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NEUROSCIENCE

Cortico-cerebellar coordination facilitates

neuroprosthetic control

Aamir Abbasi', Rohit Rangwani1'2

Tanuj Gulati'>34x

Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there
is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs
behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned
a neuroprosthetic/brain-machine interface (BMI) task. In neuroprosthetic task, actuator movements are causally
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linked to M1 “direct” neurons that drive the decoder for successful task execution. However, it is unknown how
task-related M1 activity interacts with the cerebellum. We observed a notable 3 to 6 hertz coherence that emerged
between these regions’ local field potentials (LFPs) with learning that also modulated task-related spiking. We
identified robust task-related indirect modulation in the cerebellum, which developed a preferential relationship
with M1 task-related activity. Inhibiting cerebellar cortical and deep nuclei activity through optogenetics led to
performance impairments in M1-driven neuroprosthetic control. Together, these results demonstrate that cere-

bellar influence is necessary for M1-driven neuroprosthetic control.

INTRODUCTION

To accomplish even the simplest of tasks, the nervous system coor-
dinates activity across distant brain regions. For example, holding a
bottle full of water requires several thousands of neurons to produce
well-calibrated muscle forces for grasping and monitoring sensory
feedback. Parallel processes in several sensorimotor regions under-
lie even the most trivial tasks, such as mentioned above. Dense re-
ciprocal connectivity between these regions supports this processing
which likely needs to be configured rapidly and flexibly to support a
repertoire of behavior and afford learning of new skills. Two motor
regions, the primary motor cortex (M1) and the cerebellum, have
dense reciprocal connections and are known to be involved in mo-
tor learning (I, 2). Studies have shown how learning alters local ac-
tivity in the cerebellum or M1 (3-6), yet learning is also known to
alter task-related, cross-area coordination (2, 7). Both M1 and the
cerebellum have dense connections with other cortical and subcor-
tical regions, and hence, it is difficult to ascertain whether changes
in interaction are due to reciprocal connectivity between M1 and
cerebellum (8-10) or because of their roles in coordinating a com-
mon target—the upper limb.

While M1-cerebellum have been simultaneously recorded (2, 7)
in upper limb behaviors, results presented from such interactions
are marred by the confound of both these regions directly control-
ling limb movement. This confound is overcome in the brain-
machine interface (BMI) task we used, where select M1 neurons
(“direct” neurons) modulate their activity to control an external dis-
embodied actuator. The BMI paradigm we used offers experiment-
ers a powerful tool where they can dictate or set the neuron-behavior
relationship. During “brain control,” direct M1 neurons change
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their firing properties as the neuroprosthetic task is learned (11-18).
Thus, only M1 is responsible for neuroprosthetic control. In addi-
tion, other neurons in the local M1 network also become task cou-
pled (i.e., task-related “indirect” neurons) (12, 13, 15, 19-23). We
studied any resulting changes in the cerebellum that could be attrib-
uted to its interactions with M1 rather than both regions indepen-
dently undergoing changes as they learn to control a shared effector.
It remains unknown what activity emerges in the cerebellum with
M1-driven neuroprosthetic learning and what role it plays. Here, we
hypothesized that cerebellum neurons will develop task-related fir-
ing during M1-driven neuroprosthetic learning. We also predicted
that optogenetically inhibiting the cerebellum will affect M1-driven
neuroprosthetic control. Notably, the M1 projects to the cerebellar
cortex chiefly through the cortico-ponto-cerebellar pathway (1, 24),
and the cerebellum’s primary outflow back to the neocortex is via its
deep nuclei, i.e., the dentato-thalamo-cortical pathway (25, 26). Op-
togenetic manipulation studies that have targeted either the pons
(24), the deep nuclei within the cerebellum (25), or the thalamic
inputs to M1 (26) during rodent reaching tasks have shown that per-
turbations in these areas impair the reaching behavior as well as the
neural dynamics in the target projection areas. Because of the recip-
rocal connectivity between M1-cerebellum, within the cerebellum
resides the cause of M1 activation (in its deep nuclei) as well as the
consequence of M1 activation (in the cerebellar cortex’s input lay-
ers). Hence, we performed optogenetic inhibition at both levels in
the cerebellum (i.e., its cortex and deep nuclei) and studied the ef-
fects on M1-driven brain control. In this study, our chief hypothesis
was to test whether cerebellum develops a task-related indirect
modulation, and whether this activation is needed for M1-driven
BMI control.

Another focus of our investigations was coemergent synchro-
nous activity across M1 and cerebellum with neuroprosthetic learn-
ing. Recent theories have proposed that alterations in the pattern of
synchronous activity across regions can serve to coordinate network
activity for natural and neuroprosthetic behaviors (20, 27). Such
transient local field potential (LFP) activity can modulate the excit-
ability of cell groups across varying spatiotemporal scales (28, 29).
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This helps achieve precise temporal control in neural networks that
can enhance information transfer in specific cell populations (30)
and can influence spike timing-dependent plasticity (31). The tem-
porally coordinated activity among ensembles underlies diverse
neural processes ranging from perception, decision-making, action,
memory, and attention (6, 32-36). Spiking in one region becomes
coordinated with LFPs in another region, indicative of synchrony
(33, 37). Despite the evidence that synchronous LFPs are related to
learning (6, 38), there is a paucity of evidence that this selectively
modulates task-relevant activity of neurons across brain areas. Using
the neuroprosthetic task paradigm where we can control the neurons
linked to behavioral output, we aimed to disentangle the synchro-
nous activity of task-related direct neurons locally within M1 and
with task-relevant indirect activity in the M1 and the cerebellum (as
well as task-unrelated cells of M1, which served as negative control)
to understand how these diverse classes of cells were modulated by
coordinated LFP activity in the M1 and cerebellum.

In the BMI paradigm that we used, a small set of M1 direct neu-
rons controlled a simple one-dimensional (1D) actuator (hence-
forth M1 TRy’s) (12, 18, 21). We recorded additional neural activity
from neighboring indirect neurons in M1, as well as distant cerebel-
lar cortex. We parsed these indirect neurons as either task-related or
task-unrelated neurons in the M1 (M1 TRy’s and M1 TU, respec-
tively). We looked at the relationship between these subclasses of
M1 cells and their association to cerebellar task-related indirect
activity (i.e., cerebellum TR;’s). We made the observation that cere-
bellar neurons developed strong “task-related” indirect modulation,
and M1 and cerebellum LFPs developed a 3- to 6-Hz coherence as
proficient M1-driven neuroprosthetic control was learned. We also
found that M1 TRy’s and TR;’s and cerebellum TR;’s enhanced their
phase locking to this 3- to 6-Hz oscillation in the LFPs. M1 TUs
were not modulated by this 3- to 6-Hz LFP activity. Next, we also
found that fine timescale coordination (as evaluated through canon-
ical correlation analyses) increased between M1 task-related neu-
rons and cerebellar TR;’s with neuroprosthetic learning. This was
not the case for M1 TU’s and cerebellar TRy’s. We also used a gener-
alized linear model (GLM) to predict M1 TRy, TR;, and TU activity
using cerebellar TR; activity, where we found that the cerebellar ac-
tivity better predicted the M1 TRy and TR; activity but not M1 TU
activity. In our last set of experiments, we optogenetically inhibited
the cerebellum either in the cerebellar cortex or the deep nuclei and
found that inhibition of cerebellar activity at either level led to per-
formance impairments in the neuroprosthetic task and weakening
of M1 task-related activity. Together, our results show cerebellar ac-
tivation in M1-driven BMI and that cerebellum activity develops a
privileged relationship with M1 task-related direct and indirect ac-
tivity to accomplish neuroprosthetic skill learning.

RESULTS

We implanted microwire arrays in the M1 and silicon probes (tet-
rodes/polytrodes) in the cerebellar posterior lobes (see Materials
and Methods for details). After neural implant surgery, we trained
seven animals to exert direct neural control on the angular velocity
of a mechanical actuator that can deliver water. A linear decoder
converted the firing rates of two groups of units in M1 (randomly
selected and assigned positive or negative unit weights; M1 TR4"
and TRy, respectively; TRy’s existed only in M1) into the angular
velocity of the actuator. We also recoded multiple other units in
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both M1 and cerebellar cortex (Simplex, Crus I/II regions) that were
not causally linked to the actuator movements but showed signifi-
cant task-related modulation (referred to as M1 TR;’s or cerebellum
TR;’s). The units that did not develop task-related modulation in the
M1 were classified as task-unrelated (i.e., M1 TUs). The number of
neurons in each category per session is detailed in table S1. The M1
TRy’s decoder gain was held constant during the session to exclu-
sively rely on neural learning mechanisms. Each trial started with
the simultaneous delivery of an auditory tone and opening of a door
to allow access to the tube (Fig. 1, A and B). At the start of each trial,
the angular position of the tube was set to resting position, P;. If the
angular position of the tube was successfully controlled to go to the
target position P, (see Materials and Methods), a defined amount of
water was delivered (i.e., successful trial). A trial was stopped if this
was not achieved within 15 s (i.e., unsuccessful trial). At the end of a trial,
the actuator was returned to position P;, and the door was closed.

Direct control of BMI by M1 units

We observed that over the course of a typical 1- to 2-hour practice
session, animals showed improvements in task performance with a
significant reduction in the time to successful trial completion and
decrease in the proportion of unsuccessful trials. A total of 20 ses-
sions were analyzed, where we saw significant reductions in both
metrics. Overall, we observed that rats showed improvement in task
performance with a significant reduction in the time to a successful
trial completion [Fig. 1, C and D; 8.93 & 0.45 s to 3.57 + 0.25 s,
mixed-effects model: #(38) = —10.74, P = 4.5 x 107"] and a de-
crease in the percentage of unsuccessful trials [Fig. 1D;29.84 +4.07%
t0 2.19 + 0.71%, mixed-effects model: #(38) = —7.03, P=2.2x 107°].
Learning curves from all the sessions are shown in fig. S1A.

