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ARTICLE INFO ABSTRACT

Communicated by Jayaram Sanjay This article presents an extended state observer for a vehicle modeled as a rigid body in three-dimensional

translational and rotational motions. The extended state observer is applicable to a multi-rotor aerial vehicle

with a fixed plane of rotors, modeled as an under-actuated system on the state-space TSE(3), the tangent bundle

Extended state observer of the six-dimensional Lie group SE(3). This state-space representation globally represents rigid body motions

Fast finite-time stability without singularities. The extended state observer is designed to estimate the resultant external disturbance force

Unmanned aerial vehicle and disturbance torque acting on the vehicle. It guarantees stable convergence of disturbance estimation errors
in finite time when the disturbances are constant, and finite time convergence to a bounded neighborhood of
zero errors for time-varying disturbances. This extended state observer design is based on a Holder-continuous
fast finite time stable differentiator that is similar to the super-twisting algorithm, to obtain fast convergence.
Numerical simulations are conducted to validate the proposed extended state observer. The proposed extended
state observer is compared with other existing research to show its advantages. A set of experimental results
implementing disturbance rejection control using feedback of disturbance estimates from this extended state
observer is also presented.

Keywords:
Geometric mechanics

1. Introduction

Multi-rotor unmanned aerial vehicles (UAVs) are increasingly being used in various applications, such as security and monitoring, infrastructure
inspection, agriculture, wildland management, package delivery, and remote sensing. However, these UAVs are frequently exposed to dynamic
uncertainties and disturbances caused by turbulence induced by winds and airflow around structures or regions. Therefore, it is crucial to ensure
robust flight control performance in such challenging environments, with guaranteed stability margins even in the presence of dynamic disturbances
and uncertainties. This is made more challenging by the fact that the state space of rigid body motions is the tangent bundle of the Lie group SE(3),
which is not contractible. Therefore, continuous control or state estimation schemes cannot be globally convergent in this state space, as explained
in [7].

Recent research articles on multi-rotor UAV tracking control have used various methods to tackle the adverse effects of disturbances and uncer-
tainties during flight. Torrente et al. [37] used Gaussian processes to complement the nominal dynamics of the multi-rotor in a model predictive
control (MPC) pipeline. Hanover et al. [14] used an explicit scheme to discretize the dynamics for a nonlinear MPC solved by optimization. Bangura
and Mahony [1] used the propeller aerodynamics as a direct feedforward term on the desired thrust to re-regulate the thrust command of the rotors.
Craig et al. [10] attached a set of pitot tubes onto the multi-rotor aircraft to directly sense the aircraft’s airspeed. With the knowledge of propeller
aerodynamic characteristics, the airspeed was then utilized to obtain the disturbance forces and torques as feedforward terms to enhance control
performance. Bisheban and Lee [5] implemented artificial neural networks to obtain disturbance forces and torques with the kinematics information
of the aircraft, and then used the baseline control scheme based on the article by Lee et al. [20] in their tracking control scheme design. The methods
used in these research articles either need high computational efforts [37,14,5], or they require precise modeling of the aerodynamic characteristics
of the multi-rotor propellers [1,10], to obtain satisfactory control performance in the presence of disturbances.
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Extended state observers, along with disturbance observers and unknown input observers, are commonly used in association with the robust
control technique known as active disturbance rejection control (ADRC), which can be traced back to the dissertation by Hartlieb [16]. In an ADRC
scheme, estimates of unknown disturbance inputs from a disturbance observer (DO) or an extended state observer (ESO) are first obtained and
then utilized in the control design to reject the disturbance. These observers can also be used to estimate parameters in a disturbance model. For
example, Jia et al. [18] employed the disturbance model obtained by Faessler et al. [12], and then estimated the drag coefficient as a parameter.
This disturbance model was also employed by Moeini et al. [26]. See, for example, Huang et al. [17], Shao et al. [36], Mechali et al. [24], Cui
et al. [11] on applications of ESO schemes, and Chen [9], Liu et al. [22], Bhale et al. [2], Sanyal [33] on applications of DO schemes for ADRC of
spatial motions of vehicles in three dimensions.

There are several methods to ensure the local stability of ESO/DO designs used for multi-rotor tracking control. The linear ESO by Shao et al. [36] is
locally asymptotically stable (AS), when its state-space is near the origin. Mechali et al. [24] used the concept of geometric homogeneity [32] to obtain
an ESO that is locally finite-time stable. A similar method was proposed in the ESO design by Guo and Zhao [13]. The Lyapunov functions/candidates
used in the ESO stability analysis by Mechali et al. [24] and Guo and Zhao [13] are based on [32], and are implicit. Jia et al. [18], Moeini et al. [26]
and Liu et al. [22] used variants of the DO proposed by Chen [9]. Another approach is to use the super-twisting algorithm (STA) Moreno and
Osorio [27] to design ESO. Xia et al. [43] use this method in ESO design for spacecraft attitude control, and Cui et al. [11] designed an adaptive
super-twisting ESO for an ADRC scheme applied to a multi-rotor vehicle.

In much of the prior literature for multi-rotor UAV attitude control with ESO/DO for disturbance torque estimation and rejection in rotational
dynamics, the attitude kinematics of the ESO/DO are either based on local linearization or represented using local coordinates (like Euler angles) or
using quaternions. Local coordinate representations can have singularity issues (e.g., gimbal lock with Euler angles), while continuous quaternion
feedback causes instability due to unwinding [4,7]. In situations where a vehicle has to carry out aggressive maneuvers, as in rapid collision avoidance
for example, disturbance estimation and rejection using such schemes may not be reliable for stable control of the vehicle.

This article presents an ESO on the state space TSE(3) for multi-rotor vehicles to provide reliable disturbance estimation under complex and
challenging aerodynamic environments. The ESO on TSE(3) estimates the disturbance forces and torques during the flight of a vehicle for both
translational and rotational motions. The proposed ESO is fast finite-time stable (FFTS), abbreviated as FFTS-ESO. This FFTS-ESO design is based
on a novel Holder-continuous fast finite-time stable differentiator (HC-FFTSD). We carry out several sets of numerical simulations to show the
validity of the proposed FFTS-ESO. Moreover, the proposed FFTS-ESO is compared with the extended state observer by Shao et al. [36] and the
disturbance observer by Liu et al. [22] in the conducted simulations to show the advantages of the proposed method. A set of experimental results
implementing a disturbance rejection mechanism using feedback of disturbance estimates from the FFTS-ESO is also presented. In the experiment,
we hover the vehicle in front of the turbulent flows generated by a fan array wind tunnel (FAWT). We obtain statistical information from the hot-wire
measurements on the turbulent incoming flows. We observe the pose of the vehicle to evaluate its flight control performance.

We highlight some unique contributions of this article.

The proposed ESO is the major contribution of this article. The pose of the multi-rotor is represented directly on the Lie group of rigid body
transformations, the special Euclidean group SE(3). Unlike the ESO and DO designs reported by Mechali et al. [24], Shao et al. [36], Liang
et al. [21], and Cui et al. [11], who used Euler angles or quaternions for attitude representation or did not include attitude kinematics, like
the DO by Bhale et al. [2] in disturbance torque estimation, the pose of the vehicle in this article is represented in SE(3) to avoid kinematic
singularities. We do not use local coordinates (like Euler angles) or (dual) quaternions for pose representation so that we avoid singularities due
to local coordinate representations or quaternion unwinding, as reported by Bhat and Bernstein [4], and Chaturvedi et al. [7]. To the best of
the author’s knowledge, there is no existing publication on aircraft disturbance observation using ESO with pose representation on SE(3).

