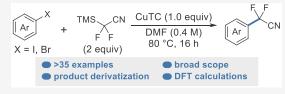


pubs.acs.org/JACS Article

Copper-Mediated Cyanodifluoromethylation of (Hetero)aryl lodides and Activated (Hetero)aryl Bromides with TMSCF₂CN

Jeremy Nicolai, Tommaso Fantoni, Trevor W. Butcher, Sophie I. Arlow, Serhiy V. Ryabukhin, Dmytro M. Volochnyuk,* and John F. Hartwig*

Cite This: J. Am. Chem. Soc. 2024, 146, 15464–15472


ACCESS I

III Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: Molecules bearing fluorine are increasingly prevalent in pharmaceuticals, agrochemicals, and functional materials. The cyanodifluoromethyl group is unique because its size is closer than that of any other substituted difluoromethyl group to the size of the trifluoromethyl group, but its electronic properties are distinct from those of the trifluoromethyl group. In addition, the presence of the cyano group provides synthetic entry to a wide range of substituted difluoromethyl groups. However, the synthesis

of cyanodifluoromethyl compounds requires multiple steps, highly reactive reagents (such as DAST, NSFI, or IF₅), or specialized starting materials (such as α , α -dichloroacetonitriles or α -mercaptoacetonitriles). Herein, we report a copper-mediated cyanodifluoromethylation of aryl and heteroaryl iodides and activated aryl and heteroaryl bromides with TMSCF₂CN. This cyanodifluoromethylation tolerates an array of functional groups, is applicable to late-stage functionalization of complex molecules, yields analogues of FDA-approved pharmaceuticals and fine chemicals, and enables the synthesis of a range of complex molecules bearing a difluoromethylene unit by transformations of the electron-poor CN unit. Calculations of selected steps of the reaction mechanism by Density Functional Theory indicate that the barriers for both the oxidative addition of iodobenzene to [(DMF)CuCF₂CN] and the reductive elimination of the fluoroalkyl product from the fluoroalkyl copper intermediate lie in between those of [(DMF)CuCF₃] and [(DMF)CuCF₂C(O)NMe₂].

1. INTRODUCTION

Molecules containing alkyl or aryl fluorides are widespread in materials chemistry and are increasingly prevalent in approved pharmaceuticals and agrochemicals, constituting 20 and 50% of the market, respectively. Fluorine is prevalent because substitution of hydrogen atoms with fluorine can favorably impact the pK_a , lipophilicity, molecular conformation, and metabolic stability of the parent compound. To exert these effects, either an aryl fluoride or an aryltrifluoromethyl group is often installed, and synthetic accessibility of fluoro- and trifluoromethylarenes. Other fluorinated groups, such as mono- and difluoromethyl groups, have beneficial properties, but they are typically used less frequently because they are more difficult to introduce.

One such group is the cyanodifluoromethyl group. A comparison of the modified Swain–Lupton field parameter of a cyano group to that of a fluorine atom ($F_{\rm CN}=0.51,\,F_{\rm F}=0.45$) suggests that the cyanodifluoromethyl group is more electron withdrawing than a trifluoromethyl group, and this electron-withdrawing property would deactivate an adjacent aryl group toward oxidative metabolism. The nitrile also provides opportunities for polar and hydrogen-bonding interactions with target substrates and serves as a bioisostere for carbonyl groups, hydroxyl groups, and other hydrogen-bond acceptors. 2,12 Arylacetonitriles are resistant to oxidation

when the α -position lacks C–H bonds, ¹² and the cyano group in these compounds typically undergoes hydrolysis, rather than releasing cyanide. ^{13,14} In addition to modulating the electronic properties of the adjacent nitrile and the electrophilicity of the nitrile carbon, the *gem*-difluoromethylene unit itself is commonly invoked as a bioisostere of a carbonyl group, of ether oxygens, or of thioether sulfur atoms.

As a result of these properties, $\arg \lambda_{\alpha}$ -difluoroacetonitriles have garnered interest as herbicides, 15,16 pharmaceutical ingredients, $^{17-20}$ and liquid crystals (Figure 1a); 21 however, the investigation of $\arg \lambda_{\alpha}$ -difluoroacetonitriles has been limited because the cyanodifluoromethyl group is difficult to install. The most common route to cyanodifluoromethylarenes is a multistep sequence beginning with copper-mediated reductive coupling of an aryl iodide with a bromodifluoroester or with deoxofluorination of an aryl 2-oxoacetate to form an $\arg \lambda_{\alpha}$ -difluoroester (Figure 1b, i-ii). Subsequent addition of ammonia and dehydration of the resulting amide affords the $\arg \lambda_{\alpha}$ -difluoroacetonitrile. 22,23 These syntheses generally

Received: March 18, 2024 Revised: April 23, 2024 Accepted: April 25, 2024 Published: May 23, 2024

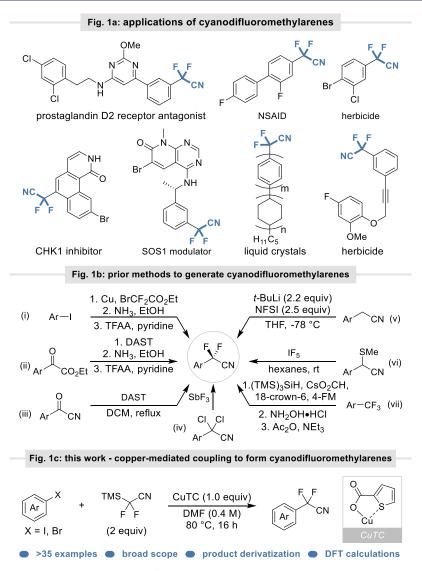


Figure 1. (a) Applications of cyanodifluoromethylarenes, (b) prior methods to generate cyanodifluoromethylarenes, and (c) this work: copper-mediated coupling to form cyanodifluoromethylarenes. TFAA = trifluoroacetic acid; 4-FM = 4-formylmorpholine.

