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N E U R O S C I E N C E

Cortico- cerebellar coordination facilitates 
neuroprosthetic control
Aamir Abbasi1, Rohit Rangwani1,2, Daniel W. Bowen1, Andrew W. Fealy1, Nathan P. Danielsen1, 
Tanuj Gulati1,2,3,4*
Temporally coordinated neural activity is central to nervous system function and purposeful behavior. Still, there 
is a paucity of evidence demonstrating how this coordinated activity within cortical and subcortical regions governs 
behavior. We investigated this between the primary motor (M1) and contralateral cerebellar cortex as rats learned 
a neuroprosthetic/brain- machine interface (BMI) task. In neuroprosthetic task, actuator movements are causally 
linked to M1 “direct” neurons that drive the decoder for successful task execution. However, it is unknown how 
task- related M1 activity interacts with the cerebellum. We observed a notable 3 to 6 hertz coherence that emerged 
between these regions’ local "eld potentials (LFPs) with learning that also modulated task- related spiking. We 
identi"ed robust task- related indirect modulation in the cerebellum, which developed a preferential relationship 
with M1 task–related activity. Inhibiting cerebellar cortical and deep nuclei activity through optogenetics led to 
performance impairments in M1- driven neuroprosthetic control. Together, these results demonstrate that cere-
bellar in#uence is necessary for M1- driven neuroprosthetic control.

INTRODUCTION
To accomplish even the simplest of tasks, the nervous system coor-
dinates activity across distant brain regions. For example, holding a 
bottle full of water requires several thousands of neurons to produce 
well- calibrated muscle forces for grasping and monitoring sensory 
feedback. Parallel processes in several sensorimotor regions under-
lie even the most trivial tasks, such as mentioned above. Dense re-
ciprocal connectivity between these regions supports this processing 
which likely needs to be con!gured rapidly and "exibly to support a 
repertoire of behavior and a#ord learning of new skills. Two motor 
regions, the primary motor cortex (M1) and the cerebellum, have 
dense reciprocal connections and are known to be involved in mo-
tor learning (1, 2). Studies have shown how learning alters local ac-
tivity in the cerebellum or M1 (3–6), yet learning is also known to 
alter task- related, cross- area coordination (2, 7). Both M1 and the 
cerebellum have dense connections with other cortical and subcor-
tical regions, and hence, it is di$cult to ascertain whether changes 
in interaction are due to reciprocal connectivity between M1 and 
cerebellum (8–10) or because of their roles in coordinating a com-
mon target—the upper limb.

While M1- cerebellum have been simultaneously recorded (2, 7) 
in upper limb behaviors, results presented from such interactions 
are marred by the confound of both these regions directly control-
ling limb movement. %is confound is overcome in the brain- 
machine interface (BMI) task we used, where select M1 neurons 
(“direct” neurons) modulate their activity to control an external dis-
embodied actuator. %e BMI paradigm we used o#ers experiment-
ers a powerful tool where they can dictate or set the neuron- behavior 
relationship. During “brain control,” direct M1 neurons change 

their !ring properties as the neuroprosthetic task is learned (11–18). 
%us, only M1 is responsible for neuroprosthetic control. In addi-
tion, other neurons in the local M1 network also become task cou-
pled (i.e., task- related “indirect” neurons) (12, 13, 15, 19–23). We 
studied any resulting changes in the cerebellum that could be attrib-
uted to its interactions with M1 rather than both regions indepen-
dently undergoing changes as they learn to control a shared e#ector. 
It remains unknown what activity emerges in the cerebellum with 
M1- driven neuroprosthetic learning and what role it plays. Here, we 
hypothesized that cerebellum neurons will develop task- related !r-
ing during M1- driven neuroprosthetic learning. We also predicted 
that optogenetically inhibiting the cerebellum will a#ect M1- driven 
neuroprosthetic control. Notably, the M1 projects to the cerebellar 
cortex chie"y through the cortico- ponto- cerebellar pathway (1, 24), 
and the cerebellum’s primary out"ow back to the neocortex is via its 
deep nuclei, i.e., the dentato- thalamo- cortical pathway (25, 26). Op-
togenetic manipulation studies that have targeted either the pons 
(24), the deep nuclei within the cerebellum (25), or the thalamic 
inputs to M1 (26) during rodent reaching tasks have shown that per-
turbations in these areas impair the reaching behavior as well as the 
neural dynamics in the target projection areas. Because of the recip-
rocal connectivity between M1- cerebellum, within the cerebellum 
resides the cause of M1 activation (in its deep nuclei) as well as the 
consequence of M1 activation (in the cerebellar cortex’s input lay-
ers). Hence, we performed optogenetic inhibition at both levels in 
the cerebellum (i.e., its cortex and deep nuclei) and studied the ef-
fects on M1- driven brain control. In this study, our chief hypothesis 
was to test whether cerebellum develops a task- related indirect 
modulation, and whether this activation is needed for M1- driven 
BMI control.

Another focus of our investigations was coemergent synchro-
nous activity across M1 and cerebellum with neuroprosthetic learn-
ing. Recent theories have proposed that alterations in the pattern of 
synchronous activity across regions can serve to coordinate network 
activity for natural and neuroprosthetic behaviors (20, 27). Such 
transient local !eld potential (LFP) activity can modulate the excit-
ability of cell groups across varying spatiotemporal scales (28, 29). 
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%is helps achieve precise temporal control in neural networks that 
can enhance information transfer in speci!c cell populations (30) 
and can in"uence spike timing–dependent plasticity (31). %e tem-
porally coordinated activity among ensembles underlies diverse 
neural processes ranging from perception, decision- making, action, 
memory, and attention (6, 32–36). Spiking in one region becomes 
coordinated with LFPs in another region, indicative of synchrony 
(33, 37). Despite the evidence that synchronous LFPs are related to 
learning (6, 38), there is a paucity of evidence that this selectively 
modulates task- relevant activity of neurons across brain areas. Using 
the neuroprosthetic task paradigm where we can control the neurons 
linked to behavioral output, we aimed to disentangle the synchro-
nous activity of task- related direct neurons locally within M1 and 
with task- relevant indirect activity in the M1 and the cerebellum (as 
well as task- unrelated cells of M1, which served as negative control) 
to understand how these diverse classes of cells were modulated by 
coordinated LFP activity in the M1 and cerebellum.

In the BMI paradigm that we used, a small set of M1 direct neu-
rons controlled a simple one- dimensional (1D) actuator (hence-
forth M1 TRd’s) (12, 18, 21). We recorded additional neural activity 
from neighboring indirect neurons in M1, as well as distant cerebel-
lar cortex. We parsed these indirect neurons as either task- related or 
task- unrelated neurons in the M1 (M1 TRi’s and M1 TU’s, respec-
tively). We looked at the relationship between these subclasses of 
M1 cells and their association to cerebellar task–related indirect 
activity (i.e., cerebellum TRi’s). We made the observation that cere-
bellar neurons developed strong “task- related” indirect modulation, 
and M1 and cerebellum LFPs developed a 3-  to 6- Hz coherence as 
pro!cient M1- driven neuroprosthetic control was learned. We also 
found that M1 TRd’s and TRi’s and cerebellum TRi’s enhanced their 
phase locking to this 3-  to 6- Hz oscillation in the LFPs. M1 TUs 
were not modulated by this 3-  to 6- Hz LFP activity. Next, we also 
found that !ne timescale coordination (as evaluated through canon-
ical correlation analyses) increased between M1 task–related neu-
rons and cerebellar TRi’s with neuroprosthetic learning. %is was 
not the case for M1 TU’s and cerebellar TRi’s. We also used a gener-
alized linear model (GLM) to predict M1 TRd, TRi, and TU activity 
using cerebellar TRi activity, where we found that the cerebellar ac-
tivity better predicted the M1 TRd and TRi activity but not M1 TU 
activity. In our last set of experiments, we optogenetically inhibited 
the cerebellum either in the cerebellar cortex or the deep nuclei and 
found that inhibition of cerebellar activity at either level led to per-
formance impairments in the neuroprosthetic task and weakening 
of M1 task–related activity. Together, our results show cerebellar ac-
tivation in M1- driven BMI and that cerebellum activity develops a 
privileged relationship with M1 task–related direct and indirect ac-
tivity to accomplish neuroprosthetic skill learning.

RESULTS
We implanted microwire arrays in the M1 and silicon probes (tet-
rodes/polytrodes) in the cerebellar posterior lobes (see Materials 
and Methods for details). A&er neural implant surgery, we trained 
seven animals to exert direct neural control on the angular velocity 
of a mechanical actuator that can deliver water. A linear decoder 
converted the !ring rates of two groups of units in M1 (randomly 
selected and assigned positive or negative unit weights; M1 TRd

+ 
and TRd

−, respectively; TRd’s existed only in M1) into the angular 
velocity of the actuator. We also recoded multiple other units in 

both M1 and cerebellar cortex (Simplex, Crus I/II regions) that were 
not causally linked to the actuator movements but showed signi!-
cant task- related modulation (referred to as M1 TRi’s or cerebellum 
TRi’s). %e units that did not develop task- related modulation in the 
M1 were classi!ed as task- unrelated (i.e., M1 TUs). %e number of 
neurons in each category per session is detailed in table S1. %e M1 
TRd’s decoder gain was held constant during the session to exclu-
sively rely on neural learning mechanisms. Each trial started with 
the simultaneous delivery of an auditory tone and opening of a door 
to allow access to the tube (Fig. 1, A and B). At the start of each trial, 
the angular position of the tube was set to resting position, P1. If the 
angular position of the tube was successfully controlled to go to the 
target position P2 (see Materials and Methods), a de!ned amount of 
water was delivered (i.e., successful trial). A trial was stopped if this 
was not achieved within 15 s (i.e., unsuccessful trial). At the end of a trial, 
the actuator was returned to position P1, and the door was closed.

