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Abstract—This work presents a novel digital signature to char-
acterize the rising and descending patterns of IoT device power
consumption, which can be used to detect abnormal operations.
The digital signature, referred to as PRIDES, can be generated
using simple digital-like circuits and hence incurs very low hard-
ware overhead. A novel PRIDES generation circuit is implemented
with a 90 nm CMOS technology and its operation is validated
via transistor-level simulation. A PRIDES-based methodology to
detect the insertion of potentially malicious codes is presented and
its effectiveness is demonstrated with using power consumption
data measured from hardware experiments.

Index Terms—Internet of Things (IoT), hardware security,
power signature

I. INTRODUCTION

The Internet of Things (IoT) refers to the fast-growing
networked devices that incorporate capabilities of communi-
cation, computing, sensing, and actuation. These devices have
widely infiltrated into almost all the fields of society, such as
manufacturing, agriculture, medicare, smart grids, autonomous
vehicles, smart homes, etc. [1]–[6]. The burgeoning IoT market
size is expected to grow from USD 384.70 billion in 2021 to
USD 2.47 trillion by 2029 [7]. As the number and application
of IoT devices proliferate rapidly, it raises many security and
privacy concerns, particularly for the devices handling sensi-
tive data or carrying out mission-critical functions. Recently,
a number of high-profile cyber attacks on IoT devices had
grabbed the world’s attention and exemplified the importance to
safeguard the integrity of IoT devices. Such examples include
the Verkada breach, the Florida water facility attack, and the
Colonial Pipeline attack, all in 2021. It was reported that IoT
is regarded as the next big hacking prize by the dark web’s
criminal minds [8].

Most IoT devices have limited computation power due
to their stringent constraints on energy consumption, device
size, and cost. This hampers the capability for implementing
advanced encryption, authentication, or other computationally
intensive countermeasures on IoT devices. The fact that many
IoT devices operate in remote, unprotected environments further
exacerbates the challenge of IoT security. In literature, various
IoT security techniques have been proposed from different
aspects, from hardware design, application development, and
network monitoring, up to the perception layer, to address this
daunting challenge. Several articles [9]–[11] provide excellent
reviews of these techniques. Among them, power analysis has
been demonstrated as an effective tool for both malicious

players to steal IoT secrets (e.g. encryption keys) and security
engineers to detect abnormal operations. The latest development
in this front are further discussed in the next section.

Existing power analysis methods depend upon accurately
capturing the device power trace, which typically involves
bench instrumentation, e.g. oscilloscope, data acquisition
(DAQ) boards or analog to digital converters (ADC), as shown
in Figure 1. Such methods can achieve high accuracy, but re-
quire bulky and power-hungry measurement equipment, making
them unsuitable to be integrated into IoT devices. Although
some IoT designs may have built-in power monitoring circuits,
the requirement of digitizing the captured power consumption
signals often leads to large hardware overhead. More impor-
tantly, the digital data obtained from these methods typically
have a large volume, which is suitable for statistical analysis
but not concise enough for being used as signatures.

Fig. 1: Typical setup for power trace capturing

This work presents a power rising decending signature,
referred to as PRIDES, to depict the power fluctuation patterns
during device operation. Using data from hardware experi-
ments, we demonstrate that PRIDES can be used to detect
inserted malicious codes into microcontroller units (MCU).
A novel PRIDES generation circuit is also developed using
a 90 nm CMOS technology and its operation is validated
via transistor-level circuit simulation. The proposed circuit has
a simple digital-like structure, hence resulting in very small
hardware overhead.

The rest of the paper is organized as follows: Section 2
discusses related work on power analysis for IoT security. The
proposed methodology and how it is used for malicious code



detection are presented in Section 3. The proposed PRIDES
generation circuit is also presented in this section. Section 4
presents the experimental results and the paper is concluded in
Section 5.

