical method
and to compare it with the direct sampling method and the factorization method

The paper is organized as follows. The basics of the scattering from periodic media and the
inverse problem of interest are described in Section 2. The modified imaging function and its
analysis for the isotropic case are discussed in Section 3. Results for the case of anisotropic media
are presented in Section 4. Finally, Section 5 is dedicated to a numerical study of the sampling
method and its comparison to the factorization method and the orthogonality sampling method.

2 Problem setup

We consider a two-dimensional medium that is 27 periodic in the x;-direction and bounded in
the xo-direction. While we choose the period to be 27 for convenience, the medium can have
any arbitrary period. For o € R, a function f : R?2 — C is a-quasiperiodic in z; if

[l + 27, w0) = €2 f(m1,29), Vj €L

Let ¢ : R? — R be a bounded function that represents the material parameter of the medium
relative to that of the background. Assume that ¢ is 27-periodic in z1, supp(q) is bounded
x9, and ¢ = 0 outside of the medium. We consider an a-quasiperiodic incident field, w;y,, to
illuminate the medium. The medium scatters the incident field and produces a scattered field,
Use, Which satisfies the Helmholtz equation,

Auge + kPuse = —k>qu  in R, (1)

where u := ug + u;n, is the total field, and k£ > 0 is the wave number. It is well known that ug.
is also a-quasiperiodic in x;. Thus, the problem can be reduced to one period

Q= (—m,m) xR.
Let D := supp(q) N2, and h > 0 be such that
h > sup{|zs| : @ = (21, 22) € D}. (2)

To ensure that the direct scattering problem is well-posed, we impose the Rayleigh radiation
condition for the scattered field as

( ) Z]EZ U/;_eiajzl+iﬁj(x27h)’ 1.2 Z h? (3)
Uge(T) = . ,
T Sy e, gy <,
where
_ k2 — oz]z, k2 > ozjz _
aj=a+j, fj=4q JEZ
7 i oz? —k2, k< a]2- ’

and u]i, j € Z, are called the Rayleigh coefficients of the scattered field. The condition (3)
means that ug. is an outgoing wave. Note that, we exclude the case where k£ = «; for some j,
which is known as Wood’s anomaly. See [4] for a detailed discussion on well-posedness of the



direct problem under some assumption on ¢ and wave number k. For the study of the inverse
problem of this paper, we will assume that the direct problem (1)—(3) is well-posed. Let

Iyp = (_7T77T) X {ih}v
the inverse problem of interest can be stated as as follows.

Inverse Problem: Using multiple incident fields at a fixed wave number k to illuminate an
unknown scattering medium, determine the geometry D of the medium from measurement of
the scattered fields on either I'y; or I'_j.

To solve this inverse problem, we introduce a new imaging function, which is inspired by
that for the case of full measurement on I'y,, UT'_j, in [21].

3 The imaging function and its properties

For N € Nand [ = 1,2,...,N, we denote by w,(x,l) the incident fields used to illumi-
nate the unknown medium. The corresponding scattered fields and total fields are denoted by
usc(z, 1) and u(zx, 1), respectively. It is well-known that the scattered fields satisfy the Lippmann-
Schwinger integral equation [7]

use(z,1) = kQ/DG(fE,y)cJ(y)U(yvl)dy, (4)

where G(x,y) is the a-quasiperiodic Green’s function, which admits the following series repre-
sentation

4 Z za] x1—y1)+iBj|ra— y2| T,y € Q,x 7& Y. (5)
s

Note that G(-,y) also admits a Rayleigh expansion similar to (3), and its Rayleigh coefficients

gjj-[ (y) are given by

¢ —iajy1 FifB; (y2Fh) 6
47Tﬁ] € ° ( )
Now, let us discuss the following lemma, which is the motivation behind the definition of the

imaging function.

g5 (y) =

Lemma 1. Let Qp := (—m,m) X (—h,h) and

G(‘T’ y) — G(ya 1:)
27 ’

F(z,y) :=

Then, forx €e I, ULy, and y € Qy,

1 |
Flag) =<5 3 3¢ cos(fs (w2 — 1))

2
8 §:8;>0 B
Moreover, fory,z € Qp,
OF(x,y 0G(x, z
[ e - ren e dste) = P ¢
Tipul_y ay(x) aI/(x)
Proof. For x € I'yy, and y € Qp, we have x93 > y2 and
G,y 47r Z el (z1—y1)+ifj(z2— yz) (8)