The proposed FFTS-ESO is based on the HC-FFTSD. The commonly used geometric homogeneity method in [32,13,23,41,42], cannot provide a
straightforward (or explicit) Lyapunov function to prove the finite-time stability of the scheme. The (implicit) form of their Lyapunov functions
is given by Rosier [32]. This implicit Lyapunov function complicates the robustness analysis under measurement noise and time-varying distur-
bances when that analysis is essential for an ESO designed for disturbance estimation in ADRC schemes. We propose HC-FFTSD as an approach
inspired by the (STA) by Moreno and Osorio [27], Vidal et al. [38] of sliding-mode control (SMC). This approach gives a straightforward design
of a strict Lyapunov function, which is explicit, and therefore avoids the weakness mentioned above.

Based on the HC-FFTSD, the FFTS-ESO schemes obtained here are both FFTS and Holder-continuous, unlike the common STA and other FTS
schemes that use discontinuous methods like terminal sliding-mode. Therefore, they avoid the potentially harmful chattering phenomenon [35],
while maintaining FTS convergence.

Using explicit Lyapunov functions in the stability analysis, we present proof of the robustness of the proposed FFTS-ESO under time-varying
disturbing forces and torques.

The remainder of the article is as follows. Section 2 presents some preliminary results that are needed to obtain sufficient conditions for the stability
of the ESO and ADRC schemes. HC-FFTSD is presented, along with its stability and robustness analysis in Section 3. Section 4 defines and describes
the state-space on TSE(3) with details. Based on the definition, the ESO design problem on TSE(3) is formulated. Section 5 describes the detailed
FFTS-ESO design, which is based on the differentiator design in Section 3. Numerical simulations are conducted in Section 6. Section 7 describes the
conducted UAV flight experiment with the UAV exposed to the disturbances generated by the FAWT in detail. We conclude the paper, in Section 8,
by summarizing the results and highlighting directions for forthcoming research.

2. Preliminaries
The statements and definitions in this section are used in the technical results obtained in later sections. The statements given here give the

conditions under which a continuous time system is finite-time stable, fast finite-time stable, and practically finite-time stable using Lyapunov
analysis, and the last statement is used in developing the main result.

Lemma 1 (Finite-time stable). [3] Consider the following system of differential equations,

x(0) = f(x®), f(0)=0, x(0) = x, @
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where f : D — R”" is continuous on an open neighborhood D C R" of the origin, and let there be a continuous and differentiable function V (x(t)) that is
positive definite. Let the time derivative of V (x) satisfy the following inequality:

vV <-ave, (©)]
where x(t) € D\{0}, A> 0, a €]0, 1[. Then the system (1) is FTS at the origin, which means VYx, € D, x can reach the origin in finite time. Moreover, the
settling time T, the time needed to reach the origin, satisfies

Vl—a(xo)

< m- 3)

Lemma 2 (Fast finite-time stable). [45], [44] Consider the system (1) and let there be a continuous and differentiable function V (x(t)) that is positive definite.
Let the time derivative of V (x) satisfy the following inequality:

V<-MV =1V, @
where x(t) € D\{0}, A;,4, >0, a €]0, 1[. Then the system (1) is FFTS at the origin and the settling time T satisfies:

L, MWV I (xo) + Ay

T<aa—a" T ®)

Lemma 3 (Practically finite-time stable). [45,46,44] Consider the system (1) and let there be a continuous and differentiable function V (x) that is positive
definite. Let the time derivative of V' (x) satisfy the following inequality:

V<V =LV +n, (6)

where x(t) € D\{0}, 4;,4, >0, and « €]0, 1[. Then the system (1) is practical finite-time stable (PFTS) at the origin, which means that the solution of (1)
will converge to the following set in finite time

X

1
V(x) < min 1 < n > ;
=002, \ (1=6y)1,

where 0 < 0, < 1. The settling time T is bounded above as follows:

1 lnooalvl-a(xo)mz 1 l/llVl‘”(xo)+00/12}

T< ‘ ,
—max{ 0t Gt —a) 1 - m 09/

Lemma 4. [15] Let x and y be non-negative real numbers and let p €]1,2[. Then

11 1
xP+yr 2 (x+y)r. @)

Moreover, the above inequality is a strict inequality if both x and y are non-zero.

Definition 1. Define H : R3 xR — Sym(3), the space of symmetric 3 X 3 matrices, as follows:

Hx k) i= 1 — 2K 4T, (8)
xTx

3. Holder-continuous fast finite-time stable differentiator (HC-FFTSD)

In this section, we design the error dynamics for the proposed ESO in Section 5 in the form of an HC-FFTSD. We analyze the stability and
robustness of the proposed HC-FFTSD in this section, to support the development of the ESO design in Section 5. Theorem 1 gives the proposed
HC-FFTSD with its stability properties. Corollary 1 describes the convergence performance of the differentiator under external perturbations. In the
analysis that follows, e; € R” stands for the measurement estimation error and e, € R” stands for the disturbance estimation error in the ESO error
dynamics, respectively. In this section and the remainder of this paper, we denote the minimum and maximum eigenvalues of a matrix by A.,;.(-)
and A, (-), respectively.

Theorem 1. Let p €]1,2[ and k3 > 0. Define ¢;(-) : R" = R" and ¢,(-) : R" = R" as follows:
T 2
¢1(€1) = k3€1 + (el 31)3”72@1,

2k3(2p—1)
3p—2

201-p) (C)]
Ld (elTel) -2 ey,
3p-2

1=p
bale)) =kie; + (ele)) e, +

where e, e, € R". Define the differentiator gains k;,k, >0 and A* € R*?, as:

ar=|"h 1], (10)

—k, 0

which makes A* a Hurwitz matrix. Thereafter, the differentiator design:
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€ =—kip(e)+ey,
éy =—kypy(ey),

ensures that e, e, converge to the origin in a fast finite-time stable manner.

1)

Proof. The proof of Theorem 1 is based on Theorem 1 by Vidal et al. [38], Moreno et al. [28] and Theorem 1 by Moreno and Osorio [27]. Two
properties of ¢, and ¢, are provided as follows.

Property 1 (P1): The Jacobian of ¢, (e,), denoted ¢ (ey), is given as follows:

T
de(ey) T iz 2(p—1) €1€;
/ —_ o 3p-2 — —_
$rlen= de, =kl lepe) il 3p-2 Te, 2
so that the following identity holds:
¢2(e1)=¢'1(e1)¢1(el) (13)
Property 2 (P2): qb’l is a positive definite matrix, which means Yw € R",e; € R",
Amin{ @} ) HIw][* < 0§ ()1 < Ay (#) ()} 0] 2 14
min VY1151 =W W = Amax 1 ¥ 1€ >
where the maximum and minimum eigenvalues of qb’l (ey) in (14) are as given below:
’ T, 35
Amax{@P1(e)} = k3 + (e e))3r2, (15
1-p
T 3,5 _ P
ﬂmin{(bll(e])}:k3+(ele])3p_2 3p_2 (16)
From Theorem 5.5 by Chen [8], we know that for a Hurwitz matrix .A* as in (10), VQ* € R**2 where Q* > 0, the Lyapunov equation:
AHTP* 4 P A* = —QF, a7
has a unique solution P* > 0. Express the positive definite matrices P* and Q* in components as follows:
PE = [Pn Plz] o = [411 412] )
P12 P d12 42
As P* is the solution to (17), A*, P* and Q* can be augmented to A, P,Q € R2%21 a5 follows:
kI 1 pul pol a1 g1
A= 1 ’p: 11 12 ]’Q:[ 11 1 .
[ —kyI 0 ] [PIZI ol qiod  qnl
The augmented matrices A, P, Q defined above also satisfy a Lyapunov equation as given below:
ATP+PA=-0 18)

Further, the eigenvalues of P and P*, are related such that A_;, {P*} = A;,{P}, and A {P*} =41
Therefore, as P is the solution to (18), we consider the following Lyapunov candidate:

{P}. Similar relations hold for Q and Q*.

max

Viey.ep)=¢TPe, 19

where ¢ € R?" is defined as { := [qbrlr(e,),eg]T and P is the augmented P*, which is the unique solution of (17) for a given Q* > 0. The upper and
lower bounds of the Lyapunov candidate V' in (19) are as given below:

Amin {PYICI? S V(eyner) < Apay {PYICHA (20)

where ||¢||? is expressed as follows:

I = T e )by (e)) + el ey

2p-1 P @D

= k%elTel + 2k3(e1Tel)3P-2 + (elTel)3P-2 + ege2.