Direct control of BMI by M1 units
We observed that over the course of a typical 1-  to 2- hour practice 
session, animals showed improvements in task performance with a 
signi!cant reduction in the time to successful trial completion and 
decrease in the proportion of unsuccessful trials. A total of 20 ses-
sions were analyzed, where we saw signi!cant reductions in both 
metrics. Overall, we observed that rats showed improvement in task 
performance with a signi!cant reduction in the time to a successful 
trial completion [Fig.  1, C and D; 8.93 ±  0.45 s to 3.57 ±  0.25 s, 
mixed- e#ects model: t(38) = −10.74, P  =  4.5  ×  10−13] and a de-
crease in the percentage of unsuccessful trials [Fig. 1D; 29.84 ± 4.07% 
to 2.19 ± 0.71%, mixed- e#ects model: t(38) = −7.03, P = 2.2× 10−8]. 
Learning curves from all the sessions are shown in !g. S1A.

In a subset of sessions (n = 13), we tracked the position of the 
feeding tube, and we observed that the tube’s movement from P1 to 
P2 position became direct in the late trials as compared to the early 
trials (Fig. 1E and !g. S1B). We also measured the speed consistency 
of the tube’s movement by measuring the correlation between the 
mean instantaneous speed (that served as template) with that of in-
dividual trials. We found that this speed consistency also increased 
during the late trials [!g. S1C; 0.07 ± 0.02 to 0.23 ± 0.03, mixed- 
e#ect models: t(24) = 3.86, P = 7 × 10−4]. Furthermore, we also saw 
that the angular velocity of the feeding tube was signi!cantly higher 
in the late trials [!g. S1D; 5.55 ± 1.36 to 13.07 ± 2.61 pixels(px)/s, 
mixed- e#ects model: t(24) = 3.20, P = 0.0037]. Using the video re-
cording of rats during the BMI training in these same sessions, we 
analyzed for any correlated body movements with brain control. We 
looked at three movements, namely, movements of both forepaws 
(contralateral and ipsilateral to the implanted hemisphere) and the 
head. Consistent with previous reports of lack of muscle contrac-
tions during neuroprosthetic control (15), we did not observe fore-
paw or head movements to be systematically correlated to the 
feeding tube movements, and overt movements reduced as pro!-
cient neuroprosthetic control was achieved (!g. S2; movies S1 and 
S2 from a representative early and late trials).

Upon checking the modulation depth (MDΔ) of M1 decoder 
neurons (TRd’s), we observed that a large proportion of TRd’s devel-
oped robust task- related modulation (see Materials and Methods). 
Figure 1F depicts the increase in the activity of a representative M1 
TRd unit from early to late trials. %e direct units were causally 
linked to the movement of the actuator, and 90% of 89 TRd’s showed 
signi!cant MDΔ, consistent with previous work (11).
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Indirect modulation of neurons in M1 and cerebellum
We also analyzed indirect units in the M1 and cerebellum and 
checked for their task- related modulation. We further subclassi!ed 
indirect units as either task- related (TRi’s) or task- unrelated (TU’s) 
based on changes in MDΔ with learning. Consistent with previous 
reports of task- related indirect units in the M1 likely contributing to 
neuroprosthetic control (11, 13, 15, 19, 21), we found strong indirect 
modulation in M1 (Fig. 1G). Task- unrelated units in M1 showed no 
signi!cant modulation (Fig. 1H). In addition, we found robust task- 
related indirect modulation of units in the cerebellum (Fig. 1I). A 

majority of units in the M1 and cerebellum developed strong, indi-
rect task- related modulation with learning (75% of 916 M1 units 
and 74% of 414 cerebellum units). We also looked at the change in 
MDΔ and found that M1 TRd underwent greater MDΔ from early to 
late trials as compared to M1 and cerebellum TRi units or M1 TUs 
(M1 TRd: 134.48  ±  61.9%; M1 TRi: 61.66  ±  8.5%; M1 TU: 
−12.79 ± 4.0%; cerebellum TRi: 25.20 ± 5.5%, Kruskal-  Wallis H 
test, F3,1240 = 246.49, P = 1.1 × 10−21, post hoc t test showed signi!-
cant di#erence among M1 TRd, TRi, and cerebellum TRi MDΔ’s; 
P < 0.05).

Fig. 1. Direct and indirect modulation of M1 and cerebellar activity with neuroprosthetic learning. (A) Schematic of neuroprosthetic task box where direct neural 
control of a feeding tube (θ = angular position) was exerted. Each trial started with the tube at P1. (B) Trial structure is shown depicting when audio tone cue and door 
movements occur. A successful trial required movement of the tube to P2 within 15 s. (C) Change in task completion time as a function of trial number from a representa-
tive session. Line shows moving average of 20 trials. Dots show individual trial task completion times. Inset: Illustration of the recording scheme in M1 and cerebellum 
from a frontal- side view. (D) Change in time to task completion (left) and reduction in the percentage of unsuccessful trials (right) from early to late trials across all sessions. 
Bars indicate the means and error bar is SEM. (E) Position of the feeding tube from P1 to P2 is shown from a single session (mean ± 1 × SD). (F) Peri- event histogram (PETH) 
and rasters from early and late trials from a single M1 TRd unit is shown in left and right, respectively. (G) Same as (F) but for a M1 TRi unit. (H) Same as (F) but for a M1 TU 
unit. (I) Same as (F) but for a cerebellum TRi unit. ***P < 0.001.
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Emergence of coordinated task- related activity in M1 and 
cerebellar LFPs
As the rats became pro!cient in M1- driven neuroprosthetic control, 
we observed that a coordinated low- frequency activity (approxi-
mately 3 to 6 Hz; Fig. 2A) emerged in both M1 and cerebellum. %e 
task- related LFP power between 3 and 6 Hz increased from early to 
late trials in both M1 [Fig. 2, B and C; 0.52 ± 0.09 to 0.93 ± 0.11, 
mixed- e#ects model: t(38) = 3.61, P = 8.6 × 10−4] and the cerebel-
lum [Fig. 2, D and E; 0.83 ± 0.16 to 1.45 ± 0.21, mixed- e#ects mod-
el: t(38) = 5.28, P  =  5.4  ×  10−6]. Task- related LFP coherence 
(between M1 and cerebellum LFPs) also increased in the 3-  to 6- Hz 

frequency range from early to late trials [Fig. 2, F and G; 0.15 ± 0.008 
to 0.20 ± 0.01, mixed- e#ects model: t(38) = 4.72, P = 3.1 × 10−5]. To 
ensure this was truly learning- related emergent activity and not just 
due to a greater proportion of unsuccessful trials early on in train-
ing, we also performed the same analysis for an equal number of 
successful early and late trials (!g. S3). We found that trend of emer-
gent 3-  to 6- Hz task- related LFP power in both M1 [!g.  S3A; 
0.51  ±  0.10 to 1.13  ±  0.20, mixed- e#ects model: t(38) = 3.10, 
P = 3.6 × 10−3] and cerebellum [!g. S3B; 0.81 ± 0.20 to 1.92 ± 0.33, 
mixed- e#ects model: t(38) = 3.66 P = 7.5 × 10−4]. Task- related LFP 
coherence also showed an increase for an equal number of success-
ful early to late trials [!g. S3C; 0.18 ± 0.011 to 0.27 ± 0.016, mixed- 
e#ects model: t(38) = 5.52, P  =  2.5  ×  10−6]. %is emergence of 
cross- region, low- frequency activity is consistent with other obser-
vations of emergence of low- frequency activity during motor skill 
learning across reciprocally connected neural networks (7, 20).

Increase in locking between spiking and LFP after 
neuroprosthetic learning
We next investigated the relationship between spiking activity and 
the low- frequency LFP oscillations that we observed during robust 
task engagement. Spike- triggered averaging (STA) can provide an 
intuitive insight into how spiking is modulated by LFPs (11, 20). We 
performed STA of the LFPs in early and late learning, time- locked to 
spikes occurring either within the same region (i.e., M1 TRd/TRi/TU 
spikes to M1 LFP and cerebellum TRi spikes to cerebellum LFP) or in 
the cross- region (i.e., M1 TRd/TRi/TU spikes to cerebellum LFP and 
cerebellum TRi spikes to M1 LFP; Fig. 3). If spiking activity was inde-
pendent of low- frequency LFP activity, then "uctuations would yield 
a "at average LFP. We observed an increase in the amplitude of mean 
LFP oscillations in both regions around the spiking of M1 TRd, TRi, 
and cerebellum TRi units (Fig. 3, A, B, and D). %is increase was not 
present for M1 TU units (Fig. 3C). Furthermore, we found that when 
we did the STA analysis during the intertrial interval (nontask peri-
od), we did not observe an increase in amplitude of mean LFP oscil-
lations in both regions around the spiking of any class of units.

