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Abstract Growing demands on ocean resources are placing increasing pressures on ocean ecosystems. To
assess the current state of knowledge of future human pressures on the ocean, we conducted a literature review
of recent and projected trends of 25 anthropogenic pressures, comprising most of the identified human pressures
on the global oceans. To better understand gaps in the data, we developed a comprehensive framework of the
activities contributing to each pressure. All pressures were allocated to five categories (biological disruption,
disturbance and removal, altered ocean chemistry, pollution, and climate pressures). All pressures are expected
to worsen in the future under business-as-usual scenarios (or similar) based on past trajectories and/or models of
future scenarios. Eight of the pressures assessed have not been projected into the future (diseases and pathogens,
introduced coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic and inorganic
chemical pollution, light and noise pollution), likely due to the limited availability of data describing current
pressures, the challenges of modeling future pressures, and high levels of uncertainty. We thus recommend they
receive priority attention to assess their likely future trajectories, given their potential magnitude of influence.

Plain Language Summary Ocean ecosystems face increasing challenges owing to growing demands
on ocean resources, pollution and climate change. To better predict the future trajectories of human pressures on
the ocean, we conducted a review of 25 human-induced pressures on global oceans. All pressures are expected
to worsen in the future if current trends continue. Some pressures (i.e., diseases and pathogens, introduced
coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic and inorganic chemical
pollution, light and noise pollution) lack future projections and need urgent attention to assess their potential
impacts.

1. Introduction

The ocean covers 71% of the earth's surface and is critical for planetary and human health (Costanza, 1999).
Humans rely on the ocean for oxygen production, food, buffering from global temperature increases, natural
resources, transportation, emotional wellbeing, and leisure, among many other uses. These activities, both
terrestrial and marine, result in pressures that put substantial stress on marine organisms and ecosystems (Halpern
et al., 2008, 2015; O’Hara et al., 2021). In the future, these pressures are projected to increase given expanding
populations and economies, as well as the development of novel uses of marine regions and methods of resource
extraction (Jouffray et al., 2020; Sumaila et al., 2021). The need to address current and future pressures has
become one of the most important, complex and urgent challenges facing humanity, reflected in global policies
such as the Sustainable Development Goals (United Nations, 2015) and the Ocean Decade (UNESCO-
10C, 2021).

Building on previous work (Butt et al., 2022; Halpern et al., 2008, 2015), we develop a comprehensive framework
of human activities and the resulting pressures on marine environments. Similar to Elliott et al. (2020), we define
“pressures” as the variables, resulting from human actions, that most directly affect the physiology and life-
history of marine taxa, and ultimately ecosystems. These pressures operate at different scales, from organisms
(e.g., reduced survival) to populations and ecosystems (e.g., habitat loss), resulting in impacts which are often
negative but can be positive to some organisms (Oesterwind et al., 2016). We define “activities” as the human
actions that create pressures, such as land-based agriculture, Mari culture, fishing, mining, exploration, shipping,
and tourism (e.g., Dailianis et al., 2018). The relationship between activities and pressures can be complex, such
that a single activity can generate multiple pressures and a single pressure can result from many different activities
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(Halpern et al., 2008; O'Hara & Halpern, 2022). For example, marine mining and exploration places pressure on
the ocean by transforming habitats, and generating chemical pollution and ocean noise, while ocean noise can be
emitted by many different human activities, including fishing, oil and gas exploration, and shipping.

The distinction between pressures and activities are often conflated. We focus explicitly on pressures (vs. ac-
tivities) because this is what organisms respond to (are affected by) and, for that reason, should be the basis of
modeling impacts. Pressures have a history of being successfully used to estimate impacts on marine habitats
(Halpern et al., 2008, 2015) and species (O’Hara et al., 2021) based on their physiology and life history (Butt
et al., 2022). Although pressures provide the most direct way of estimating impacts, understanding the linkages
between activities and pressures is critical for several reasons. Activity data are often more readily available
because they can be easier to monitor and are also more likely to be the target of management and regulation. In
these cases, activity data can serve as a proxy or be used to model pressures, but this requires mapping the re-
lationships between these variables.