Gy,z) = - —piay(y1—z1)—ifj(z2—y2)

From these two expressions, we can see that the terms for which 3; is complex-valued in G(z, y)
coincide with their counterparts in G(y,x). Thus,

Z el (@1=y1) (eiﬁj(l‘z—yz) + e—iﬂj(ﬂﬁz—yz))
j B; >O

1 Z za] r1— yl)cos(ﬁj(l'Z_yQ))‘

] ﬁj>0

Next, for fixed z,y € Qp,

/ OF @ Y) 2y - F(a:,y)@ ds(z)

Cin 67/ 81/
= { Z e’iaj(l'l_yl)sin(ﬁj(x2 _y2))zie—z‘aj(ml—zl)—wfj(m_m ds(x)
1672 Jp )75
+h ]:/Bj>0 jez j
1 1
+16772/F Z ety COS(/BJ($2_y2 Ze ioyj (z1—21)—if; (za—22) ds(z)
+h B >0 J ez

el(]l—]z)xl dxy
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Note that,
/ﬂ ei(jl—jz)ﬁ dxy = 2m it g1 = ja, <9)
- 0 if j1 # Jo,
therefore,
OF (x,y) =——— 0G(x, z i 1 B (he) s (21—
/ éyy)G(x,z) —F(x,y)éy) ds() = o 553 (h — ))e 18 (h=22) giej (21 -y1)
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87T]:,3j>0 Bj

Similarly, for x € I'_j, and y € Qp, we have x5 < o2, and we can show that
1
P =gm Z ) cos (B (22 — ).

Moreover, by the same reasoning, we can also show that

8F($,y)7 aG(.I',Z) 1 za (21—y1)—iB; (22—y2)
[ e - e = 62 ; jeraa)



Therefore,

OF(z,y) 9G(z, 2)
/F+ . TG(JJ,Z) - F(:U,y)T ds(x)

h —h
1
=9
1
:TZ
J:B;>

C

/\

et (z1—y1)+ifj(z2—y2) | gicj(z1-y1)=iB; (22—yz)>

e =170 cos(B) (22 — y2)) = F(2,y).

= \

O]

The reason why (7) helps us define the imaging function is as follows. Using the Rayleigh
expansion of the Green’s function, the left-hand side of (7) becomes

OF (z,y) Gz, 2)
/F+hur " —y Gl 2) — Flay)—7 — ds(z)

Then, as done in [21], we can show that

2 3 85 (oF Gt () + g5 2y (D) = 12 / F(=,)q(y)u(y,1) dy.

J:8;>0 D

So, if we define the imaging function as

we would have

From this equation, we can expect the imaging function to exhibit behaviors similar to the
kernel F'(z,y). We will discuss this in detail shortly. In the case of data measured on either
I'yp or I'_p, we will only have either u;“ or u;, respectively. A natural way to modify the

imaging function is to omit the term for which data is not available. For example, when data

is measured only on I'y, the term g; (z)u; (I) will be dropped.
For z € Qy, we define the (general) imaging function Z(z) as

N P
7()= | 30 8 (X 0uf g (&) + X~ 0wy 095 (2))] (10)

=1 {5:8;>0

where p € N is used to sharpen the resolution of the imaging function, ¢t € {U, L, B} (abbrevi-
ations for Upper, Lower, and Both) and

1, fort=1U,B 1, fort=L, B
=+ _ ) ) — _ ) )
X(t)_{(), fort =L ’ X(t)_{o, for t = U.

The choice of ¢t here allows the imaging function to apply to scattering data measured on either
one side (Upper or Lower) or both sides (Both) of the periodic structures. The imaging function
defined above satisfies the following property.



Theorem 2. For all z € Qy, the imaging function Z(z) satisfies

N

I(z) =)

=1

p

k2/DFt(z,y)q(y)U(y,l)dy

where

— Z el (z1—y1)+if;(22—y2) ift="U

167T ]B,]>0

za'(z —y1)—iB;(z2—y2) ift =
Fi(z,y) = 167r2 BZ>0 S T "

J

87r2 Z 1(1](21 Y1) COS(B]‘(ZZ — yz)) ift=~h
j J>0

Remark 3. The essence of Theorem 2 is as follows. Graphical observations display that the
kernel functions (11) exhibit a peak when z =~ y and decay rapidly as z and y are apart from
each other. Moreover, this peak becomes more distinct with larger values of k, as shown in
Figure 1. The behavior of the kernel can be justified in some simple cases. For example, in the