II. RELATED WORK

Power analysis has been demonstrated as a potent tool
in the toolbox of side-channel attacks (SCA) [12], [13]. It
leverages statistical or machine learning methods to exploit
subtle changes in power dissipation associated with various
control paths, different arithmetic operations, or variations of
data involved in the computation. Differential power analysis
has been successfully used to reveal encryption keys and other
device secrets [14]–[16]. Recently, power analysis was studied
for disassembling instructions being executed in MCU. The
works presented in [17]–[20] have achieved impressive success
rates in identifying individual instructions with the help of
advanced data analysis techniques, such as linear discriminant
analysis, quadratic discriminant analysis, hidden Markov mod-
els, principal component analysis, k-nearest neighbors algo-
rithm, etc.

By the same token, power analysis can also be used to detect
malicious codes, hardware Trojans, and other abnormalities.
In [21], [22], statistical features extracted from power trace
data, including mean, variance, skewness, kurtosis, L2-norm
error, permutation entropy, and data smashing distance, are
used to detect malware on computers. Hardware Trojans can
also be exposed via power analysis based statistical learning
approaches [23] or transient current analysis [24].

Generally speaking, the success of the aforementioned meth-
ods depends on the capability of capturing large volumes of
power trace data with high accuracy. This demands complicated
power trace capturing setups, often involving bench instru-
mentation or high-precision data acquisition circuits. Also, the
advanced data analysis involved in these methods is com-
putationally intensive. Hence, the existing methods are more
suitable for being used at the server ends or performing offline
analysis. It is challenging to deploy these methods on IoT
devices and detect abnormalities on the fly.

III. PROPOSED METHODOLOGY

Motivated by the above observations, this work presents a
concise signature to characterize the rising and descending
patterns of device power dissipation. In PRIDES, a single bit, bi,
is used to indicate if the power consumption is rising (bi = 1)
or descending (bi = 0) at sampling time ti. PRIDES can
be generated by a simple digital-like circuit without involving
sophisticated data acquisition circuits or ADCs. Hence, it incurs
much smaller hardware overhead compared to existing power
trace capturing circuits. It is envisioned that PRIDES can be
used to assess the fidelity of critical operations or computation
tasks on IoT devices, in a way similar to using digital signatures
to verify the authenticity of electronic documents.

The proposed methodology is illustrated in Figure 2. A shunt
resistor is used to sense the current dissipated by the MCU
or embedded cores of the IoT device. The voltage across the

resistor is amplified before feeding to the proposed PRIDES
generation circuit. Note that the use of a shunt sensing resistor
and amplifier is almost universal in all power trace capturing
circuits. One of the unique contributions of this work is the
much simplified digital-like PRIDES generation circuit, which
will be described in Section 3.A. To capture PRIDES for a
selected IoT operation, the MCU or embedded core first enables
the PRIDES circuit and then carries out the selected operation.
After the completion of the operation, the MCU or embedded
core reads back the PRIDES. Since the captured signature
is compact (one bit per sample v.s. multi-bits per sample in
conventional power traces), the PRIDES bit streams can be
appended as a special section of the data packages, which will
be transmitted to remote servers for further analysis. Also, the
PRIDES can be analyzed by the IoT device to assess the fidelity
of the operation in the field. This is further elaborated in Section
3.B.

Fig. 2: Using PRIDES to monitor IoT operation fidelity

A. Proposed PRIDES generation circuit

The proposed PRIDES generation circuit is depicted in
Figure 3. Its first stage, consisting of M1-M4 and C1, senses the
rising or descending trend between two consecutive samples,
which are the voltage levels before and after the falling edge
of clock signal clk. When clk = 1, M2 is conducting which
shorts the input and output of the inverter comprised of M3
and M4. This forces the inverter to the operation point that
manifests the largest slope on the input-output voltage transfer
curve of the inverter. The voltage level of this operating point
is often called as the inverter gate threshold voltage VM . After
M2 is off, any small voltage deviations from VM on the inverter
input will cause large voltage variations at the inverter output,
making the inverter to behavior like a gain stage. Before the
falling edge of clk, capacitor C1 is charged to V 1

psc−VM , where
V 1
psc is the output of the amplifier and superscript 1 indicates

clk = 1.
After clk switches to 0, the inverter input is disconnected

from its output and the right terminal of C1 becomes floating.
Hence, voltage changes ∆V = V 0

psc − V 1
psc (superscript 0

indicates clk = 0) at the left terminal of C1 is passed to the
inverter input and subsequently causes a large voltage change
at the inverter output. Note that the polarity of ∆V indicates
the rising and descending trend of VPSC . For a rising trend



Fig. 3: PRIDES generation circuit

(∆V > 0), the inverter output will swing toward low voltage;
otherwise, the inverter output will swing toward high voltage.
To mitigate the effect of channel charge injection caused by
turning off M2, a dummy device M1 is added and clk is a
slightly delayed version of the complement of clk.