From (20) and (21), we obtain the following inequalities:

_r_
Amin (P} (€] )77 < dpyin {PYIICIP <V (ey.e), 22)
k2 Amin (P} el ey < Apin {PYICI? <V (ey.e)). (23)
From (22), and given 1 < p <2, we obtain:
e (Vene\ T (Ve
P15 eq,e —£ e, e
[(erlfel)y;fz] S <#> ? ﬁ(e"lfel)m;fz > (#) " (24)
lmin {P} )'min {P}

V(e;,e,) is differentiable everywhere except the subspace S = {[elr, e;r]T e R le; =0}. From (11) and Property (P1), we obtain the time derivative
of ¢ as follows,
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¢ = [d’;(q)él] _ [¢§(€1)(—k1¢1(91)+62)
€ —k2¢’1(e1)¢1(€1) (25)
=D(e))ACE,

where,

D(e,) = diag[¢ (¢)). #) ()] € R*™>*",

’ (26)
A’min {D(el)} = Amin {¢1(€])} .
Given the expression of ¢ in (25), we obtain the time derivative of V(e 1»€,) as follows:
v=¢(TpesTpé
= (D) ATP + PD(e)) A)X 27)

=T,
where O(e,) is given by:

O(e) = (Diey) TP + PDe A = | 1D le(e')] ,

Opple)) Qxle)
Qy1(ey) = 2(ky pyy + kap12) @) (e1), 28)
Qia(ey) = (kypia + kapyy = P11 (),
Ox(e)) = =2pd) ().
From (28) and (18), we obtain Q = OD(e;). Thereafter, as Q and D(e;) defined by (18) and (26), respectively, are positive definite, we obtain the
following inequality on their eigenvalues:
Amin {QD(€1) } 2 Amin {Q) Amin {D(ep)} > 0. (29)
After substituting (29) into (27) and applying (14) of Property 2, we obtain:
vV =—T(@D(ey)¢
< —min {@D(e)} ¢T¢ (30)
< ~Amin { D€} Amin (Q}¢TE
AS Ay {D(el)} = Amin {q.’:’l (e})}, substituting (16), (22) and (24) into (30), we obtain:

1-p
. = _p
Vs—[k3+(e1Tel)3P-2 3p_2]/1mm{Q}CTC
1-p
< Amn (Q) k3+< v ) P ]y @b
Amax {P} /lmin {P} 3p-2
1
<-nV-nve,

where y; and y, are positive constants defined by:

_ ’lmin {Q} _ /lmin {Q*}
N P] e P
-t -l (32)

_ Amin {Q) Ain (P} 7 P _ Amin {Q"} Amin {P*} ? P

}‘max{P} 317_2 }'max{p*} 317_2'

Therefore, based on the inequality (31), Lemma 1 and Lemma 2, we conclude that the origin of the error dynamics (11) is fast finite-time stable. []

The following corollary describes the robustness of the differentiator perturbed by A” € R” in the second-order dynamics of (11). In the ESO
design described in Section 5, AP € R” is corresponding with the time-derivatives of disturbance forces and torques.

Corollary 1 (Perturbation Robustness). Consider the proposed HC-FFTSD under perturbation input AP € R”, which satisfies || AP]| < AD. The differentiator
perturbed by AP is given by:

é =—kip(e)) +ey,
éy =—kyale)) +AP.

If y, in (32) satisfies ¥ > Apax {P}/ Amin { P}, then (33) is practically finite-time stable (PFTS).

(33)

Proof. By applying the Lyapunov function V' defined by (19) in Theorem 1, and the perturbed differentiator given by (33), we obtain the time
derivative of this Lyapunov function as follows:
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Fig. 1. The multi-rotor vehicle and coordinate frames.

V <V =V 7 +[07.APYT 2L 4 £ TPpoT, (AP)T]T

1 S (34
SNV =1VP 4 2000 (P} APC]L
Now applying Cauchy-Schwarz inequality and (20) to the inequality (34), we obtain:
. 1 —2
V<=1V =1V 4 Ay AP ICIIP + Ay {P) AD
(35)

}‘max{P} 1 2
<—(y -2 Vv —p Vi + A (P}AD .
= <71 /lmin {7)} v+ max{ }

Therefore, by applying Lemma 3 to the inequality (35), we conclude that the differentiator (33), which is the differentiator (11) under disturbance
AP is PFTS. [

4. Problem formulation
4.1. Coordinate frame definition

The configuration of the vehicle, modeled as a rigid body, is given by its position and orientation, which are together referred to as its pose. To
define the pose of the vehicle, we fix a coordinate frame 5 to its body and another coordinate frame £ that is fixed in space as the inertial coordinate
frame. Define e, as the unit vector along the ith coordinate axis for i = 1,2,3. Let b € R3 denote the position vector of the origin of frame /3 with
respect to frame £. The rigid body attitude is represented by the rotation matrix R € SO(3) from frame B to frame £. The special orthogonal group
of rigid body rotations, SO(3), is defined by Murray et al. [29]:

SO(3) = {R eR¥3, RTR=RRT = I, det(R) = | }

SO(3) ¢ R*3 is a matrix Lie group under matrix multiplication. The Lie algebra (tangent space at identity) of SO(3) is denoted so(3) and defined by:

0 —-s53 s
s03)={SeR™ | S+ ST=0},ie. S=5¥=| 53 0 -5
-5, 5 0

Here ()% : R? - s0(3) denotes the bijective map from three-dimensional Euclidean space to so(3). For a vector s = [s; s, 53]T € R3, the matrix s*
represents the vector cross product operator, that is s X r = s*r, where r € R3. The inverse of (.)¥ is denoted vex(.) : s0(3) — R?, such that vex(a*) = a,
for all a* € so(3).

The attitude kinematics on SO(3) is expressed as: R = RQ*, where Q € R? is the angular velocity in body-fixed frame /3. The tangent bundle of
SO(3) is denoted by TSO(3), containing the collection of all of the tangent spaces for all points on SO(3). In attitude kinematics, we express TSO(3)
to be TSO(3) = {(R, )| R € SO(3),Q* € 50(3)}.

