Topological flat bands in a family of multilayer graphene moiré lattices
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Moiré materials host a wealth of intertwined correlated and topological states of matter, all arising
from flat electronic bands with nontrivial quantum geometry. A prominent example is the family
of alternating—twist magic—angle graphene stacks, which exhibit symmetry—broken states at rational
fillings of the moiré band and superconductivity close to half filling. Here, we introduce a second family
of twisted graphene multilayers made up of twisted sheets of M/— and N—-layer Bernal-stacked graphene
flakes. Calculations indicate that applying an electric displacement field isolates a flat and topological
moiré conduction band that is primarily localized to a single graphene sheet below the moiré interface.
Phenomenologically, the result is a striking similarity in the hierarchies of symmetry—broken phases
across this family of twisted graphene multilayers. Our results show that this family of structures offers
promising new opportunities for the discovery of exotic new correlated and topological phenomena,
enabled by using the layer number to fine tune the flat moiré band and its screening environment.

INTRODUCTION

Twisting two monolayer graphene sheets by an angle of 8 ~ 1.1° creates magic-angle twisted bilayer graphene
(MATBG), in which several new phases of matter have been realized [1-8]. A much broader range of novel physics
can be unveiled in closely related structures having three or more sheets of graphene. Early experiments investigated
the strongly correlated and topological physics arising in twisted monolayer-bilayer and double-bilayer graphene,
noting intriguing similarities between the two systems that were, nevertheless, qualitatively distinct from MATBG [9-
20]. Whereas the investigation of MATBG has expanded to alternating-twist structures up to five layers [21-25], the
study of structures that include Bernal-stacked components has until now been limited to just those two, despite
many others in the twisted M + N family carrying predictions of closely related flat bands (tM + N, where M and
N are positive integers representing the number of Bernal-stacked graphene layers twisted atop one another) [26].

From a symmetry perspective, t M + N structures differ fundamentally from the family of alternating—twist magic—
angle graphene stacks by the breaking of Cs, symmetry (in—plane rotation by 180°). This allows a gap to be opened
between the lowest valence and conduction bands at charge neutrality by an electric displacement field, D. The
collective Berry curvature of many graphene layers contributes to a non-zero valley Chern number of the moiré bands,
yielding topological electronic states when interactions generate a spontaneous valley polarization. Experimentally,
an intriguing result is that the correlated electronic states appearing in t1+ 2 are rich with emergent topology [9-12],
and are furthermore remarkably similar to many of the states seen in t2 + 2 [14-20]. The intertwined correlated and
topological states are most similar when the direction of D is oriented from the monolayer to the bilayer of t1 + 2,
which localizes the conduction band mostly to the bilayer side.

In this work, we extend the study of tM + N graphene structures to include configurations as thick as six total
layers, focusing on t1+ 3, t2+ 3, t1 44, and t2 4 4. Despite the inclusion of these additional layers of graphene in the
moiré structure, we find striking commonalities in both the non—interacting and correlated physics across this entire
family. Continuum model calculations indicate that these unexpected similarities likely arise because low—energy
states in the conduction band are localized to just three graphene sheets, irrespective of the total number of layers
in the structure: the two layers at the twisted interface and one more immediately adjacent. Ultimately, the result is
that adding graphene sheets above and below does not significantly affect the band structure, simply protecting the
trio of active layers and strengthening the roles of topology and correlations in shaping the electronic system.

RESULTS

Isolated moiré—localized flat bands

We first compare the band structures of various representative tM + N structures (t1 + 2, t1 + 3, t2 4 3, t2 + 4,
Figs. la—d) as predicted by the Bistritzer-MacDonald continuum model [3] (see Methods). Upon incorporating an
interlayer potential arising from an external D pointing from the thinner to the thicker graphene constituent, the
moiré conduction band in each of these structures (purple in Figs. la—d) becomes relatively flat and isolated by gaps
to both the moiré valence band and higher moiré conduction band. Other gaps between neighboring bands can also
open for each particular tM + N construction, with the details depending sensitively on 6 and both the magnitude
and sign of D owing to broken mirror symmetry (see Methods).

Band structure predictions for each of these structures are corroborated by maps of the longitudinal resistivity,
pze- The data are collected as a function of top— and back—gate voltages, shown in Figs. le-h after converting the



gate voltages to moiré band filling, v, and displacement field, D (see Methods). In qualitative agreement with the
band structure calculations, all exhibit insulating states at the charge neutrality point (v = 0) and at full-filling of
the lowest moiré valence and conduction bands (v = £4) over certain ranges of D, marked by large values of p,, that
exceed h/e? and diverge as the temperature is lowered (h is Planck’s constant and e is the charge of the electron).

It is not immediately obvious that isolated flat bands would form in many of these tM + N structures. Bernal
graphene films with three or more layers feature multiple low—energy bands [27, 28], all of which must hybridize with
the bands from the other twisted constituent to yield an isolated moiré band. To help explain how different tM + N
constructions form similar moiré flat bands, Figs. 1i-1 show calculations of the layer-resolved local density of states
(LDOS) at fullilling of the lowest moiré conduction band (i.e., integrated over the purple bands in Figs. la—d).

Considering first the t1 + 2 structure (Fig. 1i), the moiré potential localizes the LDOS on a triangular lattice of
ABB-stacked sites, with most weight appearing on the graphene sheet one below the moiré interface. The layer—
resolved LDOS configuration of t1 + 2 recurs in the thicker t M + N structures, with the additional layers of graphene
away from the twisted interface carrying a comparatively small density of states. In this sense, the t1 + 2 structure
can be considered as the basic building block of all of the thicker t M + N constructions. Given that their low—energy
bands are all similarly localized nearby the moiré interface, it is natural to expect that the physics of all of these
tM + N structures may exhibit common features.

Common features of the correlated phases

The transport measurements in Figs. le-h exhibit insulating states at certain integer values of v beyond those
predicted by the single-particle band structure. As previously observed in a variety of other moiré systems, these
correlated insulators arise as a consequence of spontaneous symmetry breaking within the moiré flat bands due to
Coulomb interactions [1-25]. The most prominent correlated insulators for the devices in Fig. 1 appear for D > 0,
where the asymmetry with D is due to the lack of mirror-symmetry (see Methods). The differences between the
D > 0 and D < 0 correlated insulators has been explored in detail for the case of t1 + 2 [9, 12]. Here, we turn our
attention to analyzing the properties of the correlated phases common across the family of tM + N structures, i.e.
for D > 0, comparing to what is known about the symmetry—broken states in t1 + 2 and t2 + 2.

Figure 2 shows high-resolution zoom-ins of both longitudinal and Hall resistances, p;, and Ry, for t1 42, t2 42,
t143, and t2+ 3, along with simple schematics of the material structure. As was seen for the non-interacting features
in Figs. le-h, the qualitative arrangement of correlated states are similar across all of these tM + N constructions.
The most robust insulating state arises at ¥ = 2 in all, spanning the largest range of D and exhibiting the largest value
of pz. at low temperature. R,, reverses sign across the v = 2 state, consistent with an interaction-induced band gap
with hole-like carriers at v < 2 and electron-like carriers at v 2 2. Previous measurements of the evolution of the
v = 2 states in t1 + 2 and t2 + 2 with in—plane magnetic field indicate that they are likely spin polarized [9, 14-16];
analogous measurements in our t1 + 3 and t2 4+ 3 samples are also consistent with spin—polarized insulators (see
Supplementary Fig. 2). All samples exhibited a region of v and D surrounding the insulator at ¥ = 2 characterized
by a slight increase in p,, and an abrupt sign reversal in R,,. These features have previously been explained for t14-2
and t2 + 2 as arising due to the formation of a spin—polarized half-metal state with a reduced isospin degeneracy of
two.