Although there is published information on current marine activities (e.g., Crona et al., 2021) and ocean pressures
(Crain et al., 2008; Gissi et al., 2021; Halpern et al., 2008), as well as the accelerated rate of change over the last
50 years (Halpern et al., 2015; Jouffray et al., 2020), less has been done to synthesize what we know about future
pressures for the mid-to long-term (but see O'Hara & Halpern, 2022). To address this, we review the literature on
the current and projected future pressures placed on oceans by human activities, without addressing ultimate
impacts or outcomes. Although we focus on pressures, we link them to their corresponding human activities given
that in many cases only activity data are available, and both are used, sometimes interchangeably, by researchers
and managers. Our aim is to provide an overview of the expected future trajectory of each pressure, synthesizing
information on how far into the future the pressure is projected, its predicted trajectory (trend direction,
magnitude, and confidence in projections) and to describe the data underlying the future projections (e.g., spatial
resolution, analysis type, and scenarios). Based on this synthesis, we highlight the gaps in knowledge, providing
recommendations about future research priorities.

2. Methods

A list of anthropogenic pressures (n = 25) and corresponding activities was pre-determined and defined, building
on similar efforts to catalog pressures (Halpern et al., 2008; O'Hara & Halpern, 2022). The summarized list is
presented in Figure 1 and the full description of each pressure in Supporting Information S1. This was followed by
a scoping review (Collins et al., 2015) to identify available publications on projected ocean pressures at a global
scale that had either quantitative or qualitative trend outputs.

The literature search was completed between February and May 2022, using SCOPUS database. Academic
journal articles, books, reports and gray literature published between 2000 and 2022, in English, were included.
Word search criteria (of titles) included: (global* OR world OR ocean OR coast*) AND (forecast* OR project*
OR trend OR predict* OR estimate* OR ensemble OR review); with additional key words according to each
pressure (e.g., “sea level rise”). The results of the database were automatically organized by relevance. A min-
imum of 60 results was examined by reading the title, abstract, and in some cases full document, to determine its
importance. This threshold was chosen arbitrarily.

Additional sources of information were searched, including reports from the Intergovernmental Panel on Climate
Change (IPCC), Food and Agriculture Organization (FAO), and United Nations (UN). Cross references (snowball
sampling) and other documents suggested by co-authors were assessed if relevant. This approach may introduce
potential biases, as it tends to exclude less cited and more recent works with clear relevance. However all co-
authors have a good exposure to recent publications and were able to suggest useful sources that mitigate this
bias. We then synthesized the literature using a narrative approach (Booth, 2016) which characterizes studies in
terms of multiple groupings to explore heterogeneity descriptively, rather than statistically. The synthesis phase
consisted of extracting and categorizing the projected pressure data from selected papers based on: spatial res-
olution; temporal range; type of analysis (e.g., quantitative/mapped, qualitative/unmapped, qualitative, or
mixed); if available, the specific scenarios used for future projections (i.e., Representative Concentration Pathway
(RCP), Shared Socioeconomic Pathway (SSP)); and description of the general trend of each pressure (e.g., up-
ward, downward or static trajectory). The terminology is described in Table 1.
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Habitat replacement
== Human wastewater: drug, hormone
Human wastewater: sewage
== Human wastewater: sewage and open defection
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Land-based light
== Microplastics
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M Structures: oil and gas rigs, pipelines
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Figure 1. Sankeymatic diagram of marine anthropogenic pressures in the left column and corresponding activities in the right column organized according to categories.
The line thickness has no quantitative value (Made with the SankeyMATICS program).