M1 TRd, TRi, and TU units and cerebellum TRi units experi-
enced (mean ± SEM) 91.67 ± 12.39%, 91.87 ± 3.49%, 5.75 ± 0.63%, 
and 87.31 ± 5.77% changes in STA amplitude with M1 LFP during 
task periods, respectively. During the intertrial interval, these 
units experience −5.46 ± 2.85%, 1.08 ± 2.25%, −1.53 ± 1.57%, 
and −1.46 ± 2.55% changes, respectively (Fig. 3E; Kruskal- Wallis 
H test, F5,114 = 90.88, P = 4.3 × 10−18, post hoc t test showed signi!-
cant di#erence for M1 TRd, TRi, TU, and cerebellum TRi during 
task- relevant period and intertrial period; P < 0.001). When STA 
was performed with cerebellum LFP during the task period, M1 
TRd, TRi, and TU units and cerebellum TRi units experienced 
76.25 ± 10.61%, 80.16 ± 7.84%, 4.86 ± 0.65%, and 119.82 ± 25.27% 
changes in STA amplitude, respectively. Within- area increases in 
STA- LFP were slightly greater than the across- area STA- LFP during 
task periods. Similar to M1 LFP, these units experienced signi!cant-
ly smaller change of 2.47 ± 1.99%, −0.85 ± 3.24%, 0.52 ± 1.23%, and 
1.45 ± 4.07%, respectively, when STA was performed with cerebel-
lum LFP during the intertrial interval (Fig.  3F; Kruskal- Wallis H 
test, F5,114 = 91.24, P = 3.6 × 10−18, post hoc t test showed signi!cant 
di#erence for M1 TRd, TRi, TU, and cerebellum TRi during task- 
relevant period and intertrial periods; P < 0.001).

We repeated the STA analysis for an equal number of successful 
trials from early to late learning (!g. S4). M1 TRd, TRi, and TU units 

Fig. 2. Coordinated neuroprosthetic task- related oscillations emerge in M1 
and cerebellar LFPs. (A) Raw and "ltered LFP trace from an example session show-
ing increase in 3-  to 6- Hz oscillations after task start during late trials in both M1 
and cerebellum LFPs. Raw trace shows mean in bold overlaid on individual trial 
traces, and "ltered trace shows mean in bold and SEM in shaded band. Right: Illus-
tration of the recording scheme in M1 (pink) and cerebellum (orange) from a 
frontal- side view. (B) Spectrogram from a representative M1 channel showing in-
crease in 3-  to 6- Hz power during late trials. (C) Increase in 3-  to 6- Hz power in M1 
LFP from early to late trials across sessions. (D) Same as (B) but from a representa-
tive cerebellum LFP channel. (E) Same as (C) for 3-  to 6- Hz cerebellum LFP power 
across sessions. (F) Coherogram from a representative pair of M1- cerebellum LFP 
channel pair showing increase in 3-  to 6- Hz coherence during late trials. (G) Change 
in 3-  to 6- Hz coherence from early to late trials across sessions. ***P < 0.001.
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and cerebellum TRi units experienced (mean ± SEM): 95.48 ± 29.36%, 
61.48 ± 9.62%, 4.64 ± 1.04%, and 83.76 ± 26.31% increases in STA 
amplitude with M1 LFP during task periods, respectively. During the 
intertrial interval (of this subset of trials), these units experienced 
−5.46  ±  2.85%, 1.08 ±  2.25%, −1.53  ±  1.57%, and −1.46  ±  2.55% 
changes, respectively (!g. S4A; Kruskal- Wallis H test, F5,114 = 82.15, 
P = 2.9 × 10−16, post hoc t test showed signi!cant di#erence for M1 
TRd, TRi, TU, and cerebellum TRi during task- relevant period and in-
tertrial period; P < 0.001). When STA was performed with cerebellum 
LFP, M1 TRd, TRi, and TU units and cerebellum TRi units experienced 
71.90 ± 11.75%, 60 ± 11.06%, 4.98 ± 0.82%, and 76.50 ± 13.31% in-
creases in STA amplitude (during the task period), respectively. Simi-
lar to M1 LFP, these units experienced signi!cantly less change of 
2.47 ± 1.99%, −0.85 ± 3.24%, 0.52 ± 1.23%, and 1.45 ± 4.07%, respec-
tively, when STA was performed with cerebellum LFP during intertrial 
intervals (!g.  S4B; Kruskal- Wallis H test, F5,114  =  68.70, P  =  1.9 × 
10−13, post hoc t test showed signi!cant di#erence for M1 TRd, TRi, 
TU, and cerebellum TRi during task- relevant period and intertrial pe-
riods; P < 0.001). With this analysis, we also observed that the average 
increase in within- area STA amplitude was greater than across- area 
STA amplitude.

Next, we quanti!ed phase locking of M1 and cerebellar spikes 
to 3-  to 6- Hz LFP signals in each region by generating polar histo-
grams of the LFP phase at which each spike occurred for a single 
unit and LFP channel (!g. S5, A and B). %e nonuniformity of the 
distribution of phases (indicating phase locking) was quanti!ed 
using a Rayleigh test of circular nonuniformity. We compared all 
M1 TRd, TRi, TU, and cerebellar TRi units spiking activity from 
early to late trials to an M1 or cerebellar LFP channel from early to 
late trials. We observed an increase in the percentage of M1 TRd 
units that phase locked preferentially to M1 and cerebellum LFP 
signals with learning (!g. S5C, the black vertical dashed lines cor-
respond to the P = 0.05 signi!cance threshold of the natural log of 
the z statistic; M1 TRd unit–M1 LFP pairs: 59.04 to 67.77%, 
P = 3 × 10−11, Kolmogorov- Smirnov test; M1 TRd unit–cerebellum 
LFP pairs: 37.66 to 44.46%, P = 7 × 10−9, Kolmogorov- Smirnov 
test). We observed that the proportion of M1 TRi units that phase- 
locked to both M1 and cerebellum LFPs also increased with learning 
(!g. S5D; M1 TRi unit–M1 LFP pairs: 45.88 to 51.96%, P = 4 × 10−11, 
Kolmogorov- Smirnov test; M1 TRi unit–cerebellum LFP pairs: 
26.98 to 31.40%, P = 5 × 10−10, Kolmogorov- Smirnov test); however, 
this was not the case for M1 TU units (!g. S5E; M1 TU unit–M1 

Fig. 3. M1 and cerebellum spike- LFP locking increases with learning. (A) The mean M1 LFP (top row) or cerebellum LFP (bottom row) time locked to occurrences of 
spikes from M1 TRd during task period from a representative session. (B) Same as (A) for a M1 TRi unit. (C) Same as (A) for a M1 TU unit. (D) Same as (A) for a cerebellum TRi 
unit. (E) Box plot of percentage change in STA amplitude for M1 LFP in each of the categories of units (bottom and top box boundaries are 25th and 75th percentiles, re-
spectively, line inside the box is the median, bottom and top error lines are 10th and 90th percentiles, respectively, “+” indicates outliers outside these bounds). (F) Same 
as (E) for changes in STA amplitude with cerebellum LFP. ***P < 0.001; nonsigni"cant (n.s.), P > 0.05.
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LFP pairs: 13.49 to 9.22%, P  =  3 × 10−5, Kolmogorov- Smirnov 
test; M1 TU unit–cerebellum LFP pairs: 9.37 to 8.31%, P =  0.1, 
Kolmogorov- Smirnov test). For the cerebellar TRi units, we again 
observed an increase in the proportion of cells that phase- locked 
to M1 and cerebellum LFPs (!g. S5F; cerebellum TRi unit–M1 LFP 
pairs: 43.20 to 56.33%, P  =  3 × 10−16, Kolmogorov- Smirnov 
test; cerebellum TRi unit–cerebellum LFP pairs: 62.55 to 73.82%, 
P  =  9  ×  10−70, Kolmogorov- Smirnov test). Notably, the task- 
related units of M1 and cerebellum showed more phase locking to 
M1 or cerebellum LFPs than the task- unrelated cells of M1. %ese 
results indicate that the low- frequency activity that we observed 
emerge across M1 and cerebellum LFPs during neuroprosthetic 
learning selectively modulated task- related direct or indirect units 
to a greater proportion.

Fine timescale coordination of M1 and cerebellum activity 
with task learning
While our analyses so far showed coordinated activity in the M1 and 
cerebellum with task learning, it does not necessarily indicate that 
the neural activity in the two structures were coordinated across tri-
als. Recent studies have explored !ne- timescale coordination at the 
level of spiking (39, 40). Such studies use statistical methods to mea-
sure “communication subspaces” based on ensemble activity. Here, 
we used canonical correlation analysis (CCA) to assess !ne- timescale 
coordination between the M1 and cerebellum. CCA has been re-
cently used in neuroscience studies to extract correlated popula-
tion activity between two areas (39–43). Speci!cally, CCA !nds a 
linear combination of units in M1 and cerebellum that represent 

maximally correlated activity across these areas (Fig. 4A). To estab-
lish that CCA of M1 and cerebellar activity subspaces were signi!-
cant, we compared the canonical variables (CVs) of actual data with 
a distribution of CVs of trial- shu(ed data (Fig. 4B; see Materials and 
Methods). We used concatenated single- trial spiking activity binned 
at 50 ms (40, 43). %e top component produced by CCA [known as 
CV1 (canonical variable 1)] is the axis of the M1 and cerebellar sub-
spaces that has the maximum correlation between the two areas 
(Fig. 4C). We !rst performed CCA between all M1 task–related (TR) 
units (M1 TRd and TRi pooled together) and cerebellum TRi units. 
To have more M1 dimensions, we combined M1 TRd and TRi units 
as M1 TR. We found that this maximum correlation increased with 
neuroprosthetic learning for M1 TR–cerebellum TRi units. Fig-
ure 4D shows CCA changes in an example session from a single ani-
mal from early to late trials, and Fig. 4E shows CCA change across all 
sessions for M1 TR–cerebellum TRi units [early canonical correla-
tion: 0.30 ± 0.041; late canonical correlation: 0.47 ± 0.038, mixed- 
e#ects model: t(38) = 3.96, P  =  3.1  ×  10−4]. However, canonical 
correlation between M1 TU–cerebellum TRi units did not signi!-
cantly increase across sessions [Fig. 4F; canonical correlation change: 
0.21  ±  0.048 to 0.22  ±  0.051, mixed- e#ects model: t(38) = 0.38, 
P = 0.7; Fig. 4G].