Resistive states additionally appear at v = 1 and 3 in each of the p,, maps in Fig. 2. These feature additional
sign reversals (or large enhancements) in R, , indicating the formation of additional symmetry-broken states with no
remaining isospin degeneracies. Previous studies of t1 + 2 and t2 4 2 suggest that the ground-state ordering of these
odd v phases is less consistent, as spin—valley polarized (SVP) states compete closely with intervalley coherent (IVC)
states [9-12, 14-18]. These two can be challenging to distinguish in an experiment, as we discuss in more detail in
the Methods.

It is interesting to note that the t2 4+ 4 device from Figs. 1d,h.l, as well as the additional t1 + 4, t2 + 4 and t2 + 5
devices we have studied, did not show correlated insulating states or pronounced regions of enhanced resistivity with
an Ry, sign reversal at a small magnetic field (Supplementary Fig. 3 and Supplementary Fig. 10.) This may be due
to: (i) the smaller band gaps to higher moiré bands in these thicker structures, (ii) bands that are more dispersive in
reality than those predicted by calculations, (iii) devices made away from the optimal flat—band twist angle for each
layer number construction, or some combination of all of these. Indications of a symmetry—broken Fermi surface at
v = 2 in t2+44 did appear over a small range of magnetic field around B ~ 4 T (see Supplementary Fig. 4). However,
this correlated phase is quickly suppressed by competing quantum Hall states originating from v = 0. Nevertheless,
the new Fermi surface formed at ¥ = 2 in a modest magnetic field indicates that this sample is also close to a strongly
correlated regime.

Abundance of correlated states in t2 4 3
Among all the t M + N samples we have studied, t2+ 3 devices had the largest extent of symmetry—broken phases as



a function of v and D (Fig. 3, see also Supplementary Fig. 5). In addition to exhibiting symmetry—broken correlated
insulators for both signs of D in the lowest moiré conduction band, the samples showed evidence for symmetry broken
phases distinct from the usual states seen in the other tM + N systems (see Fig. 1g, Supplementary Fig. 6, and
Supplementary Fig. 11).

Figure 3a summarizes our experimental observations for a t2 + 3 device with a 1.50° twist angle, incorporating
observations from Figs. 2g,h, 3b,c, and Supplementary Fig. 7. States labeled in black or dark gray are insulating or
highly resistive (the unexpected gapped state at v = 0.25 will be discussed in future work). Solid red curves denote
sign changes in R, that likely correspond to van Hove singularities, whereas dashed black curves denote abrupt jumps
in R, without a sign change, possibly indicating the formation of a new interaction-induced Fermi surface. Shaded
regions in Fig. 3a correspond to metallic states with different isospin degeneracies. Experimentally, the degeneracy
can be identified either from the spacing, Av, between Shubnikov de Haas (SdH) oscillations in ¥ — D maps taken
at finite magnetic field (Figs. 2g and 3b) or from the Fourier transform of SdH oscillations collected by sweeping the
magnetic field at fixed gate voltage (Fig. 3¢ and Supplementary Fig. 7). The degeneracy extracted from Awv is four
outside the correlated region (e.g., Av = 4 in the top of the map shown Fig. 3b), consistent with the four—fold spin
and valley degeneracy of graphene. The degeneracy is reduced to two inside the region surrounding the correlated
insulator at v = 2 (light red in Fig. 3a), consistent with our inference of a spin—polarized ground state.

The degeneracy is harder to discern in the regions surrounding v = 1 and 3 (see Methods and Supplementary Fig.
8), although there is a region of v closely surrounding v = 1, colored in purple, where Av is unambiguously one. There
is also a small pocket of a symmetry—broken phase over a narrow range of D = 0.4 V/nm between v = 0 and v = 0.21.
Figure 3c shows the normalized Fourier transform of the SAH oscillations measured at a fixed D cutting through this
small pocket, as denoted by the horizontal black dashed line in Fig. 2b (see Methods for further description of the
analysis). We see that all isospin degeneracies are lifted in this pocket, corresponding to a quarter—metal phase for
v < 0.21. This is, to our knowledge, the first observation of a quarter—metal state in the tM + N family that is not
directly associated with the v = 1 insulator, pointing to the unusually strong interactions in this system. Interestingly,
it does not exhibit the anomalous Hall effect (AHE), suggesting that it may either carry a very small Berry curvature
or instead be in an IVC ordered state (Supplementary Fig. 9).

We further see an unexpected insulating state at v = 0 near D = 0 across several t2 4+ 3 devices with different
twist angles (Fig. 3d and Supplementary Fig. 5). Our single-particle band structure calculations do not predict
such a gap for any reasonable model parameters (see Methods), suggesting that it may arise spontaneously. This
hypothesis is supported by measurements of the temperature dependence at v = 0 for the device with § = 1.41°
(Fig. 3e). The sample resistance at |D| > 0.3 steadily increases as the temperature is lowered (grey and black curves
in the inset), consistent with a band insulator. Near D = 0, on the other hand, insulating behavior abruptly onsets
below T" < 10 K (purple curve in the inset). Thermal activation measurements of this state yield a maximum gap
size of A¥=0 = 1.54 £ 0.05 meV (see Supplementary Fig. 13). Although not definitive, the abrupt emergence of the
gapped state with temperature at D ~ 0 and its relatively small size suggests that it may arise owing to interactions,
similarly to the correlated insulators at charge neutrality in bilayer graphene [29-32] and rhombohedral few—layer
graphene [33-36]. Overall, it remains an open question as to why t2 + 3 exhibits the most robust and prevalent
symmetry—broken phases over a wide range of ¥ and D, as our band structure modeling does not predict that the
bandwidth should be small compared to other tM + N structures.

Topological states in t M + N graphene

Finally, we turn our attention to the topological properties of the t M + N moiré bands. The AHE has been seen
previously in both t1 4+ 2 and t2 + 2 [9, 10, 12, 18]. In the former, anomalous Hall resistances close to the quantized
values h/2e? and h/e? have been observed, consistent with a SVP state formed from bands with a §-dependent valley
Chern number of either C,, = 1 or 2 [9, 10]. The AHE is typically not observed in t2+2 at v = 1 and 3, despite strong
indications of a valley Chern number of 2, potentially indicating IVC order [14-17]. Nevertheless, in select cases it
has been observed for v > 3, pointing to the emergence of a SVP state [18].

In our t1 4 3 sample, the correlated state at v = 1 is too weakly developed to determine its isospin ordering (even
with an applied magnetic field, as shown in Supplementary Fig. 11). However, the state at v = 3 exhibits a clear
AHE characterized by hysteresis in R, upon sweeping B back and forth, as shown in Fig. 4a at optimal doping
and displacement field. Figure 4b shows the doping dependence of the AHE, characterized by the difference between
forward and backward sweeps in a magnetic field, AR;, = (Rly — Riy) /2. The AHE state is most pronounced close
to v = 3 and is quickly suppressed upon doping. The corresponding Landau fan diagram shows that the gapped state
drifts to smaller v upon applying B (Fig. 4c), with a slope indicating a Chern number of C' = —2 as determined
by the Stfeda formula (j—g = C7). These observations are all consistent with an incipient quantum anomalous Hall
effect (QAHE) owing to a SVP state at v = 3. Band structure modeling predicts a valley Chern number of C, = 2,



consistent with our observation. The QAHE is not well developed, likely due to a combination of a small energy gap
and substantial magnetic disorder in the sample [37]. These topological properties are reminiscent of those seen in
t1 + 2 devices with similar twist angles [10].