occur in low overall yields and require de novo construction of each cyanodifluoromethylarene. Introduction of the $[-CF_2CN]$ group by alternative routes involving the formation of a C–F bond requires harsh conditions and highly reactive or toxic reagents, such as N,N-diethyl-1,1,1-trifluoro- λ^4 -sulfanamine (DAST), 21 SbF3, 24 N-fluorobenzenesulfonamide, 25 or IF5 (Figure 1b, iii-vi). The functional group tolerance of such C–F bond-forming reactions, therefore, is limited, and these methods are not typically amenable to rapid diversification of the aryl substituent. Recently, Wright and Bandar reported a base-promoted reductive coupling platform for the defluor-ofunctionalization of trifluoromethylarenes (Figure 1b, vii), 27 but this methodology, again, requires multiple steps to access the corresponding aryldifluoroacetonitrile.

Copper-mediated and copper-catalyzed fluoroalkylation reactions have been developed for the synthesis of trifluoromethylarenes, aryldifluoromethylesters, and aryldifluoromethylamides. We sought to develop a coupling of aryl halides with a nucleophilic form of the cyanodifluoromethyl group to address the lack of suitable methods to synthesize aryl- α , α -difluoroacetonitriles rapidly, with broad scope, and in

a fashion applicable to compounds of potential biological interest.

We report the copper-mediated coupling of aryl and heteroaryl iodides and electron-poor bromides with 2,2-difluoro-2-(trimethylsilyl)acetonitrile (TMSCF₂CN, 1). This method (Figure 1c) delivers a diverse range of cyanodifluoromethylarenes in high yields with a simple, commercially available, inexpensive copper compound. The reaction tolerates a wide range of functional groups, making it suitable for the synthesis of complex, drug-like molecules, and density functional theory (DFT) calculations show that the barriers to oxidative addition and reductive elimination involving cyanodifluoromethyl copper complexes are lower in energy than those to oxidative addition and reductive elimination involving analogous trifluoromethylcopper complexes.

2. RESULTS AND DISCUSSION

2.1. Development of Reaction Conditions for the Coupling of Aryl Iodides with TMSCF₂CN. Coppermediated and copper-catalyzed fluoroalkylation reactions often require transmetalation of the fluoroalkyl group from a main group element to copper, and the rate of such

transmetalation depends on the LX-type ligand on copper. We envisioned that a silicon-based reagent³⁷ containing the desired fluoroalkyl group, 38 TMS-CF₂CN (1), could transfer the cyanodifluoromethyl group to a copper compound containing the proper X-type ligand that would be replaced by the CF₂CN unit. The resulting fluoroalkyl copper species could then undergo oxidative addition of an aryl halide, followed by reductive elimination to deliver the desired product, but the effect of the nitrile in a fluoroalkyl group on these two steps is unknown. To investigate the potential of this scenario, we conducted a set of experiments with 1-n-butyl-4-iodobenzene, a series of Cu(I) complexes, and TMSCF2CN (Table 1).

Table 1. Evaluation of Conditions for the Copper-Mediated Coupling of Aryl Iodides and TMSCF₂CN (1)

ſ	TMS CI	N [Cu]	CN
nBu /	F F 1	solvent 80 °C, 16 h	nBu
entry	[Cu] (equiv)	equiv 1 solve	nt (M) yield $(\%)^a$

entry	[Cu] (equiv)	equiv 1	solvent (M)	yield (%) ^a
1	Cul (2.0)	5.0	DMSO (0.2)	16
2	CuDPP (2.0)	5.0	DMSO (0.2)	84
3	CuDPP (2.0)	5.0	DME (0.2)	91
4	CuDPP (1.0)	5.0	DME (0.2)	73
5	CuDPP (1.0)	2.0	DME (0.2)	76
6	CuDPP (1.0)	2.0	NMP (0.2)	96
7	CuDPP (1.0)	2.0	DMF (0.2)	96
8	CuDPP (1.0)	2.0	DMF (0.4)	99
9	CuDPP (0.5)	2.0	DMF (0.4)	48
10 ^b	CuDPP (1.0)	2.0	DMF (0.4)	99
11	CuTC (1.0)	2.0	DMF (0.4)	99
	10			

^aDetermined by ¹⁹F NMR spectroscopy with α,α,α -trifluorotoluene as an internal standard. ^bReaction time = 1 h. See Supporting Information for additional details.

After evaluating a variety of Cu(I) reagents, we found that Cu(I) diphenylphosphinate (CuDPP) mediated the cyanodifluoromethylation with excess 1 in DMSO and DME (entries 2-3). The reactions in DMF as solvent occurred with one, rather than two, equiv of copper and with just 2 equiv of 1 (entry 8). Reactions with 0.5 equiv of Cu occurred in only 48% yield (entry 9). Ultimately, we found that the inexpensive Cu(I) thiophenecarboxylate (CuTC) complex mediated the reaction in DMF in high yield (entry 11). Reactions conducted with added ligands, such as 1,10-phenanthroline or bipyridine, that are common in copper-mediated transformations and reactions conducted with oxalamide- or oxalylhydrazide-bound copper species resulted in lower yields than those without added ligands in all cases (see Table S2 in the Supporting Information).