Figure 1: The values of |Fy/(z,0)| for a = 0.

context of near-field measurements, where I'yp, are very close to periodic scatterer D, we can
reasonably assume that zo = yo. Furthermore, if we consider a ~ 0 in the incident field, the
kernel Fy(z,y) simplifies to

Z](Zl yl) COS Zl ))
Fy(z,y) 2 Z — -2 167T2k 71.2 Z / — ;2

J:lil<k -7 1<j<k

When z1 = yy, the terms cos(j(z1—y1)) all reach their mazimum value simultaneously. However,
for z1 # y1, these terms also have other mazima, but they no longer align at the same point as
J varies, since the periods of the cosine functions differ. Therefore, Fy(z,y) will have a larger
value when z =~ y. As z moves farther from y, the cosine terms are more likely to differ in sign
at z, leading to cancellations in their sum. As a result, F(z,y) becomes significantly smaller. A
larger k results in the summation of more mazimal values when z =~ y and more cancellations as
z and y are apart from each other. Thus, the peak of Fi(z,y) appears more distinct for larger
k, as illustrated in Figure 1. This justification certainly applies to Fy(z,y) fort =L ort = B.

It is worth noting that Theorem 2 can be proved using the integral representation (7) by
following a similar approach as in [21]. However, in this paper, we propose an alternative
simple proof. This proof does not rely on Green’s identities, which allows us to study the
imaging function using scattering data measured from only one side of the periodic structure.



Proof. Case t = U. Note that, the Rayleigh coeflicients of the scattered field satisfy

1 ,
ul(l) = / use(x,l)e” "% ds(x). (12)
J 2 Ty
Substituting the Lippmann-Schwinger equation (4) into the integral (12) gives
1 .
0= [ (8] Gralmatuly.hdy)e e dso)
2 Typ D

Note that the integrand is bounded and D, I'y; are bounded sets. Therefore, by Fubini’s
theorem,

21 Ty

uj (1) = kz/ (1 Ghra(z, y)e '™ dS(w)> qa(y)uly,l)dy
D

2 /D gF ay)uly, )dy.

Plugging this into the definition of Z(z) gives

N - p
15)=Y| ¥ Aaf@u 0
=1 |j:8;>0
N - p
=S [ 3 857G 0| awut.bay
=1 7P \js>0

By (6), for j such that 8; > 0,

1

+ + _ tajz1+iBj(z2—h) ,—ia;jy1—iBj(y2—h)
A ! — e J J e J J

eiaj (z1—y1)+iB; (22—y2) .

- 167T25J2-
Therefore,
2 Bigf ()9 () 16772 3 e = iy (e ), (13)
7:8;>0 j J>0
and thus,
N P
=> |k /FU 2 y)a(y)uly, D)dy
I=1
Case t = L. By similar reasoning, we can show that
Bi9; (y) = Fr(2,y) (14)

and
the result then follows.
Case t = B. Adding (13) and (14) together gives

> 8 (9f Glof ) + g ()9 1)) = Fulz) + Fi(z,9) = Fa(z,y).

j:,@’j>0



Therefore,

N - -
7)) =30 | Y 8 (o Gl () + g5 2y ()

=1 j:Bj>0

N
=Y kQ/DFB(Z,y)q(y)U(yvl)dy

p

d

Theorem 2 and Remark 3 partly justify the resolution of the imaging function Z(z). The
next theorem shows that Z(z) is stable with respect to noise in the data.

Theorem 4. For 6 > 0, let uscs5(-,1) be the noisy scattered fields that satisfy

luse,s(-5 1) — wse (-, l)|]L2(p+hUp_h) <94, foralll=1,2,...,N,
and let ufé(l) be the corresponding Rayleigh coefficients. We define Zs(z) the imaging function
as in (10) where uF (1) are replaced by u}%(l). Then, for all z € Q, the following stability

J
property holds,
Z5(2) —I(2)| £ C5, as d— 0,

where C > 0 is a constant independent of z and J.

The proof of this theorem follows a similar approach to that in [21] and is therefore omitted
here. In summary, we have introduced an imaging function for reconstructing the unknown
isotropic scatterer D using scattering data measured either above or below the periodic struc-
tures. We also provided partial justification for its resolution and stability. In the next section,
we extend the analysis of this imaging function to the case of anisotropic media.