We represent the pose (attitude and position) of the rigid body by (b, R) € SE(3), where b denotes the inertial position vector. The pose of the
vehicle can be represented in matrix form as follows:

_|[R b
€510 1
where SE(3), the special Euclidean group, is the six-dimensional Lie group of rigid body motions. A diagram of coordinate systems on SE(3) is

presented in Fig. 1.
Applying the compactly represented pose given by (36), the velocity kinematics of the vehicle is given by:

b=v=Rv, QX vy
{ org=g¢&, E= [ 0] € se(3) 37)

€ SEQ3) (36)

R =RQX, 0

where v,v € R? denote the translational velocity in frames £ and /3 respectively. Similar to the tangent space of SO(3), £ in (37) is on the tangent
space of SE(3). We denote the tangent bundle of SE(3) to be TSE(3) = {(g,¢)|g € SE(3), & € se(3)}.
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4.2. System dynamics

The overall dynamics of a multi-rotor vehicle with a body-fixed plane of rotors are given by:

b=v=Rv
mb =mge; — f Re; + @p 38)
R=RQX

JQ=JOxQ+1+1),

where e; =[0 0 l]T, f €R is the scalar thrust force, and 7 € R3 is the control torque created by the rotors, g denotes the acceleration due to
gravity and m € R* and J = JT € R¥3 are the mass and inertia matrix of the UAV, respectively. The force and torque disturbances are denoted ¢ D
and 7, respectively, which are mainly due to unsteady aerodynamics.

We denote the onboard measurements ™, 0", R™, Q™ regarding b, v, R, Q defined by (37). With the presence of measurement uncertainties, the
measurements are modeled as follows:

b"=b+A) 0" =v+ AN R = Rexp(AR)).Q"=Q+A), (39)

where A[’)V AN, Ag , Ag € R3 are uncertainties in position, velocity, attitude, and angular velocity measurements, respectively.
4.3. Morse function on SO(3)

The following Lemma is used in the design of the ESO for rotational motion scheme for the vehicle.

Lemma 5. [6] Consider the attitude kinematics

R=RQ*, RESO(3), QeR’. (40
Define K = diag([ K, K, K3]), where K| > K, > K3 > 1. Define

3
sk(R)= ) K(RTe) xe,, (41)
i=1
such that %(K ,I—R)=QTs,(R). Here (A, B) = tr(AT B), which makes (K, I — R) a Morse function defined on SO(3) with a discrete set of non-degenerate
critical points. Let S C SO(3) be a closed subset containing the identity in its interior, defined by
il =

S={ReSO@3) : R;>0and R;;R;; <0,Vi, j€{1,2,3}, i#/}. (42)
Then VY R € S, we have

sg(R)Tsg(R)> (K, I - R). (43)
Remark 1 (Almost global domain of attraction). [34] We know that the subset of SO(3) where s, (R) =0, R € SO(3), which is also the set of critical

points for (I — R, K), is

C & {I,diag(1,—-1,—1),diag(—1,1,—1),diag(-1,—1,1)} € SO(3). 44)

In addition, the global minimum of this Morse function is R = 1.

4.4. ESO estimates and errors

The ESO on TSE(3) is split into a translational ESO design on vector space R and a ESO for rotational motion design on TSO(3). (B, 0,pp) €
R3 x R3 x R? denotes the estimated position, translational velocity, and disturbance force, as the states of the translational ESO. The estimation
errors for the translational ESO are defined as follows:

eb=bm—,l;,ev=vm—'v\,eq,=(pD—(’[)D, (45)

which are estimation errors of position, translational velocity, and total disturbance force respectively.
Let (R,Q,7p) € SO(3) X R3 x R3 denote the estimated attitude, angular velocity, and disturbance torque states provided by the ESO for rotational
motion. For the ESO for rotational motion, the error states are defined as follows. The attitude estimation error is defined by:

Egr=RTR", (46)

on the group of rigid body rotations, SO(3), which is not a vector space. The angular velocity estimation error, eq, and torque disturbance estimation
error, e, are expressed on the vector space R3, and are defined as:

eq=Q"—ELQ, e, =1~ 7. (47)

A properly designed ESO on TSE(3) can stabilize the error states at (e, e,, €y Egr.eq.e;)=(0,0,0,1,0,0) when there are no measurement uncer-
tainties and dynamic disturbances, such that Ai" s A{)V s Af{ s Ag =0, and ¢, 7p =0. Moreover, when the measurement uncertainties and dynamic

7
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Fig. 2. Block diagrams of the proposed ESO.

disturbances are non-negligible, we expect the ESO to drive the error states to a small neighborhood around (0,0,0, 1, 0,0). The input-output rela-
tionship of the ESO is presented in Fig. 2.

5. Fast finite-time stable extended state observer (FFTS-ESO) on TSE(3)

In this section, we present the FFTS-ESO on TSE(3). As mentioned in the previous section, the ESO design on TSE(3) is given by an ESO for the
translational motion on the vector space R3 to estimate the resultant disturbance force, and an ESO for rotational motion on TSO(3) to estimate the
resultant disturbance torque. We present the two ESO designs along with their stability and robustness results.

5.1. ESO for translational motion

Proposition 1 (Translational ESO on R3). Define constant positive scalar gains k,; and k,,, which make the matrix A, € R*>? defined as:

— —kyy 1
am[ w

a Hurwitz matrix. In addition, define the constant k,; that replaces ks in the functions ¢,(-) and ¢,(-) defined by (9). Then the ESO designed for the
translational motion is given by:

b=0,
A L -1 ~
m0 = mge; — f R"es + mk, ¢, (y,) + mk, [(erbre,,) » H(eb, Pz )eu + ev] +®p, (49)
p
(}P\D =mky$,(w,),

where y, is defined as:

1-p
v, =e,+ K |ep+ (egeb) » eb], K, > 1/2. (50)

Theorem 2. Given the observer errors for the translational ESO defined by (45), the translational kinematics and dynamics given by (38), and the ESO for
translational motion given by Proposition 1, the error dynamics of this translational ESO is given by:

é,=e,,

= -1
mé, = —mk, P, (y,) — mx, [(ebTeb) » H <eb’ p ; ) e, + ev] +e,, (51)

€p= —mkydr(y;) + @p.
The error dynamics (51) is FFTS at the origin ((ey, e,,, €,) = (0,0,0)) when the resultant disturbance force is constant (¢, = 0).

Proof. Simplify (51) as follows:

¥ ==k (y) + m_le(p’

. . (52)
m-é,= —kipdr(y) +m™ @p.
Next, for A, as defined in (48), VQ, € R2*2 where Q, > 0, the Lyapunov equation,
T
A P+ P A =-9Q,, (53)
has a unique solution P,. Thereafter, define the Lyapunov function:
Vi=V+ ﬂ,e;’reb, where V,, = é’tTP,Z_,’, (54)
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and ¢, is defined as follows:

&=1d] ), m'el1h.

We constrain the positive scalar y, in (54) as:

hmin {P1} A
0< sy < i, 2min {71} P {01} 55)

j'max {pt}
From Theorem 1, (52) and (23), we find that the time-derivative of V; satisfies:

Vi< =ruVio = Ver +2pe)e,, (56)

where y;; and y,, are defined by:

p=1
mm {Qt} _ min {Qt} j'min {7)!} 4 P‘ (57)
Amax { t} Amax {pt} Gp-2)
Substituting (50) into (56), we obtain:

=

1-p
. T =
Vi<=raVo-— VtZV +2ue [Wt Ki€p — Kf(eb ep) » eb]
; T T, i
<=1V — 712 + 2H1eb W, = 2uke, e — 2p,k,(ep ep) P

(58)
<=1V — szV Zy[K,eb €y — 2/‘1’(1(% eb)f’ + MIW[ v, + ﬂteb €p
1 bl 1
Sl — 10V, — Q= Dpge beb 24, " pf (e;,reb)p-
mm {P }
Therefore, we further obtaln:
1
Vl<_rllI/t_Ft21/1ﬂ7 59
where
9,
I, =min{ kg, Auin {01} a1y,
max {7) } k,3’1min {pt}
(60)

p-1
A A Ip L p=L
thzmin mm{Qt} mm{ t} p p’th”tp
Amax {P:} Bp—2)

Based on (59), we conclude that when the resultant disturbance force is constant (¢, = 0) and the ESO gains are constrained according to Proposi-
tion 1, the error dynamics of ESO (51) is FFTS. This concludes the proof of Theorem 2. []

By applying the stability proof of HC-FFTSD presented in Theorem 1, Theorem 2 shows that the proposed ESO in translational dimension is fast
finite-time stable when the disturbance force is a constant. Now, we apply Corollary 1 to investigate robustness of the proposed ESO against dynamic
disturbance force.