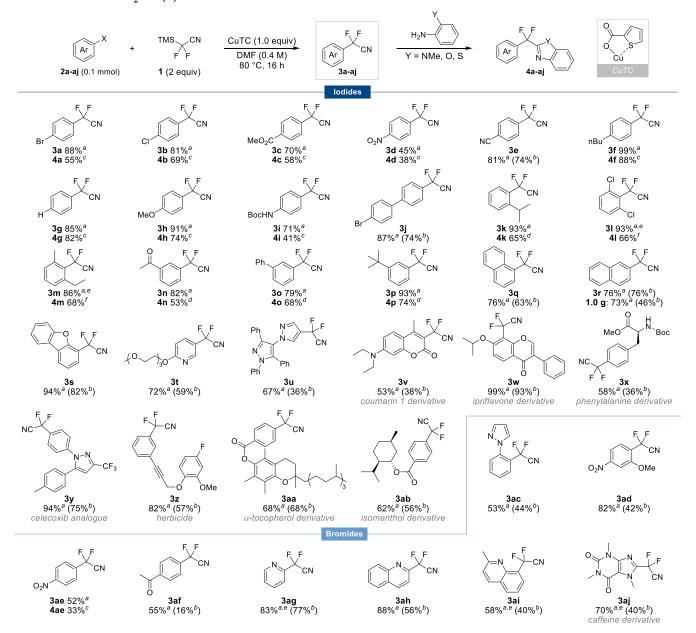
We hypothesize that TMSCF₂CN undergoes transmetalation to copper by a cyclic transition state involving the carboxylate group of the thiophenecarboxylate ligand. No decomposition of 1 in the presence of the reaction partners and solvent in the absence of CuTC is observed. In principle, the reaction could be rendered catalytic by addition of NaTC or NaDPP to regenerate CuTC or CuDPP from the presumed CuI or CuBr product. However, NaDPP, NaTC, and other exogeneous activators of organosilanes, such as KF or CsF, lead to decomposition of silane 1 over the course of the reaction at 80 °C (see Tables S3 and S4 in the Supporting Information for these data).

CuTC is less expensive than CuDPP, and reactions conducted with CuTC generally delivered the products in similar yields to those of reactions conducted with CuDPP (see Figure S3 in the Supporting Information). When compared to the cost of common catalysts used in fluoroalkylation reactions such as (BrettPhos)Pd-G3,³⁹ at the appropriate stoichiometry, the cost of CuTC is among the lowest available (\$0.25/mmol; see Table S5).

Although our studies were conducted in a nitrogen-filled glovebox, the reaction also proceeded smoothly when using Schlenk techniques or when assembling under air and flushing the reaction vessel with nitrogen before heating (Table 2,

Table 2. Yield of the Cyanodifluoromethylation Reaction under Various Conditions

entry	conditions	yield w/CuTC (%)	yield w/CuDPP (%)
1	standard conditions	99	99
2	under air	25	45
3	Schlenk technique	99	93
4	under air + N ₂ purge	91	36
5	rt, 48 h	99	99
6	rt, 1 equiv 1, 48 h	96	99


^aDetermined using ¹⁹F NMR spectroscopy with α,α,α -trifluorotoluene as an internal standard.

entries 3 and 4). The reaction proceeded at room temperature, albeit at a slower rate (entries 5-6), so further reactions were conducted at 80 °C to increase the rate of the cyanodifluoromethylation reaction.

The TMSCF₂CN nucleophile 1 was synthesized on decagram-scale batches at Berkeley and was stable on the benchtop for over six months. This reagent is currently available in small-scale batches from Enamine while a processscale synthesis is being developed.

2.2. Scope of the Cyanodifluoromethylation Reaction. Having established conditions that deliver coupled product in high yield, we explored the scope of the coppermediated cyanodifluoromethylation with an array of aryl and heteroaryl iodides and bromides (Chart 1). Products of the cyanodifluoromethylation reaction with low molecular weights were often too volatile to isolate in yields approaching those of the crude material. These products were converted in a onepot procedure, as shown at the top of Chart 1, to more tractable derivatives for purification. Some products underwent decomposition to some degree upon purification by flash column chromatography, although this decomposition did not prevent isolation of pure material. A wide range of aryl iodides, including electron-poor (3a-e), electron-neutral (3f-g), and electron-rich arenes (3h-i) reacted under the developed conditions. Those containing common functional groups, including bromides and chlorides (3a-b, 3j), esters (3c), nitro groups (3d), and carbamates (3i) reacted in high yield. An aryl iodides bearing an ortho-isopropyl (3k) substituent reacted, as did those with 2,6-dichloro (31) and 2-methyl-6ethyl (3m) groups. Meta-substituted iodoarenes (3n-p) also reacted, as did heterocycles, such as dibenzofuran (3s), pyridine (3t), and bipyrazole (3u). The yield of product 3r on a 1 g scale was similar to the yield of 3r on a 0.1 mmol scale,

Chart 1. Scope of (Hetero)aryl Iodides and Activated (Hetero)aryl Bromides That Undergo the Cyanodifluoromethylation Reaction with TMSCF₂CN (1).^a

"Reaction conducted with 0.1 mmol (hetero) aryl halide; "yield of the cyanodifluoromethylarene determined by "F NMR spectroscopy with α,α,α -trifluorotoluene as an internal standard; bisolated yields of the cyanodifluoromethylarene; cisolated yield of the benzimidazole (Y = NMe); disolated yield of the benzonazole (Y = O); eone equiv of CuDPP used instead of CuTC; fisolated yield of the benzothiazole (Y = S).

although the product did decay by hydrolysis of the nitrile to a greater extent during chromatographic purification on a large scale than on a small scale.

The applicability of this method to the late-stage diversification of more structurally complex molecules was assessed. Derivatives of the laser dye coumarin 1 (3v), ipriflavone (3w), phenylalanine (3x), and an analogue of the NSAID celecoxib (3y) all formed in good to high yield from the corresponding iodide. An herbicide bearing an alkyne (3z) and derivatives of vitamin E (3aa) and isomenthol (3ab) were also produced using this reaction.

