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This article presents an extended state observer for a vehicle modeled as a rigid body in three-dimensional 
translational and rotational motions. The extended state observer is applicable to a multi-rotor aerial vehicle 
with a fixed plane of rotors, modeled as an under-actuated system on the state-space TSE(3), the tangent bundle 
of the six-dimensional Lie group SE(3). This state-space representation globally represents rigid body motions 
without singularities. The extended state observer is designed to estimate the resultant external disturbance force 
and disturbance torque acting on the vehicle. It guarantees stable convergence of disturbance estimation errors 
in finite time when the disturbances are constant, and finite time convergence to a bounded neighborhood of 
zero errors for time-varying disturbances. This extended state observer design is based on a Hölder-continuous 
fast finite time stable differentiator that is similar to the super-twisting algorithm, to obtain fast convergence. 
Numerical simulations are conducted to validate the proposed extended state observer. The proposed extended 
state observer is compared with other existing research to show its advantages. A set of experimental results 
implementing disturbance rejection control using feedback of disturbance estimates from this extended state 
observer is also presented.

1. Introduction

Multi-rotor unmanned aerial vehicles (UAVs) are increasingly being used in various applications, such as security and monitoring, infrastructure 
inspection, agriculture, wildland management, package delivery, and remote sensing. However, these UAVs are frequently exposed to dynamic 
uncertainties and disturbances caused by turbulence induced by winds and airflow around structures or regions. Therefore, it is crucial to ensure 
robust flight control performance in such challenging environments, with guaranteed stability margins even in the presence of dynamic disturbances 
and uncertainties. This is made more challenging by the fact that the state space of rigid body motions is the tangent bundle of the Lie group SE(3), 
which is not contractible. Therefore, continuous control or state estimation schemes cannot be globally convergent in this state space, as explained 
in [7].

Recent research articles on multi-rotor UAV tracking control have used various methods to tackle the adverse effects of disturbances and uncer-
tainties during flight. Torrente et al. [37] used Gaussian processes to complement the nominal dynamics of the multi-rotor in a model predictive 
control (MPC) pipeline. Hanover et al. [14] used an explicit scheme to discretize the dynamics for a nonlinear MPC solved by optimization. Bangura 
and Mahony [1] used the propeller aerodynamics as a direct feedforward term on the desired thrust to re-regulate the thrust command of the rotors. 
Craig et al. [10] attached a set of pitot tubes onto the multi-rotor aircraft to directly sense the aircraft’s airspeed. With the knowledge of propeller 
aerodynamic characteristics, the airspeed was then utilized to obtain the disturbance forces and torques as feedforward terms to enhance control 
performance. Bisheban and Lee [5] implemented artificial neural networks to obtain disturbance forces and torques with the kinematics information 
of the aircraft, and then used the baseline control scheme based on the article by Lee et al. [20] in their tracking control scheme design. The methods 
used in these research articles either need high computational efforts [37,14,5], or they require precise modeling of the aerodynamic characteristics 
of the multi-rotor propellers [1,10], to obtain satisfactory control performance in the presence of disturbances.
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Extended state observers, along with disturbance observers and unknown input observers, are commonly used in association with the robust 
control technique known as active disturbance rejection control (ADRC), which can be traced back to the dissertation by Hartlieb [16]. In an ADRC 
scheme, estimates of unknown disturbance inputs from a disturbance observer (DO) or an extended state observer (ESO) are first obtained and 
then utilized in the control design to reject the disturbance. These observers can also be used to estimate parameters in a disturbance model. For 
example, Jia et al. [18] employed the disturbance model obtained by Faessler et al. [12], and then estimated the drag coefficient as a parameter. 
This disturbance model was also employed by Moeini et al. [26]. See, for example, Huang et al. [17], Shao et al. [36], Mechali et al. [24], Cui 
et al. [11] on applications of ESO schemes, and Chen [9], Liu et al. [22], Bhale et al. [2], Sanyal [33] on applications of DO schemes for ADRC of 
spatial motions of vehicles in three dimensions.

There are several methods to ensure the local stability of ESO/DO designs used for multi-rotor tracking control. The linear ESO by Shao et al. [36] is 
locally asymptotically stable (AS), when its state-space is near the origin. Mechali et al. [24] used the concept of geometric homogeneity [32] to obtain 
an ESO that is locally finite-time stable. A similar method was proposed in the ESO design by Guo and Zhao [13]. The Lyapunov functions/candidates 
used in the ESO stability analysis by Mechali et al. [24] and Guo and Zhao [13] are based on [32], and are implicit. Jia et al. [18], Moeini et al. [26]
and Liu et al. [22] used variants of the DO proposed by Chen [9]. Another approach is to use the super-twisting algorithm (STA) Moreno and 
Osorio [27] to design ESO. Xia et al. [43] use this method in ESO design for spacecraft attitude control, and Cui et al. [11] designed an adaptive 
super-twisting ESO for an ADRC scheme applied to a multi-rotor vehicle.

In much of the prior literature for multi-rotor UAV attitude control with ESO/DO for disturbance torque estimation and rejection in rotational 
dynamics, the attitude kinematics of the ESO/DO are either based on local linearization or represented using local coordinates (like Euler angles) or 
using quaternions. Local coordinate representations can have singularity issues (e.g., gimbal lock with Euler angles), while continuous quaternion 
feedback causes instability due to unwinding [4,7]. In situations where a vehicle has to carry out aggressive maneuvers, as in rapid collision avoidance 
for example, disturbance estimation and rejection using such schemes may not be reliable for stable control of the vehicle.

This article presents an ESO on the state space TSE(3) for multi-rotor vehicles to provide reliable disturbance estimation under complex and 
challenging aerodynamic environments. The ESO on TSE(3) estimates the disturbance forces and torques during the flight of a vehicle for both 
translational and rotational motions. The proposed ESO is fast finite-time stable (FFTS), abbreviated as FFTS-ESO. This FFTS-ESO design is based 
on a novel Hölder-continuous fast finite-time stable differentiator (HC-FFTSD). We carry out several sets of numerical simulations to show the 
validity of the proposed FFTS-ESO. Moreover, the proposed FFTS-ESO is compared with the extended state observer by Shao et al. [36] and the 
disturbance observer by Liu et al. [22] in the conducted simulations to show the advantages of the proposed method. A set of experimental results 
implementing a disturbance rejection mechanism using feedback of disturbance estimates from the FFTS-ESO is also presented. In the experiment, 
we hover the vehicle in front of the turbulent flows generated by a fan array wind tunnel (FAWT). We obtain statistical information from the hot-wire 
measurements on the turbulent incoming flows. We observe the pose of the vehicle to evaluate its flight control performance.

We highlight some unique contributions of this article.

• The proposed ESO is the major contribution of this article. The pose of the multi-rotor is represented directly on the Lie group of rigid body 
transformations, the special Euclidean group SE(3). Unlike the ESO and DO designs reported by Mechali et al. [24], Shao et al. [36], Liang 
et al. [21], and Cui et al. [11], who used Euler angles or quaternions for attitude representation or did not include attitude kinematics, like 
the DO by Bhale et al. [2] in disturbance torque estimation, the pose of the vehicle in this article is represented in SE(3) to avoid kinematic 
singularities. We do not use local coordinates (like Euler angles) or (dual) quaternions for pose representation so that we avoid singularities due 
to local coordinate representations or quaternion unwinding, as reported by Bhat and Bernstein [4], and Chaturvedi et al. [7]. To the best of 
the author’s knowledge, there is no existing publication on aircraft disturbance observation using ESO with pose representation on SE(3).

• The proposed FFTS-ESO is based on the HC-FFTSD. The commonly used geometric homogeneity method in [32,13,23,41,42], cannot provide a 
straightforward (or explicit) Lyapunov function to prove the finite-time stability of the scheme. The (implicit) form of their Lyapunov functions 
is given by Rosier [32]. This implicit Lyapunov function complicates the robustness analysis under measurement noise and time-varying distur-
bances when that analysis is essential for an ESO designed for disturbance estimation in ADRC schemes. We propose HC-FFTSD as an approach 
inspired by the (STA) by Moreno and Osorio [27], Vidal et al. [38] of sliding-mode control (SMC). This approach gives a straightforward design 
of a strict Lyapunov function, which is explicit, and therefore avoids the weakness mentioned above.

• Based on the HC-FFTSD, the FFTS-ESO schemes obtained here are both FFTS and Hölder-continuous, unlike the common STA and other FTS 
schemes that use discontinuous methods like terminal sliding-mode. Therefore, they avoid the potentially harmful chattering phenomenon [35], 
while maintaining FTS convergence.

• Using explicit Lyapunov functions in the stability analysis, we present proof of the robustness of the proposed FFTS-ESO under time-varying 
disturbing forces and torques.

The remainder of the article is as follows. Section 2 presents some preliminary results that are needed to obtain sufficient conditions for the stability 
of the ESO and ADRC schemes. HC-FFTSD is presented, along with its stability and robustness analysis in Section 3. Section 4 defines and describes 
the state-space on TSE(3) with details. Based on the definition, the ESO design problem on TSE(3) is formulated. Section 5 describes the detailed 
FFTS-ESO design, which is based on the differentiator design in Section 3. Numerical simulations are conducted in Section 6. Section 7 describes the 
conducted UAV flight experiment with the UAV exposed to the disturbances generated by the FAWT in detail. We conclude the paper, in Section 8, 
by summarizing the results and highlighting directions for forthcoming research.

2. Preliminaries

The statements and definitions in this section are used in the technical results obtained in later sections. The statements given here give the 
conditions under which a continuous time system is finite-time stable, fast finite-time stable, and practically finite-time stable using Lyapunov 
analysis, and the last statement is used in developing the main result.