In a subset of sessions (n = 13), we tracked the position of the
feeding tube, and we observed that the tube’s movement from P; to
P, position became direct in the late trials as compared to the early
trials (Fig. 1E and fig. S1B). We also measured the speed consistency
of the tube’s movement by measuring the correlation between the
mean instantaneous speed (that served as template) with that of in-
dividual trials. We found that this speed consistency also increased
during the late trials [fig. SIC; 0.07 + 0.02 to 0.23 + 0.03, mixed-
effect models: #(24) = 3.86, P = 7 x 10~*]. Furthermore, we also saw
that the angular velocity of the feeding tube was significantly higher
in the late trials [fig. S1D; 5.55 + 1.36 to 13.07 + 2.61 pixels(px)/s,
mixed-effects model: #(24) = 3.20, P = 0.0037]. Using the video re-
cording of rats during the BMI training in these same sessions, we
analyzed for any correlated body movements with brain control. We
looked at three movements, namely, movements of both forepaws
(contralateral and ipsilateral to the implanted hemisphere) and the
head. Consistent with previous reports of lack of muscle contrac-
tions during neuroprosthetic control (15), we did not observe fore-
paw or head movements to be systematically correlated to the
feeding tube movements, and overt movements reduced as profi-
cient neuroprosthetic control was achieved (fig. S2; movies S1 and
S2 from a representative early and late trials).

Upon checking the modulation depth (MD,) of M1 decoder
neurons (TRy’s), we observed that a large proportion of TRy’s devel-
oped robust task-related modulation (see Materials and Methods).
Figure 1F depicts the increase in the activity of a representative M1
TRy unit from early to late trials. The direct units were causally
linked to the movement of the actuator, and 90% of 89 TRy’s showed
significant MD,, consistent with previous work (11).
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Fig. 1. Direct and indirect modulation of M1 and cerebellar activity with neuroprosthetic learning. (A) Schematic of neuroprosthetic task box where direct neural
control of a feeding tube (6 = angular position) was exerted. Each trial started with the tube at P;. (B) Trial structure is shown depicting when audio tone cue and door
movements occur. A successful trial required movement of the tube to P, within 15 s. (C) Change in task completion time as a function of trial number from a representa-
tive session. Line shows moving average of 20 trials. Dots show individual trial task completion times. Inset: lllustration of the recording scheme in M1 and cerebellum
from a frontal-side view. (D) Change in time to task completion (left) and reduction in the percentage of unsuccessful trials (right) from early to late trials across all sessions.
Bars indicate the means and error bar is SEM. (E) Position of the feeding tube from P; to P, is shown from a single session (mean + 1 x SD). (F) Peri-event histogram (PETH)
and rasters from early and late trials from a single M1 TRq unit is shown in left and right, respectively. (G) Same as (F) but for a M1 TR; unit. (H) Same as (F) but fora M1 TU

unit. (1) Same as (F) but for a cerebellum TR; unit. ***P < 0.001.

Indirect modulation of neurons in M1 and cerebellum

We also analyzed indirect units in the M1 and cerebellum and
checked for their task-related modulation. We further subclassified
indirect units as either task-related (TR;’s) or task-unrelated (TU’s)
based on changes in MD, with learning. Consistent with previous
reports of task-related indirect units in the M1 likely contributing to
neuroprosthetic control (11, 13, 15, 19, 21), we found strong indirect
modulation in M1 (Fig. 1G). Task-unrelated units in M1 showed no
significant modulation (Fig. 1H). In addition, we found robust task-
related indirect modulation of units in the cerebellum (Fig. 1I). A
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majority of units in the M1 and cerebellum developed strong, indi-
rect task-related modulation with learning (75% of 916 M1 units
and 74% of 414 cerebellum units). We also looked at the change in
MD, and found that M1 TRy underwent greater MD, from early to
late trials as compared to M1 and cerebellum TR; units or M1 TUs
(M1 TRg: 134.48 + 61.9%; M1 TR;: 61.66 + 8.5%; M1 TU:
—12.79 + 4.0%; cerebellum TR;: 25.20 + 5.5%, Kruskal- Wallis H
test, F3 1240 = 246.49, P=1.1 X 1072, post hoc ¢ test showed signifi-
cant difference among M1 TRy, TR;, and cerebellum TR; MDy’s;
P <0.05).
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Emergence of coordinated task-related activity in M1 and
cerebellar LFPs

As the rats became proficient in M1-driven neuroprosthetic control,
we observed that a coordinated low-frequency activity (approxi-
mately 3 to 6 Hz; Fig. 2A) emerged in both M1 and cerebellum. The
task-related LFP power between 3 and 6 Hz increased from early to
late trials in both M1 [Fig. 2, B and C; 0.52 & 0.09 to 0.93 + 0.11,
mixed-effects model: £(38) = 3.61, P = 8.6 X 10™*] and the cerebel-
lum [Fig. 2, D and E; 0.83 & 0.16 to 1.45 + 0.21, mixed-effects mod-
el: #(38) = 5.28, P = 5.4 x 107%]. Task-related LFP coherence
(between M1 and cerebellum LFPs) also increased in the 3- to 6-Hz
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Fig. 2. Coordinated neuroprosthetic task-related oscillations emerge in M1
and cerebellar LFPs. (A) Raw and filtered LFP trace from an example session show-
ing increase in 3- to 6-Hz oscillations after task start during late trials in both M1
and cerebellum LFPs. Raw trace shows mean in bold overlaid on individual trial
traces, and filtered trace shows mean in bold and SEM in shaded band. Right: Illus-
tration of the recording scheme in M1 (pink) and cerebellum (orange) from a
frontal-side view. (B) Spectrogram from a representative M1 channel showing in-
crease in 3- to 6-Hz power during late trials. (C) Increase in 3- to 6-Hz power in M1
LFP from early to late trials across sessions. (D) Same as (B) but from a representa-
tive cerebellum LFP channel. (E) Same as (C) for 3- to 6-Hz cerebellum LFP power
across sessions. (F) Coherogram from a representative pair of M1-cerebellum LFP
channel pair showing increase in 3- to 6-Hz coherence during late trials. (G) Change
in 3- to 6-Hz coherence from early to late trials across sessions. ***P < 0.001.
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frequency range from early to late trials [Fig. 2, F and G; 0.15 + 0.008
t0 0.20 + 0.01, mixed-effects model: #(38) =4.72, P=3.1 X 10~°]. To
ensure this was truly learning-related emergent activity and not just
due to a greater proportion of unsuccessful trials early on in train-
ing, we also performed the same analysis for an equal number of
successful early and late trials (fig. S3). We found that trend of emer-
gent 3- to 6-Hz task-related LFP power in both M1 [fig. S3A;
0.51 + 0.10 to 1.13 + 0.20, mixed-effects model: #(38) = 3.10,
P=3.6x107"] and cerebellum [fig. S3B; 0.81 & 0.20 to 1.92 + 0.33,
mixed-effects model: #(38) = 3.66 P = 7.5 x 10™*]. Task-related LFP
coherence also showed an increase for an equal number of success-
ful early to late trials [fig. S3C; 0.18 & 0.011 to 0.27 + 0.016, mixed-
effects model: #(38) = 5.52, P = 2.5 x 107°]. This emergence of
cross-region, low-frequency activity is consistent with other obser-
vations of emergence of low-frequency activity during motor skill
learning across reciprocally connected neural networks (7, 20).

Increase in locking between spiking and LFP after
neuroprosthetic learning

We next investigated the relationship between spiking activity and
the low-frequency LFP oscillations that we observed during robust
task engagement. Spike-triggered averaging (STA) can provide an
intuitive insight into how spiking is modulated by LFPs (11, 20). We
performed STA of the LFPs in early and late learning, time-locked to
spikes occurring either within the same region (i.e., M1 TR¢/TR{/TU
spikes to M1 LFP and cerebellum TR; spikes to cerebellum LFP) or in
the cross-region (i.e., M1 TR4/TR;/TU spikes to cerebellum LFP and
cerebellum TR,; spikes to M1 LFP; Fig. 3). If spiking activity was inde-
pendent of low-frequency LFP activity, then fluctuations would yield
a flat average LFP. We observed an increase in the amplitude of mean
LFP oscillations in both regions around the spiking of M1 TRy, TR;,
and cerebellum TR; units (Fig. 3, A, B, and D). This increase was not
present for M1 TU units (Fig. 3C). Furthermore, we found that when
we did the STA analysis during the intertrial interval (nontask peri-
od), we did not observe an increase in amplitude of mean LFP oscil-
lations in both regions around the spiking of any class of units.

M1 TRy, TR;, and TU units and cerebellum TR; units experi-
enced (mean + SEM) 91.67 + 12.39%, 91.87 + 3.49%, 5.75 + 0.63%,
and 87.31 + 5.77% changes in STA amplitude with M1 LFP during
task periods, respectively. During the intertrial interval, these
units experience —5.46 + 2.85%, 1.08 + 2.25%, —1.53 + 1.57%,
and —1.46 + 2.55% changes, respectively (Fig. 3E; Kruskal-Wallis
H test, F5114=90.88, P=4.3 X 1078, post hoc ¢ test showed signifi-
cant difference for M1 TRy, TR;, TU, and cerebellum TR; during
task-relevant period and intertrial period; P < 0.001). When STA
was performed with cerebellum LFP during the task period, M1
TRy, TR;, and TU units and cerebellum TR; units experienced
76.25 + 10.61%, 80.16 + 7.84%, 4.86 + 0.65%, and 119.82 + 25.27%
changes in STA amplitude, respectively. Within-area increases in
STA-LFP were slightly greater than the across-area STA-LFP during
task periods. Similar to M1 LFP, these units experienced significant-
ly smaller change of 2.47 & 1.99%, —0.85 + 3.24%, 0.52 + 1.23%, and
1.45 + 4.07%, respectively, when STA was performed with cerebel-
lum LFP during the intertrial interval (Fig. 3F; Kruskal-Wallis H
test, F5114=91.24,P=3.6 X 1078, post hoc ¢ test showed significant
difference for M1 TRy, TR;, TU, and cerebellum TR; during task-
relevant period and intertrial periods; P < 0.001).