Bromides of electron-poor arenes and of heteroarenes also underwent cyanodifluoromethylation. An aryl bromide with an *ortho*-pyrazole group (3ac) and aryl bromides bearing electronwithdrawing groups (3ad-af) reacted in good yields. 2-Bromopyridines (3ag) and quinolines bearing a bromide proximal to nitrogen (3ah-ai) reacted. Biologically active heteroaryl bromides were also suitable for this transformation; an analogue of caffeine (3ao) was synthesized using this method. The yields of products from additional (hetero)aryl halides that were not isolated and those that did not react, as determined by ¹⁹F NMR spectroscopy, are provided in the Supporting Information.

2.3. Functionalization of the Coupled Products. Because examples of aryl- α , α -difluoroacetonitriles are rare, we sought to explore the reactivity of the cyanodifluoromethyl group. The aryl- α , α -difluoroacetonitrile products undergo a wide range of reactions and enable the synthesis of molecules

Chart 2. Functionalization Reactions of Aryl- $\alpha_{i}\alpha$ -difluoroacetonitriles.

^aSee Supporting Information for detailed reaction conditions. Ar₁ = 4-nBuC₆H₄.

containing a benzylic difluoromethylene unit (Chart 2). Several of these reactions highlight the enhanced electrophilicity of the nitrile imparted by the vicinal fluorine atoms.

The nitrile carbon reacts with a range of nucleophiles. Acid-catalyzed addition of water gave α,α -difluoroamide 5a in 80% yield. The addition of propylthiol and hydroxylamine formed imidothioate 5b and hydroxyformamide 5c. Hydroxyformamides, such as 5c, can be used to synthesize α,α -difluoro oxadiazoles⁴⁰ and other heterocycles. Reduction and protection of the cyanodifluoromethylarene afforded β,β -difluoroamide 5d in 60% yield. Like the addition of hydrides, the addition of organomagnesium reagents formed aryl- α,α -difluoromethyl ketones 5e-f in high yields. While one might be concerned about the abstraction of fluoride by electrophilic metals, this was not observed.

Condensations of ortho-substituted anilines also occurred to form benzimidazole $\mathbf{5g}$, benzoxazole $\mathbf{5h}$, and benzothiazole $\mathbf{5i}$. Molecules containing the benzylic benzimidazole motif have been investigated as LRRK2 inhibitors and as potent analgesics, and this route provides access to difluorinated analogues of these compounds. Current methods to form such aryl- α , α -difluoroheterocycles require the use of a preformed heteroaryl-CF₂Br coupling partner, limiting opportunities for rapid diversification. The novel α , α -difluorinated [3.4]-spirocycle $\mathbf{5j}$ also formed by the addition of a β -amino alcohol. We have demonstrated that these cycloaddition reactions can be conducted without isolation of the intermediate aryldifluoroacetonitrile (see Supporting Information).

The aryl cyanodifluoromethyl compounds also underwent cycloaddition and hydrogenative coupling reactions. Sodium azide reacted cleanly with the cyano group to give α,α -difluorinated tetrazole 5k, which belongs to a class of

compounds that has been investigated as URAT1 inhibitors. ⁴⁴ A nickel-catalyzed dehydrogenative [4 + 2] reaction generated aryl- α , α -difluoropyridine **51** in moderate yield when using PAd₃ as ligand. ⁴⁵ Finally, a nickel-catalyzed hydrogenative C-N coupling with (S)-methylbenzylamine provided β , β -difluorinated secondary amine **5m**. ⁴⁶ Thus, the elaboration of cyanodifluoromethylarenes prepared by our coupling reaction enables the construction of a wide range of structurally diverse α , α -difluoromethylarenes from aryl or heteroaryl halides, TMSCF₂CN, and additional components that are commonly available.

To assess the differences in reactivity imparted by the fluorine atoms, we conducted a selection of control reactions with benzyl nitrile under analogous conditions (see Supporting Information for details). After 30 min, the fluorinated amide 5a formed in 70% yield, while the hydrolysis of benzyl nitrile converted only 34% of the nitrile to the amide. The addition of thiols or hydroxylamines to arylacetonitriles typically requires forcing conditions⁴⁷ or an acid catalyst,⁴⁸ and no product was observed from reactions of benzyl nitrile with these two reagents under conditions for reactions of 5b and 5c. The reduction of arylacetonitriles lacking fluorine substitution at the benzylic position also often requires high temperatures or catalysts to proceed; the addition of LAH to benzyl nitrile under analogous conditions for 5d formed no reduced product. 49,50 Cyclization reactions to form products analogous to benzothiazole 5i without fluorine atoms did not proceed under analogous conditions, even with the addition of AlCl₃ as Lewis acid. 51-53 We ascribe the demonstrated difference in reactivity between aryldifluoroacetonitriles and arylacetonitriles to the inductive effect of the fluorine atoms adjacent to the nitrile carbon.

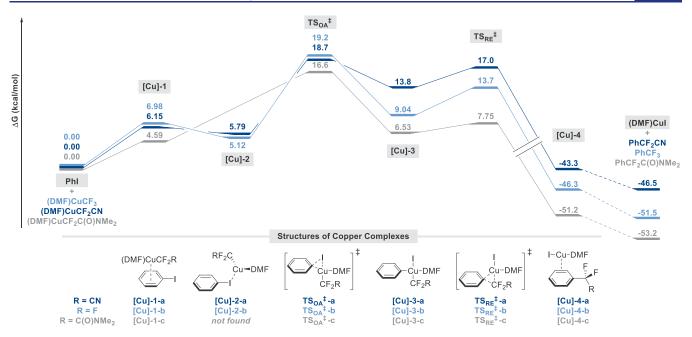


Figure 2. Computed free energy diagram for the reaction of PhI with $[(DMF)CuCF_2R]$, in which R = CN, F, and $C(O)NMe_2$. Gibbs free energies calculated at the def2-TZVP level of theory for Cu and I with accompanying ECP; all other atoms were treated at the def2-SVPD level. Solvent = DMF, temperature = rt. Empirical dispersion is considered. See Supporting Information for additional details.