Lemma 1 (Finite-time stable). [3] Consider the following system of differential equations,

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)), 𝑓 (0) = 0, 𝑥(0) = 𝑥0, (1)
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where 𝑓 ∶ → ℝ
𝑛 is continuous on an open neighborhood  ⊂ ℝ

𝑛 of the origin, and let there be a continuous and differentiable function 𝑉 (𝑥(𝑡)) that is 
positive definite. Let the time derivative of 𝑉 (𝑥) satisfy the following inequality:

𝑉̇ ≤ −𝜆𝑉 𝛼 , (2)

where 𝑥(𝑡) ∈∖{0}, 𝜆 > 0, 𝛼 ∈]0, 1[. Then the system (1) is FTS at the origin, which means ∀𝑥0 ∈, 𝑥 can reach the origin in finite time. Moreover, the 
settling time 𝑇 , the time needed to reach the origin, satisfies

𝑇 ≤
𝑉 1−𝛼(𝑥0)

𝜆(1 − 𝛼)
. (3)

Lemma 2 (Fast finite-time stable). [45], [44] Consider the system (1) and let there be a continuous and differentiable function 𝑉 (𝑥(𝑡)) that is positive definite. 
Let the time derivative of 𝑉 (𝑥) satisfy the following inequality:

𝑉̇ ≤ −𝜆1𝑉 − 𝜆2𝑉
𝛼 , (4)

where 𝑥(𝑡) ∈∖{0}, 𝜆1, 𝜆2 > 0, 𝛼 ∈]0, 1[. Then the system (1) is FFTS at the origin and the settling time 𝑇 satisfies:

𝑇 ≤
1

𝜆1(1 − 𝛼)
ln

𝜆1𝑉
1−𝛼(𝑥0) + 𝜆2

𝜆2
. (5)

Lemma 3 (Practically finite-time stable). [45,46,44] Consider the system (1) and let there be a continuous and differentiable function 𝑉 (𝑥) that is positive 
definite. Let the time derivative of 𝑉 (𝑥) satisfy the following inequality:

𝑉̇ ≤ −𝜆1𝑉 − 𝜆2𝑉
𝛼 + 𝜂, (6)

where 𝑥(𝑡) ∈∖{0}, 𝜆1, 𝜆2 > 0, and 𝛼 ∈]0, 1[. Then the system (1) is practical finite-time stable (PFTS) at the origin, which means that the solution of (1)
will converge to the following set in finite time

⎧⎪⎨⎪⎩
𝑥
||||𝑉 (𝑥) ≤min

⎧⎪⎨⎪⎩

𝜂

(1 − 𝜃0)𝜆1
,

(
𝜂

(1 − 𝜃0)𝜆2

) 1
𝛼

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
,

where 0 < 𝜃0 < 1. The settling time 𝑇 is bounded above as follows:

𝑇 ≤max

{
𝑡0 +

1

𝜃0𝜆1(1 − 𝛼)
ln

𝜃0𝜆1𝑉
1−𝛼(𝑥0) + 𝜆2
𝜆2

, 𝑡0 +
1

𝜆1(1 − 𝛼)
ln

𝜆1𝑉
1−𝛼(𝑥0) + 𝜃0𝜆2

𝜃0𝜆2

}
.

Lemma 4. [15] Let 𝑥 and 𝑦 be non-negative real numbers and let 𝑝 ∈]1, 2[. Then

𝑥
1
𝑝 + 𝑦

1
𝑝 ≥ (𝑥+ 𝑦)

1
𝑝 . (7)

Moreover, the above inequality is a strict inequality if both 𝑥 and 𝑦 are non-zero.

Definition 1. Define 𝐻 ∶ℝ3 ×ℝ → Sym(3), the space of symmetric 3 × 3 matrices, as follows:

𝐻(𝑥,𝑘) ∶= 𝐼 −
2𝑘

𝑥T𝑥
𝑥𝑥T. (8)

3. Hölder-continuous fast finite-time stable differentiator (HC-FFTSD)

In this section, we design the error dynamics for the proposed ESO in Section 5 in the form of an HC-FFTSD. We analyze the stability and 
robustness of the proposed HC-FFTSD in this section, to support the development of the ESO design in Section 5. Theorem 1 gives the proposed 
HC-FFTSD with its stability properties. Corollary 1 describes the convergence performance of the differentiator under external perturbations. In the 
analysis that follows, 𝑒1 ∈ℝ

𝑛 stands for the measurement estimation error and 𝑒2 ∈ℝ
𝑛 stands for the disturbance estimation error in the ESO error 

dynamics, respectively. In this section and the remainder of this paper, we denote the minimum and maximum eigenvalues of a matrix by 𝜆min(⋅)

and 𝜆max(⋅), respectively.

Theorem 1. Let 𝑝 ∈]1, 2[ and 𝑘3 > 0. Define 𝜙1(⋅) ∶ℝ
𝑛
→ℝ

𝑛 and 𝜙2(⋅) ∶ℝ
𝑛
→ℝ

𝑛 as follows:

𝜙1(𝑒1) = 𝑘3𝑒1 + (𝑒T
1
𝑒1)

1−𝑝
3𝑝−2 𝑒1,

𝜙2(𝑒1) = 𝑘2
3
𝑒1 +

2𝑘3(2𝑝− 1)

3𝑝− 2
(𝑒T

1
𝑒1)

1−𝑝
3𝑝−2 𝑒1 +

𝑝

3𝑝− 2
(𝑒T

1
𝑒1)

2(1−𝑝)
3𝑝−2 𝑒1,

(9)

where 𝑒1, 𝑒2 ∈ℝ
𝑛. Define the differentiator gains 𝑘1, 𝑘2 > 0 and ∗ ∈ℝ

2×2, as:

∗ =

[
−𝑘1 1

−𝑘2 0

]
, (10)

which makes ∗ a Hurwitz matrix. Thereafter, the differentiator design:
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𝑒̇1 = −𝑘1𝜙1(𝑒1) + 𝑒2,

𝑒̇2 = −𝑘2𝜙2(𝑒1),
(11)

ensures that 𝑒1, 𝑒2 converge to the origin in a fast finite-time stable manner.

Proof. The proof of Theorem 1 is based on Theorem 1 by Vidal et al. [38], Moreno et al. [28] and Theorem 1 by Moreno and Osorio [27]. Two 
properties of 𝜙1 and 𝜙2 are provided as follows.

Property 1 (P1): The Jacobian of 𝜙1(𝑒1), denoted 𝜙
′
1
(𝑒1), is given as follows:

𝜙′
1
(𝑒1) =

d𝜙1(𝑒1)

d𝑒1
= 𝑘3𝐼 + (𝑒T

1
𝑒1)

1−𝑝
3𝑝−2

[
𝐼 −

2(𝑝− 1)

3𝑝− 2

𝑒1𝑒
T
1

𝑒T
1
𝑒1

]
, (12)

so that the following identity holds:

𝜙2(𝑒1) = 𝜙′
1
(𝑒1)𝜙1(𝑒1) (13)

Property 2 (P2): 𝜙′
1
is a positive definite matrix, which means ∀𝑤 ∈ℝ

𝑛, 𝑒1 ∈ℝ
𝑛,

𝜆min{𝜙
′
1
(𝑒1)}||𝑤||2 ≤𝑤T𝜙′

1
(𝑒1)𝑤 ≤ 𝜆max{𝜙

′
1
(𝑒1)}||𝑤||2, (14)

where the maximum and minimum eigenvalues of 𝜙′
1
(𝑒1) in (14) are as given below:

𝜆max{𝜙
′
1
(𝑒1)} = 𝑘3 + (𝑒T

1
𝑒1)

1−𝑝
3𝑝−2 , (15)

𝜆min{𝜙
′
1
(𝑒1)} = 𝑘3 + (𝑒T

1
𝑒1)

1−𝑝
3𝑝−2

𝑝

3𝑝− 2
. (16)

From Theorem 5.5 by Chen [8], we know that for a Hurwitz matrix ∗ as in (10), ∀ ∗ ∈ℝ
2×2 where ∗ ≻ 0, the Lyapunov equation:

(∗)T∗ +∗∗ = −∗, (17)

has a unique solution ∗ ≻ 0. Express the positive definite matrices ∗ and ∗ in components as follows:

∗ =

[
𝑝11 𝑝12
𝑝12 𝑝22

]
, ∗ =

[
𝑞11 𝑞12
𝑞12 𝑞22

]
.

As ∗ is the solution to (17), ∗, ∗ and ∗ can be augmented to ,  ,  ∈ℝ
2𝑛×2𝑛, as follows:

 =

[
−𝑘1𝐼 𝐼

−𝑘2𝐼 0

]
, =

[
𝑝11𝐼 𝑝12𝐼

𝑝12𝐼 𝑝22𝐼

]
, =

[
𝑞11𝐼 𝑞12𝐼

𝑞12𝐼 𝑞22𝐼

]
.

The augmented matrices ,  ,  defined above also satisfy a Lyapunov equation as given below:

T + = −. (18)

Further, the eigenvalues of  and ∗, are related such that 𝜆min{
∗} = 𝜆min{}, and 𝜆max{

∗} = 𝜆max{}. Similar relations hold for  and ∗. 
Therefore, as  is the solution to (18), we consider the following Lyapunov candidate:

𝑉 (𝑒1, 𝑒2) = 𝜁T𝜁, (19)

where 𝜁 ∈ℝ
2𝑛 is defined as 𝜁 ∶= [𝜙T

1
(𝑒1), 𝑒

T
2
]T and  is the augmented ∗, which is the unique solution of (17) for a given ∗ ≻ 0. The upper and 

lower bounds of the Lyapunov candidate 𝑉 in (19) are as given below:

𝜆min {}‖𝜁‖2 ≤ 𝑉 (𝑒1, 𝑒2) ≤ 𝜆max {}‖𝜁‖2, (20)

where ‖𝜁‖2 is expressed as follows:
‖𝜁‖2 = 𝜙T

1
(𝑒1)𝜙1(𝑒1) + 𝑒T

2
𝑒2

= 𝑘2
3
𝑒T
1
𝑒1 + 2𝑘3(𝑒

T
1
𝑒1)

2𝑝−1
3𝑝−2 + (𝑒T

1
𝑒1)

𝑝
3𝑝−2 + 𝑒T

2
𝑒2.