We repeated the STA analysis for an equal number of successful
trials from early to late learning (fig. S4). M1 TRy, TR;, and TU units
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Fig. 3. M1 and cerebellum spike-LFP locking increases with learning. (A) The mean M1 LFP (top row) or cerebellum LFP (bottom row) time locked to occurrences of
spikes from M1 TRq during task period from a representative session. (B) Same as (A) for a M1 TR; unit. (C) Same as (A) for a M1 TU unit. (D) Same as (A) for a cerebellum TR;
unit. (E) Box plot of percentage change in STA amplitude for M1 LFP in each of the categories of units (bottom and top box boundaries are 25th and 75th percentiles, re-
spectively, line inside the box is the median, bottom and top error lines are 10th and 90th percentiles, respectively, “+" indicates outliers outside these bounds). (F) Same
as (E) for changes in STA amplitude with cerebellum LFP. *##P < 0.001; nonsignificant (n.s.), P > 0.05.

and cerebellum TR, units experienced (mean + SEM): 95.48 +29.36%,
61.48 + 9.62%, 4.64 + 1.04%, and 83.76 + 26.31% increases in STA
amplitude with M1 LFP during task periods, respectively. During the
intertrial interval (of this subset of trials), these units experienced
—5.46 + 2.85%, 1.08 + 2.25%, —1.53 + 1.57%, and —1.46 + 2.55%
changes, respectively (fig. S4A; Kruskal-Wallis H test, Fs 114 = 82.15,
P =2.9x 107", post hoc t test showed significant difference for M1
TRy, TR;, TU, and cerebellum TR; during task-relevant period and in-
tertrial period; P < 0.001). When STA was performed with cerebellum
LFP, M1 TRy, TR;, and TU units and cerebellum TR; units experienced
71.90 + 11.75%, 60 + 11.06%, 4.98 + 0.82%, and 76.50 + 13.31% in-
creases in STA amplitude (during the task period), respectively. Simi-
lar to M1 LFP, these units experienced significantly less change of
247 +1.99%, —0.85 + 3.24%, 0.52 + 1.23%, and 1.45 + 4.07%, respec-
tively, when STA was performed with cerebellum LFP during intertrial
intervals (fig. S4B; Kruskal-Wallis H test, Fs;14 = 68.70, P = 1.9 X
10713, post hoc ¢ test showed significant difference for M1 TRy, TR;,
TU, and cerebellum TR; during task-relevant period and intertrial pe-
riods; P < 0.001). With this analysis, we also observed that the average
increase in within-area STA amplitude was greater than across-area
STA amplitude.
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Next, we quantified phase locking of M1 and cerebellar spikes
to 3- to 6-Hz LFP signals in each region by generating polar histo-
grams of the LFP phase at which each spike occurred for a single
unit and LFP channel (fig. S5, A and B). The nonuniformity of the
distribution of phases (indicating phase locking) was quantified
using a Rayleigh test of circular nonuniformity. We compared all
M1 TRy, TR;, TU, and cerebellar TR; units spiking activity from
early to late trials to an M1 or cerebellar LFP channel from early to
late trials. We observed an increase in the percentage of M1 TRq4
units that phase locked preferentially to M1 and cerebellum LFP
signals with learning (fig. S5C, the black vertical dashed lines cor-
respond to the P = 0.05 significance threshold of the natural log of
the z statistic;c M1 TRq unit-M1 LFP pairs: 59.04 to 67.77%,
P=3x10"1, Kolmogorov-Smirnov test; M1 TRy unit-cerebellum
LFP pairs: 37.66 to 44.46%, P = 7 X 107°, Kolmogorov-Smirnov
test). We observed that the proportion of M1 TR; units that phase-
locked to both M1 and cerebellum LFPs also increased with learning
(fig. S5D; M1 TR; unit-M1 LFP pairs: 45.88 t0 51.96%, P=4x 10"/,
Kolmogorov-Smirnov test; M1 TR; unit-cerebellum LFP pairs:
26.98 t0 31.40%, P = 5 x 10™'%, Kolmogorov-Smirnov test); however,
this was not the case for M1 TU units (fig. S5E; M1 TU unit-M1
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LFP pairs: 13.49 to 9.22%, P = 3x 1077, Kolmogorov-Smirnov
test; M1 TU unit-cerebellum LFP pairs: 9.37 to 8.31%, P = 0.1,
Kolmogorov-Smirnov test). For the cerebellar TR; units, we again
observed an increase in the proportion of cells that phase-locked
to M1 and cerebellum LFPs (fig. S5F; cerebellum TR; unit-M1 LFP
pairs: 43.20 to 56.33%, P = 3 x 107", Kolmogorov-Smirnov
test; cerebellum TR; unit-cerebellum LFP pairs: 62.55 to 73.82%,
P =9 x 1077°, Kolmogorov-Smirnov test). Notably, the task-
related units of M1 and cerebellum showed more phase locking to
M1 or cerebellum LFPs than the task-unrelated cells of M1. These
results indicate that the low-frequency activity that we observed
emerge across M1 and cerebellum LFPs during neuroprosthetic
learning selectively modulated task-related direct or indirect units
to a greater proportion.

Fine timescale coordination of M1 and cerebellum activity
with task learning

While our analyses so far showed coordinated activity in the M1 and
cerebellum with task learning, it does not necessarily indicate that
the neural activity in the two structures were coordinated across tri-
als. Recent studies have explored fine-timescale coordination at the
level of spiking (39, 40). Such studies use statistical methods to mea-
sure “‘communication subspaces” based on ensemble activity. Here,
we used canonical correlation analysis (CCA) to assess fine-timescale
coordination between the M1 and cerebellum. CCA has been re-
cently used in neuroscience studies to extract correlated popula-
tion activity between two areas (39-43). Specifically, CCA finds a
linear combination of units in M1 and cerebellum that represent

A B

Canonical correlation analysis

Example dataset CVs
Significance threshold\

maximally correlated activity across these areas (Fig. 4A). To estab-
lish that CCA of M1 and cerebellar activity subspaces were signifi-
cant, we compared the canonical variables (CVs) of actual data with
a distribution of CV's of trial-shuffled data (Fig. 4B; see Materials and
Methods). We used concatenated single-trial spiking activity binned
at 50 ms (40, 43). The top component produced by CCA [known as
CV1 (canonical variable 1)] is the axis of the M1 and cerebellar sub-
spaces that has the maximum correlation between the two areas
(Fig. 4C). We first performed CCA between all M1 task-related (TR)
units (M1 TRq and TR; pooled together) and cerebellum TR; units.
To have more M1 dimensions, we combined M1 TRy and TR; units
as M1 TR. We found that this maximum correlation increased with
neuroprosthetic learning for M1 TR-cerebellum TR; units. Fig-
ure 4D shows CCA changes in an example session from a single ani-
mal from early to late trials, and Fig. 4E shows CCA change across all
sessions for M1 TR-cerebellum TR; units [early canonical correla-
tion: 0.30 + 0.041; late canonical correlation: 0.47 + 0.038, mixed-
effects model: #(38) = 3.96, P = 3.1 X 107*]. However, canonical
correlation between M1 TU-cerebellum TR; units did not signifi-
cantly increase across sessions [Fig. 4F; canonical correlation change:
0.21 + 0.048 to 0.22 + 0.051, mixed-effects model: #(38) = 0.38,
P =0.7; Fig. 4G].

We also performed the CCA analysis for an equal number of suc-
cessful early and late trials (fig. S6). We found that the trend of in-
crease in canonical correlation between M1 TR—cerebellum TR; units
[fig. S6A; 0.33 + 0.044 to 0.48 + 0.04, mixed-effects model: #(38) =
3.13, P = 3.3 X 10™°] remained the same with this subset of trials. We
saw no significant change in the canonical correlation between M1
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Fig. 4. Increase in neural subspace correlation between task-related units of M1 and cerebellum. (A) Description of CCA. CCA finds a linear combination of binned
spike counts from M1 units (xi, X2, ... Xp) and cerebellum units (y1, y2, ... yn) that maximizes the correlation between M1 and cerebellum. (B) Example identification of
significant canonical variables (CVs; green lines) relative to trial-shuffled data (gray distribution, 10* shuffles). Significant threshold at 95th percentile of the distribution is
shown in dotted gray line. Two CVs crossed this threshold in this example session. (C) Single-trial M1 task-related (TR) and cerebellar TR; spiking activity along with CV1
activation from M1 TR-cerebellar TR; CCA aligned to the task start. (D) M1 TR and cerebellum TR; subspace activity (from the CV1) around task start (—2 to 2 s) for an ex-
ample session. Each dot represents one time bin of early or late trials from the session. Canonical correlation score is given by r. (E) Change in the canonical correlation
score from early to late trials across all sessions for M1 TR and cerebellar TR; units. (F) Same as (E) for M1 TU and cerebellar TR; units. ***P < 0.001; n.s., P > 0.05.
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TU-cerebellum TR; units in these trials [fig. S6B; 0.24 + 0.048 to  40), we wanted to check how the cerebellar TR; activity “integrated”
0.23 + 0.043, mixed-effects model: £(38) = —0.05, P = 0.95]. with M1 TRy, TR;, and TU activity. Upon a simple comparison of