3. Results

A total of 1,681 documents were reviewed, from which 67 met the criteria for selection. The full list of publi-
cations selected for each pressure is presented in Table S1 of Supporting Information S1 and an extended
summary of the findings in Supporting Information S1. From the 25 pressures assessed, only eight lacked future
projections at a global scale. These include diseases and pathogens, introduced coastal wildlife predation,
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Table 1
Definitions of Terminology Used
Category Term Definition

Scenarios used to estimate future
projections

Type of analysis

Shared socioeconomic pathway (SSP) and SSP and RCP are frameworks used to model future projections of environmental
representative concentration pressures, incorporating socioeconomic trends and greenhouse gas trajectories,
pathway (RCP) respectively. The SSPs describe 5 potential pathways of global socioeconomic

development, based on variables such as population, technological
advancements, climate policies, and gross domestic product. These narrative
storylines are then paired with greenhouse gas emission pathways (RCPs)
which result in specified levels of radiative forcing (i.e., difference between the
amount of energy entering and leaving the atmosphere) in 2100. An SSP
scenario may have multiple potential RCPs. The most common are: SSP1-1.9,
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5.

Quantitative mapped Data values are described relative to their spatial location.
Quantitative unmapped Data are not spatially represented.

Qualitative Non-numerical, descriptive, data (e.g., interviews).
Mixed Combination of above.

disruption to sediment dynamics, wildlife strikes, organic and inorganic chemical pollution, light and noise
pollution. Figure 2 and Table 2 show which of the pressures have been projected, the expected future trend, and
the confidence level.

For the 17 projected pressures, Figure 3 shows the different approaches and outputs of future projections for the
86 studies assessed (based on 67 unique articles), including quantitative mapping analyses (81%), quantitative
unmapped (18%) and qualitative analyses (1%). The spatial resolution of projections ranged between 15 arc s
(450 m) up to regional or country level. The timeframe covered by projections ranged between the years 2050 and
2300 (there is an exception in the upper limit: an ocean acidification article projected up to the year 12,000).
Figure 4 describes the number of studies according to the projected trend for each pressure. The scenario
frameworks used for the projection models were predominantly (48.5%) the “Representative Concentration
Pathway” (RCP), followed by “Shared Socioeconomic Pathways” (SSPs) (13%); SSP-RCP (10%); Special Report
on Emissions Scenarios (SRES) (10%); “Business-as-usual scenario” (BAU) (6.5%); Millennium Ecosystem
Assessment (MEA) (4%), and “other” (8%).

4. Discussion

Anthropogenic pressures on global oceans have increased in most places during recent history, impacting marine
species (O’Hara et al., 2021), habitats and ecosystems (Halpern et al., 2008, 2015). To better understand future
pressures on the oceans, we reviewed the current literature describing the future projections of pressures that
impact marine systems. Of the 25 pressures we identified, all but eight have future projections, at least to some
extent, and all show a tendency to get worse (Figure 2). The eight pressures without projections are also likely to
increase or expand in the coming decades, based on their underlying activities and past trajectories. Pressures
without future projections were often very complex, with many drivers, and high uncertainty with regard to how
these drivers may change. Given the importance of comprehensive assessments, filling gaps in pressure data
should be a priority for researchers and managers, but will require a collaborative effort from multiple stake-
holders. While individual scientist and research institutions can contribute significantly, Intergovernmental or-
ganizations such as the Intergovernmental Panel on Climate Change (IPCC), scientific networks such as the
Coupled Model Intercomparison Project (CMIP) or the Fisheries and Marine Ecosystem Model Intercomparison
Project (FishMIP) are well placed to bridge these gaps in knowledge.

Many of the pressures with future projections had other limitations that hinder our assessment of future impacts.
Perhaps most importantly, estimates of future projections for several of the pressures have a great deal of un-
certainty and should be integrated into future studies. In many cases, it is more difficult to model human responses
to changing global conditions (e.g., change in pollution) than it is to model physical variables, such as SST.
Another limitation is that many pressure estimates are incomplete, and include only a portion of the underlying
activities, or drivers. For example, data describing current patterns of global land use (a component of habitat
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Figure 2. Marine anthropogenic pressures (n = 25) classified into five categories. Pressures with future projections at the global scale are outlined with a solid line
(n = 17) and those without future projections are outlined with a dashed line (n = 8). Colors indicate the direction of the projected change (or, the historical direction of
change for the eight pressures that are not projected). The confidence level of the projection is indicated in parentheses (High: H, Medium: M and Low: L). Future trends
are represented in different colors: green (decrease), yellow (mixed regional variance) and blue (increase). An extended summary of the findings is presented in