For small ∆V values, the output swing of the first stage
may not be large enough to reach well defined logic levels.
Hence, a second stage consisting of M5-M8 and C2 is added to
further amplify the output of the first stage. The two following
inverters (M9-M10 and M11-M12) are purely digital gates
which reshape the output of the second stage to perfect logic
level by exploiting the regenerative properties of CMOS logic
gates. Hence, the outputs of the PRIDES generation circuit
is sequence of binary bits that characterize the rising and
descending patterns of the device power consumption.

B. PRIDES analysis method

Unlike conventional power traces which are series of values
(current dissipation readings) represented in the binary format,
PRIDES is a serial bit stream sequence with each bit rep-
resenting an event (current dissipation rising or descending)
at a given sampling time. Thus, PRIDES can be analyzed
using much more computation-efficient methods compared to
the analysis of conventional power traces. For a given operation
to be monitored, the PRIDES of the intact operation is obtained
before the IoT deployment. This will be the golden signature
S to be used in later analysis. After a PRIDES, denoted as P ,
is captured for the same function during field operation, the
difference between S and P can be examined to assess the
fidelity of the selected operation.

Considering time uncertainties associated with IoT opera-
tions, the instance that the IoT starts to execute the selected
operation and the time that the PRIDES generation circuit
starts to capture signatures may not be perfectly synchronized.
As a result, S and P may not be completely aligned with
respect to the instructions of the selected operation as illustrated
in Figure 4. To mitigate this problem, we propose to use
a normalized time-shifted cross correlation, denoted as ζ, to
measure the difference between S and P .

Fig. 4: PRIDES alignment via time shifting

Algorithm 1 Computing ζmax for S and P
1: ζmax = 0
2: for k = −n : 1 : n do
3: if k <= 0 then
4: A = S[0 : m+ k − 1]
5: B = P[−k : m]
6: else
7: A = S[k : m]
8: B = P[0 : m− k − 1]

9: t = x corr(A,B)/len(A)
10: ζmax = max(ζmax, t)

Assume the length of both S and P is m bits and the
maximum bits to be shifted in the search of the maximum
of ζ is n bit. The procedure to compute ζmax is described
by Algorithm 1. Lines 4-5 correspond to the scenarios that
the capturing time of golden signal S is ahead of the time
of PRIDES P as illustrated in Figure 4 (c). Lines 7-8 cover
the opposite scenarios. A and B obtained from these lines are
the presumably aligned signatures in the examination. Function
x corr(A,B) in line 9 computes the cross correlation between
A and B. In the computation, if A[i] = B[i], the result for bit
i is 1; otherwise, it is -1. The final cross correlation value is
the summation of the results from all the bits. Also, len(A)



represents the length of A. Due to the time shifting operation
depicted by lines 3-8, the length of A and B varies. Hence, the
cross correlation is normalized by the vector length to abate the
effect of vector length fluctuation.

IV. EXPERIMENTAL RESULTS
To evaluate the proposed methodology, hardware experiments

were conducted to collect power consumption data related
to the intact and compromised MCU software routines. The
obtained data were then used as the input of the proposed
PRIDES generation circuit in SPICE simulation. The cross
correlations between the golden signature and the PRIDES
obtained from simulation were calculated. It demonstrates the
proposed method can distinctly detect compromised MCU
software routines.