Next, we performed this analysis for M1 TRgq—cerebellum TR; latency of M1 and cerebellar spiking activities’ peaks, we observed
units and M1 TR;-cerebellum TR; units. We found that the canonical  that cerebellum TR; activity tended to peak before M1 TRy during
correlation increased with neuroprosthetic learning even for M1  early trials [time to peak for M1 activity: 238.01 + 6.42 ms; and time
TRq-cerebellum TR; units. Figure S6D shows CCA changes in an  to peak for cerebellum activity: 236.82 + 6.48 ms, mixed-effects
example session for this pair from a single animal from early to model: #(646) = —0.07, P = 0.93] and late trials [time to peak for M1
late trials; fig. S6E shows CCA change across all sessions for M1 activity: 239.82 + 8.26 ms and time to peak for cerebellum activity:
TRg—cerebellum TR; units [early canonical correlation: 0.14 + 0.022;  211.16 & 15.12 ms, mixed-effects model: #(646) = —1.87, P = 0.06].

late canonical correlation: 0.29 + 0.033, mixed-effects model: #(38) =  This then lead us to develop a GLM to determine the relationship
4.30, P = 1.1 x 107*]. Moreover, we found that the subspace activity ~between cerebellum indirect activity and M1 activity (44).
in the two structures became more precisely temporally correlated We used cerebellum task-related indirect activity (i.e., cerebellum

with learning; as the higher the canonical correlation grew, the short-  TRys) as a predictor of M1 BMI-potent neural activity, where BMI-
er the time to task-completion became (fig. S6F). We observed that  potent activity was M1 TRy activity or a “surrogate BMI-potent activ-
canonical correlation significantly increased from early to late trials  ity” (see Materials and Methods) for M1 TRys or M1 TU’s which
even for M1 TRi—cerebellum TR; [fig. S6G; canonical correlation — were used as the response variables for three different GLMs, namely,
change: 0.31 + 0.053 to 0.52 + 0.042, mixed-effects model: #(38) = GLM-Cd (cerebellum TRys - M1 TRg’s), GLM-Ci (cerebellum

4.51,P=58x%107"]. TR{s — M1 TR;s), and GLM-CU (cerebellum TR;s — M1 TU’),

respectively (Fig. 5, A and B). We also evaluated GLM regression
Cerebellum neural activity predicts M1 BMI-potent weights to analyze the temporal structure of these three predictions.
neural activity For GLM-Cd, we observed that various cerebellum TR;’s exhibited

With recent reports of M1 activity being input-driven during fore-  their highest magnitude weight at different time lags across the
limb reaching behavior and secondary motor cortex’s (M2) modula-  population (Fig. 5C), indicating a broad timescale modulation of M1
tory influence over M1 during M1-driven neuroprosthetic task (26, TRy activity by cerebellum TRy’s. Furthermore, numerous individual
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Fig. 5. Cerebellum TR; neural activity predicts M1 BMI-potent neural activity. (A) Description of GLM model; GLM-Cd: GLM model predicting M1 TRq activity from
cerebellum TRy’s; GLM-Ci: GLM model predicting M1 TR; activity from cerebellum TR;'s; GLM-CU: GLM model predicting M1 TU activity from cerebellum TR/’s. (B) Regression
was used to identify a cerebellum neural population space that predicted BMI-potent M1 activity. GLMs were fit to predict the M1 BMI task-related direct (TRg)/task-
related indirect (TR;)/task unrelated (TU) neural state from cerebellum TR; activity; multiple time lagged copies of each cerebellum TR; unit were used as predictors.
(C) Distribution of regression weight magnitude in one example session for the GLM-Cd model (fitted to neural data binned at 10 ms). Top: For each cerebellum TR; unit,
regression weights were assigned for a variety of time lags. To emphasize the time of the maximum absolute weight of each neuron, values here are normalized to each
neuron’s maximum value. Units are sorted according to the time of the largest magnitude weight. Tick marks on the right edge indicate the units shown in (D). Bottom:
Histogram of the 7 values with the largest magnitude weight for this dataset. Abs, antibodies. (D) Example nonnormalized weights for two cerebellum TR; neurons from
one example session (neural data binned at 10 ms). Height of bars indicates weights, for example, neurons at different time lags (t) relative to the M1 BMI-potent activity,
with negative t values meaning that cerebellum TR; leads. (E) Box plot comparing R? values for three different GLM models (fitted to neural data binned at 50 ms), GLM-Cd,
GLM-Ci, and GLM-CU; left to right (box plot conventions are same as Fig. 3C). *P < 0.05; n.s., P > 0.05.
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cerebellum units displayed large regression weights at multiple time
lags, often encompassing both positive and negative weights (Fig. 5D).
Similar regression weight timescales were observed for GLM-Ci and
GLM-CU models (fig. S7). However, we found that the R? values for
GLM-Cd and GLM-Ci models were significantly higher as com-
pared to the GLM-CU model [Fig. 5E; GLM-Cd: R* = 0.0504 + 0.0225
to GLM-CU: R* = —0.0358 + 0.0302; mixed-effects model: #(38) =
—2.40, P = 0.02; GLM-Ci: R* = 0.0617 + 0.0233 to GLM-CU:
R?=—0.0358 + 0.0302; mixed-effect model: #(38) = —2.69, P = 0.01].
We did not find a significant difference between R* values of GLM-Cd
and GLM-Ci [mixed-effect models: £(38) = 0.42, P = 0.67].

Optogenetic inhibition of cerebellum cortex and nuclei
impairs neuroprosthetic performance

Next, we performed optogenetic inhibition of the cerebellar cortex
and deep cerebellar nuclei (DCN) during neuroprosthetic skill
learning to assess the necessity of cerebellar activation for M1-driven
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neuroprosthetic learning and control. We used a red-light shifted
halorhodopsin-JAWS for inhibiting neural activity (see Materials and
Methods). First, we found that JAWS was robustly expressed in cere-
bellar cortical and DCN neurons (Fig. 6). When we looked at the activ-
ity of cerebellar cortical neurons under optical illumination acutely, we
found that JAWS activation led to strong inhibition of these neurons
(fig. S8, A and B). Optogenetic inhibition significantly reduced firing
across cerebellar cortical neurons [fig. S8C; Stimp: 27.30 + 2.88 Hz,
Stimon: 4.99 + 0.67 Hz, and Stimpeg: 20.16 + 2.09 Hz; Stimy,. versus
Stimoy mixed-effects model: #(88) = —7.69, P = 1.9 x 107!} Stimpost
versus Stimoy mixed-effects model: #(88) = 7.05, P=3.8 x 10™'°], with
a reduction in 84.44% of recorded cells during Stimoy (1 = 45).

We first performed optogenetic inhibition of the cerebellar cortex
in chronically implanted rats during the BMI task training (see Materi-
als and Methods). When we inhibited the cerebellar cortex in rats that
had already gained proficiency in neuroprosthetic task performance
(i.e., during late trials), we found that time to successful completion of
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Fig. 6. BMI performance gets impaired with cerebellar cortical inhibition. (A) Fluorescence image of a coronal brain section showing neurons expressing JAWS
(green) in the cerebellar cortex (Simplex and Crus I). (B) Cerebellar cortical inhibition increases time to task completion. (C) PETH of example M1 TRq units from different
sessions, during late trials, with (laser on) and without (laser off) cerebellar inhibition. (D) Box plot showing change in modulation depth (MD,) of M1 TR4 units from early
to late trials, with and without cerebellar inhibition. Box plot conventions are the same as Fig. 3C. (E) Same as (C) for M1 TR; units. (F) Same as (D) for M1 TR; units. (G) Spec-
trograms of an example M1 LFP channel showing an absence of 3- to 6-Hz power during cerebellar inhibition (right) in late trials. The 3- to 6-Hz power emerges during late
trials in the same day session where cerebellar cortical inhibition was suspended. (H) Three- to 6-Hz power emerges during late trials on the same day session where
cerebellar inhibition was not done. (I) Same as (A), showing neurons expressing JAWS (green) in the DCN. (J) DCN inhibition increases time to task completion. (K) Same
as (C) for DCN inhibition. (L) Same as (D) for DCN inhibition. (M) Same as (C) for M1 TR; units. (N) Same as (D) for M1 TR; units. (O) Same as (G) for DCN inhibition. (P) Same
as (H) for DCN inhibition. ***P < 0.001 and *P < 0.05.

Abbasi et al., Sci. Adv. 10, eadm8246 (2024)

12 April 2024 8of 16

G707 ‘87 A1eniqa uo AIeIqry [BOIPIJA IBUIS-SIEPAD) J8 SI090UI0S MMM //:SdY WOIj poapeofumo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

the neuroprosthetic task increased [Fig. 6B; 3.50 + 0.39 s without cer-
ebellum cortex inhibition and 9.75 + 1.26 s with cerebellum cortex
inhibition, mixed-effects model: #(16) = 5.28, P= 7.3 X 10™°]. We also
found that the distribution of time-to-task completion for all trials
across rats was significantly different without cerebellum cortex inhibi-
tion as compared to with cerebellum cortex inhibition (fig. S9A;
Kolmogorov-Smirnov two-sample test: P = 3.4 X 10™**).