Supporting Information S1.

disturbance and loss, e.g., aquaculture, marine structures, coastal hardening) are unavailable or limited, and data
on future projections are even more scarce. Furthermore, future projections often describe general patterns of
change but they do not include high resolution spatial descriptions of future magnitudes or extents. This infor-
mation is critical to estimating the impact of pressures on marine taxa and ecosystems because it helps quantify
the exposure of organisms to the pressures.

Understanding the linkages between activities and pressures will be key to improving the quality of projected
pressure data. In many cases, activity data can be a suitable proxy for pressure data or can be used to model
pressures. For example, human population is associated with many pressures (e.g., pollution, disturbance and
extraction pressures). The world population is projected to grow from the current 8 billion to almost 10 billion
inhabitants in 2050 (United Nations, 2022), of which at least 1 billion people will live along the coast (Merkens
et al., 2016). By the year 2100, Asia and Africa are expected to reach a population of 9 billion, out of 11 billion
people (FAO, 2017). Environmental change can also alter human migratory patterns, and coastal migration can
even reverse owing the impacts of climate change in these vulnerable areas (Hugo, 2011). Among other things,
this information could be used to model future light pollution.
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Table 2

Summary of the Results for Each Pressure, Including Latest Year of Projection, or Not Projected (NP), the Expected Trend, Its Confidence and General Notes

Pressure Year® Trend® Confidence

Notes

Biological pressures

Diseases and pathogens NP
Eutrophication 2050
Introduced coastal wildlife predation NP
Invasive species 2060

Disturbance and extraction pressures

Benthic habitat disturbance or loss 2100

Coastal habitat disturbance or loss 2100

Disruptions to sediment dynamics NP

Marine biomass removal (coastal and 2100
pelagic)

Wildlife strikes NP

Ocean chemistry pressures

Disruptions to ocean productivity 2300

I+

Medium

+  High

+ Medium

+ Medium

+ High
+ High
+ Medium

+ Medium

+  High

+ Medium

We were unable to find projections of this pressure, however, there are observations of
recent increase in marine disease (Ward & Lafferty, 2004) and vector borne diseases
have expanded from the tropics/subtropics to temperate regions (i.e., Caminade
et al., 2014; Liu-Helmersson et al., 2014; Ogden, 2017)

Projected to shift from industrialized countries to developing countries mainly in South
East Asia (Liu et al., 2012; Seitzinger et al., 2002, 2010). The frequency, magnitude and
duration of harmful algal blooms (HABS; i.e., a rapid proliferation of microscopic algae
that produce toxic compounds) has increased in recent times together with expansion
into new locations and changes in toxicity (Glibert & Burford, 2017; Gilbert
et al., 2014). This pattern is projected to continue into the future.

Some localized studies are available (i.e., extinctions due to feral cats on Medina
etal., 2011) to describe current pressures. Coastal human population density is probably
a good proxy measure that has been projected into the future.

Generally projected to decrease in the tropics and increase in the temperate regions
(Seebens et al., 2016).

Benthic biomass under RCP 8.5 was estimated to decrease 5.2% due to climate change by
2100. Polar oceans and some upwelling areas may increase the benthic biomass, but
most other regions will decrease (i.e., up to 38% in the northeast Atlantic; Jones &
Cheung, 2015).

Globally, coastal infrastructure in 30 urban centers has replaced more than half (53%) of
the coastline and is expected to increase by 50%-76% by 2043 (Floerl et al., 2021).
Coastal pressures are further exacerbated by climate change (i.e., ambient shoreline
changes and coastal recession driven by SLR, could result in the disappearance of
almost half of the world's sandy beaches by 2100, Vousdoukas et al., 2020).

Future projected sedimentation patterns along coastal zones do not exist, but patterns will
be spatially heterogenous based on current and historical changes. Past trends indicate
decreased sediment flux in the northern hemisphere and rapid increases in the southern
hemisphere due to land use change (Dethier et al., 2022).