The topological properties of t2 + 3 are more unusual. We again find a valley Chern number of C, = 2 in our
band structure calculations and see clear signatures of an AHE, in this case below v = 1 (shown in Fig. 4d for
v = 0.75). The magnitude of the AHE is small, but persists over a wide range of doping and vanishes very near v = 1
(Fig. 4e). However, the corresponding Landau fan diagram exhibits an insulating state emerging from v = 1 with zero
slope up to high magnetic field (Fig. 4f), indicating that the v = 1 symmetry—broken state is topologically trivial.
Although the C' = 0 state may arise due to IVC ordering, the application of a modest B should favor a first—order
phase transition to a SVP state. Notably, however, the absence of such a transition to a C' = 2 Chern insulator
state is inconsistent with this scenario. An alternative possibility is that, upon opening a gap at v = 1, interactions
renormalize the Chern number of the filled band to C' = 0. In this scenario, the AHE can arise due to Berry curvature
hot spots in the reconstructed bands formed by spontaneous symmetry breaking, while the total Berry curvature of
the symmetry—broken band integrates to zero. Further theoretical and experimental work is needed to better resolve
the nature of this state.

DISCUSSION

Taken collectively, our measurements establish a family of moiré graphene structures composed of Bernal-stacked
graphene thin—film constituents with a small interfacial twist. By extending prior studies of twisted monolayer—bilayer
and twisted double-bilayer graphene to thicker tM + N variants, we discover a number of striking commonalities in
both the single—particle and correlated states across this entire family.

The localization of low—energy states to the layers at and just below the moiré interface, which underlies this
phenomenon, may also generalize to moiré systems built from other vdW materials. For instance, a promising future
direction would be to extend studies of twisted homobilayer transition metal dichalcogenides to similar multilayer
constructions. This could, for example, help to establish new control knobs over the recently discovered fractional
quantum anomalous Hall states in twisted bilayer MoTe, [38-41]. Accurately modeling these structures will require the
development of new theoretical analyses beyond those considered here, including the effects of electrostatic screening
of D and crystal fields at the twisted interface [42]. In parallel, further experimental studies into the largely unexplored
physics of twisted monolayer—trilayer and bilayer—trilayer graphenes are very likely to reveal exciting new topological
states. Our results thus establish a way to greatly expand the palette of topological flat bands available for study.

METHODS

Device fabrication. To fabricate tM + N structures, we first optically identified an exfoliated graphene flake
with a step, such that one portion of the flake is M layers thick whereas another portion is N layers. We next
isolated regions of the M- and N-layer components using polymer—free anodic oxidation nanolithography [43-45]. We
used standard dry transfer techniques with a polycarbonate (PC)/polydimethyl siloxane (PDMS) stamp [46] to stack
isolated flakes with an interlayer twist by rotating the stage by an angle 6 after the M—layer flake was picked up.
These structures were encapsulated with hexagonal boron nitride flakes and graphite gates, and then transferred onto
a Si/Si02 wafer. We used standard electron beam lithography and CHF35/02 plasma etching to define vdW stacks
into a Hall bar geometry and standard metal deposition techniques (Cr/Au) [46] to make electrical contact to the
graphene multilayers. Optical images of all completed devices measured in this work are shown in Supplementary
Fig. 1, and a summary of our observations across all devices is provided in Supplementary Table 1.

We note that, in principle, there could be regions of the exfoliated graphene flakes with metastable stacking orders
other than Bernal. However, these non—Bernal domains are known to relax to the ground—state Bernal stacking
configuration during stacking unless great care is taken to isolate only non—Bernal domains and minimize strains
during transfer [47]. Since we do not take any such precautions, it is overwhelmingly likely that all non—Bernal
domains relax to the Bernal configuration in our final samples. Another possible ambiguity in our sample construction
is AB vs. BA stacking configurations between the twisted components. For example, t24+2 can host symmetry—broken
states when twisted slightly away from 0° (tAB+AB) or away from 60° (tAB+BA) [48]. While we fabricated all of our
devices by twisting slightly away from 0°, it is known that AB-BA stacking faults naturally exist in bilayer graphene
flakes [49], and these cannot be observed optically. It is therefore possible that tM + N devices with M > 2 and



N > 2 have unintentional domains of AB-BA at the twisted interface. These could, in principle, have different band
structures and valley Chern numbers. Further work is needed to carefully distinguish these potential scenarios.

Transport measurements. Transport measurements were carried out in various cryogen-free systems using a
lock—in amplifier with frequencies between 13.33 and 17.77 Hz and a.c. bias between 1 and 10 nA. All data presented
in the main text were acquired in Bluefors dilution refrigerators with nominal base temperatures between 10 and
30 mK, unless otherwise noted. Data reported at and above 1.5 K (e.g., Fig. 3d—e) were acquired in a Cryomagnetics
variable temperature insert.

The top and bottom gate voltages were used to independently control the carrier density, n, and perpendicular
displacement field, D according to the following relations: n = (V;Cy + V4,Ch)/e and D = (V;Cy — V4, Ch)/2€g, where
Cy and (Y} are the capacitance per unit area of the top and bottom dielectrics, respectively, V; and V; are the
top and bottom gate voltages, respesctively, and €y is the vacuum permittivity. When specified, we perform field
symmetrization (antisymmetrization) of p,, and R, following pgs = [pze(B) + puz(—B)]/2 and Ryy = [Rzy(B) —
Ry (=B)]/2.

We estimate the twist angle, 6, between M— and N-layer flakes by fitting the sequences of quantum oscillations
emerging from v = 0 and ¥ = £4 in Landau fan diagram measurements of p,, and R,, as a function of n and
magnetic field, B. From the Landau fan fit, we determine the superlattice density, n,, and extract the twist angle

using the relation ng = 4%;, where a = 0.246 nm is the graphene lattice constant.

Extraction of Fermi surface degeneracy from quantum oscillations. The frequency of quantum oscillations,
fv, is extracted from low—field Landau fan measurements taken at constant D (Supplementary Fig. 7) The frequency
of oscillations, fg, is first extracted from the Fourier transform (FFT) of each field sweep with respect to 1/B. The
frequency is then normalized by the total carrier density, f, = fp/(®on). For the case of a singly connected Fermi
surface at the Fermi level, the inverse quantity f, ! represents the degeneracy of charge carriers [47]. Supplementary
Fig. 7b and c show the analysis outside of the correlated region of the t2 + 3 device, where there is a sharp peak in
the FFT signal at f,; ! = 4, consistent with the four—fold degeneracy of graphene. Various line cuts are shown in the
remainder of Supplementary Fig. 7, and indicate quarter metal (f, ' = 1) and half metal (f,; ! = 2) states formed
over certain ranges of n and D.