We also performed the CCA analysis for an equal number of suc-
cessful early and late trials (!g. S6). We found that the trend of in-
crease in canonical correlation between M1 TR–cerebellum TRi units 
[!g. S6A; 0.33 ± 0.044 to 0.48 ± 0.04, mixed- e#ects model: t(38) = 
3.13, P = 3.3 × 10−3] remained the same with this subset of trials. We 
saw no signi!cant change in the canonical correlation between M1 

Fig. 4. Increase in neural subspace correlation between task- related units of M1 and cerebellum. (A) Description of CCA. CCA "nds a linear combination of binned 
spike counts from M1 units (x1, x2, … xn) and cerebellum units (y1, y2, … yn) that maximizes the correlation between M1 and cerebellum. (B) Example identi"cation of 
signi"cant canonical variables (CVs; green lines) relative to trial- shu#ed data (gray distribution, 104 shu#es). Signi"cant threshold at 95th percentile of the distribution is 
shown in dotted gray line. Two CVs crossed this threshold in this example session. (C) Single- trial M1 task–related (TR) and cerebellar TRi spiking activity along with CV1 
activation from M1 TR–cerebellar TRi CCA aligned to the task start. (D) M1 TR and cerebellum TRi subspace activity (from the CV1) around task start (−2 to 2 s) for an ex-
ample session. Each dot represents one time bin of early or late trials from the session. Canonical correlation score is given by r. (E) Change in the canonical correlation 
score from early to late trials across all sessions for M1 TR and cerebellar TRi units. (F) Same as (E) for M1 TU and cerebellar TRi units. ***P < 0.001; n.s., P > 0.05.
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TU–cerebellum TRi units in these trials [!g.  S6B; 0.24  ±  0.048 to 
0.23 ± 0.043, mixed- e#ects model: t(38) = −0.05, P = 0.95].

Next, we performed this analysis for M1 TRd–cerebellum TRi 
units and M1 TRi–cerebellum TRi units. We found that the canonical 
correlation increased with neuroprosthetic learning even for M1 
TRd–cerebellum TRi units. Figure  S6D shows CCA changes in an 
example session for this pair from a single animal from early to 
late trials; !g. S6E shows CCA change across all sessions for M1 
TRd–cerebellum TRi units [early canonical correlation: 0.14 ± 0.022; 
late canonical correlation: 0.29 ± 0.033, mixed- e#ects model: t(38) = 
4.30, P = 1.1 × 10−4]. Moreover, we found that the subspace activity 
in the two structures became more precisely temporally correlated 
with learning; as the higher the canonical correlation grew, the short-
er the time to task- completion became (!g. S6F). We observed that 
canonical correlation signi!cantly increased from early to late trials 
even for M1 TRi–cerebellum TRi [!g.  S6G; canonical correlation 
change: 0.31 ± 0.053 to 0.52 ± 0.042, mixed- e#ects model: t(38) = 
4.51, P = 5.8 × 10−5].

Cerebellum neural activity predicts M1 BMI- potent 
neural activity
With recent reports of M1 activity being input- driven during fore-
limb reaching behavior and secondary motor cortex’s (M2) modula-
tory in"uence over M1 during M1- driven neuroprosthetic task (26, 

40), we wanted to check how the cerebellar TRi activity “integrated” 
with M1 TRd, TRi, and TU activity. Upon a simple comparison of 
latency of M1 and cerebellar spiking activities’ peaks, we observed 
that cerebellum TRi activity tended to peak before M1 TRd during 
early trials [time to peak for M1 activity: 238.01 ± 6.42 ms; and time 
to peak for cerebellum activity: 236.82  ±  6.48 ms, mixed- e#ects 
model: t(646) = −0.07, P = 0.93] and late trials [time to peak for M1 
activity: 239.82 ± 8.26 ms and time to peak for cerebellum activity: 
211.16 ± 15.12 ms, mixed- e#ects model: t(646) = −1.87, P = 0.06]. 
%is then lead us to develop a GLM to determine the relationship 
between cerebellum indirect activity and M1 activity (44).

We used cerebellum task–related indirect activity (i.e., cerebellum 
TRi’s) as a predictor of M1 BMI- potent neural activity, where BMI- 
potent activity was M1 TRd activity or a “surrogate BMI- potent activ-
ity” (see Materials and Methods) for M1 TRi’s or M1 TU’s which 
were used as the response variables for three di#erent GLMs, namely, 
GLM- Cd (cerebellum TRi’s → M1 TRd’s), GLM- Ci (cerebellum 
TRi’s → M1 TRi’s), and GLM- CU (cerebellum TRi’s → M1 TU’s), 
respectively (Fig.  5, A and B). We also evaluated GLM regression 
weights to analyze the temporal structure of these three predictions. 
For GLM- Cd, we observed that various cerebellum TRi’s exhibited 
their highest magnitude weight at different time lags across the 
population (Fig. 5C), indicating a broad timescale modulation of M1 
TRd activity by cerebellum TRi’s. Furthermore, numerous individual 

Fig. 5. Cerebellum TRi neural activity predicts M1 BMI- potent neural activity. (A) Description of GLM model; GLM- Cd: GLM model predicting M1 TRd activity from 
cerebellum TRi’s; GLM- Ci: GLM model predicting M1 TRi activity from cerebellum TRi’s; GLM- CU: GLM model predicting M1 TU activity from cerebellum TRi’s. (B) Regression 
was used to identify a cerebellum neural population space that predicted BMI- potent M1 activity. GLMs were "t to predict the M1 BMI task–related direct (TRd)/task- 
related indirect (TRi)/task unrelated (TU) neural state from cerebellum TRi activity; multiple time lagged copies of each cerebellum TRi unit were used as predictors. 
(C) Distribution of regression weight magnitude in one example session for the GLM- Cd model ("tted to neural data binned at 10 ms). Top: For each cerebellum TRi unit, 
regression weights were assigned for a variety of time lags. To emphasize the time of the maximum absolute weight of each neuron, values here are normalized to each 
neuron’s maximum value. Units are sorted according to the time of the largest magnitude weight. Tick marks on the right edge indicate the units shown in (D). Bottom: 
Histogram of the τ values with the largest magnitude weight for this dataset. Abs, antibodies. (D) Example nonnormalized weights for two cerebellum TRi neurons from 
one example session (neural data binned at 10 ms). Height of bars indicates weights, for example, neurons at di$erent time lags (τ) relative to the M1 BMI- potent activity, 
with negative τ values meaning that cerebellum TRi leads. (E) Box plot comparing R2 values for three di$erent GLM models ("tted to neural data binned at 50 ms), GLM- Cd, 
GLM- Ci, and GLM- CU; left to right (box plot conventions are same as Fig. 3C). *P < 0.05; n.s., P > 0.05.
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cerebellum units displayed large regression weights at multiple time 
lags, o&en encompassing both positive and negative weights (Fig. 5D). 
Similar regression weight timescales were observed for GLM- Ci and 
GLM- CU models (!g. S7). However, we found that the R2 values for 
GLM- Cd and GLM- Ci models were signi!cantly higher as com-
pared to the GLM- CU model [Fig. 5E; GLM- Cd: R2 = 0.0504 ± 0.0225 
to GLM- CU: R2 = −0.0358 ± 0.0302; mixed- e#ects model: t(38) = 
−2.40, P  =  0.02; GLM- Ci: R2  =  0.0617  ±  0.0233 to GLM- CU: 
R2 = −0.0358 ± 0.0302; mixed- e#ect model: t(38) = −2.69, P = 0.01]. 
We did not !nd a signi!cant di#erence between R2 values of GLM- Cd 
and GLM- Ci [mixed- e#ect models: t(38) = 0.42, P = 0.67].

Optogenetic inhibition of cerebellum cortex and nuclei 
impairs neuroprosthetic performance
Next, we performed optogenetic inhibition of the cerebellar cortex 
and deep cerebellar nuclei (DCN) during neuroprosthetic skill 
learning to assess the necessity of cerebellar activation for M1- driven 

neuroprosthetic learning and control. We used a red- light shi&ed 
halorhodopsin- JAWS for inhibiting neural activity (see Materials and 
Methods). First, we found that JAWS was robustly expressed in cere-
bellar cortical and DCN neurons (Fig. 6). When we looked at the activ-
ity of cerebellar cortical neurons under optical illumination acutely, we 
found that JAWS activation led to strong inhibition of these neurons 
(!g. S8, A and B). Optogenetic inhibition signi!cantly reduced !ring 
across cerebellar cortical neurons [!g. S8C; Stimpre: 27.30 ± 2.88 Hz, 
StimON: 4.99 ± 0.67 Hz, and Stimpost: 20.16 ± 2.09 Hz; Stimpre versus 
StimON mixed- e#ects model: t(88) = −7.69, P = 1.9 × 10−11; Stimpost 
versus StimON mixed- e#ects model: t(88) = 7.05, P = 3.8 × 10−10], with 
a reduction in 84.44% of recorded cells during StimON (n = 45).