Furthermore, we also found that cerebellar cortex inhibition
showed a decrease in the firing rate of M1 TRy units (Fig. 6C and
fig. S9B). This led to a decrease in the change in modulation depth
(MD,) of M1 TRy units during trials when cerebellum cortex was
optogenetically inhibited [Fig. 6D; 46.70 + 8.6% (mean + SEM)
without cerebellum cortex inhibition and —23.89 + 9.90% with cer-
ebellum cortex inhibition, mixed-effects model: #(93) = —3.85,
P =2.1x 107*]. We also found that cerebellar cortex inhibition af-
fected M1 TR; units at a population level [Fig. 6, E and F; MD, for
M1 TR; units: 29.53 + 4.29% (mean + SEM) without cerebellum
cortex inhibition and —5.11 + 2.67% with cerebellum cortex inhibi-
tion, mixed-effects model: #(821) = —4.99, P = 7.16 x 107]. Cere-
bellar cortical inhibition also affected M1 3- to 6-Hz LFP power.
During late trials, 3- to 6-Hz M1 power was reduced under cerebel-
lar inhibition [Fig. 6, G and H; z scored M1 power without cerebel-
lum cortex inhibition: 1.64 + 0.19; and M1 power with cerebellum
cortex inhibition: 0.99 + 0.14; mixed effects model: #(16) = —2.95,
P=93x107%.

While these experiments examined the loss of performance on
the neuroprosthetic task when cerebellar cortex was inhibited, we
also analyzed neuroprosthetic task performance vis-a-vis the order
of cerebellar cortex inhibition (i.e., the effects of cerebellar cortical
inhibition in either first BMI block, BMI;, versus the second BMI
block, BMI,, within a day with the same M1 TRy units; see Materials
and Methods for details on the order of two BMI blocks within a
day). We found that neural processing in the cerebellar cortex im-
paired M1-driven neuroprosthetic control irrespective of the order
of inhibition. This impairment was significant when the inhibition
occurred in BMI; [fig. S9D; time to task completion on late trials
without cerebellum cortex inhibition in BMI;: 4.26 + 0.77 s versus
time to task completion on late trials with cerebellum cortex inhibi-
tion in BMI,: 6.77 + 2.17 s, mixed-effects model: t(6) = 1.44, P=10.19;
fig. S9E; time to task completion with cerebellum cortical inhibition
in BMI;: 11.91 + 0.87 s versus time to task completion without cere-
bellum cortical inhibition in BMI,: 3.10 + 0.50 s, mixed-effects mod-
el: #(8) = —10.89, P = 4.4 x 107°].

When we performed the optogenetic inhibition of the DCN, we
observed similar deficits in neuroprosthetic control and M1 physiol-
ogy. We found that time to successful completion of neuroprosthetic
task increased [Fig. 6]; without DCN inhibition: 6.04 + 0.88 s; and
with DCN inhibition: 9.15 + 0.60 s; mixed-effects model: #(20) =
3.19, P = 4.6 X 107°]. We also found that the distribution of time to
task completion for all trials across rats was significantly different be-
tween the two conditions (fig. S10A; Kolmogorov-Smirnov two-
sample test: P = 2.2 x 10™"7). We found that DCN inhibition showed
a decrease in the firing rate of M1 TRy units (Fig. 6K and fig. S10B).
This led to a decrease in the MD of M1 TR4 units during trials when
DCN was optogenetically inhibited [Fig. 6L; without DCN inhibi-
tion: 108.89 + 17.95% (mean + SEM); and with DCN inhibition:
—41.76 + 10.17%; mixed-effects model: #(51) = —3.85, P=1 x 107°].
DCN inhibition also showed nonsignificant reduction in MD4 of M1
TR; units at a population level [Fig. 6, M and N; MD, for M1 TR;

Abbasi et al., Sci. Adv. 10, eadm8246 (2024) 12 April 2024

units without DCN inhibition: 39.15 + 5.13%; and with DCN inhibi-
tion: 11.77 + 15.04%, mixed-effects model: #(610) = —1.07, P=0.28].
We found that 3- to 6-Hz M1 LFP power was significantly reduced
with DCN inhibition as well during late trials [Fig. 6, O and P; z
scored M1 power without DCN inhibition: 1.26 + 0.15; and M1
power with DCN inhibition: 0.75 + 0.11; mixed effects model:
£(20) = —3.20, P=4.4 x 107°].

As with cerebellar cortical inhibition, we performed DCN inhibi-
tion either in BMI; or BMI, and assessed neuroprosthetic task per-
formance. Here, we observed that significant neuroprosthetic task
impairments occurred when DCN was inhibited in BMI, [fig. S10D;
time to task completion in late trials without DCN inhibition in
BMI;: 4.88 + 1.26 s versus time to task completion with DCN inhibi-
tion in BMI,: 9.36 + 1.14 s, mixed-effects model: t(8) = 3.27, P=0.01;
fig. S10E; time to task completion in late trials with DCN inhibition
in BMI;: 8.98 + 0.78 s versus time to task completion in late trials
without DCN inhibition in BMI,: 7.01 + 1.26 s, mixed-effects model:
t(10) = —1.58, P = 0.14]. Hence, while we observed significant neu-
roprosthetic task impairments with cerebellar inhibition both at the
level of the cortex and its deep nuclei when we analyzed both BMI;
and BMI, together, upon parsing these two BMI blocks, we observed
significant impairment of cerebellar cortical inhibition on BMI,; and
DCN inhibition on BMI,. The task impairment was substantial but
not significant when cerebellar cortex was inhibited in BMI, and
DCN in BMI,.

DISCUSSION

In this study, we found an emergent 3- to 6-Hz activity in the M1 and
cerebellum LFPs. Task-related direct and task-related indirect spiking
in these regions was coordinated with this activity but not the task-
unrelated M1 spiking activity. In addition, we found that neuro-
prosthetic task learning led to increased correlated neural subspace
activity between M1 task-related direct (TRq) and cerebellar task-
related indirect units (TR;) and M1 and cerebellar task-related in-
direct units but not for M1 task-unrelated (TUs) and cerebellar
task-related indirect units. Furthermore, we found that cerebellar TR;
activity well-predicted M1 TRy and M1 TR; activity but not M1 TU
activity. Last, we found that optogenetic inhibition of the cerebellum,
either in the cerebellar cortex or its deep nuclei, led to neuroprosthet-
ic task performance impairments (as indicated by increased time to
task completion) and weakening of M1 task-related activity. These
findings suggest that the cerebellum plays an important role by pro-
viding influence on M1 neural activity that is related to neuropros-
thetic task output. Furthermore, we found that cerebellar task-related
indirect activity developed a preferential relationship with task-related
M1 direct and indirect activity, suggesting that cerebellum TR;’s had a
more privileged relationship with task-relevant neurons of M1 (TRy’s
and TRy’s). Our GLM:s suggested that cerebellum TR;’s were predictive
of both M1 TRy’s and TRy’s activity, and our optogenetic experiments
showed that M1 TRy’s and TR;’s were affected by cerebellar inactiva-
tion. This might be indicative of cerebellum processing being linked
to a preferential coordination of M1 task-relevant units. Our elabora-
tion of the cerebellum’s role in M1-driven neuroprosthetic motor con-
trol is consistent with the cerebellum’s role in fine-tuning movement,
as well as coemergent activity that has been reported in these areas
with learning new motor skills (2, 25). This study helps elucidate
cerebellar contributions to M1-driven neuroprosthetic control
and can help improve BMI functionality in the future. For example,
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BMI paradigms could incorporate cerebellar indirect signals for im-
proving BMI controllers.

Emergent mesoscopic dynamics across M1-cerebellum

One of our first findings was an emergence of 3- to 6-Hz oscillatory
dynamics in M1-cerebellum LFPs associated with learning, and neu-
rons in both these regions also showed enhanced phase locking to
this oscillation during task-relevant periods, as revealed through
STA. Similar observations have been made in a neuroprosthetic
study that looked at task-related cells in cortico-striatal networks
(20). Such coherence can serve to enhance communication during
task period between task-relevant cell populations across the larger
motor networks that should integrate signals for optimal behavioral
output. This coherent activity may allow for flexible use of task-
relevant cells in either region. The synchrony that we observed in the
3- to 6-Hz band is consistent with other work that has showed low-
frequency coherence between M1 and other motor regions during
learning (6, 7). One of the possibilities for the 3- to 6-Hz increased
coherence that we observed could be a result of common neural
drive to both these regions (or one of the regions driving the other).
It is also pertinent to mention that similar low-frequency oscillations
in the neocortex can be used to decode reach-related activity and
predict spiking phase across multiple behavioral states (45, 46). Such
activity is also correlated with multiphasic muscle activations and
timing of movements during motor tasks (46-49). Recent work also
suggests that oscillatory dynamics reflect an underlying dynamical
system (48). This previous work argues that this low-frequency activ-
ity represents an intrinsic property of motor circuits associated with
precise motor control. Our findings extend this body of work by
showing similar low-frequency dynamics in both M1 and cerebel-
lum cortex (Fig. 2). The exact origin of these oscillations and under-
lying generators remains unknown. While such oscillations were
shown to involve striatum in rodent reaching task (6) or thalamocor-
tical activity (50), so far, our results here raise the possibility of cere-
bellar involvement. Further work can probe interactions between M1
and the broader motor network to pinpoint the drivers of the electro-
physiologic changes seen during learning this skill.