Corollary 2. Consider the error dynamics of translational ESO given by (51) when the resultant disturbance force is dynamic (¢ p # 0). If y,; defined by (57)
satisfies:
Amax {P1}

m}'min {pt }

and the magnitude of the time derivative of the disturbance force is upper bounded according to ||@p]| < A%, this error dynamics is PFTS.

Yz

Proof. We apply the Lyapunov function defined by (54), but constrain the positive scalar y, as:

Amin 19 A P,
0</"t<kt23'1min {pr}<k13 mm{ t} - maX{ f} > (61)
’lmax {Pt} mj'min {PI}
Thereafter, from Theorem 1, Corollary 1, (51) and (23), we find that the time-derivative of V; satisfies:
]
Vi, S=1aVio— 1V, +2mey e, + 107, m™ o p) 1P¢, + ¢ PI0T, (m™ o) 1T, ©

1
<=1V — 3’12 +2Ml e +2m_l}“max{pl}A(ﬂ”CI”’

where y,;,7,, are defined by (57). By applying Cauchy-Schwartz inequality to (62), we obtain:
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—2
Anin {9} Amax (P} ) 1 Amax {P; } A® ©3)

Vt <- k13 -
( Xmax {Pt} mﬂ'min {Pt}
By applying the derivation similar to (58), we obtain

Ami A P 1
SRS S
Amax {7),} MAmin {pl} k,3 Amin {Pr}

v, —)/,21/," +2;4,e}ev+ -

) (64)
el 1 L Ay { P} AP
- (2K, — ])y,e;reb —2x,u, " u! (ezeb)ﬂ =7
Considering that y; is constrained by (61), we further obtain:
, L e P VAP
V,<-THV,=ThHV," + A (65)

We omit the expression of positive scalars F;“l and I :‘2 for brevity. Based on (65), we conclude that when the time derivative of disturbance force
®ps @p, is upper bounded, and the ESO gains are constrained according to Corollary 2, the error dynamics of ESO (51) is PFTS. This concludes the
proof of Corollary 2. []

5.2. ESO for rotational motion

Proposition 2 (ESO for rotational motion). Define e = sy (ERg), where s (-) is as defined by Lemma 5. Define e, ,(Eg, eq) as follows:
d 3
T
ew(Erreq) = 3 ep= Z‘f K;e; X (eq X ETe)). (66)

Define constant positive scalar gains k,; and k,,, which make the matrix A, € R>? defined by:

— _kal 1
A, = [—kaz ol (67)
a Hurwitz matrix. In addition, define the constant k3 to replace k5 in the functions ¢;(-) and ¢,(-) defined by (9). Then the ESO designed for the rotational

motion is given by:

R= RO,
S -1 ~ T, L2 p—1
Q= Egd ™ |JQ" X Q" 42 + 1+ kg Ty () + Ko (heg) 7 H(eR, )ew
p (68)
+EgJ "\ (k,Je,) + Egel EXQ,
Tp = Tkahs(W,).
where y, is defined as:
T, L2 1
W, =eq+K,|lep+(eper) 7 ep L Ko > o (69

Theorem 3. Given the observer errors for the ESO for rotational motion defined by (47), the rotational kinematics and dynamics given by (38), and the ESO
for rotational motion given in Proposition 2, the error dynamics of this ESO is given by:

Ep= EReé,
. T =2 p—1
Jég=—kyJ(w,) —Kk,J |(eger) » H | ep, T e,te,| te,, (70)
éT = —ka2J¢2(Wa) + ‘i'D.
The error dynamics (70) is almost globally FFTS at the origin ((Eg, eq,e,) = (I,0,0)) when the resultant disturbance torque is constant (ip = 0).

Proof. Simplify (70) as follows:

li/a = _kal¢1(Wa) + Jﬁler’

1 1 71)
J7e, =—kppr(y,)+ T 1.
Next, for A, as defined in (67), VQ, € R2X2 where Q, > 0, the Lyapunov equation:
AP, + P A, =-0,, 72)
has a unique solution P,. Thereafter, define the Morse-Lyapunov function:
Vo= Voo + ta(K. I — Eg), where Vo =¢1P,¢,, (73)

U, is a positive scalar, and ¢, is defined as:

10
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Lo=ldTw,). I

We constrain the positive scalar y, in (73) as follows:

Amin A Pat Amin 19
0<ﬂa<2k?l3 l'ﬂll'l{ a} l'ﬂll'l{ a}. (74)
Amax {pa}
From Theorem 1, (71) and (23), we find that the time-derivative of V, satisfies:
I./a < ~Ya VaO yaZV + #08£CQ, (75)
where y,; and y,, are defined by:
=1
imin {Qa} }'min {Qa} )'min {Pa} rp
Va1 = Kg3 s Va2 = . (76)
Amax {pa} Ammax {pa} GBp-2)
Substituting (69) into (75), we obtain:
. 1=p
Va < _yalVao yaZ + Hqe [Wa —KqseRr — K, (e ep) ’ eR]
T T, \:
< _YalV J/a2 + ”a (2 ep+ v, Wa) —KaHq [eReR + (eReR)p] (77)

1 T T, %
S\ VYa— VaO 7a2 () (Ka - _> Ha€RCR — Ka.ua(eReR)p'
( 265 mm{P}> ‘ 2

By applying Lemma 5 on (75), we obtain:

Va <- (}/al 2 > VaO 7/02 0
2K2 Aemin {P } ‘ (78)

1
1 1
—(Ka=3 ) HalK. 1= Eg) - cota? ul (KT~ Eg)F.
After some algebra, we further obtain:

1

Va < _Fal Va - 1_‘aZValJ > 79)
where:
Amin 12,
l—‘al=rnin{ka3 mm{ ﬂ}_ ) Ha ,Ka_l},
/lmax {Pa} 2ka3 Amin {Pa} 2
Pl (80)
I =min ’lmin {Qa}/lmin {Pa} rp ”%
2= ,
’ I AP Gp—2)
Considering the expression given by (79), the set where V, =0 is:
VH0)={(Eg.eq.e,) : sk(Eg)=0,and {, =0} @)

={(Eg.eq.¢;) : ER€C,eq=0,and e, =0},

where C is as defined by (44), which gives the set of the critical points of the Morse function used as part of the Morse-Lyapunov function in (73).
Using Theorem 8.4 from [19], we conclude that (Ey, eq,e,) converge to the set:

S ={(Eg.eq.e,) €SOB)xR* xR} : Eg €C,eq=0,and e, =0}, (82)

in finite time. Based on (79), and Lemma 2, we conclude that when the observer gains satisfy the constraints in Proposition 2, the error dynamics
(70) converges to the set .S in finite time.