We !rst performed optogenetic inhibition of the cerebellar cortex 
in chronically implanted rats during the BMI task training (see Materi-
als and Methods). When we inhibited the cerebellar cortex in rats that 
had already gained pro!ciency in neuroprosthetic task performance 
(i.e., during late trials), we found that time to successful completion of 

Fig. 6. BMI performance gets impaired with cerebellar cortical inhibition. (A) Fluorescence image of a coronal brain section showing neurons expressing JAWS 
(green) in the cerebellar cortex (Simplex and Crus I). (B) Cerebellar cortical inhibition increases time to task completion. (C) PETH of example M1 TRd units from di$erent 
sessions, during late trials, with (laser on) and without (laser o$ ) cerebellar inhibition. (D) Box plot showing change in modulation depth (MDΔ) of M1 TRd units from early 
to late trials, with and without cerebellar inhibition. Box plot conventions are the same as Fig. 3C. (E) Same as (C) for M1 TRi units. (F) Same as (D) for M1 TRi units. (G) Spec-
trograms of an example M1 LFP channel showing an absence of 3-  to 6- Hz power during cerebellar inhibition (right) in late trials. The 3-  to 6- Hz power emerges during late 
trials in the same day session where cerebellar cortical inhibition was suspended. (H) Three-  to 6- Hz power emerges during late trials on the same day session where 
cerebellar inhibition was not done. (I) Same as (A), showing neurons expressing JAWS (green) in the DCN. (J) DCN inhibition increases time to task completion. (K) Same 
as (C) for DCN inhibition. (L) Same as (D) for DCN inhibition. (M) Same as (C) for M1 TRi units. (N) Same as (D) for M1 TRi units. (O) Same as (G) for DCN inhibition. (P) Same 
as (H) for DCN inhibition. ***P < 0.001 and *P < 0.05.
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the neuroprosthetic task increased [Fig. 6B; 3.50 ± 0.39 s without cer-
ebellum cortex inhibition and 9.75 ± 1.26 s with cerebellum cortex 
inhibition, mixed- e#ects model: t(16) = 5.28, P = 7.3 × 10−5]. We also 
found that the distribution of time- to- task completion for all trials 
across rats was signi!cantly di#erent without cerebellum cortex inhibi-
tion as compared to with cerebellum cortex inhibition (!g.  S9A; 
Kolmogorov- Smirnov two- sample test: P = 3.4 × 10−44).

Furthermore, we also found that cerebellar cortex inhibition 
showed a decrease in the !ring rate of M1 TRd units (Fig. 6C and 
!g. S9B). %is led to a decrease in the change in modulation depth 
(MDΔ) of M1 TRd units during trials when cerebellum cortex was 
optogenetically inhibited [Fig.  6D; 46.70  ±  8.6% (mean  ±  SEM) 
without cerebellum cortex inhibition and −23.89 ± 9.90% with cer-
ebellum cortex inhibition, mixed- e#ects model: t(93)  =  −3.85, 
P = 2.1 × 10–4]. We also found that cerebellar cortex inhibition af-
fected M1 TRi units at a population level [Fig. 6, E and F; MDΔ for 
M1 TRi units: 29.53 ± 4.29% (mean ± SEM) without cerebellum 
cortex inhibition and −5.11 ± 2.67% with cerebellum cortex inhibi-
tion, mixed- e#ects model: t(821) = −4.99, P = 7.16 × 10−7]. Cere-
bellar cortical inhibition also a#ected M1 3-  to 6- Hz LFP power. 
During late trials, 3-  to 6- Hz M1 power was reduced under cerebel-
lar inhibition [Fig. 6, G and H; z scored M1 power without cerebel-
lum cortex inhibition: 1.64 ± 0.19; and M1 power with cerebellum 
cortex inhibition: 0.99 ± 0.14; mixed e#ects model: t(16) = −2.95, 
P = 9.3 × 10−3].

While these experiments examined the loss of performance on 
the neuroprosthetic task when cerebellar cortex was inhibited, we 
also analyzed neuroprosthetic task performance vis- à- vis the order 
of cerebellar cortex inhibition (i.e., the e#ects of cerebellar cortical 
inhibition in either !rst BMI block, BMI1, versus the second BMI 
block, BMI2, within a day with the same M1 TRd units; see Materials 
and Methods for details on the order of two BMI blocks within a 
day). We found that neural processing in the cerebellar cortex im-
paired M1- driven neuroprosthetic control irrespective of the order 
of inhibition. %is impairment was signi!cant when the inhibition 
occurred in BMI1 [!g.  S9D; time to task completion on late trials 
without cerebellum cortex inhibition in BMI1: 4.26 ± 0.77 s versus 
time to task completion on late trials with cerebellum cortex inhibi-
tion in BMI2: 6.77 ± 2.17 s, mixed- e#ects model: t(6) = 1.44, P = 0.19; 
!g. S9E; time to task completion with cerebellum cortical inhibition 
in BMI1: 11.91 ± 0.87 s versus time to task completion without cere-
bellum cortical inhibition in BMI2: 3.10 ± 0.50 s, mixed- e#ects mod-
el: t(8) = −10.89, P = 4.4 × 10−6].

When we performed the optogenetic inhibition of the DCN, we 
observed similar de!cits in neuroprosthetic control and M1 physiol-
ogy. We found that time to successful completion of neuroprosthetic 
task increased [Fig. 6J; without DCN inhibition: 6.04 ± 0.88 s; and 
with DCN inhibition: 9.15  ±  0.60 s; mixed- e#ects model: t(20) = 
3.19, P = 4.6 × 10−3]. We also found that the distribution of time to 
task completion for all trials across rats was signi!cantly di#erent be-
tween the two conditions (!g.  S10A; Kolmogorov- Smirnov two- 
sample test: P = 2.2 × 10−17). We found that DCN inhibition showed 
a decrease in the !ring rate of M1 TRd units (Fig. 6K and !g. S10B). 
%is led to a decrease in the MDΔ of M1 TRd units during trials when 
DCN was optogenetically inhibited [Fig. 6L; without DCN inhibi-
tion: 108.89  ±  17.95% (mean  ±  SEM); and with DCN inhibition: 
−41.76 ± 10.17%; mixed- e#ects model: t(51) = −3.85, P = 1 × 10–6]. 
DCN inhibition also showed nonsigni!cant reduction in MDΔ of M1 
TRi units at a population level [Fig. 6, M and N; MDΔ for M1 TRi 

units without DCN inhibition: 39.15 ± 5.13%; and with DCN inhibi-
tion: 11.77 ± 15.04%, mixed- e#ects model: t(610) = −1.07, P = 0.28]. 
We found that 3-  to 6- Hz M1 LFP power was signi!cantly reduced 
with DCN inhibition as well during late trials [Fig.  6, O and P; z 
scored M1 power without DCN inhibition: 1.26  ±  0.15; and M1 
power with DCN inhibition: 0.75  ±  0.11; mixed e#ects model: 
t(20) = −3.20, P = 4.4 × 10−3].

As with cerebellar cortical inhibition, we performed DCN inhibi-
tion either in BMI1 or BMI2 and assessed neuroprosthetic task per-
formance. Here, we observed that signi!cant neuroprosthetic task 
impairments occurred when DCN was inhibited in BMI2 [!g. S10D; 
time to task completion in late trials without DCN inhibition in 
BMI1: 4.88 ± 1.26 s versus time to task completion with DCN inhibi-
tion in BMI2: 9.36 ± 1.14 s, mixed- e#ects model: t(8) = 3.27, P = 0.01; 
!g. S10E; time to task completion in late trials with DCN inhibition 
in BMI1: 8.98 ± 0.78 s versus time to task completion in late trials 
without DCN inhibition in BMI2: 7.01 ± 1.26 s, mixed- e#ects model: 
t(10) = −1.58, P = 0.14]. Hence, while we observed signi!cant neu-
roprosthetic task impairments with cerebellar inhibition both at the 
level of the cortex and its deep nuclei when we analyzed both BMI1 
and BMI2 together, upon parsing these two BMI blocks, we observed 
signi!cant impairment of cerebellar cortical inhibition on BMI1 and 
DCN inhibition on BMI2. %e task impairment was substantial but 
not signi!cant when cerebellar cortex was inhibited in BMI2 and 
DCN in BMI1.