2.4. Analysis of the Cyanodifluoromethylation Reaction by DFT Calculations. Having developed a method for the widely applicable conversion of aryl and heteroaryl iodides and bromides to cyanodifluoromethylarenes, we conducted calculations with DFT to gain information on the barriers for reaction of aryl halides with the difluorocyanomethyl copper complex, relative to those for related fluoroalkyl copper complexes. To do so, we computed the barriers to oxidative addition of PhI to the [(DMF)CuCF₂R] intermediate and reductive elimination from the resulting [(DMF)Cu(Ph)(I)-CF₂R] complex. Unless otherwise noted, the energies we report are Gibbs free energies in kcal/mol for reactions computed with a DMF solvent continuum (see Supporting Information for complete computational details).

The combined energy of [(DMF)CuCF₂R] and PhI was set to zero, and the copper complexes containing two DMF ligands, [(DMF)₂CuCF₂R], were computed to be higher in energy than the complexes [(DMF)CuCF₂R] by 7.34, 7.00, and 11.8 kcal/mol for R = CN, F, and C(O)NMe₂, respectively. Computational⁴⁷ and experimental^{55,56} studies of copper-mediated trifluoromethylation reactions imply that [(S)Cu(nucleophile)] (S = DMSO, DMF) complexes oxidatively add iodoarenes more rapidly than do [(L)Cu-(nucleophile)]ⁿ (L = phen, n = 0; L = halide, nucleophile, n = 1) complexes. We calculated the pathways in which one DMF remains bound to the copper because the computed free energies for oxidative additions occurring to [(DMF)CuCF₃] reported by Grushin and co-workers were lower than those for the combination of dissociation of DMF from [(DMF)₂CuCF₃] and oxidative addition.⁵⁴ The mechanism in which one DMF remains bound to Cu has been shown to reproduce the results of Hammett studies accurately and to capture the effects of ortho-substitution on reaction rate.

Figure 2 shows the computed reaction coordinates for the reaction of PhI with $[(DMF)CuCF_2R]$, in which R = CN, F, and $C(O)NMe_2$. Complexes [Cu]-1a-c containing the cyanodifluoromethyl, trifluoromethyl, and difluoro amide

enolate groups are formed by coordination of the arene π system to the copper species prior to oxidative addition. The cyanodifluoromethyl- and trifluoromethylcopper species were computed to form a Lewis acid—base pair with the iodine atom of PhI ([Cu]-2a and [Cu]-2b), while no complex between PhI and the copper difluoroamide enolate was located along the pathway to oxidative addition. The barriers for the step that cleaves the C–I bond in iodobenzene were computed to be 12.9, 14.1, and 12.0 kcal/mol for R = CN, F, and C(O)NMe₂, respectively, while the overall barriers for reaction of PhI with the [(DMF)CuCF₂R] complexes were computed to be 18.7, 19.2, and 16.6 kcal/mol, respectively.

Due to the lower endothermicity of the oxidative addition of PhI to the cyanodifluoromethyl copper complex than to the trifluoromethyl copper complex, the transition state for the cyanodifluoromethylation should be earlier than that for the analogous trifluoromethylation reaction. This hypothesis is supported by our calculations: the Cu–C_{ipso} distance in TS_{OA}^{\ddagger} -a for oxidative addition of PhI to the difluorocyanomethyl copper complex is longer (2.08 vs 2.05 Å), and the Ph–I bond is shorter (2.31 vs 2.34 Å) than those in transition state TS_{OA}^{\ddagger} -b for oxidative addition of PhI to the trifluoromethyl copper complex.

The arylcopper complexes [Cu]-3-a-c formed by oxidative addition all adopt a distorted square-planar geometry. Complex [Cu]-3-a is more destabilized, relative to the starting materials, than are complexes [Cu]-3-b and [Cu]-3-c. The difference in energy between transition state TS_{RE}^{\ddagger} -a and complex [Cu]-3-a is smaller than the difference in energy between transition state TS_{RE}^{\ddagger} -b and complex [Cu]-3-b. The calculated energy differences indicate that reductive elimination to form the cyanodifluoromethylarene product occurs with a lower barrier than the formation of the analogous trifluoromethylarene product.

The reductive eliminations from copper complexes [Cu]-3-a-c proceed through transition states TS_{RE}^{\ddagger} -a-c to form the fluoroalkylarene complexes [Cu]-4-a-c with barriers of just

3.2, 4.7, and 1.2 kcal/mol, respectively. Oxidative addition is computed to be rate-determining because the differences in energies between TS_{RE}^{\ddagger} -a-c and [Cu]-3-a-c, respectively, are smaller than the differences between TS_{OA}^{\ddagger} -a-c and [Cu]-3-a-c for each of the fluoroalkyl groups investigated. Our group has previously identified by computation a stabilizing interaction between the palladium center and the nitrile CN bond during reductive elimination from a phosphine-ligated fluoroalkyl-arylpalladium complex; however, we did not identify an analogous stabilizing interaction between the copper center and the nitrile CN bond in [Cu]-3-a-c using an independent gradient model based on Hirschfield partitions (IGMH analysis).