In S, the only stable equilibrium is (/,0,0), while the other three are unstable. The resulting closed-loop system with the estimation errors
gives rise to a Holder-continuous feedback with exponent less than one (1/2 < 1/p < 1), while in the limiting case of p = 1, the feedback system
is Lipschitz-continuous. Proceeding with a topological equivalence-based analysis similar to the one by Bohn and Sanyal [6], we conclude that the
equilibrium and the corresponding regions of attraction of the ESO for rotational motion with p €]1,2[, are identical to those of the corresponding
Lipschitz-continuous asymptotically stable ESO with p = 1, and the region of attraction is almost global.

To summarize, we conclude that the error dynamics (70) is almost globally FFTS (AG-FFTS) at the origin ((Eg,eq,e,) = (1,0,0)) when the
resultant disturbance torque is constant (7, = 0) and the observer gains are constrained according to Proposition 2. This concludes the proof of
Theorem 3. []

We now present robustness of the proposed ESO against dynamic disturbance torque.

11
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Corollary 3. Consider the error dynamics of the rotational ESO given by (70) when the resultant disturbance torque is dynamic (¢ # 0). If y,; defined by
(76) satisfies:

}’max {Pa }
Amin {pa }

and the magnitude of the time derivative of disturbance torque is upper bounded according to ||7p|| < A%, this error dynamics is PFTS.

Va1 2

Proof. We apply the Morse-Lyapunov function defined by (73), but constrain the positive scalar y, as:

Amin 1O, A P
0<ﬂa<2k§3amm{7>a}<ka3 min {Qa} - max { “}>. (83)
Amax {pa} Amin {Pa}
Thereafter, from Theorem 1, Corollary 1, (70) and (23), we find that the time-derivative of V; satisfies:
1
Vi S =YaVao = YaaV gy + Haeeq + 107, (I ep) T1PuL, + ¢ P[0T, (T )T, 6

1 —
< _7a1VaO - VaZVGS + ﬂaeﬁeﬁ + 2)“min {J}_l Amax {Pa} ATHQ'GH,

where y,;,7,, are defined by (76). By applying Cauchy-Schwartz inequality to (84), we obtain:

Amin {Qa} ’1max {Pa} i T Amax {Pa} Ez
V,<—\ ks - Vo= YV + Hoegeq+ —————. (85)
/1max {Pa} )'min {Pu} lmin {J}

By applying the derivation similar to (77), we obtain

v < (k )“min {Qa} )“max {pa} Ha >V y V%
=- 3 - - ~VYa2Va
‘ ¢ /lmax {Pa} Amin {pa} 2k§3 )“min {Pa} ¢ ¢
—2
| 1t P
— (Ka - _> Haeher —2ku," pl (eleg)? + %
2 Amin {']} (86)
)'min {Qa} j'max {Pa} H 1
<- ka3 - - ) 2 VaO - yaZVHf)
Amax {pa} Amin {Pa} 2ka3 Amin {Pa}
—2
| = 1 L e (P
- (’fa - 5) Ho(K. T — Eg) = kuy" pg (K. I—Eg)r + %
min
Considering that p, is constrained by (83), we further obtain:
—2
. 1 P, AT
Vo<-Tp V=TV, + s {7} 27 {”}}2 : 87)
j'min J

We omit the expression of positive scalars I'", and I', for brevity. Based on (87), we conclude that when the time derivative of disturbance torque
Tp, Tp, is upper bounded, and the ESO gains are constrained according to Corollary 3, the error dynamics of ESO (70) is PFTS. This concludes the
proof of Corollary 3. []

Remark 2 (Comparative analysis of noise robustness: FFTS-ESO vs FxTSDO by Liu et al. [22]). We investigate the disturbance (force and torque)
observers given by theorems 1 and 2 in [22], abbreviated here as FXTSDO. The input of FXTSDO relies on the motion signals, X, Y, which represent
translational and angular velocities, and X,, Y,, which represent translational and angular accelerations, respectively. However, the high-level noise
associated with the translational acceleration obtained from an accelerometer restricts its direct use in a flight control scheme. Additionally, direct
measurement of angular acceleration is usually not feasible. Furthermore, if X, and Y, are obtained from finite differencing of X, and Y,, they
will have higher noise levels than X, and Y,, leading to inferior disturbance estimation performance. In contrast to FXTSDO, the proposed FFTS-
ESO incorporates measured position and attitude signals, which have lower noise levels. Consequently, FFTS-ESO outperforms FxTSDO in terms
of disturbance estimation performance, despite the theoretical fixed-time stability of FXTSDO. We show this through our numerical simulations in
Section 6.

6. Numerical simulations

In this section, we compare the proposed FFTS-ESO with existing disturbance estimation schemes, which are LESO by Shao et al. [36] and FxTSDO
by Liu et al. [22], on their disturbance estimation performance in four different simulated flight trajectories b?, with and without the presence of
measurement noises. The inertia and mass of the simulated multi-rotor vehicle are J = diag([0.0820,0.0845,0.1377]) kg-m?, m = 4.34 kg by Pounds
et al. [31]. Since the goal of the simulation is to validate and compare the disturbance estimation performance, the actuator dynamics and saturation
are not included in the results reported in this section. The tracking control scheme to drive the vehicle to track the desired trajectories is developed
based on the control scheme reported by Viswanathan et al. [40,39]. As this scheme is not a contribution of this article, we omit its description for
brevity. We use MATLAB/Simulink with its ODE2 (Heun method) solver to conduct this set of simulations. The time step size is 4 =0.001 s and the
simulated duration is 7' = 30s.

12
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Table 1
Flight trajectories to be tracked for the comparisons between
LESO, FxTSDO, and FFTS-ESO.

Hovering (HV) » (1) =10, 0, —3JT m

Slow swing (SS) b4(t) = [10 sin(0.1x1), 0, —3]T m

Fast swing (FS) b4 (1) =[5 sin(0.5x1), 0, —3]Tm

High pitch (HP) b (1) =110 sin(0.5x¢), 10 cos(0.5xt), 73]T m

Table 2

Measurement noise level in power spectral
density for the comparisons between LESO,
FxTSDO, and FFTS-ESO.

" b =b+AY AN ~ Py=3¢®
o vm=v+ AN AN ~ P, =3¢
R™  R"=Rexp(AR) AN ~Pp=3e7*
Qo Q"=Q+A) AN ~ Py =3¢
10 T T T 10 T T T
= = FXxTSDO LESQ ==——FFTSESO = == FxTSDO LESO ==——FFTSESO
; 5 e ; 5 4
2 2
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t(s) t(s)
(a) HV (b) SS
10 T T T 10 T T T
= ‘— FxTSDO LESQ =——FFTSESO = ‘— FxTSDO LESQ ==——FFTSESO
s 1 =5 1
0 0 i y
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t(s) t(s)
(c) FS (d) HP

Fig. 3. Disturbance force estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories without measurement noise. (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

The four desired flight trajectories are listed in Table 1. Hovering (HV) is the simplest flight trajectory where the aircraft is ordered to hover at
a fixed position during the simulation. High pitch (HP) is the most complex flight trajectory where the aircraft has to pitch up and track a circular
trajectory. Since the norm of centripetal acceleration in the HP trajectory is more than a g (gravitational acceleration), the aircraft has to flip over
to track the desired trajectory. This desired trajectory with high centripetal acceleration forces the aircraft to go past the 90° pitch singularity of an
Euler angle attitude representation. The measurement noise levels are as listed in Table 2 in terms of power spectral density (PSD). The disturbance
force and torque in all of the four trajectories in this set of simulations are identical and are given by the following functions:

3, 4, —5]T+sin(%f)[1.5, 1, -1ITN 1<10s

@p)= ,
P 5, -3, 4]T+sin(’g)[1.5, 1, —1TN 1>10s
(=03, 0.2, 0.2]T+0.015in(%')[1, 2, -5TN-m 1<20s
Tp() =
b [02, —0.3, —0.2]T+0.01sin(%’)[1, 2, -5ITN-m >20s

The parameters for FFTS-ESO in these simulations are p=1.2,k;; =3,k;, =2,k;3=6,x,=0.8, k,; =3,k,p =2,k 3 =4,x, =0.6. The gains for FxTSDO
and LESO are as given by Liu et al. [22] and by Shao et al. [36]. In the simulated flights, the initial states of the vehicle are identical, given by:
RO)=1I, Q0)=10, 0, 0] rad/s, 50) =[0.01, 0, 0]T m, v(0) =[5z, 0, 0]T m/s. The initial conditions for the FxTSDO, LESO, and FFTS-ESO are
given by the pose, velocities, and disturbances on the vehicle at the initial time in the simulations.