Decline of animal biomass, stock and maximum sustainable yield (MSY) due to climate
change and overfishing (Coll et al., 2020; Free et al., 2020; Gaines et al., 2018;
Galbraith et al., 2017; Lotze et al., 2019). The MSY defined as the maximum production
of food from the sea on a sustained basis year after year (Chapman, 1949 in Finley &
Oreskes, 2013). The MSY is projected to decrease for equatorial countries and increase
for poleward countries (Free et al., 2020; Jones & Cheung, 2015).

Wildlife strikes have not been projected, however, they are linked to global maritime
traffic, which increased by 258% between 2006 and 2014 and is projected to increase
240%-1,209% by 2050, relative to 2014 (Sardain et al., 2019). Currently, higher
resolution data describing the spatial patterns of shipping change are unavailable, but
increases in shipping traffic will be highest along connections with large, fast-growing
economies, notably Northeast Asia. The accelerated decline in Arctic Sea ice in recent
decades suggests the possibility of future trans-Arctic shipping routes linking the
Atlantic and Pacific Oceans (Wei et al., 2020).

The NPP is defined as the amount of carbon dioxide that phytoplankton convert from
carbon dioxide to organic carbon using photosynthesis and is the basis of marine
ecosystems. Significant redistribution of marine net primary productivity (NPP) is
projected by 2100 (Stock et al., 2014). NPP is projected to decline by —3% under SSP5-
8.5 by 2080-2099 (Kwiatkowski et al., 2020). Moore et al. (2018) suggested a steady
decline of 24% north of 30°S by the year 2300. In contrast, NPP has been projected to
increase in offshore polar regions due to higher mean underwater light levels (Cooley
et al., 2022).
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Table 2
Continued

Pressure Year® Trend® Confidence

Notes

Disruptions to salinity 2100 +

Hypoxic events 2100 +

Ocean acidification 12000 +
Pollution pressures

Chemical pollution (inorganic) NP +

Chemical pollution (organic) NP +

Light pollution NP +

Noise pollution NP +

Ocean debris 2100 +

Climate pressures

Changes in ultraviolet light (UV) 2100 -

Extreme coastal storms 2100 +

Medium

Medium

High

Medium

Medium

Medium

Medium

High

Medium

High

Changes to salinity in the surface waters of the open ocean are expected to generally be
less extreme than near-shore regions. In the 21st century, the fresh ocean regions (North
and South Pacific, Southern, Indian Ocean and Artic Ocean and Bay Bengal) will get
fresher and salty ocean regions (Atlantic and Equatorial Indian Ocean) will get saltier
(Fox-Kemper et al., 2021; IPCC, 2021). Near shore changes to salinity, due to changes
in rainfall and land-use, are not currently projected at the global scale.

CMIP6 model projections estimate subsurface oxygen will decline by 11.2% for the SSP5-
8.5 scenario by 2081-2100 (IPCC, 2022). The changes are not spatially uniform and
there is a high degree of disagreement in regard to the spatial distribution of change
(Bopp et al., 2013; Kwiatkowski et al., 2020). However, projections suggest the North
Pacific, North Atlantic, Southern Ocean, subtropical South Pacific, and South Indian
Ocean will all undergo deoxygenation; in contrast, the tropical Atlantic and the tropical
Indian Oceans show increasing O2 concentrations in response to climate change.

The pH of the ocean is strongly projected to keep decreasing (Kwiatkowski et al., 2020).

There are no global projections of this pressure, which has many contributing sources.
However, some heavy metals have been researched individually; for example, mercury
by Zhang, Song, et al., 2021.

We were unable to find global projections of this pressure, which has many contributing
sources. However, Octaviani et al. (2015) found secondary emissions (re-volatilization
from land and sea surfaces) will dominate global atmospheric cycling of POPs. A
secondary volatilization of DDT caused by global warming will still be continuously
transported to the north polar area, and the net export of PCB153 out of the Arctic will
increase in the future (Octaviani et al., 2015).