(21)

From (20) and (21), we obtain the following inequalities:

𝜆min {} (𝑒T
1
𝑒1)

𝑝
3𝑝−2 ≤ 𝜆min {}‖𝜁‖2 ≤ 𝑉 (𝑒1, 𝑒2), (22)

𝑘2
3
𝜆min {} 𝑒T

1
𝑒1 ≤ 𝜆min {}‖𝜁‖2 ≤ 𝑉 (𝑒1, 𝑒2). (23)

From (22), and given 1 < 𝑝 < 2, we obtain:

[
(𝑒T

1
𝑒1)

𝑝
3𝑝−2

] 1−𝑝
𝑝

≥

(
𝑉 (𝑒1, 𝑒2)

𝜆min {}

) 1−𝑝
𝑝

⇒ (𝑒T
1
𝑒1)

1−𝑝
3𝑝−2 ≥

(
𝑉 (𝑒1, 𝑒2)

𝜆min {}

) 1−𝑝
𝑝

. (24)

𝑉 (𝑒1, 𝑒2) is differentiable everywhere except the subspace  = {[𝑒T
1
, 𝑒T

2
]T ∈ℝ

2𝑛|𝑒1 = 0}. From (11) and Property (P1), we obtain the time derivative 
of 𝜁 as follows,
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𝜁̇ =

[
𝜙′
1
(𝑒1)𝑒̇1
𝑒̇2

]
=

[
𝜙′
1
(𝑒1)(−𝑘1𝜙1(𝑒1) + 𝑒2)

−𝑘2𝜙
′
1
(𝑒1)𝜙1(𝑒1)

]

=(𝑒1)𝜁,

(25)

where,

(𝑒1) = diag[𝜙
′
1
(𝑒1), 𝜙

′
1
(𝑒1)] ∈ℝ

2𝑛×2𝑛,

𝜆min
{
(𝑒1)

}
= 𝜆min

{
𝜙′
1
(𝑒1)

}
.

(26)

Given the expression of 𝜁̇ in (25), we obtain the time derivative of 𝑉 (𝑒1, 𝑒2) as follows:

𝑉̇ = 𝜁̇T𝜁 + 𝜁T 𝜁̇

= 𝜁T(((𝑒1))T +(𝑒1))𝜁

= −𝜁T̄(𝑒1)𝜁,

(27)

where ̄(𝑒1) is given by:

̄(𝑒1) = ((𝑒1))T +(𝑒1) =

[
̄11(𝑒1) ̄12(𝑒1)

̄12(𝑒1) ̄22(𝑒1)

]
,

̄11(𝑒1) = 2(𝑘1𝑝11 + 𝑘2𝑝12)𝜙
′
1
(𝑒1),

̄12(𝑒1) = (𝑘1𝑝12 + 𝑘2𝑝22 − 𝑝11)𝜙
′
1
(𝑒1),

̄22(𝑒1) = −2𝑝12𝜙
′
1
(𝑒1).

(28)

From (28) and (18), we obtain ̄ =(𝑒1). Thereafter, as  and (𝑒1) defined by (18) and (26), respectively, are positive definite, we obtain the 
following inequality on their eigenvalues:

𝜆min
{
(𝑒1)

}
≥ 𝜆min {}𝜆min

{
(𝑒1)

}
> 0. (29)

After substituting (29) into (27) and applying (14) of Property 2, we obtain:

𝑉̇ = −𝜁T((𝑒1))𝜁

≤ −𝜆min
{
(𝑒1)

}
𝜁T𝜁

≤ −𝜆min
{
(𝑒1)

}
𝜆min {} 𝜁

T𝜁

(30)

As 𝜆min
{
(𝑒1)

}
= 𝜆min

{
𝜙′
1
(𝑒1)

}
, substituting (16), (22) and (24) into (30), we obtain:

𝑉̇ ≤ −
[
𝑘3 + (𝑒T

1
𝑒1)

1−𝑝
3𝑝−2

𝑝

3𝑝− 2

]
𝜆min {} 𝜁

T𝜁

≤ −
𝜆min {}

𝜆max {}

[
𝑘3 +

(
𝑉

𝜆min {}

) 1−𝑝
𝑝 𝑝

3𝑝− 2

]
𝑉

≤ −𝛾1𝑉 − 𝛾2𝑉
1
𝑝 ,

(31)

where 𝛾1 and 𝛾2 are positive constants defined by:

𝛾1 = 𝑘3
𝜆min {}

𝜆max {}
= 𝑘3

𝜆min {
∗}

𝜆max {
∗}

;

𝛾2 =
𝜆min {}𝜆min {}

𝑝−1
𝑝

𝜆max {}

𝑝

3𝑝− 2
=

𝜆min {
∗}𝜆min {

∗}
𝑝−1
𝑝

𝜆max {
∗}

𝑝

3𝑝− 2
.

(32)

Therefore, based on the inequality (31), Lemma 1 and Lemma 2, we conclude that the origin of the error dynamics (11) is fast finite-time stable. □

The following corollary describes the robustness of the differentiator perturbed by Δ𝐷 ∈ ℝ
𝑛 in the second-order dynamics of (11). In the ESO 

design described in Section 5, Δ𝐷 ∈ℝ
𝑛 is corresponding with the time-derivatives of disturbance forces and torques.

Corollary 1 (Perturbation Robustness). Consider the proposed HC-FFTSD under perturbation input Δ𝐷 ∈ℝ
𝑛, which satisfies ‖Δ𝐷‖ ≤Δ𝐷 . The differentiator 

perturbed by Δ𝐷 is given by:

𝑒̇1 = −𝑘1𝜙1(𝑒1) + 𝑒2,

𝑒̇2 = −𝑘2𝜙2(𝑒1) + Δ𝐷.
(33)

If 𝛾1 in (32) satisfies 𝛾1 ≥ 𝜆max {}∕𝜆min {}, then (33) is practically finite-time stable (PFTS).

Proof. By applying the Lyapunov function 𝑉 defined by (19) in Theorem 1, and the perturbed differentiator given by (33), we obtain the time 
derivative of this Lyapunov function as follows:
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Fig. 1. The multi-rotor vehicle and coordinate frames.

𝑉̇ ≤ −𝛾1𝑉 − 𝛾2𝑉
1
𝑝 + [0T, (Δ𝐷)T]𝜁 + 𝜁T[0T, (Δ𝐷)T]T

≤ −𝛾1𝑉 − 𝛾2𝑉
1
𝑝 + 2𝜆max {}Δ𝐷‖𝜁‖.

(34)

Now applying Cauchy-Schwarz inequality and (20) to the inequality (34), we obtain:

𝑉̇ ≤ −𝛾1𝑉 − 𝛾2𝑉
1
𝑝 + 𝜆max {} ||𝜁 ||2 + 𝜆max {}Δ𝐷

2

≤ −

(
𝛾1 −

𝜆max {}

𝜆min {}

)
𝑉 − 𝛾2𝑉

1
𝑝 + 𝜆max {}Δ𝐷

2
.

(35)

Therefore, by applying Lemma 3 to the inequality (35), we conclude that the differentiator (33), which is the differentiator (11) under disturbance 
Δ𝐷 , is PFTS. □

4. Problem formulation

4.1. Coordinate frame definition

The configuration of the vehicle, modeled as a rigid body, is given by its position and orientation, which are together referred to as its pose. To 
define the pose of the vehicle, we fix a coordinate frame  to its body and another coordinate frame  that is fixed in space as the inertial coordinate 
frame. Define e𝑖 as the unit vector along the 𝑖th coordinate axis for 𝑖 = 1, 2, 3. Let 𝑏 ∈ ℝ

3 denote the position vector of the origin of frame  with 
respect to frame  . The rigid body attitude is represented by the rotation matrix 𝑅 ∈ SO(3) from frame  to frame  . The special orthogonal group 
of rigid body rotations, SO(3), is defined by Murray et al. [29]:

SO(3) =
{
𝑅 ∈ℝ

3×3, 𝑅T𝑅 =𝑅𝑅T = 𝐼, det(𝑅) = 1
}
.

SO(3) ⊂ℝ
3×3 is a matrix Lie group under matrix multiplication. The Lie algebra (tangent space at identity) of SO(3) is denoted so(3) and defined by:

so(3) =
{
𝑆 ∈ℝ

3×3 | 𝑆 +𝑆T = 0
}
, i.e. 𝑆 = 𝑠× =

⎡⎢⎢⎣

0 −𝑠3 𝑠2
𝑠3 0 −𝑠1
−𝑠2 𝑠1 0

⎤⎥⎥⎦
.

Here (.)× ∶ ℝ3
→ so(3) denotes the bijective map from three-dimensional Euclidean space to so(3). For a vector 𝑠 = [𝑠1 𝑠2 𝑠3]

T ∈ ℝ
3, the matrix 𝑠×

represents the vector cross product operator, that is 𝑠 ×𝑟 = 𝑠×𝑟, where 𝑟 ∈ℝ
3. The inverse of (.)× is denoted vex(.) ∶ so(3) →ℝ

3, such that vex(𝑎×) = 𝑎, 
for all 𝑎× ∈ so(3).

The attitude kinematics on SO(3) is expressed as: 𝑅̇ =𝑅Ω×, where Ω ∈ℝ
3 is the angular velocity in body-fixed frame . The tangent bundle of 

SO(3) is denoted by TSO(3), containing the collection of all of the tangent spaces for all points on SO(3). In attitude kinematics, we express TSO(3)
to be TSO(3) =

{
(𝑅,Ω×)|𝑅 ∈ SO(3),Ω× ∈ so(3)

}
.

We represent the pose (attitude and position) of the rigid body by (𝑏, 𝑅) ∈ SE(3), where 𝑏 denotes the inertial position vector. The pose of the 
vehicle can be represented in matrix form as follows:

g =

[
𝑅 𝑏

0 1

]
∈ SE(3) (36)

where SE(3), the special Euclidean group, is the six-dimensional Lie group of rigid body motions. A diagram of coordinate systems on SE(3) is 
presented in Fig. 1.

Applying the compactly represented pose given by (36), the velocity kinematics of the vehicle is given by:
{

𝑏̇ = 𝑣 =𝑅𝜈,

𝑅̇ =𝑅Ω×,
or ġ = g𝜉, 𝜉 =

[
Ω× 𝜈

0 0

]
∈ se(3) (37)

where 𝑣, 𝜈 ∈ℝ
3 denote the translational velocity in frames  and  respectively. Similar to the tangent space of SO(3), 𝜉 in (37) is on the tangent 

space of SE(3). We denote the tangent bundle of SE(3) to be TSE(3) = {(g, 𝜉)|g ∈ SE(3), 𝜉 ∈ se(3)}.
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4.2. System dynamics

The overall dynamics of a multi-rotor vehicle with a body-fixed plane of rotors are given by:

⎧⎪⎪⎨⎪⎪⎩

𝑏̇ = 𝑣 =𝑅𝜈

𝑚𝑣̇ =𝑚𝑔e3 − 𝑓𝑅e3 +𝜑𝐷

𝑅̇ =𝑅Ω×

𝐽 Ω̇ = 𝐽Ω×Ω+ 𝜏 + 𝜏𝐷

(38)

where e3 = [0 0 1]T, 𝑓 ∈ ℝ is the scalar thrust force, and 𝜏 ∈ ℝ
3 is the control torque created by the rotors, 𝑔 denotes the acceleration due to 

gravity and 𝑚 ∈ℝ
+ and 𝐽 = 𝐽T ∈ℝ

3×3 are the mass and inertia matrix of the UAV, respectively. The force and torque disturbances are denoted 𝜑𝐷

and 𝜏𝐷 respectively, which are mainly due to unsteady aerodynamics.
We denote the onboard measurements 𝑏𝑚, 𝑣𝑚, 𝑅𝑚, Ω𝑚 regarding 𝑏, 𝑣, 𝑅, Ω defined by (37). With the presence of measurement uncertainties, the 

measurements are modeled as follows:

𝑏𝑚 = 𝑏+Δ𝑁
𝑏
, 𝑣𝑚 = 𝑣+Δ𝑁

𝑣 ,𝑅𝑚 =𝑅exp((Δ𝑁
𝑅
)×),Ω𝑚 =Ω+Δ𝑁

Ω
, (39)

where Δ𝑁
𝑏
, Δ𝑁

𝑣 , Δ𝑁
𝑅
, Δ𝑁

Ω
∈ℝ

3 are uncertainties in position, velocity, attitude, and angular velocity measurements, respectively.