DISCUSSION
In this study, we found an emergent 3-  to 6- Hz activity in the M1 and 
cerebellum LFPs. Task- related direct and task- related indirect spiking 
in these regions was coordinated with this activity but not the task- 
unrelated M1 spiking activity. In addition, we found that neuro-
prosthetic task learning led to increased correlated neural subspace 
activity between M1 task–related direct (TRd) and cerebellar task–
related indirect units (TRi) and M1 and cerebellar task–related in-
direct units but not for M1 task–unrelated (TUs) and cerebellar 
task–related indirect units. Furthermore, we found that cerebellar TRi 
activity well- predicted M1 TRd and M1 TRi activity but not M1 TU 
activity. Last, we found that optogenetic inhibition of the cerebellum, 
either in the cerebellar cortex or its deep nuclei, led to neuroprosthet-
ic task performance impairments (as indicated by increased time to 
task completion) and weakening of M1 task–related activity. %ese 
!ndings suggest that the cerebellum plays an important role by pro-
viding in"uence on M1 neural activity that is related to neuropros-
thetic task output. Furthermore, we found that cerebellar task–related 
indirect activity developed a preferential relationship with task- related 
M1 direct and indirect activity, suggesting that cerebellum TRi’s had a 
more privileged relationship with task- relevant neurons of M1 (TRd’s 
and TRi’s). Our GLMs suggested that cerebellum TRi’s were predictive 
of both M1 TRd’s and TRi’s activity, and our optogenetic experiments 
showed that M1 TRd’s and TRi’s were a#ected by cerebellar inactiva-
tion. %is might be indicative of cerebellum processing being linked 
to a preferential coordination of M1 task–relevant units. Our elabora-
tion of the cerebellum’s role in M1- driven neuroprosthetic motor con-
trol is consistent with the cerebellum’s role in !ne- tuning movement, 
as well as coemergent activity that has been reported in these areas 
with learning new motor skills (2, 25). %is study helps elucidate 
cerebellar contributions to M1- driven neuroprosthetic control 
and can help improve BMI functionality in the future. For example, 
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BMI paradigms could incorporate cerebellar indirect signals for im-
proving BMI controllers.

Emergent mesoscopic dynamics across M1- cerebellum
One of our !rst !ndings was an emergence of 3-  to 6- Hz oscillatory 
dynamics in M1- cerebellum LFPs associated with learning, and neu-
rons in both these regions also showed enhanced phase locking to 
this oscillation during task- relevant periods, as revealed through 
STA. Similar observations have been made in a neuroprosthetic 
study that looked at task- related cells in cortico- striatal networks 
(20). Such coherence can serve to enhance communication during 
task period between task- relevant cell populations across the larger 
motor networks that should integrate signals for optimal behavioral 
output. %is coherent activity may allow for "exible use of task- 
relevant cells in either region. %e synchrony that we observed in the 
3-  to 6- Hz band is consistent with other work that has showed low- 
frequency coherence between M1 and other motor regions during 
learning (6, 7). One of the possibilities for the 3-  to 6- Hz increased 
coherence that we observed could be a result of common neural 
drive to both these regions (or one of the regions driving the other). 
It is also pertinent to mention that similar low- frequency oscillations 
in the neocortex can be used to decode reach- related activity and 
predict spiking phase across multiple behavioral states (45, 46). Such 
activity is also correlated with multiphasic muscle activations and 
timing of movements during motor tasks (46–49). Recent work also 
suggests that oscillatory dynamics re"ect an underlying dynamical 
system (48). %is previous work argues that this low- frequency activ-
ity represents an intrinsic property of motor circuits associated with 
precise motor control. Our !ndings extend this body of work by 
showing similar low- frequency dynamics in both M1 and cerebel-
lum cortex (Fig. 2). %e exact origin of these oscillations and under-
lying generators remains unknown. While such oscillations were 
shown to involve striatum in rodent reaching task (6) or thalamocor-
tical activity (50), so far, our results here raise the possibility of cere-
bellar involvement. Further work can probe interactions between M1 
and the broader motor network to pinpoint the drivers of the electro-
physiologic changes seen during learning this skill.

Using BMIs to study cross- region coordination in 
motor control
BMIs o#er the ability to investigate connected regions by selecting 
target neural activity (that dictate output) in one region and concur-
rent examination of another region as task performance improves. 
Implementing this strategy, we aimed to disentangle cerebello- 
cortical communication as M1 direct control was learned. Both M1 
and cerebellum have direct connections to the spinal cord (8–10) 
and are implicated in movement control (3, 4, 6). In our BMI para-
digm, we randomly selected target neural activity in the M1 (en-
forced by the decoder), which is unlikely to be correlated with 
processes in other brain regions. %is permitted us to examine how 
cross- area communication during BMI task facilitates control. M1 
and cerebellum are reciprocally connected (1, 2), and while some 
extent of coupling of task- related activity in M1 and cerebellum is 
not unexpected, it is unknown how the task- related indirect cerebel-
lum activity interacts with behavioral, output- speci!c direct activity 
versus task- related indirect activity or task- unrelated activity of M1 
neurons. It is important to note that we did not !nd e$cient neuro-
prosthetic control to be linked to limb movements or other idiosyn-
cratic movements (!g. S2).

One of the notable !ndings of our work was that canonical corre-
lation increased between M1 and cerebellum task–related units but 
not for M1 TU–cerebellum TRi units (Fig. 4 and !g. S6). Similarly, 3-  
to 6- Hz oscillatory activity modulated task- related direct and indirect 
activity in M1 as well as cerebellar indirect activity but not M1 TU 
activity (Fig. 3 and !g. S5). Our predictive model corroborated this 
!nding and found that cerebellar TRi activity predicted M1 TRd and 
TRi but not M1 TU activity. %ese analyses revealed that the task- 
related cerebellar cortical activation communicated more strongly 
with task- relevant pools of M1 activity.

Our work is in line with recently proposed theoretical framework 
of cortico- cerebellar interactions. Recently developed computational 
models of cortico- cerebellar networks show that corticocerebellar 
interactions may aid in learning (51, 52). One of these models showed 
that the cerebral recurrent network, when it received feedback pre-
dictions from a cerebellar network, facilitated sensorimotor learning 
by decoupling learning in cerebral networks from future feedback 
(51). %is work also showed a reduction in dysmetria with feedback 
from the cerebellum. In addition, theoretical models have also pro-
posed that there is a task- relevant dimensionality expansion that oc-
curs in the cerebellar cortex aided by expansion from mossy !bers to 
cerebellar granule cells. %is might support functions such as inter-
nal model learning. %is theoretical framework also explicitly pro-
poses that the presence of task- relevant variables in the cerebellum 
develops with learning via the cortico- ponto cerebellar pathway (53). 
Our work is in agreement with these theoretical frameworks as we 
observed indirect task- related activity in the cerebellum and optoge-
netic inactivation of the cerebellum- a#ected learning as well as dy-
namic ongoing control once the task was learned.

It is also noteworthy that while the neuroprosthetic motor skill 
task we used had the obvious advantage where experimenters set the 
neuron- behavior relationship (hence, the investigations did not su#er 
from undersampling of neurons causally linked to behavior), we also 
note that the neuroprosthetic task is di#erent from other skilled mo-
tor tasks. %e task we used involved 1D workspace and simple feed-
back and did not require extreme precision for successful completion. 
However, recent work has shown that even dexterous skilled reaching 
behavior shows emergence of low- frequency oscillatory LFP dynam-
ics in M1- cerebellum LFPs that modulated task- related spiking in 
these regions (7). Future investigations can test whether our results 
generalize to other motor tasks.

Roles of multiplexed cross- area interactions
Motor control involves signals at longer timescales appropriately inte-
grating with shorter timescales across several spatially segregated re-
gions to deliver movement precision (54). Little is known about how 
these signals at varying spatiotemporal scales are interacting during 
motor control. Simultaneous recordings are best suited to understand 
these interactions (6, 39, 55–57). Further, a majority of studies that 
have used simultaneous recordings in motor regions use extensively 
trained animals performing natural motor tasks (56–59). Under-
standing M1- cerebellum interactions in such context raises important 
concerns: (i) Since both M1 and cerebellum are directly controlling 
movement, it is di$cult to ascertain modulatory in"uence of one area 
over the other; and (ii) overtrained animals may have transitioned to 
an “automatic” state (60), and it may no longer be suitable to investi-
gate emergent dynamics in interacting structures. %ese confounds 
limit the inferences made about M1- cerebellum interactions in ex-
periments with extensively trained animals.
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Here, we have shown that, in an M1- driven BMI task, cerebellum 
neural processing was crucial. While BMI performance was a#ected 
due to cerebellar inhibition overall, we found that this performance 
was a#ected to varying degrees by cortical versus DCN inhibition 
based on the order of inhibition. Cerebellar cortical inhibition af-
fected BMI1 task performance signi!cantly (!g. S9E), which is in-
dicative of cerebellar cortical processing having an instructional role 
early- on through the olivo- cerebellar system, consistent with the no-
tion of cerebellar role in skill acquisition (61). Our optogenetic inhi-
bition may have disturbed cerebellar cortical processing by either 
altering inhibitory inputs onto the Purkinje cells (PCs) from stellate 
cells, basket cells, or other molecular layer interneurons or the gran-
ule cells’ parallel !ber inputs to PCs or PCs themselves. When we 
inhibited DCN, we found that BMI2 task performance was signi!-
cantly impaired (!g.  S10D) when the control was already well 
learned. %is is consistent with the role of cerebellar output in !ne- 
tuning ongoing movements (24, 25). Future work with cell- speci!c 
inhibition in the cerebellar cortex or DCN can test the e#ects on the 
neuroprosthetic task performance. Overall, we showed the involve-
ment of the cerebellum in M1- driven neuroprosthetic control, which 
has not been shown before.