Global light emissions observed through satellites showed an increase of at least 49% from
1992 to 2017 (Sanchez de Miguel et al., 2021). We expect that global light pollution will
continue to increase given projected increases in coastal population and GDP, which are
both associated with increasing light pollution (and have future projections).

No global projections were found; however, maritime traffic is the most common source
of noise which is increasing quickly and is generally expected to continue increasing.
We failed to find current and future projections for other sources, such as, mining for
natural resources, construction, blast fishing, military sonar and sub-seabed geological
storage of CO,. Climate change will magnify noise pollution, because sound absorption
decreases with increasing temperature and decreasing seawater pH (Ilyina et al., 2010).
Affatati et al. (2022) identified two “acoustic hotspots” where future sound speed is
predicted to increase under BAU by 2100: The Greenland Sea and the north-western
Atlantic Ocean (East of Newfoundland), where the average speed of sound is likely to
be greater than 1.5% by 2100.

Lebreton et al. (2019) predicts that for a BAU scenario, the quantities of buoyant
macroplastics at the surface of the ocean and coastline could quadruple by 2050,
concentrated in its majority along the shoreline (when compared to the offshore and
coastal surface layer) and eventually degrading in to microplastics.

Tendency to decrease in the future, mainly due to: increasing concentrations of
greenhouse gases, a possible decline in solar activity, increase in cloud cover, and
reduced reflectivity due to melting ice (Bais et al., 2015). Bais et al. (2011) estimated
that UV radiation by the end of the century will be on average 12% lower at high
latitudes in both hemispheres, 3% lower at mid latitudes, and marginally higher (1%) in
the tropics, relative to 1980. These findings are opposite to Watanabe et al. (2011) who
suggested that all sky UV radiation in the northern mid-latitudes is projected to increase
in the 21st century.

Tropical cyclones (TC) remain a challenge to project owing to the short historical record,
the spatial resolution of climate models relative to the scale of storm drivers; and low
annual frequency and large variability, from days to decades (Roberts et al., 2020).
According to IPCC, the global proportion of category 3—5 TCs has likely increased over

VARGAS-FONSECA ET AL.

7 of 16

A ‘6 PTOT “LLTYSTET

:sdpy woiy papeoy:

9SULDIT SUOWWO)) dANERAIL) d[qedrjdde ay) Aq pauIdAoS ale s3[OIIR Y asn JO SINI 10J AIRIQIT AUIUQ AD[IAY UO (SUOHIPUOI-PUE-SULIY) /WO’ A[IM" KIRIqI[aul[uo//:sdNy) SUONIpuo)) pue swid ], 3y} 298 [#207/60/S0] U0 A1eiqr auiuQ Ao[ip\ ‘BruIoji[e) JO ANsIoAuN £q 6SSH00Ad4T0T/6T01 01/10p/wod Kafim K.



I Vedl
et Earth's Future 10.1029/2024EF004559
Table 2
Continued
Pressure Year® Trend® Confidence Notes

Increases in surface air temperature

Extreme heat events in surface air
temperature

Increases in sea surface
temperature (SST)

Extreme heat events in sea surface
temperature (SST)

Sea level rise

the past 40 years and peak intensities in the North Pacific Ocean are likely moving
poleward. Bhatia et al. (2018) found significant decreases in TC days between 30°S and
30°N in the south Indian, north Indian, western Australian, and western Pacific basins.
The IPCC projected trends are highly variable among regions. There is medium
confidence that the total global frequency of TCs will decrease or remain unchanged.
But high confidence that the proportion of intense TCs, as well as their projected
intensity, will increase (IPCC, 2021).

2300 + High Huang et al. (2022) estimated that land surface air temperature under SSP5-8.5 will
increase by 5.8°C. Similarly, Tebaldi et al. (2021) estimated that an average of 2°C
warming would be reached by 2039, and 5°C warming will be reached in the mid-2090s
under SSP5-8.5.