4.3. Morse function on SO(3)

The following Lemma is used in the design of the ESO for rotational motion scheme for the vehicle.

Lemma 5. [6] Consider the attitude kinematics

𝑅̇ =𝑅Ω×, 𝑅 ∈ SO(3), Ω∈ℝ
3. (40)

Define 𝐾 = diag([𝐾1, 𝐾2, 𝐾3]), where 𝐾1 >𝐾2 >𝐾3 ≥ 1. Define

𝑠𝐾 (𝑅) =

3∑
𝑖=1

𝐾𝑖(𝑅
Te𝑖) × e𝑖, (41)

such that d

d𝑡
⟨𝐾, 𝐼 −𝑅⟩ =ΩT𝑠𝐾 (𝑅). Here ⟨𝐴, 𝐵⟩ = tr(𝐴T𝐵), which makes ⟨𝐾, 𝐼 −𝑅⟩ a Morse function defined on SO(3) with a discrete set of non-degenerate 

critical points. Let  ⊂ SO(3) be a closed subset containing the identity in its interior, defined by

 =
{
𝑅 ∈ SO(3) ∶ 𝑅𝑖𝑖 ≥ 0 and 𝑅𝑖𝑗𝑅𝑗𝑖 ≤ 0,∀𝑖, 𝑗 ∈ {1,2,3}, 𝑖 ≠ 𝑗

}
. (42)

Then ∀ 𝑅 ∈  , we have

𝑠𝐾 (𝑅)T𝑠𝐾 (𝑅) ≥ ⟨𝐾,𝐼 −𝑅⟩. (43)

Remark 1 (Almost global domain of attraction). [34] We know that the subset of SO(3) where 𝑠𝐾 (𝑅) = 0, 𝑅 ∈ SO(3), which is also the set of critical 
points for ⟨𝐼 −𝑅, 𝐾⟩, is

𝐶 ≜ {𝐼,diag(1,−1,−1),diag(−1,1,−1),diag(−1,−1,1)} ⊂ SO(3). (44)

In addition, the global minimum of this Morse function is 𝑅 = 𝐼 .

4.4. ESO estimates and errors

The ESO on TSE(3) is split into a translational ESO design on vector space ℝ3 and a ESO for rotational motion design on TSO(3). (𝑏̂, ̂𝑣, ̂𝜑𝐷) ∈
ℝ
3 × ℝ

3 × ℝ
3 denotes the estimated position, translational velocity, and disturbance force, as the states of the translational ESO. The estimation 

errors for the translational ESO are defined as follows:

𝑒𝑏 = 𝑏𝑚 − 𝑏̂, 𝑒𝑣 = 𝑣𝑚 − 𝑣, 𝑒𝜑 = 𝜑𝐷 − 𝜑̂𝐷, (45)

which are estimation errors of position, translational velocity, and total disturbance force respectively.
Let (𝑅, ̂Ω, ̂𝜏𝐷) ∈ SO(3)×ℝ

3 ×ℝ
3 denote the estimated attitude, angular velocity, and disturbance torque states provided by the ESO for rotational 

motion. For the ESO for rotational motion, the error states are defined as follows. The attitude estimation error is defined by:

𝐸𝑅 =𝑅T𝑅𝑚, (46)

on the group of rigid body rotations, SO(3), which is not a vector space. The angular velocity estimation error, 𝑒Ω , and torque disturbance estimation 
error, 𝑒𝜏 , are expressed on the vector space ℝ

3, and are defined as:

𝑒Ω =Ω𝑚 −𝐸T
𝑅
Ω̂, 𝑒𝜏 = 𝜏𝐷 − 𝜏𝐷. (47)

A properly designed ESO on TSE(3) can stabilize the error states at (𝑒𝑏, 𝑒𝑣, 𝑒𝜑, 𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) = (0, 0, 0, 𝐼, 0, 0) when there are no measurement uncer-
tainties and dynamic disturbances, such that Δ𝑁

𝑏
, Δ𝑁

𝑣 , Δ
𝑁
𝑅
, Δ𝑁

Ω
= 0, and 𝜑̇𝐷, 𝜏̇𝐷 = 0. Moreover, when the measurement uncertainties and dynamic 
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Fig. 2. Block diagrams of the proposed ESO.

disturbances are non-negligible, we expect the ESO to drive the error states to a small neighborhood around (0, 0, 0, 𝐼, 0, 0). The input-output rela-
tionship of the ESO is presented in Fig. 2.

5. Fast finite-time stable extended state observer (FFTS-ESO) on 𝐓𝐒𝐄(𝟑)

In this section, we present the FFTS-ESO on TSE(3). As mentioned in the previous section, the ESO design on TSE(3) is given by an ESO for the 
translational motion on the vector space ℝ3 to estimate the resultant disturbance force, and an ESO for rotational motion on TSO(3) to estimate the 
resultant disturbance torque. We present the two ESO designs along with their stability and robustness results.

5.1. ESO for translational motion

Proposition 1 (Translational ESO on ℝ3). Define constant positive scalar gains 𝑘𝑡1 and 𝑘𝑡2, which make the matrix 𝑡 ∈ℝ
2×2 defined as:

𝑡 =

[
−𝑘𝑡1 1

−𝑘𝑡2 0

]
, (48)

a Hurwitz matrix. In addition, define the constant 𝑘𝑡3 that replaces 𝑘3 in the functions 𝜙1(⋅) and 𝜙2(⋅) defined by (9). Then the ESO designed for the 
translational motion is given by:

̇̂
𝑏 = 𝑣,

𝑚 ̇̂𝑣 =𝑚𝑔e3 − 𝑓𝑅𝑚e3 +𝑚𝑘𝑡1𝜙1(𝜓𝑡) +𝑚𝜅𝑡

[
(𝑒T

𝑏
𝑒𝑏)

1−𝑝
𝑝 𝐻

(
𝑒𝑏,

𝑝− 1

𝑝

)
𝑒𝑣 + 𝑒𝑣

]
+ 𝜑̂𝐷,

̇̂𝜑𝐷 =𝑚𝑘𝑡2𝜙2(𝜓𝑡),

(49)

where 𝜓𝑡 is defined as:

𝜓𝑡 = 𝑒𝑣 + 𝜅𝑡

[
𝑒𝑏 + (𝑒T

𝑏
𝑒𝑏)

1−𝑝
𝑝 𝑒𝑏

]
, 𝜅𝑡 > 1∕2. (50)

Theorem 2. Given the observer errors for the translational ESO defined by (45), the translational kinematics and dynamics given by (38), and the ESO for 
translational motion given by Proposition 1, the error dynamics of this translational ESO is given by:

𝑒̇𝑏 = 𝑒𝑣,

𝑚𝑒̇𝑣 = −𝑚𝑘𝑡1𝜙1(𝜓𝑡) −𝑚𝜅𝑡

[
(𝑒T

𝑏
𝑒𝑏)

1−𝑝
𝑝 𝐻

(
𝑒𝑏,

𝑝− 1

𝑝

)
𝑒𝑣 + 𝑒𝑣

]
+ 𝑒𝜑,

𝑒̇𝜑 = −𝑚𝑘𝑡2𝜙2(𝜓𝑡) + 𝜑̇𝐷.

(51)

The error dynamics (51) is FFTS at the origin ((𝑒𝑏, 𝑒𝑣, 𝑒𝜑) = (0, 0, 0)) when the resultant disturbance force is constant (𝜑̇𝐷 = 0).

Proof. Simplify (51) as follows:

𝜓̇𝑡 = −𝑘𝑡1𝜙1(𝜓𝑡) +𝑚−1𝑒𝜑,

𝑚−1𝑒̇𝜑 = −𝑘𝑡2𝜙2(𝜓𝑡) +𝑚−1𝜑̇𝐷.
(52)

Next, for 𝑡 as defined in (48), ∀ 𝑡 ∈ℝ
2×2 where 𝑡 ≻ 0, the Lyapunov equation,

T
𝑡 𝑡 +𝑡𝑡 = −𝑡, (53)

has a unique solution 𝑡. Thereafter, define the Lyapunov function:

𝑉𝑡 = 𝑉𝑡0 + 𝜇𝑡𝑒
T
𝑏
𝑒𝑏, where 𝑉𝑡0 = 𝜁T𝑡 𝑡𝜁𝑡 (54)
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and 𝜁𝑡 is defined as follows:

𝜁𝑡 = [𝜙T
1
(𝜓𝑡), 𝑚−1𝑒T𝜑]

T.