Using BMIs to study cross-region coordination in

motor control

BMIs offer the ability to investigate connected regions by selecting
target neural activity (that dictate output) in one region and concur-
rent examination of another region as task performance improves.
Implementing this strategy, we aimed to disentangle cerebello-
cortical communication as M1 direct control was learned. Both M1
and cerebellum have direct connections to the spinal cord (8-10)
and are implicated in movement control (3, 4, 6). In our BMI para-
digm, we randomly selected target neural activity in the M1 (en-
forced by the decoder), which is unlikely to be correlated with
processes in other brain regions. This permitted us to examine how
cross-area communication during BMI task facilitates control. M1
and cerebellum are reciprocally connected (I, 2), and while some
extent of coupling of task-related activity in M1 and cerebellum is
not unexpected, it is unknown how the task-related indirect cerebel-
lum activity interacts with behavioral, output-specific direct activity
versus task-related indirect activity or task-unrelated activity of M1
neurons. It is important to note that we did not find efficient neuro-
prosthetic control to be linked to limb movements or other idiosyn-
cratic movements (fig. S2).
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One of the notable findings of our work was that canonical corre-
lation increased between M1 and cerebellum task-related units but
not for M1 TU-cerebellum TR; units (Fig. 4 and fig. S6). Similarly, 3-
to 6-Hz oscillatory activity modulated task-related direct and indirect
activity in M1 as well as cerebellar indirect activity but not M1 TU
activity (Fig. 3 and fig. S5). Our predictive model corroborated this
finding and found that cerebellar TR; activity predicted M1 TRq and
TR; but not M1 TU activity. These analyses revealed that the task-
related cerebellar cortical activation communicated more strongly
with task-relevant pools of M1 activity.

Our work is in line with recently proposed theoretical framework
of cortico-cerebellar interactions. Recently developed computational
models of cortico-cerebellar networks show that corticocerebellar
interactions may aid in learning (51, 52). One of these models showed
that the cerebral recurrent network, when it received feedback pre-
dictions from a cerebellar network, facilitated sensorimotor learning
by decoupling learning in cerebral networks from future feedback
(51). This work also showed a reduction in dysmetria with feedback
from the cerebellum. In addition, theoretical models have also pro-
posed that there is a task-relevant dimensionality expansion that oc-
curs in the cerebellar cortex aided by expansion from mossy fibers to
cerebellar granule cells. This might support functions such as inter-
nal model learning. This theoretical framework also explicitly pro-
poses that the presence of task-relevant variables in the cerebellum
develops with learning via the cortico-ponto cerebellar pathway (53).
Our work is in agreement with these theoretical frameworks as we
observed indirect task-related activity in the cerebellum and optoge-
netic inactivation of the cerebellum-affected learning as well as dy-
namic ongoing control once the task was learned.

It is also noteworthy that while the neuroprosthetic motor skill
task we used had the obvious advantage where experimenters set the
neuron-behavior relationship (hence, the investigations did not suffer
from undersampling of neurons causally linked to behavior), we also
note that the neuroprosthetic task is different from other skilled mo-
tor tasks. The task we used involved 1D workspace and simple feed-
back and did not require extreme precision for successful completion.
However, recent work has shown that even dexterous skilled reaching
behavior shows emergence of low-frequency oscillatory LFP dynam-
ics in M1-cerebellum LFPs that modulated task-related spiking in
these regions (7). Future investigations can test whether our results
generalize to other motor tasks.

Roles of multiplexed cross-area interactions

Motor control involves signals at longer timescales appropriately inte-
grating with shorter timescales across several spatially segregated re-
gions to deliver movement precision (54). Little is known about how
these signals at varying spatiotemporal scales are interacting during
motor control. Simultaneous recordings are best suited to understand
these interactions (6, 39, 55-57). Further, a majority of studies that
have used simultaneous recordings in motor regions use extensively
trained animals performing natural motor tasks (56-59). Under-
standing M1-cerebellum interactions in such context raises important
concerns: (i) Since both M1 and cerebellum are directly controlling
movement, it is difficult to ascertain modulatory influence of one area
over the other; and (ii) overtrained animals may have transitioned to
an “automatic” state (60), and it may no longer be suitable to investi-
gate emergent dynamics in interacting structures. These confounds
limit the inferences made about M1-cerebellum interactions in ex-
periments with extensively trained animals.
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Here, we have shown that, in an M1-driven BMI task, cerebellum
neural processing was crucial. While BMI performance was affected
due to cerebellar inhibition overall, we found that this performance
was affected to varying degrees by cortical versus DCN inhibition
based on the order of inhibition. Cerebellar cortical inhibition af-
fected BMI, task performance significantly (fig. SOE), which is in-
dicative of cerebellar cortical processing having an instructional role
early-on through the olivo-cerebellar system, consistent with the no-
tion of cerebellar role in skill acquisition (61). Our optogenetic inhi-
bition may have disturbed cerebellar cortical processing by either
altering inhibitory inputs onto the Purkinje cells (PCs) from stellate
cells, basket cells, or other molecular layer interneurons or the gran-
ule cells’ parallel fiber inputs to PCs or PCs themselves. When we
inhibited DCN, we found that BMI, task performance was signifi-
cantly impaired (fig. SI0D) when the control was already well
learned. This is consistent with the role of cerebellar output in fine-
tuning ongoing movements (24, 25). Future work with cell-specific
inhibition in the cerebellar cortex or DCN can test the effects on the
neuroprosthetic task performance. Overall, we showed the involve-
ment of the cerebellum in M1-driven neuroprosthetic control, which
has not been shown before.

Cerebellar involvement in M1-driven BMI task is further cement-
ed by the fact that cerebellar TR; activity had strong modulation in
late BMI trials as well (Fig. 1I), indicative of an ongoing modulatory
influence over M1 to sustain proficiency in the task. Our canonical
correlations (Fig. 4), spike-LFP coordination (Fig. 3 and fig. S5), and
predictive model (Fig. 5) all showed that task-related pools of M1
and cerebellum develop a preferential relationship. This, with other
recent work, leads us to conclude that M1 task-relevant cells multi-
plex signals locally (11, 44) as well as from distant-area cerebellar
activity (62). Our regression of M1 BMI potent space activity also
indicated that cerebellum TR; units showed a broader timescale in-
fluence of cerebellum on M1 TRy activity [this is different from the
shorter timescale influences seen between M1 TRy and M1 TR; units
(44)]. Such broader influence of cerebellar activity may also be relat-
ed to coordination in the larger motor network. Larger network ac-
tivity may represent attention regulation (63), motivation (64), or
coordination of the motor task with sensory feedback (65).

Neural dynamics over the course of BMI learning

Natural motor learning is known to involve an early phase marked by
exploration and high variability with a transition to late stage when
the skill is consolidated (66-69). Our paradigm here is focused on
early exploratory BMI learning by using mostly single sessions (with-
in a day). BMI studies that allow for sleep consolidation (11, 12, 18) or
use multiple days of learning (15, 70) find that M1 TR; units weaken
their modulation through the course of extensive training. Future
work can test whether cerebellar activation aided in such credit as-
signment as some of the optogenetic effects were selective for M1
TRy’s in our work. It is also possible that cerebellar TR’s may exhibit
similar weakening (as M1 TRys) over time. However, local versus
cross-area interactions may differ in the long-term. One recent study
had focused on cross-area activity through multiple days of training,
and they found that indirect task-related modulation persists in sev-
eral cortical areas (23). Work that has looked at extensively trained
mice on motor task has shown sustained activity in the cerebellum
(25). There is further evidence from studies of natural learning that
emergent activity in cortico-cerebellar networks becomes stronger as
task proficiency increases (7).
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To summarize, our studies leveraged a multiarea BMI paradigm
to probe Ml-cerebellar cross-area interactions. We demonstrated
that oscillatory dynamics emerged as seen through LFPs across these
regions that also modulated task-related spiking in both areas. Finer
timescale analyses of spiking revealed that cerebellar TR; activity se-
lectively influenced task-related artificial target activity within MI.
This paradigm allowed us to manufacture an output-specific M1 ac-
tivation to examine internal motor networks dynamics, removing
the constraints of movement performance. Thus, multiarea BMIs,
through such impositions, allow for a more natural inside-out inves-
tigation of cross-area interactions in the motor network.

MATERIALS AND METHODS

Animal preparation

Adult male Long-Evans rats were used in this study (n = 15, 300 to
500 g, 3 to 5 months old, Charles River Laboratories). All animal pro-
cedures were performed according to the protocol approved by the
Institutional Animal Care and Use Committee at Cedars-Sinai Med-
ical Center, Los Angeles. This ensured that the animals that were
used in this research were acquired, cared for, housed, used, and dis-
posed of in compliance with the applicable federal, state, and local
laws and regulations, institutional policies and with international
conventions to which the United States is a party. Animals were
housed on a 14-hour light and 10-hour dark cycle (photoperiod is
from 6 a.m. to 8 p.m.) in a climate-controlled vivarium. Of 15 rats, 7
were used in BMI with simultaneous M1 and cerebellum recordings,
3 rats were used for BMI with cerebellar cortex optogenetic inhibi-
tion and 3 rats for DCN optogenetic inhibition. The remaining
(n = 2) were used in acute cerebellar recording under optogenetic
inhibition. Neural probes were implanted during a recovery surgery
performed under isofluorane (1 to 3%) anesthesia. The analgesic
regimen included the administration of 0.1 mg per kg body weight of
buprenorphine and 5 mg per kg body weight of carprofen. Postop-
eratively, rats were also administered 2 mg per kg body weight of
dexamethasone and 33 mg per kg body weight of sulfatrim for 5 days.
Ground and reference screws were implanted posterior to lambda
contralateral to the recorded cerebellum, contralateral to the neural
recordings. For M1 recordings, 32-channel arrays (33-pm polyamide-
coated tungsten microwire arrays) were lowered to a depth of ~1200
to 1500 pm in either the left or right M1. These were implanted cen-
tered at 0.5 mm anterior and 3 mm lateral to the bregma (6, 7, 11, 12,
18, 71). For cerebellar recordings, we used 32- to 64-channel tetrodes
(Neuronexus, MI) or shuttle-mounted polytrodes (Cambridge Neu-
rophysiology, UK). The probes were lowered into the cerebellar cor-
tex through a craniotomy centered at 12.5 mm posterior and 2.5 to
3 mm lateral to bregma. Shuttle mounted probes were moved across
days and recorded from depths of 1.5 to 4 mm. Our target regions
were Simplex/Crus I and Crus II areas of the cerebellum (7, 72-74).
Activity in these areas has shown modulation during upper limb
motor behaviors in response to corticofugal fiber and forelimb
stimulation and during forelimb reaching task. We did not perform
subject-specific implantation based on motor mapping. However, a
subset of rats also performed reaching tasks and had robust activa-
tion during reaching (7).