2300 + High In recent decades heat waves (HW) have increased and future climate scenarios project
increases in frequency and intensity (Meehl et al., 2012; Cesar et al., 2013, Russo
et al., 2014; IPCC, 2021; Dosio et al., 2018, estimated that 13.8% of the world
population will be exposed to severe HW every 5 years under a 1.5°C scenario (with the
greatest threats to Africa, South America, and Southeast Asia) and this triples to 36.9%
under a 2°C warming scenario.

2100 + High SST has increased in recent years, and is projected to increase in the future (i.e., Bopp
et al., 2013; Cocco et al., 2013; Ruela et al., 2020; Kwiatkowski et al., 2020;
IPCC, 2021). According to Kwiatkowski et al. (2020), by the end of the century, SST is
projected to increase by 3.5°C under SSP5-8.5. The Northern Hemisphere has a higher
annual SST increment than the Southern Hemisphere and the Northern Sub-Tropical
shows the highest significant increase (4.3°C on RCP 8.5; Ruela et al., 2020).

2100 + High Between 1982 and 2016 the number of marine heat waves (MHW) days has doubled, and
projected to increase by 26-fold under a 2°C scenario (Frolicher et al., 2018). Future
MHWs are also expected to increase in duration and intensity (Plecha & Soares, 2020),
with many parts of the ocean reaching a near-permanent MHW state by the late 21st
century (Oliver et al., 2019). Qiu et al. (2021) projected the largest changes in the
tropics, North Pacific, and North Atlantic with an increase in intensity (up to 4°C) and
duration. Under SSP5-8.5, the intensities nearly double with a near-permanent MHW
state occurring by the 2070s (Qiu et al., 2021).

2300 + High The CMIP6 project indicates sea level will increase 0.52—1.05 m (SSP5-RCP8.5) by 2100
according to the most pessimistic climate scenario and 0.30-0.64 m for the most
optimistic scenario (SSP1-RCP2.6; Hermans et al., 2021).

#Year: Maximum projected year. "Trend: Increase (+); Decrease (—); Mix ().

Understanding the linkages between activities and pressures would also improve our estimates of the pressures
resulting from land-based activities. More than 80% of the pollution of the ocean arises from land-based sources
reaching the ocean through rivers, runoff, atmospheric deposition and direct discharges, and pollution crosses
national boundaries (Landrigan et al., 2020). This makes effective management of the underlying activities
difficult. To mitigate most (if not all) ocean pressures, multinational actions are needed (Tulloch et al., 2020), as
well as both regional and global pressure models and maps, to inform both regional and global cumulative impact
studies, which in turn can inform local, regional and global management responses.

In addition to improvements to pressure data, studies of future marine impacts will benefit from better under-
standing how pressures impact marine organisms and habitats. Although there has been work to understand how
pressures impact organisms based on their physiology and life history (Butt et al., 2022; O’Hara et al., 2021),
these models require further testing and refinement. Furthermore, interactions among multiple pressures and the
ecological consequences are largely unknown, and projecting multiple co-occurring pressures can create a vast
number of uncertainties derived from modeling assumptions and a lack of data.

Geo-engineering interventions to address climate change can become a pressure and impact the ocean in unknown
ways. Even though techniques such as solar radiation management, injecting aerosols into the atmosphere, ocean
fertilization or subseabed geological storage of CO? (e.g., Carroll et al., 2014) have been researched, there are no
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Sea level rise (2300)

Extreme heat events in sea surface temperature (SST; 2100)
Increases in surface air temperature (2300)
Extreme heat events in air temperature (2300)
Increases in sea surface temperature (SST; 2100)
Extreme coastal storms (2100)

Changes in Ultraviolet light (UV; 2100)

Ocean debris (2100)

Ocean acidification (12000)

Hypoxic events (2100)

Disruptions to salinity (2100)

Disruptions to ocean productivity (2300)

Marine biomass removal (coastal and pelagic; 2100)
Coastal habitat disturbance or loss (2100)

Benthic habitat disturbance or loss (2100)

Invasive species (2060)

Eutrophication (2050)
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W Quantitative (mapped) M Quantitative (unmapped) m Qualitative

Figure 3. Analytical methods and outputs for 17 projected pressures are detailed, with the latest year of projection in brackets.
Bars indicate the number of selected studies that used a quantitative analysis (mapped or unmapped) and qualitative analyses.

data to predict the outcomes of these interventions and there is limited understanding of their consequences, for
example, some existing pressures could be mitigated but new ones could be introduced.