3. SUMMARY

We have developed a copper-mediated cyanodifluoromethylation of aryl and heteroaryl iodides and electron-poor aryl and heteroaryl bromides with TMSCF₂CN that occurs with inexpensive, commercially available CuTC, with broad functional group compatibility, and without the need for exogenous ligand. We demonstrate that this method can be applied to the late-stage functionalization of complex molecules, and we show that the cyanodifluoromethyl group is a versatile synthon to generate a diverse range of products containing an aryl- α , α -difluoromethylene unit. DFT calculations suggest that the barriers to both oxidative addition and reductive elimination are lower for the copper-mediated cyanodifluoromethylation than for the copper-mediated trifluoromethylation with the same DMF-ligated copper center, and that oxidative addition is rate-limiting.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c03618.

Experimental procedures, characterization data, and NMR spectra $\left(PDF \right)$

AUTHOR INFORMATION

Corresponding Authors

Dmytro M. Volochnyuk — The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine; Enamine Ltd, Kyiv 02094, Ukraine; Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv 02000, Ukraine; orcid.org/0000-0001-6519-1467; Email: d.volochnyuk@gmail.com

John F. Hartwig — Department of Chemistry, University of California, Berkeley, California 94720, United States;
o orcid.org/0000-0002-4157-468X; Email: jhartwig@berkeley.edu

Authors

Jeremy Nicolai — Department of Chemistry, University of California, Berkeley, California 94720, United States; orcid.org/0000-0002-0910-2463

Tommaso Fantoni — Department of Chemistry, University of California, Berkeley, California 94720, United States

Trevor W. Butcher — Department of Chemistry, University of California, Berkeley, California 94720, United States;
o orcid.org/0000-0001-5006-692X

Sophie I. Arlow – Department of Chemistry, University of California, Berkeley, California 94720, United States

Serhiy V. Ryabukhin — The Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine; Enamine Ltd, Kyiv 02094, Ukraine; Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv 02000, Ukraine; orcid.org/0000-0003-4281-8268

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c03618

Author Contributions

Conceptualization: J.F.H. and S.I.A.; methodology: J.N., T.F., T.W.B., and S.I.A.; investigation: J.N., T.F., T.W.B., and S.I.A.; writing—original draft: J.N.; writing—review and editing: J.N. and J.F.H.; funding acquisition, resources, and supervision: J.F.H.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NSF (CHE-1955635) for support of this work. We gratefully acknowledge the Molecular Graphics and Computation Facility (MGCF) at the University of California, Berkeley, which is supported by NIH S10OD023532 and NIH S10OD03438, for its assistance in this work. We thank Drs. Hasan Celik, Raynald Giovine, and Pines Magnetic Resonance Center's Core NMR Facility (PMRC Core) for spectroscopic assistance. The instrument used in this work was, in part, supported by NIH S10OD024998. J.N. and T.F. wish to thank Dr. Eric Kalkman for his helpful discussions regarding fluoroalkylation chemistry and DFT calculations. J.N. thanks Christina Pierson for her skillful technical assistance.

ABBREVIATIONS

CuTC, copper(I) thiophenecarboxylate; CuDPP, copper(I) diphenylphosphinate; TFAA, trifluoroacetic acid; 4-FM, 4-formylmorpholine; DFT, density functional theory

■ REFERENCES

- (1) Inoue, M.; Sumii, Y.; Shibata, N. Contribution of Organofluorine Compounds to Pharmaceuticals. ACS Omega 2020, 5, 10633–10640.
- (2) Wang, Q.; Song, H.; Wang, Q. Fluorine-containing agrochemicals in the last decade and approaches for fluorine incorporation. *Chin. Chem. Lett.* **2022**, 33, 626–642.
- (3) Meanwell, N. A. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design. J. Med. Chem. 2018, 61, 5822—5880
- (4) Ogawa, Y.; Tokunaga, E.; Kobayashi, O.; Hirai, K.; Shibata, N. Current Contributions of Organofluorine Compounds to the Agrochemical Industry. *iScience* **2020**, 23, 101467.
- (5) Mandal, D.; Maji, S.; Pal, T.; Sinha, S. K.; Maiti, D. Recent advances in transition metal-mediated trifluoromethylation reactions. *Chem. Commun.* **2022**, *58*, 10442–10468.
- (6) Szpera, R.; Moseley, D. F. J.; Smith, L. B.; Sterling, A. J.; Gouverneur, V. The Fluorination of C-H Bonds: Developments and Perspectives. *Angew. Chem., Int. Ed.* **2019**, *58*, 14824–14848.
- (7) Liang, T.; Neumann, C. N.; Ritter, T. Introduction of Fluorine and Fluorine-Containing Functional Groups. *Angew. Chem., Int. Ed.* **2013**, 52, 8214–8264.
- (8) Campbell, M. G.; Ritter, T. Modern Carbon-Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis. *Chem. Rev.* **2015**, *115*, 612–633
- (9) Arun, R.; Stiniya, S.; Saranya, P. V.; Anilkumar, G. An overview of palladium-catalyzed trifluoromethylation reactions. *J. Organomet. Chem.* **2022**, 979, 122492.