We constrain the positive scalar 𝜇𝑡 in (54) as:

0 < 𝜇𝑡 < 𝑘3
𝑡3

𝜆min
{
𝑡

}
𝜆min

{
𝑡

}

𝜆max
{
𝑡

} . (55)

From Theorem 1, (52) and (23), we find that the time-derivative of 𝑉𝑡 satisfies:

𝑉̇𝑡 ≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
+ 2𝜇𝑡𝑒

T
𝑏
𝑒𝑣, (56)

where 𝛾𝑡1 and 𝛾𝑡2 are defined by:

𝛾𝑡1 = 𝑘𝑡3

𝜆min
{
𝑡

}

𝜆max
{
𝑡

} , 𝛾𝑡2 =
𝜆min

{
𝑡

}
𝜆min

{
𝑡

} 𝑝−1
𝑝 𝑝

𝜆max
{
𝑡

}
(3𝑝− 2)

. (57)

Substituting (50) into (56), we obtain:

𝑉̇𝑡 ≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
+ 2𝜇𝑡𝑒

T
𝑏

[
𝜓𝑡 − 𝜅𝑡𝑒𝑏 − 𝜅𝑡(𝑒

T
𝑏
𝑒𝑏)

1−𝑝
𝑝 𝑒𝑏

]

≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
+ 2𝜇𝑡𝑒

T
𝑏
𝜓𝑡 − 2𝜇𝑡𝜅𝑡𝑒

T
𝑏
𝑒𝑏 − 2𝜇𝑡𝜅𝑡(𝑒

T
𝑏
𝑒𝑏)

1
𝑝

≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
− 2𝜇𝑡𝜅𝑡𝑒

T
𝑏
𝑒𝑏 − 2𝜇𝑡𝜅𝑡(𝑒

T
𝑏
𝑒𝑏)

1
𝑝 + 𝜇𝑡𝜓

T
𝑡 𝜓𝑡 + 𝜇𝑡𝑒

T
𝑏
𝑒𝑏

≤ −

(
𝛾𝑡1 −

𝜇𝑡

𝑘2
𝑡3
𝜆min

{
𝑡

}
)

𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
− (2𝜅𝑡 − 1)𝜇𝑡𝑒

T
𝑏
𝑒𝑏 − 2𝜅𝑡𝜇

𝑝−1
𝑝

𝑡 𝜇

1
𝑝

𝑡 (𝑒
T
𝑏
𝑒𝑏)

1
𝑝 .

(58)

Therefore, we further obtain:

𝑉̇𝑡 < −Γ𝑡1𝑉𝑡 − Γ𝑡2𝑉

1
𝑝

𝑡 , (59)

where

Γ𝑡1 =min

{
𝑘𝑡3

𝜆min
{
𝑡

}

𝜆max
{
𝑡

} −
𝜇𝑡

𝑘2
𝑡3
𝜆min

{
𝑡

} ,2𝜅𝑡 − 1

}
,

Γ𝑡2 =min

⎧
⎪⎨⎪⎩

𝜆min
{
𝑡

}
𝜆min

{
𝑡

} 𝑝−1
𝑝 𝑝

𝜆max
{
𝑡

}
(3𝑝− 2)

,2𝜅𝑡𝜇

𝑝−1
𝑝

𝑡

⎫
⎪⎬⎪⎭
.

(60)

Based on (59), we conclude that when the resultant disturbance force is constant (𝜑̇𝐷 = 0) and the ESO gains are constrained according to Proposi-
tion 1, the error dynamics of ESO (51) is FFTS. This concludes the proof of Theorem 2. □

By applying the stability proof of HC-FFTSD presented in Theorem 1, Theorem 2 shows that the proposed ESO in translational dimension is fast 
finite-time stable when the disturbance force is a constant. Now, we apply Corollary 1 to investigate robustness of the proposed ESO against dynamic 
disturbance force.

Corollary 2. Consider the error dynamics of translational ESO given by (51) when the resultant disturbance force is dynamic (𝜑̇𝐷 ≠ 0). If 𝛾𝑡1 defined by (57)
satisfies:

𝛾𝑡1 ≥
𝜆max

{
𝑡

}

𝑚𝜆min
{
𝑡

}

and the magnitude of the time derivative of the disturbance force is upper bounded according to ‖𝜑̇𝐷‖ ≤Δ𝜑, this error dynamics is PFTS.

Proof. We apply the Lyapunov function defined by (54), but constrain the positive scalar 𝜇𝑡 as:

0 < 𝜇𝑡 < 𝑘2
𝑡3
𝜆min

{
𝑡

}(
𝑘𝑡3

𝜆min
{
𝑡

}

𝜆max
{
𝑡

} −
𝜆max

{
𝑡

}

𝑚𝜆min
{
𝑡

}
)

. (61)

Thereafter, from Theorem 1, Corollary 1, (51) and (23), we find that the time-derivative of 𝑉𝑡 satisfies:

𝑉̇𝑡 ≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
+ 2𝜇𝑡𝑒

T
𝑏
𝑒𝑣 + [0T, (𝑚−1𝜑̇𝐷)

T]𝑡𝜁𝑡 + 𝜁T𝑡 𝑡[0
T, (𝑚−1𝜑̇𝐷)

T]T,

≤ −𝛾𝑡1𝑉𝑡0 − 𝛾𝑡2𝑉

1
𝑝

𝑡0
+ 2𝜇𝑡𝑒

T
𝑏
𝑒𝑣 + 2𝑚−1𝜆max

{
𝑡

}
Δ𝜑‖𝜁𝑡‖,

(62)

where 𝛾𝑡1, 𝛾𝑡2 are defined by (57). By applying Cauchy-Schwartz inequality to (62), we obtain:
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𝑉̇𝑡 ≤ −

(
𝑘𝑡3

𝜆min
{
𝑡

}

𝜆max
{
𝑡

} −
𝜆max

{
𝑡

}

𝑚𝜆min
{
𝑡

}
)

𝑉𝑡 − 𝛾𝑡2𝑉

1
𝑝

𝑡 + 2𝜇𝑡𝑒
T
𝑏
𝑒𝑣 +

𝜆max
{
𝑡

}
Δ𝜑

2

𝑚
. (63)

By applying the derivation similar to (58), we obtain

𝑉̇𝑡 ≤ −

(
𝑘𝑡3

𝜆min
{
𝑡

}

𝜆max
{
𝑡

} −
𝜆max

{
𝑡

}

𝑚𝜆min
{
𝑡

} −
𝜇𝑡

𝑘2
𝑡3
𝜆min

{
𝑡

}
)

𝑉𝑡 − 𝛾𝑡2𝑉

1
𝑝

𝑡

− (2𝜅𝑡 − 1)𝜇𝑡𝑒
T
𝑏
𝑒𝑏 − 2𝜅𝑡𝜇

𝑝−1
𝑝

𝑡 𝜇

1
𝑝

𝑡 (𝑒
T
𝑏
𝑒𝑏)

1
𝑝 +

𝜆max
{
𝑡

}
Δ𝜑

2

𝑚
.

(64)

Considering that 𝜇𝑡 is constrained by (61), we further obtain:

𝑉̇𝑡 < −Γ∗
𝑡1
𝑉𝑡 − Γ∗

𝑡2
𝑉

1
𝑝

𝑡 +
𝜆max

{
𝑡

}
Δ𝜑

2

𝑚
. (65)

We omit the expression of positive scalars Γ∗
𝑡1
and Γ∗

𝑡2
for brevity. Based on (65), we conclude that when the time derivative of disturbance force 

𝜑𝐷 , 𝜑̇𝐷 , is upper bounded, and the ESO gains are constrained according to Corollary 2, the error dynamics of ESO (51) is PFTS. This concludes the 
proof of Corollary 2. □

5.2. ESO for rotational motion

Proposition 2 (ESO for rotational motion). Define 𝑒𝑅 = 𝑠𝐾 (𝐸𝑅), where 𝑠𝐾 (⋅) is as defined by Lemma 5. Define 𝑒𝑤(𝐸𝑅, 𝑒Ω) as follows:

𝑒𝑤(𝐸𝑅, 𝑒Ω) =
d
d𝑡

𝑒𝑅 =

3∑
𝑖=1

𝐾𝑖e𝑖 × (𝑒Ω ×𝐸T
𝑅
e𝑖). (66)

Define constant positive scalar gains 𝑘𝑎1 and 𝑘𝑎2, which make the matrix 𝑎 ∈ℝ
2×2 defined by:

𝑎 =

[
−𝑘𝑎1 1

−𝑘𝑎2 0

]
, (67)

a Hurwitz matrix. In addition, define the constant 𝑘𝑎3 to replace 𝑘3 in the functions 𝜙1(⋅) and 𝜙2(⋅) defined by (9). Then the ESO designed for the rotational 
motion is given by:

̇̂
𝑅 =𝑅Ω̂×,

̇̂
Ω=𝐸𝑅𝐽

−1

[
𝐽Ω𝑚 ×Ω𝑚 + 𝜏𝐷 + 𝜏 + 𝑘𝑎1𝐽𝜙1(𝜓𝑎) + 𝜅𝑎𝐽 (𝑒

T
𝑅
𝑒𝑅)

1−𝑝
𝑝 𝐻

(
𝑒𝑅,

𝑝− 1

𝑝

)
𝑒𝑤

]

+𝐸𝑅𝐽
−1(𝜅𝑎𝐽𝑒𝑤) +𝐸𝑅𝑒

×
Ω
𝐸T

𝑅
Ω̂,

̇̂𝜏𝐷 = 𝐽𝑘𝑎2𝜙2(𝜓𝑎),

(68)

where 𝜓𝑎 is defined as:

𝜓𝑎 = 𝑒Ω + 𝜅𝑎

[
𝑒𝑅 + (𝑒T

𝑅
𝑒𝑅)

1−𝑝
𝑝 𝑒𝑅

]
, 𝜅𝑎 >

1

2
. (69)

Theorem 3. Given the observer errors for the ESO for rotational motion defined by (47), the rotational kinematics and dynamics given by (38), and the ESO 
for rotational motion given in Proposition 2, the error dynamics of this ESO is given by:

𝐸̇𝑅 =𝐸𝑅𝑒
×
Ω
,

𝐽 𝑒̇Ω = −𝑘𝑎1𝐽𝜙1(𝜓𝑎) − 𝜅𝑎𝐽

[
(𝑒T

𝑅
𝑒𝑅)

1−𝑝
𝑝 𝐻

(
𝑒𝑅,

𝑝− 1

𝑝

)
𝑒𝑤 + 𝑒𝑤

]
+ 𝑒𝜏 ,

𝑒̇𝜏 = −𝑘𝑎2𝐽𝜙2(𝜓𝑎) + 𝜏̇𝐷.

(70)

The error dynamics (70) is almost globally FFTS at the origin ((𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) = (𝐼, 0, 0)) when the resultant disturbance torque is constant (𝜏̇𝐷 = 0).