A. Experiment setup
Figure 5 shows the hardware setup for capturing power con-

sumption data. The MCU used in the experiment are Microchip
PIC24F devices. A small shunt resistor is inserted into the
MCU ground path for sensing its current consumption. A two-
stage amplifier circuit whose schematic is shown in the bottom
portion of the figure is used to amplify the voltage across
the shunt resistor. The gain and the -3dB bandwidth of the
amplifier are 52.5 dB and 330 kHz, respectively. The amplifier
output is captured a Diligent Analog Discovery 2 device. The
saved data will be used as the input of the PRIDES generation
circuit in later circuit simulation. The use of the Diligent Analog
Discovery 2 device is because the proposed PRIDES generation
circuit has not been implemented in silicon. Once the proposed
circuit is fabricated, the PRIDES generation circuit can be
directly connected to the amplifier output as shown in Figure 3.

Fig. 5: Hardware setup for capturing power consumption data

The MCU codes shown in Figure 6 are used to emulate the
intact and compromised operation. The pristine code displayed

in the left portion of the figure performs a vector addition.
Before starting the addition operation, an output pin, named
as psc enable, is pulled to high for enabling power dissipa-
tion data collection. In the compromised code shown in the
right portion of the figure, additional operations are executed
when vector bit index k is within the range of (g, h). In the
experiments, the values of j, g, and h are 750, 200, and 250,
respectively.

Two PIC24F microcontrollers, referred to as MCU1 and
MCU2, were experimented in the study. 100 power traces
were captured for each MCU. 50 of them correspond to the
scenarios of the pristine code being executed; the other 50 are
for the situations that the compromised code was running. The
obtained 200 traces of power dissipation data are then used as
the input of the PRIDES generation circuit in circuit simulation,
which is described as follows.

Fig. 6: Microcontroller programs to emulate intact and com-
promised scenarios

B. Design and simulation of PRIDES generation circuit
In this study, the proposed PRIDES generation circuit is

implemented with a 90 nm CMOS technology. The size of the
transistors used in the first two stages are listed in Table I.
Large channel lengths are selected for M3-4 and M7-8 in order
to increase transistor output resistance, which results in sharp
transition (higher gain) in the region around gate threshold VM

in the inverter voltage transfer curve. The minimum channel
length (100 nm) is used for M2 and M6 to reduce their
on-resistance when conducting. The size of M1 and M5 are
optimized to compensate the channel charge injection by M2
and M6 when they are turning off. The inverters comprised of
M9-10 and M11-12 are digital gates and their transistor sizes
are not critical. The sampling capacitors C1 and C2 are selected
as 100 fF.

TABLE I: MOS transistor size

MOSFET Width (nm) Length (nm)
M1, M5 120 100
M2, M6 1200 100
M3, M7 3600 300
M4, M8 1800 300

The designed circuit is simulated using Cadence Spectre tool.
Figure 7 shows a snapshot of the waveforms obtained from



simulation. The waveform in the top panel is the power trace
data collected from the hardware experiment. The clock signal
is displayed in the middle panel and the PRIDES circuit output
is plotted in the bottom panel. It shows the PRIDES outputs
accurately characterize the rising and descending patterns of the
power trace. Circuit simulations were conducted for the 200
collected power traces and the obtained PRIDES bit streams
are saved for cross correlation analysis.

Fig. 7: Simulation result of PRIDES generation circuit from
Cadence

C. PRIDES analysis results
This section presents the performance evaluation of the pro-

posed PRIDES signature in detecting compromised operations.
Figure 8(a) provides an example illustrating how the cross
correlation values fluctuate with the time shifting operation. In
this example, the PRIDES is for the execution of the intact code.
It shows that the maximum correlation is achieved at position
0, indicating that the timing of PRIDES capturing was perfectly
aligned with the timing of golden signature. However, in other
cases the PRIDES and golden signatures may not be perfectly
aligned and hence the correlation peak may not always occur at
position 0. For the PRIDES associated with the execution of the
intact code on MCU1, the positions that lead to the maximum
correlation values are shown in Figure 8(b).

The histogram of the maximum correlations for the 100
PRIDES obtained from MCU1 is shown in Figure 9. Clearly,
the values are distributed into two distinct groups. The left
group is constituted by PRIDES from the execution of the
compromised code and the right group contains the PRIDES
associated with the execution of the intact code. There is a very
large gap, referred to as the detection margin (DM), between the
two groups. With using ζILB and ζCUB to denote the correlation
lower bound of the intact operations and the correlation upper
bound of the compromised operations, the detection margin can
be defined as DM = ζILB − ζCUB as shown in Figure 9.