Multiband transport in t2 + 3 graphene. Regions of parameter space in the t2 + 3 device shown in Fig. 3a
colored in white correspond to situations in which we are unable to unambiguously determine the degeneracy of the
Fermi surface. Especially around v = 3, this ambiguity likely arises due to multiple Fermi surface pockets coexisting
within the moiré Brillouin zone. Supplementary Fig. 8 shows evidence for this in the form of curved trajectories of
quantum Hall states seen in Landau fan diagrams. Such curved trajectories violate the Stfeda formula, which always
predicts linear trajectories of topological gapped states, and generally arise due to the need to fill charge carriers
simultaneously into two separate bands that each have their own sequence of Landau levels [50].

Determination of isospin polarization at integer band fillings. We employ a combination of out—of-plane
and in—plane magnetic field measurements of p,, and R, in order to infer the isospin polarization of the correlated
states seen at v = 1, 2, and 3. In—plane magnetic field couples primarily to the spin degree of freedom in graphene
owing to its very weak spin-orbit coupling strength (although there can be orbital contributions in multilayer graphene
samples [51]). Previous measurements of the correlated insulator at v = 2 in t1 + 2 and t2+ 2 showed that the energy
gap, as extracted from thermal activation measurements, grows with in—plane field [9, 14-16]. This behavior is
consistent with spin—polarization, as the in—plane field adds a Zeeman contribution to the energy gap. We have
performed similar measurements in our t1 + 3 (6 = 1.29°) and t2 + 3 (# = 1.50°) devices. Supplementary Figs. 2a-b
show measurements of p., as a function of v in the moiré conduction band at various values of the in—plane magnetic
field, By;. In both devices, p., is highly sensitive to B)| very near v = 2, exhibiting enhanced resistance for larger
in—plane fields. These observations are consistent with spin—polarized correlated insulators at ¥ = 2 in t1 4+ 3 and
t2+ 3. For the t1+ 3 device, we further performed temperature-dependent measurements at several values of B)|. In
the Arrhenius plot shown in Supplementary Fig. 2c, we can extract the gap size of the v = 2 insulator in the thermally
activated regime following p%7? o A/ 2kBT wwhere AY=2 is the gap size and kg is the Boltzmann constant. The
results are shown in Supplementary Fig. 2d. The measured gap size grows monotonically as a function of Bj. By
fitting with a line, assuming A*=2(B) = gugB + A"=%(0), we find g ~ 2, consistent with a spin-polarized insulating
state.

At v = 1 and 3, calculations typically find the most competitive ground states to be either IVC states or SVP
states [51]. When C, is non-zero, these states are distinguished by the Chern number of the symmetry—broken
state, which is 0 for the IVC and non-zero for the SVP. A well-developed IVC state with non—zero C, would be a
trivial insulator at integer band filling, whereas an SVP would exhibit the QAHE. Although these are in principle
straightforward to distinguish, there can be various complicating factors in experiments. One example is twist—angle



inhomogeneity in the sample, which can greatly obscure the QAHE. Another is that the correlated state may not be
fully gapped at zero magnetic field, preventing a straightforward determination of the topology of the state. There
are also exotic forms of IVC ordering that break time-reversal symmetry, leading to a metallic AHE [12]. Although
band structure calculation of C, can provide guidance, the complexity of the calculation for thick t M + N structures
may result in incorrect predictions. Furthermore, interactions can potentially renormalize the Chern number of the
symmetry—broken states at partial band filling. In general, we are not able to unambiguously determine the ground
state ordering at v = 1 and 3 in our devices, except for the select cases shown in Fig. 4 in the main text.

Symmetries of tM+ N structures. All tM+N structures studied here break Cy, symmetry, thus enabling a
gap to be opened at the CNP by D. Structures with M = N have mirror symmetry about the twisted 2D plane, and
thus exhibit (approximately) identical transport for D > 0 and D < 0. In contrast, all structures with M # N break
this mirror symmetry, and thus have different transport properties depending on the sign of D. This was explored in
detail for the case of t1+ 2 in Refs. [9, 12], and is also evident for the new, thicker structures studied here (Fig. 1). In
cases where correlated states are seen for both signs of D, their properties are distinct owing to substantial differences
in the layer-polarization of the LDOS and corresponding differences in the non-interacting bands.

Band structure calculations. We utilize a generalized Bistritzer-MacDonald Hamiltonian for the single particle
band structure calculations. The effective Hamiltonian can be written as

— HM Hitlt
H= (Hint Hy )’ )

where Hj; and Hy are Hamiltonians for the M— and N-layer graphene, respectively, and H;, captures the interlayer
coupling of the twisted moiré interface. The multilayer graphene Hamiltonians are given by

Hy — A4 r r 0
' Hi—A, Tf I’
HM: r F Hl—Ag r ,
0 I It H, — Ay

with

Hy = 0 Loy (ky — iky)

andAi:(%i(?i> (2)

The Hamiltonian is appropriately truncated according to how many layers there are. We use hopping parameters
(Y0, 71572, V3,74, 7v5) = (2610,361, —20, —283, —140,20) meV. The parameter d; captures the effect of a potential
difference across the layers. For simplicity, we assume that the potential drops uniformly across the structure with a
total magnitude given by § = ZZAiJfN |6;]. For example, the potentials for the t1 4 2 system would be §; = §/2, 02 =
0, and 63 = —d/2. By this definition, 6 > 0 corresponds to an experimentally applied D > 0 that points from

the top to the bottom, or thin to thick layer as shown in Fig. 1. In the continuum approximation, the M- and

N-layer systems are coupled when the Bloch wave vectors differ by ¢j, where ¢y = (0,0), ¢1 = 1/Luy (—2—\/%, —277),

G =1/Ly (2—\/%, 727r>, and Ly = a/0 is the moiré wavelength. The interlayer Hamiltonian is then given by

=0



where tp; = 110 meV and o = 0.5.

Example band structures calculated for the t1 + 3 system are shown in Supplementary Fig. 15a—c. Across many
tM + N constructions, we generally find overlap between the moiré conduction and valence bands with § = 0. Further,
the moiré valence band tends to be more dispersive than the moiré conduction band, consistent with our experimental
observations that correlated states primarily occur on the electron-doped side. We performed a series of calculations
for a range of § and A for all tM + N layer combinations up to t3+6, resulting in over 5000 individual band structures.
To inform our experimental search, we quantify how isolated and flat the moiré conduction band is for each set of
parameters by defining

¢ = g% (4)
SE

where Ai4 (Ap) is the energy difference between the top (bottom) of the moiré conduction band and the remote
conduction band (moiré valence band), and ¢E is the bandwidth of the moiré conduction band (Supplementary Fig.
15¢). We define £ = +1 when A4 and A are both positive, and £ = —1 otherwise.

With this definition, ¢ becomes more positive as the moiré conduction band becomes more flat and isolated. When
¢ is negative, the moiré conduction band overlaps with the moiré valence band and/or the remote conduction band.
Supplementary Fig. 15d—g shows dE, A4, Ay, and ¢ as function of 6 and 4 for the t1+ 3 system, in which we find the
optimal angle condition (defined as when ¢ achieves its largest positive value, shown in purple) to be at 6 ~ 1.30° and
0 ~ 475 meV. Detailed results for each layer combination are shown in Supplementary Figs. 16—29. We summarize
the results for all layer combinations in Supplementary Fig. 14, where each data point is color—-coded according to the
maximum value of ¢ that is obtained for each system. Systems up to t2 + 3 have appreciably flat and isolated moiré
conduction bands, but for t1+4, t2+ 4, and thicker, ¢ is very small or negative. For each layer combination in which
we find that a flat and isolated moiré conduction band is predicted (i.e., ¢maz > 0), we further calculate the valley
Chern number of the moiré conduction band at the optimal parameter condition (i.e., for the values of § and ¢ where
¢ = dmax). We find that all systems have non—zero C,, reaching as large as C,, = 3 for thicker layer combinations.