Proof. Simplify (70) as follows:

𝜓̇𝑎 = −𝑘𝑎1𝜙1(𝜓𝑎) + 𝐽−1𝑒𝜏 ,

𝐽−1𝑒̇𝜏 = −𝑘𝑎2𝜙2(𝜓𝑎) + 𝐽−1𝜏̇𝐷.
(71)

Next, for 𝑎 as defined in (67), ∀ 𝑎 ∈ℝ
2×2 where 𝑎 ≻ 0, the Lyapunov equation:

T
𝑎𝑎 +𝑎𝑎 = −𝑎, (72)

has a unique solution 𝑎. Thereafter, define the Morse-Lyapunov function:

𝑉𝑎 = 𝑉𝑎0 + 𝜇𝑎⟨𝐾,𝐼 −𝐸𝑅⟩, where 𝑉𝑎0 = 𝜁T𝑎 𝑎𝜁𝑎, (73)

𝜇𝑎 is a positive scalar, and 𝜁𝑎 is defined as:
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𝜁𝑎 = [𝜙T
1
(𝜓𝑎), 𝐽−1𝑒T𝜏 ]

T.

We constrain the positive scalar 𝜇𝑎 in (73) as follows:

0 < 𝜇𝑎 < 2𝑘3
𝑎3

𝜆min
{
𝑎

}
𝜆min

{
𝑎

}

𝜆max
{
𝑎

} . (74)

From Theorem 1, (71) and (23), we find that the time-derivative of 𝑉𝑎 satisfies:

𝑉̇𝑎 ≤ −𝛾𝑎1𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
+ 𝜇𝑎𝑒

T
𝑅
𝑒Ω, (75)

where 𝛾𝑎1 and 𝛾𝑎2 are defined by:

𝛾𝑎1 = 𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} , 𝛾𝑎2 =
𝜆min

{
𝑎

}
𝜆min

{
𝑎

} 𝑝−1
𝑝 𝑝

𝜆max
{
𝑎

}
(3𝑝− 2)

. (76)

Substituting (69) into (75), we obtain:

𝑉̇𝑎 ≤ −𝛾𝑎1𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
+ 𝜇𝑎𝑒

T
𝑅

[
𝜓𝑎 − 𝜅𝑎𝑒𝑅 − 𝜅𝑎(𝑒

T
𝑅
𝑒𝑅)

1−𝑝
𝑝 𝑒𝑅

]

≤ −𝛾𝑎1𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
+

1

2
𝜇𝑎

(
𝑒T
𝑅
𝑒𝑅 +𝜓T𝑎 𝜓𝑎

)
− 𝜅𝑎𝜇𝑎

[
𝑒T
𝑅
𝑒𝑅 + (𝑒T

𝑅
𝑒𝑅)

1
𝑝

]

≤ −

(
𝛾𝑎1 −

𝜇𝑎

2𝑘2
𝑎3
𝜆min

{
𝑎

}
)

𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
−
(
𝜅𝑎 −

1

2

)
𝜇𝑎𝑒

T
𝑅
𝑒𝑅 − 𝜅𝑎𝜇𝑎(𝑒

T
𝑅
𝑒𝑅)

1
𝑝 .

(77)

By applying Lemma 5 on (75), we obtain:

𝑉̇𝑎 ≤ −

(
𝛾𝑎1 −

𝜇𝑎

2𝑘2
𝑎3
𝜆min

{
𝑎

}
)

𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0

−
(
𝜅𝑎 −

1

2

)
𝜇𝑎⟨𝐾,𝐼 −𝐸𝑅⟩− 𝜅𝑎𝜇

𝑝−1
𝑝

𝑎 𝜇

1
𝑝
𝑎 ⟨𝐾,𝐼 −𝐸𝑅⟩

1
𝑝 .

(78)

After some algebra, we further obtain:

𝑉̇𝑎 ≤ −Γ𝑎1𝑉𝑎 − Γ𝑎2𝑉

1
𝑝

𝑎 , (79)

where:

Γ𝑎1 =min

{
𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} −
𝜇𝑎

2𝑘2
𝑎3
𝜆min

{
𝑎

} , 𝜅𝑎 −
1

2

}
,

Γ𝑎2 =min

⎧⎪⎨⎪⎩

𝜆min
{
𝑎

}
𝜆min

{
𝑎

} 𝑝−1
𝑝 𝑝

𝜆max
{
𝑎

}
(3𝑝− 2)

, 𝜅𝑎𝜇

𝑝−1
𝑝

𝑎

⎫⎪⎬⎪⎭
.

(80)

Considering the expression given by (79), the set where 𝑉̇𝑎 = 0 is:

𝑉̇ −1
𝑎 (0) =

{
(𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) ∶ 𝑠𝐾 (𝐸𝑅) = 0,and 𝜁𝑎 = 0

}

=
{
(𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) ∶𝐸𝑅 ∈ 𝐶, 𝑒Ω = 0,and 𝑒𝜏 = 0

}
,

(81)

where 𝐶 is as defined by (44), which gives the set of the critical points of the Morse function used as part of the Morse-Lyapunov function in (73). 
Using Theorem 8.4 from [19], we conclude that (𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) converge to the set:

𝑆 =
{
(𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) ∈ SO(3) ×ℝ

3 ×ℝ
3 ∶𝐸𝑅 ∈ 𝐶, 𝑒Ω = 0,and 𝑒𝜏 = 0

}
, (82)

in finite time. Based on (79), and Lemma 2, we conclude that when the observer gains satisfy the constraints in Proposition 2, the error dynamics 
(70) converges to the set 𝑆 in finite time.

In 𝑆 , the only stable equilibrium is (𝐼, 0, 0), while the other three are unstable. The resulting closed-loop system with the estimation errors 
gives rise to a Hölder-continuous feedback with exponent less than one (1∕2 < 1∕𝑝 < 1), while in the limiting case of 𝑝 = 1, the feedback system 
is Lipschitz-continuous. Proceeding with a topological equivalence-based analysis similar to the one by Bohn and Sanyal [6], we conclude that the 
equilibrium and the corresponding regions of attraction of the ESO for rotational motion with 𝑝 ∈]1, 2[, are identical to those of the corresponding 
Lipschitz-continuous asymptotically stable ESO with 𝑝 = 1, and the region of attraction is almost global.

To summarize, we conclude that the error dynamics (70) is almost globally FFTS (AG-FFTS) at the origin ((𝐸𝑅, 𝑒Ω, 𝑒𝜏 ) = (𝐼, 0, 0)) when the 
resultant disturbance torque is constant (𝜏̇𝐷 = 0) and the observer gains are constrained according to Proposition 2. This concludes the proof of 
Theorem 3. □

We now present robustness of the proposed ESO against dynamic disturbance torque.
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Corollary 3. Consider the error dynamics of the rotational ESO given by (70) when the resultant disturbance torque is dynamic (𝜏̇𝐷 ≠ 0). If 𝛾𝑎1 defined by 
(76) satisfies:

𝛾𝑎1 ≥
𝜆max

{
𝑎

}

𝜆min
{
𝑎

}

and the magnitude of the time derivative of disturbance torque is upper bounded according to ‖𝜏̇𝐷‖ ≤Δ𝜏 , this error dynamics is PFTS.

Proof. We apply the Morse-Lyapunov function defined by (73), but constrain the positive scalar 𝜇𝑎 as:

0 < 𝜇𝑎 < 2𝑘2
𝑎3
𝜆min

{
𝑎

}(
𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} −
𝜆max

{
𝑎

}

𝜆min
{
𝑎

}
)

. (83)

Thereafter, from Theorem 1, Corollary 1, (70) and (23), we find that the time-derivative of 𝑉𝑡 satisfies:

𝑉̇𝑎 ≤ −𝛾𝑎1𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
+ 𝜇𝑎𝑒

T
𝑅
𝑒Ω + [0T, (𝐽−1𝜏̇𝐷)

T]𝑎𝜁𝑎 + 𝜁T𝑎 𝑎[0
T, (𝐽−1𝜏̇𝐷)

T]T,

≤ −𝛾𝑎1𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0
+ 𝜇𝑎𝑒

T
𝑅
𝑒Ω + 2𝜆min {𝐽}

−1 𝜆max
{
𝑎

}
Δ𝜏‖𝜁𝑎‖,

(84)

where 𝛾𝑎1, 𝛾𝑎2 are defined by (76). By applying Cauchy-Schwartz inequality to (84), we obtain:

𝑉̇𝑎 ≤ −

(
𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} −
𝜆max

{
𝑎

}

𝜆min
{
𝑎

}
)

𝑉𝑎 − 𝛾𝑎2𝑉

1
𝑝

𝑎 + 𝜇𝑎𝑒
T
𝑅
𝑒Ω +

𝜆max
{
𝑎

}
Δ𝜏

2

𝜆min {𝐽}
2

. (85)

By applying the derivation similar to (77), we obtain

𝑉̇𝑎 ≤ −

(
𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} −
𝜆max

{
𝑎

}

𝜆min
{
𝑎

} −
𝜇𝑎

2𝑘2
𝑎3
𝜆min

{
𝑎

}
)

𝑉𝑎 − 𝛾𝑎2𝑉

1
𝑝

𝑎

−
(
𝜅𝑎 −

1

2

)
𝜇𝑎𝑒

T
𝑅
𝑒𝑅 − 2𝜅𝑎𝜇

𝑝−1
𝑝

𝑎 𝜇

1
𝑝
𝑎 (𝑒

T
𝑅
𝑒𝑅)

1
𝑝 +

𝜆max
{
𝑎

}
Δ𝜏

2

𝜆min {𝐽}
2

≤ −

(
𝑘𝑎3

𝜆min
{
𝑎

}

𝜆max
{
𝑎

} −
𝜆max

{
𝑎

}

𝜆min
{
𝑎

} −
𝜇𝑎

2𝑘2
𝑎3
𝜆min

{
𝑎

}
)

𝑉𝑎0 − 𝛾𝑎2𝑉

1
𝑝

𝑎0

−
(
𝜅𝑎 −

1

2

)
𝜇𝑎⟨𝐾,𝐼 −𝐸𝑅⟩− 𝜅𝑎𝜇

𝑝−1
𝑝

𝑎 𝜇

1
𝑝
𝑎 ⟨𝐾,𝐼 −𝐸𝑅⟩

1
𝑝 +

𝜆max
{
𝑎

}
Δ𝜏

2

𝜆min {𝐽}
2

.