Work has been done to assess the current state of the global ocean and to assess the pace of change in cumulative
impacts (Halpern et al., 2015). This framework can be used under different future scenarios (i.e., SSP-RCP) to

Sea level rise

Extreme heat events in sea surface temperature (SST)
Increases in surface air temperature

Extreme heat events in air temperature
Increases in sea surface temperature (SST)
Extreme coastal storms

Changes in Ultraviolet light (UV)

Ocean debris

Ocean acidification

Hypoxic events

Disruptions to salinity

Disruptions to ocean productivity

Marine biomass removal (coastal and pelagic)
Coastal habitat disturbance or loss

Benthic habitat disturbance or loss

Invasive species

Eutrophication

o
N
IS
o
o
o

12

HIncrease M Decrease M Mixed

Figure 4. Future trend for the 17 projected pressures, bars indicate the number of selected studies that predicted increases,
decreases, or mixed responses for each pressure.
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evaluate how the ocean might responde in the future to projected cumulative impacts. For example, some
localized studies projected interactions between stressors in the Arctic Ocean and their impacts on populations
and ecosystems, up to the year 2040 (Arrigo et al., 2020). This study highlights that climate-related stressors have
a larger impact on animal populations than do acute stressors (i.e., shipping and subsistence harvesting). The SSP-
RCP frameworks are important standardized scenarios for exploring future trajectories. This approach facilitates
collaboration and comparison between transdisciplinary projects. At the same time, it serves as a platform that
allows researchers to build on other researchers' data more easily, fostering a unified approach to addressing the
complex challenges.

Pressure data provide the basis for cumulative impact studies, which are useful tools for guiding global policy and
management. Based on the findings in this review, we provide the following recommendations for research
priorities to address future pressures on the ocean:

1. Prioritize research to project the eight pressures that currently lack future projections (e.g., diseases and
pathogens, introduced coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic
and inorganic chemical pollution, light and noise pollution).

2. Fill gaps for pressures that are projected temporally but not spatially. Mapped data is an invaluable tool that
can inform and assist decision making.

3. Continue to improve the resolution of projected mapping of ocean pressures.

4. Project a long-term comprehensive cumulative impact assessment. A global ocean projection that estimates
the changes in diversity and assess the marine ecosystem response to cumulative pressures can inform
management and policy making.

5. Quantify and communicate uncertainties, as a tool to guide research, management and planning actions (i.e.,
concentrating monitoring efforts in areas of high uncertainty). Projecting multiple co-occurring stressors can
create a vast number of uncertainties derived from modeling and lack of data.

6. Improve ocean and coastal sampling, monitoring research and data standardization. This will allow higher
resolution and higher quality of projected models.

7. Enable the prodiction of opensource data because they are an important resource for making science more
accessible, enhancing collaboration and enabling impactful research. This type of research is in turn important
for the production of quality research outputs to guide implementation strategies that can mitigate the impacts
of pressures.

8. Examine the effectiveness of existing global policies and explore the development and implementation of
global frameworks that can address multiple pressures.

Ultimately, to be able to understand and plan for a future ocean, we need to be able to predict impacts, not just
pressures. The review and assessment we provide here are key first steps in this direction. Coupled with pro-
jections of where species and habitats are likely to be in the future, under climate change scenarios and increased
human disturbance, future pressure models can help to predict where and how much natural systems will likely be
impacted. These models can then be used to assess different scenarios of management and conservation, hope-
fully allowing for more effective decisions about the safeguarding of future oceans.

Data Availability Statement

Although this research did not created data or codes, it is drawn from a series of publications available in Vargas-
Fonseca et al. (2024).
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