Cerebellar involvement in M1- driven BMI task is further cement-
ed by the fact that cerebellar TRi activity had strong modulation in 
late BMI trials as well (Fig. 1I), indicative of an ongoing modulatory 
in"uence over M1 to sustain pro!ciency in the task. Our canonical 
correlations (Fig. 4), spike- LFP coordination (Fig. 3 and !g. S5), and 
predictive model (Fig. 5) all showed that task- related pools of M1 
and cerebellum develop a preferential relationship. %is, with other 
recent work, leads us to conclude that M1 task–relevant cells multi-
plex signals locally (11, 44) as well as from distant- area cerebellar 
activity (62). Our regression of M1 BMI potent space activity also 
indicated that cerebellum TRi units showed a broader timescale in-
"uence of cerebellum on M1 TRd activity [this is di#erent from the 
shorter timescale in"uences seen between M1 TRd and M1 TRi units 
(44)]. Such broader in"uence of cerebellar activity may also be relat-
ed to coordination in the larger motor network. Larger network ac-
tivity may represent attention regulation (63), motivation (64), or 
coordination of the motor task with sensory feedback (65).

Neural dynamics over the course of BMI learning
Natural motor learning is known to involve an early phase marked by 
exploration and high variability with a transition to late stage when 
the skill is consolidated (66–69). Our paradigm here is focused on 
early exploratory BMI learning by using mostly single sessions (with-
in a day). BMI studies that allow for sleep consolidation (11, 12, 18) or 
use multiple days of learning (15, 70) !nd that M1 TRi units weaken 
their modulation through the course of extensive training. Future 
work can test whether cerebellar activation aided in such credit as-
signment as some of the optogenetic e#ects were selective for M1 
TRd’s in our work. It is also possible that cerebellar TRi’s may exhibit 
similar weakening (as M1 TRi’s) over time. However, local versus 
cross- area interactions may di#er in the long- term. One recent study 
had focused on cross- area activity through multiple days of training, 
and they found that indirect task- related modulation persists in sev-
eral cortical areas (23). Work that has looked at extensively trained 
mice on motor task has shown sustained activity in the cerebellum 
(25). %ere is further evidence from studies of natural learning that 
emergent activity in cortico- cerebellar networks becomes stronger as 
task pro!ciency increases (7).

To summarize, our studies leveraged a multiarea BMI paradigm 
to probe M1- cerebellar cross- area interactions. We demonstrated 
that oscillatory dynamics emerged as seen through LFPs across these 
regions that also modulated task- related spiking in both areas. Finer 
timescale analyses of spiking revealed that cerebellar TRi activity se-
lectively in"uenced task- related arti!cial target activity within M1. 
%is paradigm allowed us to manufacture an output- speci!c M1 ac-
tivation to examine internal motor networks dynamics, removing 
the constraints of movement performance. %us, multiarea BMIs, 
through such impositions, allow for a more natural inside- out inves-
tigation of cross- area interactions in the motor network.

MATERIALS AND METHODS
Animal preparation
Adult male Long- Evans rats were used in this study (n = 15, 300 to 
500 g, 3 to 5 months old, Charles River Laboratories). All animal pro-
cedures were performed according to the protocol approved by the 
Institutional Animal Care and Use Committee at Cedars- Sinai Med-
ical Center, Los Angeles. %is ensured that the animals that were 
used in this research were acquired, cared for, housed, used, and dis-
posed of in compliance with the applicable federal, state, and local 
laws and regulations, institutional policies and with international 
conventions to which the United States is a party. Animals were 
housed on a 14- hour light and 10- hour dark cycle (photoperiod is 
from 6 a.m. to 8 p.m.) in a climate- controlled vivarium. Of 15 rats, 7 
were used in BMI with simultaneous M1 and cerebellum recordings, 
3 rats were used for BMI with cerebellar cortex optogenetic inhibi-
tion and 3 rats for DCN optogenetic inhibition. %e remaining 
(n = 2) were used in acute cerebellar recording under optogenetic 
inhibition. Neural probes were implanted during a recovery surgery 
performed under iso"uorane (1 to 3%) anesthesia. %e analgesic 
regimen included the administration of 0.1 mg per kg body weight of 
buprenorphine and 5 mg per kg body weight of carprofen. Postop-
eratively, rats were also administered 2 mg per kg body weight of 
dexamethasone and 33 mg per kg body weight of sulfatrim for 5 days. 
Ground and reference screws were implanted posterior to lambda 
contralateral to the recorded cerebellum, contralateral to the neural 
recordings. For M1 recordings, 32- channel arrays (33- μm polyamide- 
coated tungsten microwire arrays) were lowered to a depth of ~1200 
to 1500 μm in either the le& or right M1. %ese were implanted cen-
tered at 0.5 mm anterior and 3 mm lateral to the bregma (6, 7, 11, 12, 
18, 71). For cerebellar recordings, we used 32-  to 64- channel tetrodes 
(Neuronexus, MI) or shuttle- mounted polytrodes (Cambridge Neu-
rophysiology, UK). %e probes were lowered into the cerebellar cor-
tex through a craniotomy centered at 12.5 mm posterior and 2.5 to 
3 mm lateral to bregma. Shuttle mounted probes were moved across 
days and recorded from depths of 1.5 to 4 mm. Our target regions 
were Simplex/Crus I and Crus II areas of the cerebellum (7, 72–74). 
Activity in these areas has shown modulation during upper limb 
motor behaviors in response to corticofugal !ber and forelimb 
stimulation and during forelimb reaching task. We did not perform 
subject- speci!c implantation based on motor mapping. However, a 
subset of rats also performed reaching tasks and had robust activa-
tion during reaching (7).

Viral injections
We used a red- shi&ed halorhodopsin, Jaws (AAV8- hSyn- Jaws- KGC- 
GFP- ER2, UNC Viral Core), for neural silencing in six rats for 
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optogenetic experiments (12, 18, 75). Viral injections were done at 
least 3 weeks before chronic implant surgeries. Rats were anesthe-
tized, as stated before, and body temperature was maintained at 37°C 
with a heating pad. Burr hole craniotomies were performed over in-
jection sites, and the virus was injected using a Hamilton Syringe with 
34- G needle. Five hundred–nanoliter injections (100 nl/min) were 
made at two sites in the cerebellar cortex (11.5 mm posterior, 2.5 mm 
lateral to bregma and 11.5 mm posterior and 3.5 mm lateral to breg-
ma; depth of 1 to 3 mm). In DCN as well, we performed viral injec-
tions at two sites (11.5 mm posterior, 2.5 mm lateral to bregma 
and 11.5 mm posterior and 3.5 mm lateral to bregma; depth of 6.1 to 
6.3 mm). A&er the injections, the skin was sutured, and the animals 
were allowed to recover with same regimen as stated above. Viral 
expression was con!rmed with "uorescence imaging.

Electrophysiology
Units and LFP activity were recorded using a 128- channel TDT- RZ2 
system (Tucker- Davis Technologies). Spike data were sampled at 
24,414 Hz and LFP data at 1017.3 Hz. ZIF (zero insertion force) clip- 
based digital head stages from TDT were used that interface the ZIF 
connector and the Intan RHD2000 chip which uses 192× gain. TDT’s 
RS4 data streamer was used to save all raw data at 24,414 Hz in all 
animals except two, where only spike times and waveform snippets 
were saved. Only clearly identi!able units with good waveforms and 
high signal to noise were used. %e remaining neural data were re-
corded for o(ine analysis. Behavior- related timestamps (i.e., trial on-
set and trial completion) were sent to the RZ2 analog input channel 
using an Arduino digital board and synchronized to neural data.

We have used the term “unit” to refer to the sorted spike record-
ings from both the MEA and silicon probe recordings. For both, we 
initially used an online sorting tool (Synapse, TDT) for neuropros-
thetic control. We used waveform shape and the presence of an abso-
lute/relative refractory period in the interspike interval to judge 
quality of isolation. Speci!cally, a voltage- based threshold was set on 
the basis of visual inspection for each channel that allowed for best 
separation between putative spikes and noise; typically, this threshold 
was at least 4 SD away from the mean. Events were time- stamped, and 
waveforms for each event were peak aligned. K- means clustering was 
then performed across the entire data matrix of waveforms. Automat-
ed sorting was performed by: (i) !rst overclustering waveforms using 
a K- means algorithm (i.e., split into many miniclusters), (ii) followed 
by a calculation of interface energy (a nonlinear similarity metric that 
allows for an automated decision of whether miniclusters are actually 
part of the same cluster), and (iii) followed by aggregation of similar 
clusters. We conducted o(ine spike sorting in Plexon (where spike 
times and waveform snippets were saved) or Spyking Circus (7, 76) 
(where spike data were saved at 24,414 Hz).

Behavior
A&er recovery, animals were typically acclimated for 1 to 2 days to a 
custom plexiglass behavioral box (Fig. 1A) before the start of experi-
mental sessions. A&er acclimatization, rats were water restricted for 
BMI training. We monitored body weights daily to ensure that the 
weight did not drop below 95% of the initial weight.

Behavioral sessions were typically conducted for 1 to 2 hours. Re-
corded neural data were entered in real time to custom routines in 
MATLAB (R2018b; MathWorks, Natick, MA). %ese then served as 
control signals for the angular velocity of the feeding tube. %e rats 
performed ~120 trials on average in a session. In a subset of sessions 

(n = 13), we also video- monitored the rat during the BMI training 
using a 30- fps camera (TDT RV2 video processor, USA).