(86)

Considering that 𝜇𝑎 is constrained by (83), we further obtain:

𝑉̇𝑎 < −Γ∗
𝑎1
𝑉𝑡 − Γ∗

𝑎2
𝑉

1
𝑝

𝑎 +
𝜆max

{
𝑎

}
Δ𝜏

2

𝜆min {𝐽}
2

. (87)

We omit the expression of positive scalars Γ∗
𝑎1
and Γ∗

𝑎2
for brevity. Based on (87), we conclude that when the time derivative of disturbance torque 

𝜏𝐷 , 𝜏̇𝐷 , is upper bounded, and the ESO gains are constrained according to Corollary 3, the error dynamics of ESO (70) is PFTS. This concludes the 
proof of Corollary 3. □

Remark 2 (Comparative analysis of noise robustness: FFTS-ESO vs FxTSDO by Liu et al. [22]). We investigate the disturbance (force and torque) 
observers given by theorems 1 and 2 in [22], abbreviated here as FxTSDO. The input of FxTSDO relies on the motion signals, 𝑋2 , 𝑌2, which represent 
translational and angular velocities, and 𝑋̇2 , 𝑌̇2, which represent translational and angular accelerations, respectively. However, the high-level noise 
associated with the translational acceleration obtained from an accelerometer restricts its direct use in a flight control scheme. Additionally, direct 
measurement of angular acceleration is usually not feasible. Furthermore, if 𝑋̇2 and 𝑌̇2 are obtained from finite differencing of 𝑋2 and 𝑌2, they 
will have higher noise levels than 𝑋2 and 𝑌2, leading to inferior disturbance estimation performance. In contrast to FxTSDO, the proposed FFTS-
ESO incorporates measured position and attitude signals, which have lower noise levels. Consequently, FFTS-ESO outperforms FxTSDO in terms 
of disturbance estimation performance, despite the theoretical fixed-time stability of FxTSDO. We show this through our numerical simulations in 
Section 6.

6. Numerical simulations

In this section, we compare the proposed FFTS-ESO with existing disturbance estimation schemes, which are LESO by Shao et al. [36] and FxTSDO 
by Liu et al. [22], on their disturbance estimation performance in four different simulated flight trajectories 𝑏𝑑 , with and without the presence of 
measurement noises. The inertia and mass of the simulated multi-rotor vehicle are 𝐽 = diag([0.0820, 0.0845, 0.1377]) kg ⋅m2, 𝑚 = 4.34 kg by Pounds 
et al. [31]. Since the goal of the simulation is to validate and compare the disturbance estimation performance, the actuator dynamics and saturation 
are not included in the results reported in this section. The tracking control scheme to drive the vehicle to track the desired trajectories is developed 
based on the control scheme reported by Viswanathan et al. [40,39]. As this scheme is not a contribution of this article, we omit its description for 
brevity. We use MATLAB/Simulink with its ODE2 (Heun method) solver to conduct this set of simulations. The time step size is ℎ = 0.001 s and the 
simulated duration is 𝑇 = 30 s.
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Table 1
Flight trajectories to be tracked for the comparisons between 
LESO, FxTSDO, and FFTS-ESO.

Hovering (HV) 𝑏𝑑 (𝑡) = [0, 0, −3]Tm

Slow swing (SS) 𝑏𝑑 (𝑡) = [10 sin(0.1𝜋𝑡), 0, −3]Tm

Fast swing (FS) 𝑏𝑑 (𝑡) = [5 sin(0.5𝜋𝑡), 0, −3]Tm

High pitch (HP) 𝑏𝑑 (𝑡) = [10 sin(0.5𝜋𝑡), 10 cos(0.5𝜋𝑡), −3]Tm

Table 2
Measurement noise level in power spectral 
density for the comparisons between LESO, 
FxTSDO, and FFTS-ESO.

𝑏𝑚 𝑏𝑚 = 𝑏+Δ𝑁
𝑏

Δ𝑁
𝑏
∼ 𝑃𝑏 = 3𝑒−8

𝑣𝑚 𝑣𝑚 = 𝑣+Δ𝑁
𝑣

Δ𝑁
𝑣
∼ 𝑃𝑣 = 3𝑒−7

𝑅𝑚 𝑅𝑚 =𝑅exp(Δ𝑁
𝑅
) Δ𝑁

𝑅
∼ 𝑃𝑅 = 3𝑒−8

Ω𝑚 Ω𝑚 =Ω+Δ𝑁
Ω

Δ𝑁
Ω
∼ 𝑃Ω = 3𝑒−7

Fig. 3. Disturbance force estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories without measurement noise. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

The four desired flight trajectories are listed in Table 1. Hovering (HV) is the simplest flight trajectory where the aircraft is ordered to hover at 
a fixed position during the simulation. High pitch (HP) is the most complex flight trajectory where the aircraft has to pitch up and track a circular 
trajectory. Since the norm of centripetal acceleration in the HP trajectory is more than a 𝑔 (gravitational acceleration), the aircraft has to flip over 
to track the desired trajectory. This desired trajectory with high centripetal acceleration forces the aircraft to go past the 90◦ pitch singularity of an 
Euler angle attitude representation. The measurement noise levels are as listed in Table 2 in terms of power spectral density (PSD). The disturbance 
force and torque in all of the four trajectories in this set of simulations are identical and are given by the following functions:

𝜑𝐷(𝑡) =

⎧⎪⎨⎪⎩

[3, 4, −5]T + sin
(

𝜋𝑡

6

)
[1.5, −1, −1]T N 𝑡 < 10 s

[5, −3, 4]T + sin
(

𝜋𝑡

6

)
[1.5, −1, −1]T N 𝑡 ≥ 10 s

,

𝜏𝐷(𝑡) =

⎧⎪⎨⎪⎩

[−0.3, 0.2, 0.2]T + 0.01sin
(

𝜋𝑡

2

)
[1, 2, −5]T N ⋅m 𝑡 < 20 s

[0.2, −0.3, −0.2]T + 0.01sin
(

𝜋𝑡

2

)
[1, 2, −5]T N ⋅m 𝑡 ≥ 20 s

The parameters for FFTS-ESO in these simulations are 𝑝 = 1.2, 𝑘𝑡1 = 3, 𝑘𝑡2 = 2, 𝑘𝑡3 = 6, 𝜅𝑡 = 0.8, 𝑘𝑎1 = 3, 𝑘𝑎2 = 2, 𝑘𝑎3 = 4, 𝜅𝑎 = 0.6. The gains for FxTSDO 
and LESO are as given by Liu et al. [22] and by Shao et al. [36]. In the simulated flights, the initial states of the vehicle are identical, given by: 
𝑅(0) = 𝐼, Ω(0) = [0, 0, 0]T rad/s, 𝑏(0) = [0.01, 0, 0]T m, 𝑣(0) = [5𝜋, 0, 0]T m/s. The initial conditions for the FxTSDO, LESO, and FFTS-ESO are 
given by the pose, velocities, and disturbances on the vehicle at the initial time in the simulations.

We present the simulation results in four sets of plots. Figs. 3 and 4 present the disturbance force and torque estimation errors respectively, from 
FxTSDO, LESO and FFTS-ESO in the flight trajectories described in Table 1 with noise-free measurements. Figs. 5 and 6 present the disturbance 
estimation errors from these schemes for the flight trajectories in Table 1, in the presence of measurement noise levels as described in Table 2.

Fig. 3 shows the disturbance force estimation errors from the three schemes with noise-free measurements. Although the disturbance force 
estimation error from FxTSDO shows a significant initial transient, the results from Fig. 3 indicate that with noise-free measurement, the disturbance 
force estimations from these three schemes converge to the origin in all four flight trajectories. The transients at 𝑡 = 10 s are from the step-function 
component of disturbance force 𝜑𝐷 , whose step time is 𝑡 = 10 s. Fig. 4 shows the disturbance torque estimation errors from the three schemes with 
noise-free measurement. In Fig. 4, we observe that when 𝑡 = 10 s, high transients appear in the disturbance torque estimation error from FxTSDO. 
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Fig. 4. Disturbance torque estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories without measurement noise.

Fig. 5. Disturbance force estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories with measurement noise.

Fig. 6. Disturbance torque estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories with measurement noise.

From Figs. 5 (a)-(b) and Figs. 4 (a)-(b), we observe that FxTSDO and LESO have satisfactory estimation performance with noise-free measurements 
in HV and SS simulations. These results indicate that the performances of FxTSDO and LESO are replicated correctly in our simulations.

Despite the initial transients, the disturbance torque estimation errors from all three schemes converge to the origin in the HV and SS simulations. 
However, in FS and HP simulations, the disturbance torque estimation errors from LESO and FxTSDO diverge. As is stated in Section 1, since the 
LESO uses Euler-angle to represent attitude for disturbance torque estimation, it experiences a singularity in attitude representation when the vehicle 
tracks the FS and HP trajectories. See Fig. 4 (d), the singularity in the attitude representation destabilizes the disturbance torque estimation error of 
LESO.

Figs. 5 and 6 present the disturbance force and disturbance torque estimation errors respectively, from the three schemes with identical noisy 
measurements as given in Table 2. As stated in Remark 2, we observe that with measurement noise, FxTSDO is not capable of providing any 
meaningful disturbance estimation. In FS and HP simulations, the disturbance torque estimation errors from LESO diverge from the origin.
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Fig. 7. The FAWT and its body-fixed coordinate frame.

Fig. 8. Quadrotor UAV developed in the autonomous unmanned system lab (AUSL) at Syracuse University.

To summarize, Figs. 3, 4, 5, and 6 show that FFTS-ESO has satisfactory disturbance estimation performance and outperforms LESO and FxTSDO 
when vehicle experiences large pose changes and has noisy measurements.

7. Flight experiments

In this section, the proposed FFTS-ESO is validated through flight experiments. Its hardware and software are custom-designed and developed 
based on the open-source autopilot PX4 by Meier et al. [25]. To demonstrate the capability of estimating and rejecting the disturbances, flight 
experiments are conducted under wind disturbances generated by a fan array wind tunnel (FAWT) from the Switzerland-based company WindShape. 
We first describe the hardware and software configurations of the multi-rotor vehicle and the setup of the experiment. Afterwards, we present our 
experimental results including the characteristics of the wind disturbances and the control performance of the vehicle when exposed to disturbances 
generated by the FAWT.

7.1. Hardware configuration

The multi-rotor vehicle is shown in Fig. 8. It has four brushless direct current electrical motors (T-Motor Air 2216 880-KV) paired with 10′′ ×4.5′′

carbon fiber propellers. To control the rotational speed of the motors, each is connected to an electronic speed control (T-Motor Air 20A), which 
receives commands from a PixHawk flight control unit (FCU, CUAV Nora plus) with redundant inertial measurement units (IMU). Flight control 
and state estimation are conducted by the FCU. The pose of the vehicle is measured by an optical motion capture system (VICON), and is sent to a 
companion computer (Raspberry Pi 4) through a Wi-Fi network, and then passed on to the FCU through a telemetry port. To generate wind fields 
with various turbulence characteristics for the flight experiments, we leveraged the FAWT in Fig. 7. The wind tunnel is a 1.44 m by 0.72 m array of 
162 independently controllable fans capable of generating wind speeds up to 12 m/s. The distributed fans are controlled in real time by a Python 
program. In our flight experiments, the FAWT was run at the steady uniform flow mode, with each individual fan running at identical and constant 
duty.