4 The case of anisotropic media

In the case of scattering from anisotropic media, let @ : R? — R?*? be the material parameter
of the periodic scattering medium. We assume that @) is a matrix-valued bounded function
which is 27-periodic with respect to x; and that @ is zero outside of the medium, and supp(Q)
is bounded in z3. We consider the following equation

Atge 4+ kuge = —div(QVu),

where ug. satisfies the radiation condition (3). We refer to [4] for results on the well-posedness
of the direct problem under some assumption on () and wave number k. As in the isotropic case
we assume that the direct problems is well-posed for the study of the inverse problem. Again
we denote by D := supp(Q) N Q2 and the inverse problem is to determine D from given data of
uge on I'yp or I'_p. From [17] we know that the corresponding Lippmann-Schwinger equation
is given by

wela) = div, | Gla.n)Q) Valy)dy. (15)
To simplify the presentation, we will analyze the imaging function for the case of measured data

on I'; 5, the other cases can be derived through a similar process as in the isotropic case. Recall
that the imaging function for this case is

N L p
I(z) ==Y | Y Bl (g, (2)] (16)
I=1 {5:8;>0

for z € . The following theorem is an extension of Theorem 2 to anisotropic media.



Theorem 5. The imaging function satisfies

N P
=X / F(z,9) - Qy)Vul(y,)dy (17)
=1 /D
where
F(z y 1671—2 Z [ :| ’L()éj(Zl_yl)‘f'lﬁj(Zg—yg)' (18)

B ﬁ]>0

Proof. Plugging (15) into (12) gives

1 ,
= — div, ( G(z,y)Q Vu(y,l)dy) e "M ds(x)
271' Typ D
1 G(z,y) (Qu1(y)9y, uly, ) + Q12(y)Oyuly, 1)) dy

,1

— dlvz e~ g ()

T o /26* ) (Q21 (1) By, u(y, 1) + Qaa(y)dy,uly, 1)) dy

— 1/ / D, G(2,y) (Q11(9) Dy, u(y, 1) + Q12(y)dyu(y, 1)) dy e " ds(x)
I'yn /D

1/ / 02, G(2,y) (Q21(1) Dy, u(y, 1) + Qa2 (y)Dyyu(y, 1) dy "™ ds(x).
r.,JD

Swapping the integrals we obtain,

<

= [ (;ﬂ / axl(;(x,y)e-mﬂlds(x)) (@01 (). 1)+ Quay)dyu(v. 1)) dy

+ /D (2171' /F+h 8x2G(x,y)e—iajw1ds(x)> (Q21(y)8ylu(y,l) + Q22(y)8y2u(y,l))dy

Since G(zx,y) satisfies the radiation condition, so do J,,G(z,y) and 0,,G(x,y), and their
Rayleigh coefficients are ia; gj(y) and if3; gf(y), respectively. Thus,

uf 0= [ a5} ) @u )0 un.1) + Qua(w)Oyuuly. D) dy
D
" /D 18557 (1) (Qo1(1)Dy 1y, 1) + Qoo (1) Dy u(y, 1)) dy
- [ ) [‘;jj] Q) Vuly, 1y,

Plugging into (16) we obtain

N p
I(z) = > Bl ()gf (2)

=1 |5:8;>0
N A P

=S| i [ @[] e vu
=1 |j:8;>0
N ] P

2 Jo e ﬁz 5 M eI Q(y) Vuly, Dy
=1 >0
N P

= F(z,y) - Qy)Vuly,)dy
>,

This completes the proof. O



The kernel F(z,y) has a similar behavior as Fyy(z,y) defined in (11). This means that, for
any vector v € R? and 2,y € Q,, F(z,y) - v has a large value when z ~ y and has a much
smaller value when z moves away from y. Therefore, we can expect the imaging function to
have a large value when the sampling point is inside the medium and much smaller value when
the sampling point moves away from the medium. We will confirm this numerically in the next
section.