- (10) Evano, G.; Nitelet, A.; Thilmany, P.; Dewez, D. F. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: A Review. *Front. Chem.* **2018**, *6*, 114.
- (11) Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. *Chem. Rev.* **1991**, *91*, 165–195.
- (12) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. Nitrile-Containing Pharmaceuticals: Efficacious Roles of the Nitrile Pharmacophore. *J. Med. Chem.* **2010**, *53*, 7902–7917.
- (13) Hutson, D. H.; Hoadley, E. C.; Griffiths, M. H.; Donninger, C. Mercapturic acid formation in the metabolism of 2-chloro-4-ethylamino-6-(1-methyl-1-cyanoethylamino)-s-triazine in the rat. *J. Agric. Food Chem.* **1970**, *18*, 507–512.
- (14) Wit, J.; Van Genderen, H. Metabolism of the herbicide 2,6-dichlorobenzonitrile in rabbits and rats. *Biochem. J.* **1966**, *101*, 698–706
- (15) Craig, G. W.; Eberle, M.; Zeller, M.; Bondy, S. S.; Comer, D. D.; Cheng, S.; Penzotti, J. E.; Grootenhuis, P. D. J.; Ehrler, J. 3-phenoxy-1-phenyl acetylene derivatives and their use as herbicides. WO 2001055066 A2, 2001.
- (16) Bell, J.; Buysse, A. M.; Daeuble, J. F. ..; Eckelbarger, J. D.; Epp, J. B.; Irvine, N. M.; Kister, J.; Lo, W. C.; Loso, M. R.; Lowe, C. T.; Rohanna, J. C.; Satchivi, N. M.; Siddall, T. L.; Steward, K. M.; Yerkes, C. N. Pyridine and pyrimidine carboxylate herbicides and methods of use thereof. WO 2019084353 A1, 2018.
- (17) Schiefer, I. T.; Abdul-Hay, S.; Wang, H.; Vanni, M.; Qin, Z.; Thatcher, G. R. J. Inhibition of Amyloidogenesis by Nonsteroidal Anti-inflammatory Drugs and Their Hybrid Nitrates. *J. Med. Chem.* **2011**, *54*, 2293–2306.
- (18) Arrington, K. L.; Dudkin, V. Y.; Fraley, M. E.; Garbaccio, R. M.; Hartman, G. D.; Huang, S. Y.; Kreatsoulas, C.; Tasber, E. S. Inhibitors of Checkpoint Kinases. WO 2007008502 A2, 2007.
- (19) Harris, K. J. A combination of niacin and a prostaglandin d2 receptor antagonist. WO 2008039882 A1, 2007.
- (20) Gill, L. A.; Buckl, A.; Koltun, E. S.; Aay, N.; Tambo-ong, A. A.; Thompson, S.; Gliedt, M. J.; Knox, J. E.; Cregg, J.; Edwards, A. V.; Liu, Y.; Burnett, G. L. Bicyclic heteroaryl compounds and uses thereof. U.S. Patent 20,210,139,517 A1, 2021.
- (21) Bartmann, E.; Krause, J. Synthesis of α , α -difluoronitriles from acyl cyanides. *J. Fluorine Chem.* **1993**, *61*, 117–122.
- (22) Middleton, W. J.; Bingham, E. M. .alpha., alpha.-Difluoroarylacetic acids: preparation from (diethylamino)sulfur trifluoride and .alpha.-oxoarylacetates. *J. Org. Chem.* **1980**, *45*, 2883–2887.
- (23) Hagele, G.; Haas, A. Fluorination of 2-oxo-ethane derivatives with diethylaminosulfur trifluoride (DAST). *J. Fluorine Chem.* **1996**, 76, 15–19.
- (24) Molloy, B. B. β -Phenyl- β , β -difluoroethylamines. U.S. Patent 3,880,927 A, 1975.
- (25) Kotoris, C. C.; Chen, M.-J.; Taylor, S. D. Preparation of Benzylic α , α -Difluoronitriles, -tetrazoles, and -sulfonates via Electrophilic Fluorination. *J. Org. Chem.* **1998**, *63*, 8052–8057.
- (26) Hara, S.; Fukuhara, T. Desulfurizing Difluorination Reaction of Benzyl Sulfides Using IF₅. Synlett **2009**, 2009, 198–200.
- (27) Wright, S. E.; Bandar, J. S. A Base-Promoted Reductive Coupling Platform for the Divergent Defluorofunctionalization of Trifluoromethylarenes. *J. Am. Chem. Soc.* **2022**, *144*, 13032–13038.
- (28) Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides. *Angew. Chem., Int. Ed.* **2011**, *50*, 3793–3798.
- (29) Oishi, M.; Kondo, H.; Amii, H. Aromatic trifluoromethylation catalytic in copper. *Chem. Commun.* **2009**, 1909.
- (30) Kondo, H.; Oishi, M.; Fujikawa, K.; Amii, H. Copper-Catalyzed Aromatic Trifluoromethylation via Group Transfer from Fluoral Derivatives. *Adv. Synth. Catal.* **2011**, 353, 1247–1252.
- (31) Knauber, T.; Arikan, F.; Röschenthaler, G.; Gooßen, L. J. Copper-Catalyzed Trifluoromethylation of Aryl Iodides with Potassium (Trifluoromethyl)trimethoxyborate. *Chem.—Eur. J.* **2011**, 17, 2689–2697.