In the experiment, the clock frequency of the PRIDES
generation circuit was varied from 100 kHz to 500 kHz to
study the impact of sampling rate on the proposed method.
The detection margins at different sampling rates are plotted in
Figure 10. It shows the proposed method can tolerate relatively
low sampling rates. In general, smaller sampling rates lead to
more compact PRIDES.

Despite golden signature S was obtained using MCU1, it is
also suited for detecting the compromised operation on MCU2.

(a)

(b)

Fig. 8: (a) Correlation values at different time shifting position,
(b) Distribution of time shifting positions leading to the corre-
lation peak

Fig. 9: Detection margin in PRIDES analysis

Table II summarizes the detection margins, ζILB , and ζCUB for
the PRIDES obtained from different devices. Compared to
MCU1, the detection margin for MCU2 is slightly reduced.
However, it is still large enough to distinctly separate the
PRIDES associated with intact and compromised operations.
These results validate the practicality of the proposed method.



Fig. 10: Detection margin for different sampling rates

TABLE II: Correlation between golden signature S and
PRIDES from different devices

Detection Parameters
(Normalized) MCU 1 MCU 2

ζILB 0.5018 0.4972

ζCUB 0.1615 0.2068

Detection Margin (%) 34.03 29.04

V. CONCLUSION

In this paper, we have presented a digital signature, PRIDES,
to characterize the rising and descending patterns of device
power dissipation. A novel PRIDES generation circuit and a
PRIDES-based methodology for abnormality detection are also
presented. The effectiveness of the proposed methodology was
demonstrated with data captured from hardware experiments.
The PRIDES is much more compact compared to conventional
power trace data and can be generated using simple circuits.
Hence, the proposed method incurs small hardware overhead
and is computationally light, making it very suitable for IoT
applications.
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In: Walter, C.D., Koç, Ç.K., Paar, C. (eds). Cryptographic Hardware
and Embedded Systems - CHES 2003,” CHES 2003. Lecture Notes in
Computer Science, vol 2779. Springer, Berlin, Heidelberg.

[17] Park, J., and Tyagi, A. (2017), “Using Power Clues to Hack IoT Devices:
The power side channel provides for instruction-level disassembly.” IEEE
Consumer Electronics Magazine, 6(3), 92-102.

[18] Eisenbarth, T., Paar, C., Weghenkel, B., Gavrilova, M. L., Tan, C. J.
K., and Moreno, E. D. (2010), “In Building a Side Channel Based
Disassembler.” Transactions on computational science x, (pp. 78-99).
Berlin: Springer-Verlag.

[19] Msgna, M., Markantonakis, K., and Mayes, K. (2014, May), “Precise
instruction-level side channel profiling of embedded processors.” In
International conference on information security practice and experience
(pp. 129-143). Springer, Cham.

[20] Strobel, D., Bache, F., Oswald, D., Schellenberg, F., and Paar, C. (2015,
March), “Scandalee: a side-channel-based disassembler using local elec-
tromagnetic emanations.” In 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (pp. 139-144). IEEE.

[21] Bridges, Robert, et al. “Towards malware detection via cpu power
consumption: Data collection design and analytics.” 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications (TrustCom). IEEE, 2018.

[22] Jimenez, Jarilyn Hernandez, and Katerina Goseva-Popstojanova. “Mal-
ware detection using power consumption and network traffic data.” 2019
2nd International Conference on Data Intelligence and Security (ICDIS).
IEEE, 2019.

[23] Shende, Roshni, and Dayanand D. Ambawade. “A side channel based
power analysis technique for hardware trojan detection using statistical
learning approach.” 2016 thirteenth international conference on wireless
and optical communications networks (WOCN). IEEE, 2016.

[24] Wang, Xiaoxiao, et al. “Hardware Trojan detection and isolation using
current integration and localized current analysis.” 2008 IEEE interna-
tional symposium on defect and fault tolerance of VLSI systems. IEEE,
2008.