5 Numerical study

In this section, we present numerical results on the performance of our imaging function. We
only present results for the case of transmission data, in which the incident sources are placed
below the scatterer and the receivers are placed above the scatterer. Numerical results for
full-aperture data can be found in [21]. We also compare our method with the orthogonality
sampling method (OSM) and the factorization method (FM). Recall that the imaging function

for our method is »

Ti(z) =Y _| D Biud, (g (2)]
=1 |j:8;>0

and the imaging function of the OSM is given by

N [
1

p

/ Use,s(2,1) Gz, 2)ds(z)
Tin

N

Tosm(z) = Z

=1

For the factorization method, we employ a singular value decomposition and regularize the
method by truncating all singular values that are less than 0.1. The parameters used in the
simulation are as follows.

e h=1 a=0.
Wave number: k£ = 10.5.

e Sampling domain: (—7,7) x (—1,1), partitioned into a grid of 128 x 64 sampling points.
e Number of incident sources: N = 128, placed on I'_3 = (—m, 7) x {—3}.
e Number of receivers: 128, placed on I'y1 = (—m,7) x {1}.

e Noise level: 6 = 20%. The noise is added to the scattered fields according the following
model:
Uge,§ = Use + 5||usc||L2n>

where n : 'y, — C is the noise function whose values are random numbers such that
2 = 1.

e Exponent of the imaging functions: p = 5.

We refer to [21] for a detailed study of the behavior of the imaging function for different sets
of parameters, including different values of h, «, k, §, as well as different numbers of incident
sources and receivers. The imaging function behaves similarly in the case of limited-aperture
data with respect to these parameters.

To generate synthetic data for the inverse problem, we solve the direct problem using a
spectral method studied in [18]. We compute the scattered fields at the receivers’ location, add
noise to them, then compute the corresponding Rayleigh coefficients via (12). The incident
fields we used are of the form

uin(x,l) = G(z,x;), =€ Qp,

where z; is the receivers’ location, [ =1,...,N.

10



5.1 Results for isotropic media

First, we show numerical examples of some isotropic media. Recall that in this case, the medium
is characterized by the function ¢(z). In all examples, the function g(x) has the form

(o) [ 05 izeD,
M=V 0 ifz¢D.

We consider four periodic media with four different geometries D.

Aligned ellipses (Figure 2). This medium consists of two horizontally aligned ellipses in
each period. The radii of each ellipse are 7/4 and 0.4.

6 4 2 0 2 4 6

(a) True geometry

-6 -4 -2 0 2 4 6
(b) Reconstruction by the proposed method

-6 -4 -2 0 2 4 6
(c¢) Reconstruction by the OSM

-6 -4 -2 0 2 4 6
(d) Reconstruction by the FM

Figure 2: Reconstructions by the proposed method, the OSM, and the FM for the isotropic
aligned ellipses.

Aligned squares (Figure 3). This medium consists of two horizontally aligned squares in
each period. The side of each square is 0.4.

Aligned crosses (Figure 4). This medium consists of two horizontally aligned crosses in
each period. Each cross is made up of one horizontal 0.55 x 0.18 rectangle and vertical 0.18 x0.45
rectangle.

Aligned kites (Figure 5). This medium consists of a kite-shaped object in each period.

In all cases, the proposed imaging function outperforms the OSM. The FM simply fails
because of a high level noise and lack of data. Note again that we aim to solve the inverse

11



-6 -4 -2 0 2 4 6

(a) True geometry

6 4 2 0 2 4 6
(b) Reconstruction by the proposed method

(c¢) Reconstruction by the OSM

-6 -4 -2 0 2 4 6
(d) Reconstruction by the FM

Figure 3: Reconstructions by the proposed method, the OSM, and the FM for the isotropic
aligned squares.

problem under lack of data, which is extremely challenging. Nevertheless, the proposed method
is able to provide reasonable results.

5.2 Results for anisotropic media

In this part, we present results for some anisotropic media. In this case, the medium is charac-
terized by a 2 x 2 matrix-valued function Q(z). In all examples, Q(x) has the form

[ diag(0.5,0.25) if z € D,
Q(“)_{o ifx ¢ D,

where diag(0.5,0.25) is a 2 x 2 diagonal matrix whose first and second diagonal entries are 0.5
and 0.25, respectively. We consider the same geometries as in the isotropic case. Figures 6-9
show the reconstructions of the proposed imaging function versus those of the OSM and FM.

The comparison result is similar to the isotropic case, with the proposed method outperforming
both the OSM and FM.

Acknowledgments: This research is partially supported by NSF Grants DMS-2208293 and
DMS-2243854.
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Figure 7: Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned squares.
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Figure 8: Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned crosses.

17



6 4 2 0 2 4 6

(a) True geometry

-6 -4 -2 0 2 4 6
(b) Reconstruction by the proposed method

-6 -4 -2 0 2 4 6
(¢) Reconstruction by the OSM

6 4 2 0 2 4 6
(d) Reconstruction by the FM

Figure 9: Reconstructions by the proposed method, the OSM, and the FM for the anisotropic
aligned Kkites.
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