7.2. Software configuration

The flight control software is developed from the open-source autopilot software PX4 v1.13.2. According to [25], the system architecture of PX4 
is centered around a publish-subscribe object request broker on top of a POSIX application programming interface. This programming interface has 
different modules for data logging, communication, estimation, and control. The original control scheme of PX4 is a cascaded proportional-integral-
derivative scheme to track the desired trajectory, which is denoted by 𝑔𝑑 (𝑡) = (𝑏𝑑 , 𝑅𝑑 ) ∈ SE(3). To indicate the control performance, we denote the 
tracking error by

(𝑏𝑒,𝑅𝑒) ∈ SE(3), (88)
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Fig. 9. Setup for our flight control experiments.

where 𝑅𝑒 = (𝑅𝑑 )T𝑅𝑚 is the attitude tracking error in frame , and 𝑏𝑒 = 𝑏𝑚−𝑏𝑑 is the position tracking error in frame  . The FFTS-ESO is implemented 
onto the modules mc_pos_control and mc_rate_control for translational and rotational motions, respectively. The feedback of disturbance 
estimates from the FFTS-ESO is applied to the control law as an additional term so that the original control architecture is modified with this 
feedforward disturbance rejection term. This implemented control law is given by

𝐹 = 𝐹0 − 𝜑̂𝐷, 𝜏 = 𝜏0 − 𝜏𝐷,

where 𝐹 , 𝜏 ∈ ℝ
3 are commanded force and torque in the flight control system respectively, 𝐹0, 𝜏0 are the baseline control law provided by PX4, 

and 𝜑̂𝐷, ̂𝜏𝐷 are estimated disturbances from the implemented FFTS-ESO. Boolean parameters are introduced in the control law to switch on the 
disturbance rejection terms.

In the experiment, the rest of the autopilot (PX4 v1.13.2) is kept unchanged, to make a fair comparison of flight control performance between 
the original PX4 autopilot, and the one with disturbance rejection from FFTS-ESO. The flight control parameters of the autopilot are as described 
in the multi-rotor frame S500 in https://github .com /PX4 /PX4 -Autopilot/. A Robot Operating System (ROS) interface program is developed for the 
companion computer that transmits commands and poses to the vehicle. The flight data are saved in the memory card inside the FCU in the form 
of .ulg file for post-processing. We use the MAVLINK telecommunication protocol for communication between the FCU, companion computer, and 
ground control station.

The FFTS-ESO parameters are selected as: 𝑝 = 1.2, 𝑘𝑡1 = 6, 𝑘𝑡2 = 3, 𝑘𝑡3 = 1, 𝜅𝑡 = 0.6, 𝑘𝑎1 = 8, 𝑘𝑎2 = 4, 𝑘𝑎3 = 2, 𝜅𝑎 = 0.6. The empirically known mass 
and inertia of the vehicle as given to the FFTS-ESO are: 𝑚 = 1 kg and 𝐽 = diag([0.03, 0.03, 0.06]) kg ⋅m2.

7.3. Experiment procedure

The flight experiment setup is shown in Fig. 9. We define the FAWT coordinate frame as shown in Fig. 7, with 𝑥 as the stream-wise direction, 𝑦 as 
the span-wise direction, and 𝑧 as the vertically up direction. The origin is at the geometric center of the fan array. We operated the FAWT at a steady 
uniform flow mode at 30%-70% of its maximum duty to measure the wind velocity of the wind field. We carried out wind velocity measurements 
with a hotwire anemometer facing in the 𝑥 direction at 𝑥 = 1.2 m, 𝑦 = 0 m, 𝑧 = 0 m in the FAWT coordinate system.

As shown in Fig. 9, the vehicle was commanded to hover in the front of the FAWT, at 𝑥 = 1.5 m, 𝑦 = 0 m, 𝑧 = 0 m in the FAWT frame. The pose 
of the vehicle during flight was recorded in the log file for evaluation. This hovering position was at the center point of the test section so that we 
could maximally avoid the boundary layer around the section border, where higher turbulence intensity and flow uncertainty occur. The time for 
hovering flight was set to 210 s. During this period, we turned on the FAWT for 150 s to disturb the vehicle with turbulent flows with statistically 
constant characteristics. The flight experiment procedure is available as a video.1 In this video, the vehicle took off at 20 s and moved to the hovering 
position at around 30 s. The FAWT was turned on at 40 s and turned off at 200 s, when large transient motions of the vehicle can be observed. The 
vehicle landed after 250 s.

7.4. Results: turbulent flow measurement

The results for hot-wire measurements are covered in this subsection. For brevity, we omit the details of the measurement procedure. According to 
the Reynolds decomposition given in [30], we decompose the measured wind velocity 𝑢𝑖 into the sum of a time-averaged velocity 𝑈𝑖 and fluctuating 
velocity 𝑢′

𝑖
, such that 𝑢𝑖 =𝑈𝑖+𝑢′

𝑖
. Based on hotwire measurements, we characterize the FAWT wind field with the following quantities: time-averaged 

velocity 𝑈𝑖, variance of the fluctuating velocity (𝑢
′
𝑖
)2, Taylor-microscale Reynolds number Re𝜆, and turbulence intensity (TI). Re𝜆 is the Reynolds 

number calculated based on the Taylor microscale [30], which indicates the length scale at which fluid viscosity significantly affects the dynamics 

of turbulent eddies in the flow. TI is defined by 
√

(𝑢′
𝑖
)2∕𝑈𝑖, which is the ratio of the root mean square of fluctuating velocity and the time-averaged 

velocity (Table 3).
To summarize, for the FAWT in the setup described earlier in this subsection, we observe that 𝑈𝑖 ranges from 5.472 m/s to 10.920 m/s, and TI 

is around 0.043. Moreover, we observe that (𝑢′
𝑖
)2 has a positive correlation with 𝑈𝑖. We assume that higher (𝑢

′
𝑖
)2 brings higher turbulence energy, 

which causes higher disturbance inputs to the multi-rotor vehicle flying within the wind field.

1 https://1drv .ms /v /s !AkzQytNDIPfpnuVPMgVduKJMLuS2TQ ?e =9HZmvj.
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Table 3
Turbulence characteristics of uniform flows.

Duty 𝑈𝑖 (m/s) 𝑢′𝑖𝑢
′
𝑖 (m/s)

2 Re𝜆 TI

30% 5.472 0.061 98 0.0451
40% 6.876 0.082 102 0.0417
50% 8.213 0.116 100 0.0415
60% 9.590 0.168 127 0.0427
70% 10.920 0.237 148 0.0446

Fig. 10. Position tracking error.

7.5. Results: flight experiment

The results of the flight experiment are covered in this subsection. Fig. 10 and Fig. 11 illustrate the position and attitude tracking errors defined by 
(88). The position tracking error 𝑏𝑒 is expressed through its Euclidean norm, while the attitude tracking error 𝑅𝑒 is quantified by its principal angle, 

given by Φ = acos
(
tr(𝑅𝑒)−1

2

)
. To highlight the flight control performance under disturbances, we omit the pose data during take-off and landing in 

the results presented. Results for the control scheme without disturbance rejection are plotted in blue, and those with disturbance rejection are in 
red. The time-averaged position and attitude tracking errors are listed in Table 4.

Figs. 10 and 11 show that both position and attitude tracking errors have high transients at around 20 s and 180 s when disturbances from 
the FAWT kick in and turn off, respectively. Fig. 11 for the attitude tracking error of the control scheme with disturbance rejection shows an extra 
transient at around 0-10 s when the disturbance rejection kicks in. In Fig. 10, we observe that when the FAWT operates at 40%-60% of its maximum 
duty, the position tracking error of the control scheme with disturbance rejection outperforms the one without rejection. When the FAWT operates 
at 30% of its maximum duty, the difference between the two control schemes is not evident in Fig. 10. However, in terms of the time-averaged 
position tracking errors in Table 4, we can still observe that the scheme with disturbance rejection outperforms the one without rejection when the 
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Fig. 11. Attitude tracking error.

Table 4
Time-averaged tracking error.

Position tracking error (m) Attitude tracking error (rad)

PX4 PX4+FFTS-ESO PX4 PX4+FFTS-ESO

30% 0.0251 0.0236 0.0125 0.0116
40% 0.0468 0.0211 0.0140 0.0141
50% 0.0589 0.0254 0.0166 0.0132
60% 0.0792 0.0400 0.0164 0.0134
70% Failed! 0.0557 Failed! 0.0139

FAWT operates at 30%-60% of its maximum duty. When the FAWT operates at 70% of its maximum duty, the control scheme without disturbance 
rejection fails to make the UAV hover in a stable manner, while the one with rejection succeeds in doing so.

8. Conclusion

In this article, a FFTS-ESO scheme for disturbance estimation is designed for multi-rotor vehicles with a body-fixed thrust direction and three-
axis attitude control. The vehicle is modeled as an under-actuated system on the state-space TSE(3), the tangent bundle of the six-dimensional 
Lie group SE(3). The ESO scheme is developed based on the HC-FFTSD, which is similar to the STA used in sliding mode designs, to obtain fast 
finite-time stability with higher tunability of the settling time compared to other FTS schemes. A Lyapunov stability analysis of this ESO scheme 
proves its finite-time stability and robustness on TSE(3). A set of numerical simulations are conducted. The numerical simulation results show the 
stable performance of the FFTS-ESO scheme in estimating external force and torque disturbances acting on the vehicle in different trajectories. The 
behavior of the FFTS-ESO is compared with two state-of-the-art observers (LESO and FxTSDO) for disturbance estimation, using a realistic set of data 
for several simulated flight trajectories of a multi-rotor vehicle. These numerical simulations show that the FFTS-ESO, unlike the LESO and FxTSDO, 
is always stable and its convergence is robust to measurement noise and pose singularities. The FFTS-ESO is implemented on the FCU of a multi-rotor 
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vehicle, with disturbance rejection control using feedback of disturbance estimates from this FFTS-ESO. The results validate the performance of this 
FFTS-ESO experimentally and demonstrate its robust disturbance rejection capabilities in comparison to the original control scheme.
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