We note that we use the continuum model predictions of the nominally optimal twist angle only as a rough guide
for our experiments. Theoretically, it is not clear whether band flatness, band isolation, or some specific combination
of the two is the most important parameter to optimize for achieving strongly correlated states. Even upon choosing
a metric for the nominally optimal twist angle in theory, the particular value differs for each tM+N construction
and depends on detailed parameters in the continuum model which are not necessarily well known. Experimentally,
determining the optimal twist angle for even a single t M+ N construction requires studying dozens of devices, which
is also beyond the scope of this work. We thus leave a careful determination of the evolution of the optimal twist
angle on the layer number construction to future efforts.

Finally, we consider the effect of changing the Hamiltonian parameters to potentially explain the unexpected
insulating state at v = 0 and D = 0 in t2 + 3 system (Fig. 3d—e). Within reasonable values of the tight binding
parameters (v;), we find that there is always band overlap for twist angles between 1.33° and § = 1.72°. The only
parameter that has a significant effect at ¥ = 0 and D = 0 is the strength of the moiré coupling, tj;. In Supplementary
Fig. 30, we show band structure calculations varying ¢j; around the nominal value of 110 meV. Increasing t); has
the effect of flattening the bands further, but does not create a gap at charge neutrality. Reducing ¢;; can create a
small gap at charge neutrality, but in this case the moiré bands are much more dispersive and overlap with the remote
bands. Both scenarios are inconsistent with the observations in our experiment. Taken together with the temperature
dependence measurements shown in Fig. 3e, we conclude that the insulating state at ¥ =0 and D =~ 0 is most likely
to be a correlated state.

Berry curvature and Chern number calculation. We use the method from Ref. 52 to calculate Berry
curvature. The moiré Brillouin zone (MBZ) is discretized into a 50 x 50 grid. For each k in the MBZ, we calculate
the U(1) link:

where N, (k) = |(u(k + dk,k,)|u(k))| and g = 1,2. The Berry curvature is then given by:

iln W (k)

where W (k) is Uy (K)Us(k + 0k k1)U (k + 0koks)Us (k). We ensure that —m < —iln W (k) < «. The valley Chern



number is calculated as:

1

T o

C, /M d kQ(k) (7)

where MBZ denotes an integration over the moiré Brillouin zone.

DATA AVAILABILITY

Source data for all the main text figures are available for this paper in the Supplementary Information. All other
data that support the findings of this study are available from the corresponding author upon request.

CODE AVAILABILITY

Source code used to perform the calculations in this paper is available from the corresponding author upon request.

REFERENCES

[1] Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands.
Nature Physics 16, 725-733 (2020).
[2] Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nature Materials 19, 1265-1275 (2020).
[3] Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proceedings of the National Academy
of Sciences 108, 12233-12237 (2011).
[4] Sudrez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
[5] Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80-84
(2018).
[6] Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43-50 (2018).
[7] Lu, X. et al. Superconductors, orbital magnets, and correlated states in magic angle bilayer graphene. Nature 574, 653-657
(2019).
[8] Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059-1064 (2019).
[9] Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer—bilayer graphene. Nature Physics
17, 374-380 (2021).
[10] Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66-70 (2020).
[11] Shi, Y. et al. Tunable van Hove singularities and correlated states in twisted monolayer-bilayer graphene. Nature Physics
17, 619-626 (2021).
[12] He, M. et al. Competing correlated states and abundant orbital magnetism in twisted monolayer-bilayer graphene. Nature
Communications 12, 4727 (2021).
[13] Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Physical Review Letters 123, 197702
(2019).
[14] Shen, C. et al. Correlated states in twisted double bilayer graphene. Nature Physics 16, 520-525 (2020).
[15] Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221-225 (2020).
[16] Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer—bilayer graphene. Nature 583, 215-220
(2020).
[17] He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nature Physics 17, 26-30 (2021).
[18] Kuiri, M. et al. Spontaneous time-reversal symmetry breaking in twisted double bilayer graphene. Nature Communications
13, 6468 (2022).
[19] Liu, L. et al. Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene. Nature
Communications 13, 3292 (2022).
[20] Liu, L. et al. Observation of first-order quantum phase transitions and ferromagnetism in twisted double bilayer graphene.
Phys. Rev. X 13, 031015 (2023).
[21] Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in
magic-angle twisted trilayer graphene. Nature 590, 249-255 (2021).
[22] Hao, Z. et al. Electric field tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371,
1133-1138 (2021).
[23] Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nature Materials 21, 877-883
(2022).
[24] Burg, G. W. et al. Emergence of correlations in alternating twist quadrilayer graphene. Nature Materials 21, 884-889
(2022).



10

[25] Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538-1543 (2022).

[26] Goodwin, Z. A. H. et al. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene.
Phys. Rev. Mater. 5, 084008 (2021).

[27] Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the k point. Phys. Rev. B 74,
075404 (2006).

[28] Waters, D. et al. Mixed-dimensional moiré systems of twisted graphitic thin films. Nature 620, 750755 (2023).

[29] Martin, J., Feldman, B. E., Weitz, R. T., Allen, M. T. & Yacoby, A. Local compressibility measurements of correlated
states in suspended bilayer graphene. Phys. Rev. Lett. 105, 256806 (2010).

[30] Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended
bilayer graphene. Science 330, 812-816 (2010).

[31] Mayorov, A. S. et al. Interaction-driven spectrum reconstruction in bilayer graphene. Science 333, 860-863 (2011).

[32] Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotechnology
7, 156-160 (2012).

[33] Bao, W. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Physics 7, 948-952
(2011).

[34] Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210-214 (2020).

[35] Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nature Nanotech-
nology 19, 188-195 (2024).

[36] Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nature Nanotech-
nology 19, 181-187 (2024).

[37] Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nature Physics 18, 885-892
(2022).

[38] Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTes. Nature 622, 6368 (2023).

[39] Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74-79 (2023).

[40] Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTes. Nature 622, 69-73 (2023).

[41] Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTes. Phys. Rev.
X 13, 031037 (2023).

[42] Rickhaus, P. et al. Gap opening in twisted double bilayer graphene by crystal fields. Nano Letters 19, 8821-8828 (2019).

[43] Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Letters 18, 8011-8015
(2018).

[44] Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Physics 15,
237-241 (2019).

[45] Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in
twisted bilayer graphene. Nature Physics 16, 926-930 (2020).

[46] Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614—617 (2013).

[47] Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene.
Nature 598, 434-438 (2021).

[48] He, M. et al. Symmetry-broken Chern insulators in twisted double bilayer graphene. Nano Letters 23, 11066-11072 (2023).

[49] Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650-655 (2015).

[50] Shi, Y. et al. Tunable Lifshitz transitions and multiband transport in tetralayer graphene. Phys. Rev. Lett. 120, 096802
(2018).

[61] Ledwith, P. J., Khalaf, E. & Vishwanath, A. Strong coupling theory of magic-angle graphene: A pedagogical introduction.
Annals of Physics 435, 168646 (2021).

[62] Fukui, T., Hatsugai, Y. & Suzuki, H. Chern numbers in discretized Brillouin zone: efficient method of computing (spin)
Hall conductances. J. Phys. Soc. Jpn. 74, 1674-1677 (2005).