- (32) Gonda, Z.; Kovács, S.; Wéber, C.; Gáti, T.; Mészáros, A.; Kotschy, A.; Novák, Z. Efficient Copper-Catalyzed Trifluoromethylation of Aromatic and Heteroaromatic Iodides: The Beneficial Anchoring Effect of Borates. *Org. Lett.* **2014**, *16*, 4268–4271.
- (33) Urata, H.; Fuchikami, T. A novel and convenient method for trifluoromethylation of organic halides using CF₃SiR'₃/KF/Cu(I) system. *Tetrahedron Lett.* **1991**, 32, 91–94.
- (34) Levitre, G.; Granados, A.; Cabrera-Afonso, M. J.; Molander, G. A. Synthesis of α -Fluorinated Areneacetates through Photoredox/Copper Dual Catalysis. *Org. Lett.* **2022**, *24*, 3194–3198.
- (35) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. A New Method for Aromatic Difluoromethylation: Copper-Catalyzed Cross-Coupling and Decarboxylation Sequence from Aryl Iodides. *Org. Lett.* **2011**, *13*, 5560–5563.
- (36) Arlow, S. I.; Hartwig, J. F. Synthesis of Aryldifluoroamides by Copper-Catalyzed Cross-Coupling. *Angew. Chem.* **2016**, *128*, 4643–4648.
- (37) Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent. *J. Am. Chem. Soc.* 1989, 111, 393–395.
- (38) Kosobokov, M. D.; Dilman, A. D.; Levin, V. V.; Struchkova, M. I. Difluoro(trimethylsilyl)acetonitrile: Synthesis and Fluoroalkylation Reactions. *J. Org. Chem.* **2012**, *77*, 5850–5855.
- (39) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides. *Science* **2010**, 328, 1679–1681.
- (40) Du, H.-C.; Bangs, M. C.; Simmons, N.; Matzuk, M. M. Multistep Synthesis of 1,2,4-Oxadiazoles via DNA-Conjugated Aryl Nitrile Substrates. *Bioconjugate Chem.* **2019**, *30*, 1304–1308.
- (41) Galatsis, P.; Henderson, J. L.; Kormos, B. L.; Kurumbail, R. G.; Reese, M. R.; Stepan, A. F.; Verhoest, P. R.; Wager, T. T.; Pettersson, M. Y.; Garnsey, M. R. Novel imidazo [4,5-c] quinoline and imidazo [4,5-c][1,5] naphthyridine derivatives as lrrk2 inhibitors. WO 2017046675 A1, 2017.
- (42) Moolten, M. S.; Fishman, J. B.; Chen, J.-C.; Carlson, K. R. Etonitazene: An opioid selective for the mu receptor types. *Life Sci.* **1993**, *52*, 199–203.
- (43) Xiao, Y.-L.; Zhang, B.; Feng, Z.; Zhang, X. Heteroaryldifluoromethylation of Organoborons Catalyzed by Palladium: Facile Access to Aryl(Heteroaryl)difluoromethanes. *Org. Lett.* **2014**, *16*, 4822–4825.
- (44) Nagai, K.; Baba, M.; Fujioka, S.; Nagasawa, K.; Takahashi, H.; Kondoh, E.; Sogo, S.; Tanaka, K.; Itoh, Y. Difluoromethylene compound. U.S. Patent 9,650,380 B2, 2017.
- (45) Ohashi, M.; Takeda, I.; Ikawa, M.; Ogoshi, S. Nickel-Catalyzed Dehydrogenative [4 + 2] Cycloaddition of 1,3-Dienes with Nitriles. *J. Am. Chem. Soc.* **2011**, *133*, 18018–18021.
- (46) Chandrashekhar, V. G.; Baumann, W.; Beller, M.; Jagadeesh, R. V. Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. *Science* **2022**, *376*, 1433–1441.
- (47) Lin, C.-C.; Hsieh, T.-H.; Liao, P.-Y.; Liao, Z.-Y.; Chang, C.-W.; Shih, Y.-C.; Yeh, W.-H.; Chien, T.-C. Practical Synthesis of N-Substituted Cyanamides via Tiemann Rearrangement of Amidoximes. *Org. Lett.* **2014**, *16*, 892–895.
- (48) Schultz, M.; Schiemann, K.; Botton, G.; Blaukat, A.; Kober, I. Imidazole Derivatives. U.S. Patent 20,100,249,132 A1, 2010.
- (49) Shaber, S. H.; Nguyen, L. T. Fungicidal and herbicidal triazoles. U.S. Patent 5,264,415 A, 1993.
- (50) Vasil'eva, V. F.; Medvedev, B. A.; Galitsina, V. A.; Korsakova, I. Y.; Shvedov, V. I.; Mashkovskii, M. D. Synthesis and pharmacological properties of 4-guanidinomethyl- and 4-(N'-phenylamidino) quinolines. *Pharm. Chem. J.* **1981**, *15*, 349–353.
- (51) Zhang, S.; Wang, S.; Leng, Y.; Wu, Y. One-pot synthesis of 2-acylbenzothiazoles from 2-aminobenzenethiols and arylacetonitriles via cyclization and sequential oxidation. *Tetrahedron Lett.* **2021**, *79*, 153300.

- (52) Dhawale, K. D.; Ingale, A. P.; Shinde, S. V.; Thorat, N. M.; Patil, L. R. ZnO-NPs catalyzed condensation of 2-aminothiophenol and aryl/alkyl nitriles: Efficient green synthesis of 2-substituted benzothiazoles. *Synth. Commun.* **2021**, *51*, 1–14.
- (53) Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Copper-Catalyzed Synthesis of Substituted Benzothiazoles via Condensation of 2-Aminobenzenethiols with Nitriles. *Org. Lett.* **2013**, *15*, 1598–1601.
- (54) Konovalov, A. I.; Lishchynskyi, A.; Grushin, V. V. Mechanism of Trifluoromethylation of Aryl Halides with CuCF₃ and the Ortho Effect. J. Am. Chem. Soc. **2014**, 136, 13410–13425.
- (55) Liu, H.; Wu, J.; Jin, Y.; Leng, X.; Shen, Q. Mechanistic Insight into Copper-Mediated Trifluoromethylation of Aryl Halides: The Role of Cul. J. Am. Chem. Soc. 2021, 143, 14367–14378.
- (56) Giri, R.; Hartwig, J. F. Cu(I)-Amido Complexes in the Ullmann Reaction: Reactions of Cu(I)-Amido Complexes with Iodoarenes with and without Autocatalysis by CuI. *J. Am. Chem. Soc.* **2010**, *132*, 15860–15863.
- (57) Kalkman, E. D.; Qiu, Y.; Hartwig, J. F. Transition-State Stabilization by Secondary Orbital Interactions between Fluoroalkyl Ligands and Palladium During Reductive Elimination from Palladium-(aryl) (fluoroalkyl) Complexes. ACS Catal. 2023, 13, 12810–12825.
- (58) Lu, T.; Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 2022, 43, 539–555.