Viral injections
We used a red-shifted halorhodopsin, Jaws (AAV8-hSyn-Jaws-KGC-
GFP-ER2, UNC Viral Core), for neural silencing in six rats for
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optogenetic experiments (12, 18, 75). Viral injections were done at
least 3 weeks before chronic implant surgeries. Rats were anesthe-
tized, as stated before, and body temperature was maintained at 37°C
with a heating pad. Burr hole craniotomies were performed over in-
jection sites, and the virus was injected using a Hamilton Syringe with
34-G needle. Five hundred-nanoliter injections (100 nl/min) were
made at two sites in the cerebellar cortex (11.5 mm posterior, 2.5 mm
lateral to bregma and 11.5 mm posterior and 3.5 mm lateral to breg-
ma; depth of 1 to 3 mm). In DCN as well, we performed viral injec-
tions at two sites (11.5 mm posterior, 2.5 mm lateral to bregma
and 11.5 mm posterior and 3.5 mm lateral to bregma; depth of 6.1 to
6.3 mm). After the injections, the skin was sutured, and the animals
were allowed to recover with same regimen as stated above. Viral
expression was confirmed with fluorescence imaging.

Electrophysiology

Units and LFP activity were recorded using a 128-channel TDT-RZ2
system (Tucker-Davis Technologies). Spike data were sampled at
24,414 Hz and LFP data at 1017.3 Hz. ZIF (zero insertion force) clip-
based digital head stages from TDT were used that interface the ZIF
connector and the Intan RHD2000 chip which uses 192X gain. TDT’s
RS4 data streamer was used to save all raw data at 24,414 Hz in all
animals except two, where only spike times and waveform snippets
were saved. Only clearly identifiable units with good waveforms and
high signal to noise were used. The remaining neural data were re-
corded for offline analysis. Behavior-related timestamps (i.e., trial on-
set and trial completion) were sent to the RZ2 analog input channel
using an Arduino digital board and synchronized to neural data.

We have used the term “unit” to refer to the sorted spike record-
ings from both the MEA and silicon probe recordings. For both, we
initially used an online sorting tool (Synapse, TDT) for neuropros-
thetic control. We used waveform shape and the presence of an abso-
lute/relative refractory period in the interspike interval to judge
quality of isolation. Specifically, a voltage-based threshold was set on
the basis of visual inspection for each channel that allowed for best
separation between putative spikes and noise; typically, this threshold
was at least 4 SD away from the mean. Events were time-stamped, and
waveforms for each event were peak aligned. K-means clustering was
then performed across the entire data matrix of waveforms. Automat-
ed sorting was performed by: (i) first overclustering waveforms using
a K-means algorithm (i.e., split into many miniclusters), (ii) followed
by a calculation of interface energy (a nonlinear similarity metric that
allows for an automated decision of whether miniclusters are actually
part of the same cluster), and (iii) followed by aggregation of similar
clusters. We conducted offline spike sorting in Plexon (where spike
times and waveform snippets were saved) or Spyking Circus (7, 76)
(where spike data were saved at 24,414 Hz).

Behavior

After recovery, animals were typically acclimated for 1 to 2 days to a
custom plexiglass behavioral box (Fig. 1A) before the start of experi-
mental sessions. After acclimatization, rats were water restricted for
BMI training. We monitored body weights daily to ensure that the
weight did not drop below 95% of the initial weight.

Behavioral sessions were typically conducted for 1 to 2 hours. Re-
corded neural data were entered in real time to custom routines in
MATLAB (R2018b; MathWorks, Natick, MA). These then served as
control signals for the angular velocity of the feeding tube. The rats
performed ~120 trials on average in a session. In a subset of sessions
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(n = 13), we also video-monitored the rat during the BMI training
using a 30-fps camera (TDT RV2 video processor, USA).

Neural control of the feeding tube

During the BMI training sessions, we typically selected one to four
M1 channels. The units on these channels (2 to 8) were assigned as
direct (TRq) units, and their neural activity was used to control the
angular velocity of the feeding tube. If one channel was chosen for
neuroprosthetic control, then its neurons were associated with posi-
tive unit weight (TRy4"), and if two or more channels were chosen,
then some channel neurons were associated with a positive unit
weight (TR4") and others with a negative unit weight (TRq™). We
never assigned the units on the same channel with a positive and neg-
ative weights. These units maintained their stability throughout the
recording as evidenced by stability of waveform shape and interspike-
interval histograms (fig. S11). We binned the spiking activity into 50-
ms bins. We then established a mean firing rate for each neuron over
a 3 to 5 minutes of baseline period. The mean firing rate was then
subtracted from its current firing rate at all time points.

The specific transform that we used was

0, =C X [G; xr (i) + G, X 1,(])]

where 0, was the angular velocity of the feeding tube, (i) and r»(i)
were firing rates of the direct units (TRq* and TRy, respectively). G
and G, were fixed unit weights, i.e., +1 and —1, respectively. C was a
fixed constant (gain) that scaled the firing rates to angular velocity.
The animals were then allowed to control the feeding tube via modu-
lation of neural activity. The tube started at the same position at the
start of each trial (P in Fig. 1A). The calculated angular velocity was
added to the previous angular position at each time step (50 ms). Dur-
ing a trial, the angular position that was controlled from the TRy ac-
tivity had the limits of 0° (P;) to 45° (P,). If the tube was controlled
successfully to the “target position” (P in Fig. 1A), then a water re-
ward was delivered at the final resting position set to 62°. In the begin-
ning of a session, most rats were unsuccessful at bringing the feeding
tube to final target position P,. Rats steadily improved control and
reduced the time to completion of the task (i.e., moving the tube from
position P; to position P,) during a session. Multiple learning sessions
were obtained from each animal. Consistent with past studies, we
found that incorporation of new set of units into the control scheme
required fresh learning (11, 77-79). We did not check whether the
TRy units that we selected were part of the manifold (14), but upon
checking the covariance between M1 TRy decoder neurons during
intertrial periods, we did not find a significant change with learning
[early to late trials: 64.90 + 29.60 to 108.06 + 59.31; mixed-effect
model: #(38) = 0.68, P = 0.49]. This indicates that TRy units we se-
lected were likely from the same manifold. We also found that the
covariance between M1 TRy and M1 TR; units did not change with
learning [early to late trials; 89.43 + 33.14 to 163.38 + 92.71; mixed-
effect model: #(38) = 0.96 P = 0.34], indicating that the M1 TR4 and
M1 TR; units also likely belonged to the same circuit.

Optogenetics

Optogenetic experiments were carried out in JAWS-injected rats us-
ing a high-power laser (50 mW/mm?: Laserglow Technologies, USA)
emitting a 625-nm beam. A subset of rats (n = 3) was implanted with
a 200-pm-diameter optic fiber cannula (Doric Lenses) over Crus I/
Crus II region of the cerebellar cortex, and a 32-channel microwire

120f 16

G707 ‘87 A1eniqa uo AIeIqry [BOIPIJA IBUIS-SIEPAD) J8 SI090UI0S MMM //:SdY WOIj poapeofumo(]



SCIENCE ADVANCES | RESEARCH ARTICLE

array (TDT Florida) was implanted in M1. In another set of rats
(n=3), we implanted a cannula in DCN and a 32-channel microwire
array in M1. During the behavior experiments, the laser was turned
on every 50 ms at 40% duty cycle to inhibit cerebellar activity after the
trial onset for the total duration of the trial (15 s). We performed two
sessions each day with ~100 trials in each session. Each day, we alter-
nated between turning the laser on in the first session or the second
session (figs. S9C and S10C). Another subset of rats (n = 2) was im-
planted with a fiber-optic cannula mounted on a silicon probe (Cam-
bridge Neurotech, UK) in the cerebellum, and the recordings were
performed under isoflurane anesthesia. In every trial, we recorded 5 s
of baseline followed by 5 s for which the laser was on and another 5 s
thereafter with laser off. We performed 30 such repetitions.

Histology

After the experiment, rats were deeply anesthetized with isoflurane (4
to 5%) and then exsanguinated and perfused with 4% paraformalde-
hyde (PFA). The brains were extracted and stored in 4% PFA for up to
72 hours. The brains were then transferred to a solution of 30% su-
crose and stored for sectioning. We performed sagittal or coronal sec-
tions of the brain using a cryostat (Leica, Germany) and stored them
in phosphate-buffered saline for imaging. Images were mounted on
slices and imaged using a microscope (Keyence, Japan). The location
and depth of the silicon probe in the brain were traced by Dil deposit-
ing on the electrodes before their implantation and by looking after-
ward at the fluorescent dye present in the histological slices (fig. S12).
The expression of JAWS virus was imaged in coronal sections of the
cerebellum (Fig. 6, A and I).

Data analysis

Sessions and changes in performance

Offline analyses were performed in MATLAB (R2020b) with custom-
written routines. A total of 20 training sessions recorded from seven
rats were used for our initial analysis. In addition, we analyzed 18
separate sessions across three rats where optogenetic inhibition of the
cerebellum cortex was performed and 12 sessions across three rats
where optogenetic inhibition of DCN was done. For Fig. 1 (C and D),
we compared changes in task performance across sessions. Specifi-
cally, we compared the performance change by calculating the mean
and SEM of the time to completion during the first and last 30% of
trials (referred as early and late trials, respectively). Furthermore, we
also compared the performance in early and late trials by calculating
the percentage of unsuccessful trials.