ACKNOWLEDGEMENTS

Work at UW was supported by National Science Foundation (NSF) CAREER award no. DMR-2041972 (M.Y.)
and NSF MRSEC 2308979 (X.X. and M.Y.). Work at UBC was supported by NSERC, CFI, CIFAR and the Quantum
Matter Institute (J.F.). The development of twisted graphene samples is partially supported by the Department of
Energy, Basic Energy Science Programs under award DE-SC0023062 (M.Y.). XX. and M.Y. acknowledge support from
the State of Washington—funded Clean Energy Institute. D.W. was supported by an appointment to the Intelligence
Community Postdoctoral Research Fellowship Program at University of Washington administered by Oak Ridge
Institute for Science and Education through an interagency agreement between the US Department of Energy and
the Office of the Director of National Intelligence. E.T. and E.A.—M. were supported by grant no. NSF GRFP DGE-
2140004. K.-W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Numbers 21H05233 and 23H02052)
and World Premier International Research Center Initiative (WPI), MEXT, Japan. Y.-H.Z. was supported by the
National Science Foundation under Grant No. DMR~-2237031. This work made use of shared fabrication facilities
provided by NSF MRSEC 2308979. This research acknowledges usage of the millikelvin optoelectronic quantum



11

material laboratory supported by the M.J. Murdock Charitable Trust.

AUTHOR CONTRIBUTIONS

D.W., E-T., A.O., E.LA-M., M.H., and K.H. fabricated the devices. D.W., R.S., E.T., and M.H. performed the
measurements and analyzed data. Y.Z. wrote the code to calculate the continuum model band structures. D.W.
performed the continuum model calculations. K.W. and T.T. grew the BN crystals. X.X., J.F., and M.Y. supervised
device fabrication, measurement, and data analysis. D.W., R.S., E.-T., J.F., and M.Y. wrote the paper with input
from all authors.

COMPETING INTERESTS

The authors declare no competing interests.

FIGURE CAPTIONS



12

a t1+2 b t1+3 c t2+i/\\’/\_/\ d t/2+4 — \
Cy= 2 C,=3
. U Sy -~ S

E (meV)

—7] A

K M r K' K M r K'
107t 102 107t 102 109 102 107t 10?
€ Pxx (kﬂ) f Pxx (kﬂ) Ee—= g Pxx (kQ) h Pxx (kﬂ) Ee—a

FIG. 1. Non—interacting features of t M 4+ N graphene. a, Band structure calculations for t1+ 2 at its nominally optimal
twist angle (6 = 1.13°) and interlayer potential (§ = 50meV); defined as when the moiré conduction band (purple curve) has
the narrowest dispersion while being simultaneously gapped (grey shaded regions) from both neighboring bands. Energy is
measured with respect to the bottom of the moiré conduction band. The calculated valley Chern number, C,, is shown for the
moiré conduction band (see Methods for details). b—d, Similar calculations for (b) t1+ 3 (# = 1.3°,§ = 50meV); (¢) t2 4 3
(0 = 1.45°,6 = 90meV); and (d) t2+4 (0 = 1.15°,6 = 50meV). e, Resistivity at zero magnetic ﬁeld as a function of v and
D in a t1 4+ 2 device at 6 = 1.13°. Gray color denotes experimental artifacts where negative resistance is observed, attributed
to the effects of highly resistive states. f—h, Similar measurements for (f) t1 + 3 with 8 = 1.29°%; (g) t2 + 3 with § = 1.50°;
and (h) t2 + 4 with § = 1.15°. Positive D is defined as pointing from the thin component to the thick component for all
systems. Measurements taken at T' = 1.7 K, except for e, where T' = 0.3 K. i—1, Layer—resolved LDOS calculated for the moiré
conduction band, corresponding to the layer combinations and parameters in panels (a—d). The LDOS is normalized to the
maximum value in each panel. Red and orange shadings delineate the M and N layers above and below the twisted interface.
The interlayer potential used in the calculations corresponds to positive D in the experiment.
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FIG. 2. Symmetry—broken states in various tM + N systems. a, Map of the longitudinal resistivity around the
correlated states in the t1 + 2 device at & = 1.13°. The map is symmetrized at B = £0.5 T. b, Similar map of the Hall
resistance, anti-symmetrized at B = £0.5 T. c,e,g, Analogous pzr maps for the (c) t2 + 2 device with § = 1.30°; (e) t1 + 3
device with 8 = 1.29°; and (g) t2+ 3 device with 8 = 1.50°. d,f,h, Analogous R, maps for the same set of devices. Schematics
in the top panels indicate the layer combination for each measurement. The measurements are performed at nominal sample
temperatures of (a-b) T'= 300 mK, (c—f) 7T'= 20 mK, (g—h) 7' = 100 mK.
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FIG. 3. Correlated states in t2 4+ 3 graphene. a, Summary phase diagram determined from magnetotransport mea-
surements in the § = 1.50° device (see Methods for the determination of different features). Black vertical features indicate
insulating states (Ins). The v = 1 and 3 states are in shaded dark grey to indicate that it is a weakly—developed resistive state
corresponding to an incipient insulator. Shaded regions indicate where the metallic states are either normal-metals (NM),
half-metals (HM), or quarter-metals (QM). White regions within the bounding box indicate situations in which the degeneracy
cannot be uniquely determined. Solid red lines denote likely van Hove singularities (vVHS) with Rgy=0. Dashed black lines
denote abrupt jumps in Rsy. b, Map of p,. acquired at T' = 20 mK and symmetrized at B +0.9 T, corresponding to the black
dashed box in (a). Spacing of the quantum oscillations (Av) indicates the degeneracy of the metallic phases. Corresponding
schematics indicate the degeneracy for representative regions of normal-metal (Av = 4, top), half-metal (Av = 2, bottom
right), and quarter—metal (Av = 1, bottom left) phases. ¢, Fourier transform analysis (FFT) of the SdH measurements taken
along the dashed black line at D = 0.41 V/nm in (b). The FFT amplitude is normalized to the maximum value of the
measurement, and the frequency of oscillations is normalized to the density (see Methods for details). d, Measurements of pgx
for three t2 + 3 devices with different 6 acquired around v = 0. All measurements are performed at T = 2 K. e, Temperature
dependence of p,. as a function of D, acquired in the § = 1.41° device at ¥ = 0. Line cuts at select values of D are shown for
each state in the inset, normalized by their respective values at T' = 2 K. The gray shaded region indicates a region of the data
influenced by artifacts from the electrical contacts.
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FIG. 4. Anomalous Hall effects in t1+ 3 and t2 + 3 devices. a, R,, measurement in the t1 4+ 3 device (§ = 1.29°)
acquired as B is swept back and forth at ¥ = 3.02 and D = 0.523 V/nm. b, Doping dependence of the AHE effect at the same
displacement field characterized by the difference in the forward and backward sweeps, AR,y = (RL, — R%,)/2. ¢, Landau
fan diagram of R, versus B around v = 3. The correlated Chern insulator emerging from v = 3 exhibits a slope consistent
with C = —2. d, Ry measurement in the t2 + 3 device (0 = 1.50°) acquired at v = 0.75 and D = 0.532 V/nm. e, Doping
dependence of the AHE in the same device. f, Landau fan diagram of p,, versus B around v =~ 1. The correlated state at
v = 1 projects vertically, consistent with C' = 0. All data acquired at T" = 20 mK.
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Supplementary Figure 1. Optical micrographs of the tM + N devices in this study. a-i, All scale bars are 10 pum.
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Supplementary Table 1: Summary of transport properties for all devices