We present the simulation results in four sets of plots. Figs. 3 and 4 present the disturbance force and torque estimation errors respectively, from
FxTSDO, LESO and FFTS-ESO in the flight trajectories described in Table 1 with noise-free measurements. Figs. 5 and 6 present the disturbance
estimation errors from these schemes for the flight trajectories in Table 1, in the presence of measurement noise levels as described in Table 2.

Fig. 3 shows the disturbance force estimation errors from the three schemes with noise-free measurements. Although the disturbance force
estimation error from FXxTSDO shows a significant initial transient, the results from Fig. 3 indicate that with noise-free measurement, the disturbance
force estimations from these three schemes converge to the origin in all four flight trajectories. The transients at ¢ = 10 s are from the step-function
component of disturbance force ¢, whose step time is ¢ = 10 s. Fig. 4 shows the disturbance torque estimation errors from the three schemes with
noise-free measurement. In Fig. 4, we observe that when 7 = 10 s, high transients appear in the disturbance torque estimation error from FxTSDO.

13
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Fig. 5. Disturbance force estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories with measurement noise.
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Fig. 6. Disturbance torque estimation errors from FxTSDO, LESO, and FFTS-ESO, in four different trajectories with measurement noise.

From Figs. 5 (a)-(b) and Figs. 4 (a)-(b), we observe that FXTSDO and LESO have satisfactory estimation performance with noise-free measurements
in HV and SS simulations. These results indicate that the performances of FxXTSDO and LESO are replicated correctly in our simulations.

Despite the initial transients, the disturbance torque estimation errors from all three schemes converge to the origin in the HV and SS simulations.
However, in FS and HP simulations, the disturbance torque estimation errors from LESO and FxTSDO diverge. As is stated in Section 1, since the
LESO uses Euler-angle to represent attitude for disturbance torque estimation, it experiences a singularity in attitude representation when the vehicle
tracks the FS and HP trajectories. See Fig. 4 (d), the singularity in the attitude representation destabilizes the disturbance torque estimation error of
LESO.

Figs. 5 and 6 present the disturbance force and disturbance torque estimation errors respectively, from the three schemes with identical noisy
measurements as given in Table 2. As stated in Remark 2, we observe that with measurement noise, FXTSDO is not capable of providing any
meaningful disturbance estimation. In FS and HP simulations, the disturbance torque estimation errors from LESO diverge from the origin.
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Fig. 8. Quadrotor UAV developed in the autonomous unmanned system lab (AUSL) at Syracuse University.

To summarize, Figs. 3, 4, 5, and 6 show that FFTS-ESO has satisfactory disturbance estimation performance and outperforms LESO and FxTSDO
when vehicle experiences large pose changes and has noisy measurements.

7. Flight experiments

In this section, the proposed FFTS-ESO is validated through flight experiments. Its hardware and software are custom-designed and developed
based on the open-source autopilot PX4 by Meier et al. [25]. To demonstrate the capability of estimating and rejecting the disturbances, flight
experiments are conducted under wind disturbances generated by a fan array wind tunnel (FAWT) from the Switzerland-based company WindShape.
We first describe the hardware and software configurations of the multi-rotor vehicle and the setup of the experiment. Afterwards, we present our
experimental results including the characteristics of the wind disturbances and the control performance of the vehicle when exposed to disturbances
generated by the FAWT.

7.1. Hardware configuration

The multi-rotor vehicle is shown in Fig. 8. It has four brushless direct current electrical motors (T-Motor Air 2216 880-KV) paired with 10" x 4.5
carbon fiber propellers. To control the rotational speed of the motors, each is connected to an electronic speed control (T-Motor Air 20A), which
receives commands from a PixHawk flight control unit (FCU, CUAV Nora plus) with redundant inertial measurement units (IMU). Flight control
and state estimation are conducted by the FCU. The pose of the vehicle is measured by an optical motion capture system (VICON), and is sent to a
companion computer (Raspberry Pi 4) through a Wi-Fi network, and then passed on to the FCU through a telemetry port. To generate wind fields
with various turbulence characteristics for the flight experiments, we leveraged the FAWT in Fig. 7. The wind tunnel is a 1.44 m by 0.72 m array of
162 independently controllable fans capable of generating wind speeds up to 12 m/s. The distributed fans are controlled in real time by a Python
program. In our flight experiments, the FAWT was run at the steady uniform flow mode, with each individual fan running at identical and constant
duty.

7.2. Software configuration

The flight control software is developed from the open-source autopilot software PX4 v1.13.2. According to [25], the system architecture of PX4
is centered around a publish-subscribe object request broker on top of a POSIX application programming interface. This programming interface has
different modules for data logging, communication, estimation, and control. The original control scheme of PX4 is a cascaded proportional-integral-
derivative scheme to track the desired trajectory, which is denoted by g?(¢) = (b%, R?) € SE(3). To indicate the control performance, we denote the
tracking error by

(b°, R®) € SE(3), (88)
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Fig. 9. Setup for our flight control experiments.

where R® = (R?)T R™ is the attitude tracking error in frame /3, and b = b" — b? is the position tracking error in frame £. The FFTS-ESO is implemented
onto the modules mc_pos_control and mc_rate control for translational and rotational motions, respectively. The feedback of disturbance
estimates from the FFTS-ESO is applied to the control law as an additional term so that the original control architecture is modified with this
feedforward disturbance rejection term. This implemented control law is given by

F=Fy=¢p, t=1—7p,

where F,7 € R? are commanded force and torque in the flight control system respectively, Fy,z, are the baseline control law provided by PX4,
and @p,7p are estimated disturbances from the implemented FFTS-ESO. Boolean parameters are introduced in the control law to switch on the
disturbance rejection terms.

In the experiment, the rest of the autopilot (PX4 v1.13.2) is kept unchanged, to make a fair comparison of flight control performance between
the original PX4 autopilot, and the one with disturbance rejection from FFTS-ESO. The flight control parameters of the autopilot are as described
in the multi-rotor frame S500 in https://github.com/PX4/PX4-Autopilot/. A Robot Operating System (ROS) interface program is developed for the
companion computer that transmits commands and poses to the vehicle. The flight data are saved in the memory card inside the FCU in the form
of .ulg file for post-processing. We use the MAVLINK telecommunication protocol for communication between the FCU, companion computer, and
ground control station.

The FFTS-ESO parameters are selected as: p=1.2,k;; =6,k,, =3,k3=1,k,=0.6, k,; =8,k,p =4,k,3 =2,k, =0.6. The empirically known mass
and inertia of the vehicle as given to the FFTS-ESO are: m = 1 kg and J = diag([0.03,0.03,0.06]) kg - m?.