Task-related activity

The distinction between TRy, TR;, and TU units was based on the
significant modulation over baseline firing activity of a unit after trial
onset (i.e., peak of modulation at the time > 2.5 SD above the base-
line period). We called this the modulation depth (MD,) of each
unit. We took the difference between this modulation from early to
late trials to compute the change in MDj, for each TRq and TR; units
(Fig.6,D,E L, and N).

LFP analysis

Artifact rejection was first performed on LFP signals to remove bro-
ken channels and noisy trials. LFPs were then z scored and median-
referenced, and evoked activity was subtracted separately for M1 and
cerebellum. LFP power was calculated on a trial-by-trial basis and
then averaged across channels and animals, with wavelet decomposi-
tion with a 100-ms Morlet window moving at every 10 ms, using the
EEGLAB function newtimef (80). M1-cerebellum LFP coherence is
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defined as phase synchronization between two nonstationary signals.
The magnitude of coherence is a frequency function which varies be-
tween 0 and 1, with 0 being no phase synchronization and 1 being
complete phase synchronization. We calculated coherence for each
pair of channels using the EEGLAB function newcrossf (80). The for-
mula used by this function is given below

|ny|
Cyp=—
VIRLI/IR,, |

where R, and Ry, are the power spectra and R, is the cross-spectrum
of signals x and y, which are pairs of LFP channels of M1 and cerebel-
lum, respectively.

All the comparisons were done between early and late trials. For
this analysis, across all the early trials, only trials where time to task
completion was over 10 s were included. Across all the late trials, only
trials where time to task completion was under 5 s were included.

We also performed LFP power and coherence comparisons be-
tween the equal number of successful trials from early and late learn-
ing. From the early phase, we included successful trials which were
over 10 s, and from the late phase, we included the equal number of
trials where time to task completion was under 5 s. We performed
LFP power and coherence analysis using the same EEGLAB functions
that are mentioned above.

Spike-triggered averaging

We calculated the STA to measure how spikes locked to the 3- to 6-
Hz LFP oscillations, both in the M1 and the cerebellum. We used
filtered (3 to 6 Hz) median LFP from each region for this analysis.
For band-pass filtering, we used the EEGLAB function eegfilt with
high and low cutoff frequencies of 3 and 6 Hz, respectively. We used
the first 4 s after the start of the trial to calculate these STAs. For every
unit, we concatenated the spikes from early trials in a spike vector
and from late trials in another vector. Before STA calculation, we
equaled the length of these vectors. Then, we extracted 2 s of LFP
around every spike time in those vectors and average it to get early
and late STAs for a given unit. To calculate the change in modulation
for every unit, we looked at the difference between the minimum and
maximum peaks in a 300-ms window around a spike in the averaged
STA of early and late trails and then calculated this change from ear-
ly to late trials in percentage. We also calculated STA during inter-
trial interval. Here, we used from 2 to 6 s after the end of the trial and
applied the same steps to compute the STA as described above. Fur-
thermore, we repeated the STA analysis for the task period and the
intertrial interval by using the equal number of successful only trials
from early and late learning.

Spike-LFP phase analysis

To study the phase relationship between spiking and LFP activity,
we generated histograms of the LFP phases at which each spike oc-
curred for a single unit to LFP channels that showed an increase in
power from early to late trials, in a 2.45-s window around task start
(=0.25 s before to 2.2 s after movement onset) across all trials of a
session (fig. S5, A and B). The LFP channels were filtered in the 3- to
6-Hz band. All units were compared with the same selected M1 and
cerebellum LFP channels from early to late trials. The histograms
were generated for each unit-LFP channel pair both within and
across regions. For every pair, we then calculated the Rayleigh’s z
statistic for circular nonuniformity. These z statistics were then used
to calculate the percentage of significantly nonuniform distributions
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across unit-LFP pairs with a significance threshold of P = 0.05
(fig. S5, C to F). A significantly nonuniform distribution signifies
phase preference for spikes of a unit to an LFP signal.

Canonical correlation analysis

We identified shared cross-area subspaces between M1 and cerebel-
lum using CCA. This method identifies the maximally correlated
axes between two groups of variables. Unit spiking data in M1 and
cerebellum from —2 to +2 s around task start for each trial were
binned at 50 ms and concatenated across early and late trials sepa-
rately. Our sessions contained at least two M1 or cerebellar units.
CCA models were then fit using the MATLAB function canoncorr.
This function involves transforming the data to have zero mean and
unit SD before computing CVs. The number of CVs determined by
the function is equal to the minimum number neurons in M1 or cer-
ebellum in a session.

To determine which CVs were significant, the canonical correla-
tion of each CV was compared with a bootstrap distribution made of
the canonical correlation of top CV from CCA models fit to trial-
shuffled data (10* shuffles). Specifically, before fitting CCA, trials
from cerebellum were concatenated in the order in which they oc-
curred, while trials from M1 were randomly permuted before concat-
enation. This method maintains local neural activity structure but
breaks trial-by-trial relationship between neural modulation between
these two regions. This provides a floor for the degree of correlation
expected from the fact that many units in both regions have firing rate
fluctuations around task start. A CV was considered significant if its
canonical correlation was greater than the 95th percentile of the boot-
strap distribution. All sessions had one to two significant CVs. For
evaluating cross-area signals, only the top CV was used. We per-
formed the CCA analysis with spiking activity from an equal number
of successful trials from early and late learning.

Regression analysis

We use GLM, using the MATLAB function fitglm, to predict M1
BMI potent space activity from cerebellum TR;’ s. The function cre-
ated generalized linear regression models with linear model speci-
fications (containing an intercept and linear term for each predictor)
and fitted using a normal distribution for the response variable. For
predicting M1 TRy activity from cerebellum TR;s, BMI potent
space activity was calculated as the difference between summed M1
TRyt activity and summed M1 TR4™ activity (+/— being positive or
negative unit weight associated TRy’s), which was used as the re-
sponse variable (44). Predictors were binned firing rates of cerebel-
lum TR; units, where each neuron appeared more than once with
variable time lags ranging from-50 to +50 ms relative to the BMI-
potent activity. Such horizontally stacked neural data correspond-
ing to each trial in a session were used as predictive variable. In
every session, for each model, a cross-validated R* value was com-
puted by splitting each session data into ninefold for training and
onefold for test which was repeated 10 times. R* values were com-
puted between the true response variable and the model output.
The R* values reported are the average across all 10 combinations of
testing/training data. For predicting M1 TR; and M1 TU activity
from cerebellum TRy, a “surrogate BMI-potent space” was created
from M1 neural activity by randomly selecting matched numbers
of task-indirect/unrelated units (M1 TR;/M1 TU) to stand in for
the true direct units (M1 TRy’s). The difference of summed activity
in positive and negative pools obtained was used as the response
variable. This process was repeated for 50 choices of such units per
dataset, and average R values were reported.
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Video tracking and analysis

We performed automated tracking of the tip of the feeding tube, the
forepaws, and the head of the rats using DeepLabCut (81). We per-
formed cross-correlation between the trajectories of the feeding tube
and either forepaw/head using corrcoef function of MATLAB. This
function takes the trajectory vectors of the feeding tube and either
forepaw or head as two inputs and returns the correlation coefficient
R and P value for every trial (fig. S2).

Feeding tube trajectory analysis

We analyzed the feeding tube trajectory to look at its angular position
and velocity from early to late trials. We looked at the angular position
by plotting the x and y positions of the feeding tube in the camera field
of view over time, for early and late trials. We calculated the instanta-
neous angular velocity for every trial by looking at the displacement
of the feeding tube between the subsequent frames and dividing it
with the elapsed time. For every early and late trial, we calculated
speed of the feeding tube by looking at the total displacement of the
feeding tube from P, to P, and dividing it with the time to task com-
pletion for that trial. We then took the average speed for early and late
trials. For speed consistency analysis, we interpolated feeding tube
trajectory from early and late trials separately to make it equal to the
feeding tube trajectory of the longest trial in each condition. We then
calculated feeding tube velocity on these interpolated trials. We cor-
related the velocity profiles of individual early and late trials to the
template velocity profile (constructed form the mean of velocity pro-
files of late trials) to show the change in speed consistency.
Statistical analysis

All statistical analyses were implemented within MATLAB. The lin-
ear mixed-effects model (implemented using MATLAB fitlme) was
used to compare the differences in time to task completion, MDx
(of different classes of cells from early to late), trial to mean correla-
tion for speed consistency of the feeding tube, average speed of the
feeding tube, M1/cerebellum LFP power, M1-cerebellum LFP co-
herence, canonical correlations (M1 TR-cerebellum TR;, M1 TR4-
cerebellum TR;, M1 TR;-cerebellum TR;, and M1 TU-cerebellum
TR;), and on the R* derived through spike GLM models, unless
specified otherwise. This model accounts for the fact that units or
sessions from the same animal are more correlated than those from
different animals and is more stringent than computing statistical
significance over all units and sessions (6, 7, 43, 71, 82). We fitted
random intercepts for each rat and reported the P values for the
regression coefficients associated with sessions, channels, or units.
We also performed Kruskal-Wallis H test with multiple compari-
sons in Fig. 3 (E and F) and in fig. S4. To test the difference between
two distributions, we did Kolmogorov-Smirnov two-sample test in
Fig. 4 (C to F), and figs. S9A and S10A.

Supplementary Materials
This PDF file includes:

Figs.S1to S12

Table S1

Legends for movies S1 and S2

Other Supplementary Material for this manuscript includes the following:
Movies S1 and S2
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