tM+N 0 D
D~ D<0 D>0
vr=20 v=—4 v=20 v=2 v=4 v=—4 v=20 v=1 v=2 v=3 v=4
t142 1.13° - BI BI crt BI BI BI 1, CI crt BI
AHE
242 1.30° - BI BI CI BI BI BI crf CI crt BI
t143 1.29° - BI - - - - BI crt CI cit, BI
AHE
t2+3 1.33° It - - - BI BI BI - - - BI
t243 1.41° I BI BI CI, BI BI BI CI, crt crt BI
B>0 AHE
243 1.50° I BI BI crt BI BI BI CI', CI crt BI
AHE
243 1.72° I BI BI
t1+4 | 0.78° - BI - - - - BI - - - BI
t2+4 1.15° - BI . - . . BI - CIL, . BI
B>0
t2+4 1.42° If BI - - - - BI - - - BI
t245 1.53° If BI - - - - BI - - -

e BI denotes a band insulator

o CI denotes a correlated insulator
e I denotes an insulator of unknown origin (i.e., cannot unambiguously distinguish between BI and CI)

e B > 0 indicates that the state is only observed in a magnetic field

e T indicates that transport features are suggestive of an incipient insulator, but not well developed at B = 0

e AHE denotes the presence of the anomalous Hall effect
e - indicates a metallic state
e Empty cell indicates that our gate range does not include the specific state
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Supplementary Figure 2. Evidence for spin-polarization at v = 2. a, Measurement of p, versus v for the t1 4+ 3 sample
with § = 1.29° acquired at different values of Bj. The measurement is acquired at variable D in order to cut through the
correlated states at each integer v. The inset shows a zoom-in around v = 2, showing an increase in the resistance of the
correlated insulator with B)|. The measurement was performed at T' = 1.7 K. b, Similar measurement for the t2 + 3 device
with 8 = 1.50°, acquired at D = 0.531 V/nm and T = 4 K. ¢, pz acquired at v = 2 in the t1 4+ 3 device as a function
of temperature, shown at different values of B)| in increments of 2 T. The dashed lines show the linear fits in the thermally
activated regime used to extract the gap size of the correlated insulator (see Methods). d, Extracted gap sizes determined
by the fits shown in c¢. Error bars are standard deviations from the fits. The dashed black line shows the best linear fit to
the experimentally determined gap sizes. The slope yields a g-factor consistent with g = 2 (see Methods), consistent with a

spin-polarized insulator.
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Supplementary Figure 3. Additional tM + N devices. a, p;, map of a t1 + 4 device with 6§ = 0.78° acquired at B =0 T.
High-resistance states emerge over a small range of D at v = 0 and v = %4, indicating the emergence of isolated moiré bands.
b, Similar measurement for a t2+4 device with § = 1.42°. ¢, Similar measurement for a t2+5 device with § = 1.53°. Schematic
above each map shows cartoon representations of the given twisted M- and N-layer combination. Measurements for a-b were

acquired at 7' = 1.5 K. Measurements for ¢ were acquired at 7' = 100 mK.
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Supplementary Figure 4. High-field correlated state in a t2 4+ 4 device. a, p,. (top) and R, (bottom) maps for the
t2 + 4 device with 6 = 1.15° (the same as shown in Fig. 1h of the main text). The longitudinal (Hall) maps are symmetrized
(anti-symmetrized) at B = 0.5 T. b, Landau fan diagrams acquired at D = 0.35 V/nm over the range of doping range indicated
by dashed line in a. A high-resistance state accompanied by an abrupt sign reversal in R,y emerges at v = 2 for B =~ 4 T. There
are additionally quantum oscillations associated with this state that project to v = 2 at B = 0. Together, these observations
indicate the emergence of a symmetry-broken state at ¥ = 2 in a magnetic field. This state is destroyed at higher field by

competition with other quantum Hall states. All measurements were acquired at 7' = 100 mK.
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Supplementary Figure 5. Twist angle dependence of t2+3. p., map as a function of v and D for four 2+3 devices with
different twist angles: a, § = 1.33° b, 1.41° ¢, 1.56°, and d 1.72°. Data shown in a, b and c feature insulating states at v =0
and v = +4. Only devices shown in b and ¢ exhibit correlated insulating states at positive D for partial filling of the moiré
conduction band. In addition, c further shows a correlated insulating state at negative D. All data taken at 7'= 1.5 K.
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Supplementary Figure 6. Correlated states at high field in a t2+3 device with 8 = 1.41°. a, p,, (top) and R,
(bottom) maps. The longitudinal (Hall) maps are symmetrized (anti-symmetrized) at B = 0.1 T b, Landau fans acquired at
D = —0.25 V/nm over the doping range indicated by dashed line in a. The data shows clear quantum oscillations projecting
to v = —2 at B = 0, associated with a high-resistance state accompanied by an abrupt sign reversal in R, above B ~ 10 T.
Together, these observations indicate the emergence of a symmetry-broken state at v = 2 in a magnetic field. All measurements
were acquired at T = 1.5 K.
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Supplementary Figure 7. Analysis of phase boundaries and quantum oscillations in the t2+3 device with 6 = 1.50°.
a, Numerical derivative of 1/pz» with respect to v, highlighting the quantum oscillations (QOs) at B = 0.9 T. Red/purple
shaded regions correspond to the half/quarter metal (HM/QM) regions in the phase diagram shown in Fig. 3a of the main
text (only a subset of all symmetry-broken regions are shaded here for clarity). Labels c-j associated with lines of constant D
show where data in the panels with the same label were obtained. b, Expanded view of the antisymmetrized R., obtained
at B = 0.9 T overlaid with contours of Rz, = 0 (VvHS) and R,, jumps. c¢ - 1, Landau fan diagrams obtained at fixed D, and
their corresponding FFT spectrum (where the FFT signal is normalized to the maximum value for each measurement). In c,
The dominant frequency occur at f, = 1/4, indicating that the area of a cyclotron orbit is 1/4 of the total Luttinger volume,
corresponding to a normal metal with four-fold spin and valley degeneracy. The spectra at each v have been normalized by the
maximum amplitude at that band filling. For QOs that originate from an integer filling v # 0, the zero of v was set to that
band filling before performing the FFT analysis. In i and k, the zero was set to v = 2. In 1, the zero was set to v = 4. For
ease of comparison, the horizontal axes are shown as v without any offsets. With the exception of a, b, which was obtained at
T = 100 mK, the remaining panels were obtained at the base mixing chamber temperature of T'= 10 mK.
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Supplementary Figure 8. Signatures of multiband transport in the t2+3 device with 8§ = 1.50°. a, Longitudinal
resistance and its numerical derivative obtained between v = 1 and 2, highlighting the evolution of curved quantum Hall states
developing at low-B. b, Hall resistance as a function of B. ¢, Zoomed-in view of the phase diagram shown in the main text
for reference. Horizontal lines indicate the displacement fields D = 0.555 V/nm and D = 0.450 V/nm where panels (a,b) and
(d,e) were respectively obtained. d, e, Longitudinal and Hall resistance obtained near v = 3. Measurements were obtained at
the base mixing chamber temperature of T'= 10 mK.
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Supplementary Figure 9. Hall and longitudinal magnetoresistance at low density in the t2+3 device with 6 = 1.50°.
a, High resolution pzr map reproduced from Fig. 3b, focusing on regions that show no quantum oscillations (near v = 0.25, D
between 0.45 and 0.5 V/nm) or fully degeneracy lifted quantum oscillations (near v = 0.2, D between 0.35 and 0.45 V/nm).
b, ¢, pey, pze measured by sweeping B back and forth, obtained at fixed v = 0.17 (circle markers in a). Traces at different v,
D settings have been offset by 1 k2. d, e, Similar measurements to b and c, obtained at fixed v = 0.26 (triangle markers in
a). Data at each location have been offset by 1k2 for clarity. None of the measurements show evidence for the anomalous Hall
effect, even in the quarter-metal region. Measurements were obtained at 7' = 100 mK.
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Supplementary Figure 10. Additional Data for t2 + 4. a, Longitudinal and b, Hall resistance maps in the t2+4 device
= 1.42°. The longitudinal (Hall) maps are symmetrized (anti-symmetrized) at B = 0.5 T. c-e, Landau fan diagrams acquired
at fixed displacement fields of (¢) D = 0.35 V/nm, (d) D =0, and (e¢) D = —0.09 V/nm. All measurements in figure were