7.3. Experiment procedure

The flight experiment setup is shown in Fig. 9. We define the FAWT coordinate frame as shown in Fig. 7, with x as the stream-wise direction, y as
the span-wise direction, and z as the vertically up direction. The origin is at the geometric center of the fan array. We operated the FAWT at a steady
uniform flow mode at 30%-70% of its maximum duty to measure the wind velocity of the wind field. We carried out wind velocity measurements
with a hotwire anemometer facing in the x direction at x =1.2m, y =0m, z=0m in the FAWT coordinate system.

As shown in Fig. 9, the vehicle was commanded to hover in the front of the FAWT, at x = 1.5m,y =0m, z=0m in the FAWT frame. The pose
of the vehicle during flight was recorded in the log file for evaluation. This hovering position was at the center point of the test section so that we
could maximally avoid the boundary layer around the section border, where higher turbulence intensity and flow uncertainty occur. The time for
hovering flight was set to 210 s. During this period, we turned on the FAWT for 150 s to disturb the vehicle with turbulent flows with statistically
constant characteristics. The flight experiment procedure is available as a video.! In this video, the vehicle took off at 20 s and moved to the hovering
position at around 30 s. The FAWT was turned on at 40 s and turned off at 200 s, when large transient motions of the vehicle can be observed. The
vehicle landed after 250 s.

7.4. Results: turbulent flow measurement

The results for hot-wire measurements are covered in this subsection. For brevity, we omit the details of the measurement procedure. According to
the Reynolds decomposition given in [30], we decompose the measured wind velocity u; into the sum of a time-averaged velocity U; and fluctuating
velocity ul'. ,suchthatu; =U; + u; . Based on hotwire measurements, we characterize the FAWT wind field with the following quantities: time-averaged

velocity U;, variance of the fluctuating velocity (ul’.)2, Taylor-microscale Reynolds number Re,, and turbulence intensity (TI). Re, is the Reynolds
number calculated based on the Taylor microscale [30], which indicates the length scale at which fluid viscosity significantly affects the dynamics

of turbulent eddies in the flow. TI is defined by (ul’, )2/U,, which is the ratio of the root mean square of fluctuating velocity and the time-averaged
velocity (Table 3).
To summarize, for the FAWT in the setup described earlier in this subsection, we observe that U; ranges from 5.472 m/s to 10.920 m/s, and TI

is around 0.043. Moreover, we observe that («])? has a positive correlation with U;. We assume that higher («])? brings higher turbulence energy,
which causes higher disturbance inputs to the multi-rotor vehicle flying within the wind field.

L https://1drv.ms/v/s! AkzQytNDIPfpnuVPMgVduKJMLuS2TQ?e = 9HZmvj.
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Table 3
Turbulence characteristics of uniform flows.

Duty U (m/s) uu] (m/s)> Re, TI

30%  5.472 0.061 98 0.0451
40%  6.876 0.082 102 0.0417
50%  8.213 0.116 100 0.0415
60%  9.590 0.168 127 0.0427
70% 10920  0.237 148 0.0446
T T T T
04 |——PX4 —— PX4+FFTS-ESO| |
E
~ 0.2 4
o Wm ™
0 20 40 60 80 100 120 140 160 180 200
t(s)
(a) Duty 30%
T T T T
|——PX4 —— PX4+FFTS-ESO| |
60 80 100 120 140 160 180 200
t(s)
(b) Duty 40%
T T T T
0af |——PX4 —— PX4+FFTS-ESO| |
E
~0.2 4
[ N
0 r VW \ g X
0 20 40 60 80 100 120 140 160 180 200
t(s)
(c) Duty 50%
T T T T
0af |——PX4 —— PX4+FFTS-ESO| |

0 20 40 60 80 100 120 140 160 180 200

t (s)
(d) Duty 60%

: : :
04l —— PX4+FFTS-ESO]
B
Zoa2f 0 B
0 [ AN \ A\ A I\
0 M, e [ \WJ/\’/W\M\‘\“\WMW’\”J' W) e
) 20 40 60 80 100 120 140 160 180 200

t (s)
(e) Duty 70%

Fig. 10. Position tracking error.

7.5. Results: flight experiment

The results of the flight experiment are covered in this subsection. Fig. 10 and Fig. 11 illustrate the position and attitude tracking errors defined by
(88). The position tracking error b is expressed through its Euclidean norm, while the attitude tracking error R is quantified by its principal angle,
given by ® = acos (% . To highlight the flight control performance under disturbances, we omit the pose data during take-off and landing in
the results presented. Results for the control scheme without disturbance rejection are plotted in blue, and those with disturbance rejection are in
red. The time-averaged position and attitude tracking errors are listed in Table 4.

Figs. 10 and 11 show that both position and attitude tracking errors have high transients at around 20 s and 180 s when disturbances from
the FAWT kick in and turn off, respectively. Fig. 11 for the attitude tracking error of the control scheme with disturbance rejection shows an extra
transient at around 0-10 s when the disturbance rejection kicks in. In Fig. 10, we observe that when the FAWT operates at 40%-60% of its maximum
duty, the position tracking error of the control scheme with disturbance rejection outperforms the one without rejection. When the FAWT operates
at 30% of its maximum duty, the difference between the two control schemes is not evident in Fig. 10. However, in terms of the time-averaged
position tracking errors in Table 4, we can still observe that the scheme with disturbance rejection outperforms the one without rejection when the
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Fig. 11. Attitude tracking error.

Table 4
Time-averaged tracking error.
Position tracking error (m) Attitude tracking error (rad)
PX4 PX4+FFTS-ESO PX4 PX4+FFTS-ESO
30% 0.0251 0.0236 0.0125 0.0116
40% 0.0468 0.0211 0.0140 0.0141
50% 0.0589 0.0254 0.0166 0.0132
60% 0.0792 0.0400 0.0164 0.0134
70% Failed! 0.0557 Failed! 0.0139

FAWT operates at 30%-60% of its maximum duty. When the FAWT operates at 70% of its maximum duty, the control scheme without disturbance
rejection fails to make the UAV hover in a stable manner, while the one with rejection succeeds in doing so.

8. Conclusion

In this article, a FFTS-ESO scheme for disturbance estimation is designed for multi-rotor vehicles with a body-fixed thrust direction and three-
axis attitude control. The vehicle is modeled as an under-actuated system on the state-space TSE(3), the tangent bundle of the six-dimensional
Lie group SE(3). The ESO scheme is developed based on the HC-FFTSD, which is similar to the STA used in sliding mode designs, to obtain fast
finite-time stability with higher tunability of the settling time compared to other FTS schemes. A Lyapunov stability analysis of this ESO scheme
proves its finite-time stability and robustness on TSE(3). A set of numerical simulations are conducted. The numerical simulation results show the
stable performance of the FFTS-ESO scheme in estimating external force and torque disturbances acting on the vehicle in different trajectories. The
behavior of the FFTS-ESO is compared with two state-of-the-art observers (LESO and FxTSDO) for disturbance estimation, using a realistic set of data
for several simulated flight trajectories of a multi-rotor vehicle. These numerical simulations show that the FFTS-ESO, unlike the LESO and FxTSDO,
is always stable and its convergence is robust to measurement noise and pose singularities. The FFTS-ESO is implemented on the FCU of a multi-rotor
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vehicle, with disturbance rejection control using feedback of disturbance estimates from this FFTS-ESO. The results validate the performance of this
FFTS-ESO experimentally and demonstrate its robust disturbance rejection capabilities in comparison to the original control scheme.
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