acquired at 7' = 100 mK.
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Supplementary Figure 11. Additional Data for t2 + 3. a, Longitudinal and b, Hall resistance maps in the t243 device
with 6 = 1.50°. The longitudinal (Hall) maps are symmetrized (anti-symmetrized) at B = 0.1 T. c-e, Landau fan diagrams
acquired at fixed displacement fields of (¢) D = 0.50 V/nm, d D =0, and e D = —0.47 V/nm. All measurements in figure

were acquired at T = 1.5 K.



11

D =0.67 V/nm
10

£
Q
T
£
b
Q
d  p=056Vim
e
b [aa]
B € pD=0.00V/inm
S 10F
b
Q
=
g 5
0 4 0
v v v

Supplementary Figure 12. Additional Data for t1 + 3. a, Longitudinal and b, Hall resistance maps in the t1+3 device.
The longitudinal (Hall) maps are symmetrized (anti-symmetrized) at B = 0.5 T. c-e, Longitudinal and Hall resistances as a
function of B at fixed displacement field of ¢ D = 0.67 V/nm, d D = 0.56 V/nm, e D = —0.00 V/nm. All measurements in

figure were acquired at T'= 1.5 K.
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Supplementary Figure 13. Measured gap size of the v = 0 insulating state in the t2 + 3 device with 6 = 1.41°. Gap
size as a function of D at v = 0 (extracted from the data shown in Fig. 3e of the main text). The solid purple line denotes
the best fit value from fitting Arrhenius plots, assuming pz, o exp (A”zo / 2kBT). The shaded region denotes the standard
deviation of the best fit value. The maximum value is found to be A*=% = 1.54 £ 0.05 meV.
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CONTINUUM MODEL CALCULATIONS
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Supplementary Figure 14. Calculated band isolation, flatness, and topology of various t M + N structures. Summary
of the band structure calculations for all tM 4+ N combinations up to t3 + 6. The color of each marker indicates the maximum
value of ¢ obtained after searching over all combinations of § and 6. The valley Chern number of the moiré conduction band for
each layer combination is also calculated for the optimal parameters of § and d, i.e., where ¢ = @max. The shape of the markers
indicates the valley Chern number. We do not calculate the valley Chern number for systems where the moiré conduction band
cannot be isolated (¢max < 0), indicated by the circle markers.
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Supplementary Figure 15. Band structure calculations for t1 + 3. a-c, Band structures for the t1+ 3 system at 1.30°, with
interlayer potentials § = —75,0, and 75 meV, respectively. Panel ¢ shows the definitions of Ay, At4, and éF. d, Bandwidth,
JF, of the moiré conduction band calculated as a function of § and §. e, Energy separation between the top of the moiré
conduction band and the top of the remote conduction band, A 4. Positive (negative) values of A4 indicate a band gap (band
overlap). f, Similar plot, but for the energy separation between the moiré conduction and valence band, Ao (i.e., the gap at
the charge neutrality point). g, The isolated flat band parameter, ¢ (see Methods), as a function of twist angle and interlayer
potential. Large positive values of ¢ (purple), corresponds to a flat and isolated moiré conduction band. Negative values of
¢ (orange) correspond to the moiré conduction band overlapping with other bands. The optimal twist angle is around 1.30°,

corresponding to the band structures shown in panels a-c.
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Supplementary Figure 16. Single particle calculations for t1 4+ 2. a, Bandwidth of the moiré conduction band, éF as a
function of twist angle, 8, and interlayer potential, §. b, Energy difference between the top of the moiré conduction band and
the remote conduction band, A4. Positive values indicate a gap, negative values indicate band overlap. ¢, Energy difference
between the bottom of the moiré conduction band and the top of the moiré valence band, Ag. d, Isolated flat band parameter,
¢, see Methods for definition. Larger positive values indicates more flat and isolated moiré conduction band. Cyan star denotes
the optimal parameter condition for a flat and isolated moiré conduction band. e-g, Representative band structures at the
optimal angle condition at the indicated values of 4. In panel g, the moiré conduction band is highlighted in purple and shaded
regions indicate gaps, i.e. it is isolated from other bands. The calculated valley Chern number, C', is shown for the flat and

isolated moiré conduction band.
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Supplementary Figure 17. Single particle calculations for t1 4+ 3. Similar to Supplementary Fig. 16.
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Supplementary Figure 18. Single particle calculations for t1 4+ 4. Similar to Supplementary Fig. 16.
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Supplementary Figure 19. Single particle calculations for t1 4+ 5. Similar to Supplementary Fig. 16.
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Supplementary Figure 20. Single particle calculations for t1+ 6. Similar to Supplementary Fig. 16. The moiré conduction
band never becomes isolated for t1 + 6.
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Supplementary Figure 21. Single particle calculations for t2 4+ 2. Similar to Supplementary Fig. 16.
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Supplementary Figure 22. Single particle calculations for t2 4+ 3. Similar to Supplementary Fig. 16.
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Supplementary Figure 23. Single particle calculations for t2 4+ 4. Similar to Supplementary Fig. 16.
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Supplementary Figure 24. Single particle calculations for t2 4+ 5. Similar to Supplementary Fig. 16.
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Supplementary Figure 25. Single particle calculations for t2+ 6. Similar to Supplementary Fig. 16. The moiré conduction

band never becomes isolated for t2 + 6.
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Supplementary Figure 26. Single particle calculations for t3 4+ 3. Similar to Supplementary Fig. 16.
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Supplementary Figure 27. Single particle calculations for t3+4. Similar to Supplementary Fig. 16. The moiré conduction
band never becomes isolated for t3 + 4.
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Supplementary Figure 28. Single particle calculations for t3+5. Similar to Supplementary Fig. 16. The moiré conduction
band never becomes isolated for t3 + 5.
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Supplementary Figure 29. Single particle calculations for t3+6. Similar to Supplementary Fig. 16. The moiré conduction
band never becomes isolated for t3 + 6.
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Supplementary Figure 30. Band structure calculations for the § = 1.50° t2 4+ 3 at § = 0. Calculation results shown
for varying values of the moiré coupling parameter ¢);. The nominal value we used for all other calculations is ¢ty = 110 meV
(center panel). Here both the moiré conduction and moiré valence band are shown in purple, to emphasize that the bands
always overlap, inconsistent with our observation of an insulating state in Fig. 3d & e of the main text.
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