Neural control of the feeding tube
During the BMI training sessions, we typically selected one to four 
M1 channels. %e units on these channels (2 to 8) were assigned as 
direct (TRd) units, and their neural activity was used to control the 
angular velocity of the feeding tube. If one channel was chosen for 
neuroprosthetic control, then its neurons were associated with posi-
tive unit weight (TRd

+), and if two or more channels were chosen, 
then some channel neurons were associated with a positive unit 
weight (TRd

+) and others with a negative unit weight (TRd
−). We 

never assigned the units on the same channel with a positive and neg-
ative weights. %ese units maintained their stability throughout the 
recording as evidenced by stability of waveform shape and interspike- 
interval histograms (!g. S11). We binned the spiking activity into 50- 
ms bins. We then established a mean !ring rate for each neuron over 
a 3 to 5 minutes of baseline period. %e mean !ring rate was then 
subtracted from its current !ring rate at all time points.

%e speci!c transform that we used was

where θv was the angular velocity of the feeding tube, r1(i) and r2(i) 
were !ring rates of the direct units (TRd

+ and TRd
−, respectively). G1 

and G2 were !xed unit weights, i.e., +1 and −1, respectively. C was a 
!xed constant (gain) that scaled the !ring rates to angular velocity. 
%e animals were then allowed to control the feeding tube via modu-
lation of neural activity. %e tube started at the same position at the 
start of each trial (P1 in Fig. 1A). %e calculated angular velocity was 
added to the previous angular position at each time step (50 ms). Dur-
ing a trial, the angular position that was controlled from the TRd ac-
tivity had the limits of 0° (P1) to 45° (P2). If the tube was controlled 
successfully to the “target position” (P2 in Fig. 1A), then a water re-
ward was delivered at the !nal resting position set to 62°. In the begin-
ning of a session, most rats were unsuccessful at bringing the feeding 
tube to !nal target position P2. Rats steadily improved control and 
reduced the time to completion of the task (i.e., moving the tube from 
position P1 to position P2) during a session. Multiple learning sessions 
were obtained from each animal. Consistent with past studies, we 
found that incorporation of new set of units into the control scheme 
required fresh learning (11, 77–79). We did not check whether the 
TRd units that we selected were part of the manifold (14), but upon 
checking the covariance between M1 TRd decoder neurons during 
intertrial periods, we did not !nd a signi!cant change with learning 
[early to late trials: 64.90  ±  29.60 to 108.06  ±  59.31; mixed- e#ect 
model: t(38) = 0.68, P = 0.49]. %is indicates that TRd units we se-
lected were likely from the same manifold. We also found that the 
covariance between M1 TRd and M1 TRi units did not change with 
learning [early to late trials; 89.43 ± 33.14 to 163.38 ± 92.71; mixed- 
e#ect model: t(38) = 0.96 P = 0.34], indicating that the M1 TRd and 
M1 TRi units also likely belonged to the same circuit.

Optogenetics
Optogenetic experiments were carried out in JAWS- injected rats us-
ing a high- power laser (50 mW/mm2: Laserglow Technologies, USA) 
emitting a 625- nm beam. A subset of rats (n = 3) was implanted with 
a 200- μm- diameter optic !ber cannula (Doric Lenses) over Crus I/
Crus II region of the cerebellar cortex, and a 32- channel microwire 

θv = C × [G1 × r1(i) + G2 × r2(i)]

D
ow

nloaded from
 https://w

w
w

.science.org at C
edars-Sinai M

edical Library on February 28, 2025



Abbasi et al., Sci. Adv. 10, eadm8246 (2024)     12 April 2024

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 16

array (TDT Florida) was implanted in M1. In another set of rats 
(n = 3), we implanted a cannula in DCN and a 32- channel microwire 
array in M1. During the behavior experiments, the laser was turned 
on every 50 ms at 40% duty cycle to inhibit cerebellar activity a&er the 
trial onset for the total duration of the trial (15 s). We performed two 
sessions each day with ~100 trials in each session. Each day, we alter-
nated between turning the laser on in the !rst session or the second 
session (!gs. S9C and S10C). Another subset of rats (n = 2) was im-
planted with a !ber- optic cannula mounted on a silicon probe (Cam-
bridge Neurotech, UK) in the cerebellum, and the recordings were 
performed under iso"urane anesthesia. In every trial, we recorded 5 s 
of baseline followed by 5 s for which the laser was on and another 5 s 
therea&er with laser o#. We performed 30 such repetitions.

Histology
A&er the experiment, rats were deeply anesthetized with iso"urane (4 
to 5%) and then exsanguinated and perfused with 4% paraformalde-
hyde (PFA). %e brains were extracted and stored in 4% PFA for up to 
72 hours. %e brains were then transferred to a solution of 30% su-
crose and stored for sectioning. We performed sagittal or coronal sec-
tions of the brain using a cryostat (Leica, Germany) and stored them 
in phosphate- bu#ered saline for imaging. Images were mounted on 
slices and imaged using a microscope (Keyence, Japan). %e location 
and depth of the silicon probe in the brain were traced by DiI deposit-
ing on the electrodes before their implantation and by looking a&er-
ward at the "uorescent dye present in the histological slices (!g. S12). 
%e expression of JAWS virus was imaged in coronal sections of the 
cerebellum (Fig. 6, A and I).

Data analysis
Sessions and changes in performance
O(ine analyses were performed in MATLAB (R2020b) with custom- 
written routines. A total of 20 training sessions recorded from seven 
rats were used for our initial analysis. In addition, we analyzed 18 
separate sessions across three rats where optogenetic inhibition of the 
cerebellum cortex was performed and 12 sessions across three rats 
where optogenetic inhibition of DCN was done. For Fig. 1 (C and D), 
we compared changes in task performance across sessions. Speci!-
cally, we compared the performance change by calculating the mean 
and SEM of the time to completion during the !rst and last 30% of 
trials (referred as early and late trials, respectively). Furthermore, we 
also compared the performance in early and late trials by calculating 
the percentage of unsuccessful trials.
Task- related activity
%e distinction between TRd, TRi, and TU units was based on the 
signi!cant modulation over baseline !ring activity of a unit a&er trial 
onset (i.e., peak of modulation at the time > 2.5 SD above the base-
line period). We called this the modulation depth (MDΔ) of each 
unit. We took the di#erence between this modulation from early to 
late trials to compute the change in MDΔ for each TRd and TRi units 
(Fig. 6, D, F, L, and N).
LFP analysis
Artifact rejection was !rst performed on LFP signals to remove bro-
ken channels and noisy trials. LFPs were then z scored and median- 
referenced, and evoked activity was subtracted separately for M1 and 
cerebellum. LFP power was calculated on a trial- by- trial basis and 
then averaged across channels and animals, with wavelet decomposi-
tion with a 100- ms Morlet window moving at every 10 ms, using the 
EEGLAB function newtimef (80). M1- cerebellum LFP coherence is 

de!ned as phase synchronization between two nonstationary signals. 
%e magnitude of coherence is a frequency function which varies be-
tween 0 and 1, with 0 being no phase synchronization and 1 being 
complete phase synchronization. We calculated coherence for each 
pair of channels using the EEGLAB function newcrossf (80). %e for-
mula used by this function is given below

where Rxx and Ryy are the power spectra and Rxy is the cross- spectrum 
of signals x and y, which are pairs of LFP channels of M1 and cerebel-
lum, respectively.

All the comparisons were done between early and late trials. For 
this analysis, across all the early trials, only trials where time to task 
completion was over 10 s were included. Across all the late trials, only 
trials where time to task completion was under 5 s were included.

We also performed LFP power and coherence comparisons be-
tween the equal number of successful trials from early and late learn-
ing. From the early phase, we included successful trials which were 
over 10 s, and from the late phase, we included the equal number of 
trials where time to task completion was under 5 s. We performed 
LFP power and coherence analysis using the same EEGLAB functions 
that are mentioned above.
Spike- triggered averaging
We calculated the STA to measure how spikes locked to the 3-  to 6- 
Hz LFP oscillations, both in the M1 and the cerebellum. We used 
!ltered (3 to 6 Hz) median LFP from each region for this analysis. 
For band- pass !ltering, we used the EEGLAB function eeg"lt with 
high and low cuto# frequencies of 3 and 6 Hz, respectively. We used 
the !rst 4 s a&er the start of the trial to calculate these STAs. For every 
unit, we concatenated the spikes from early trials in a spike vector 
and from late trials in another vector. Before STA calculation, we 
equaled the length of these vectors. %en, we extracted 2 s of LFP 
around every spike time in those vectors and average it to get early 
and late STAs for a given unit. To calculate the change in modulation 
for every unit, we looked at the di#erence between the minimum and 
maximum peaks in a 300- ms window around a spike in the averaged 
STA of early and late trails and then calculated this change from ear-
ly to late trials in percentage. We also calculated STA during inter-
trial interval. Here, we used from 2 to 6 s a&er the end of the trial and 
applied the same steps to compute the STA as described above. Fur-
thermore, we repeated the STA analysis for the task period and the 
intertrial interval by using the equal number of successful only trials 
from early and late learning.
Spike- LFP phase analysis
To study the phase relationship between spiking and LFP activity, 
we generated histograms of the LFP phases at which each spike oc-
curred for a single unit to LFP channels that showed an increase in 
power from early to late trials, in a 2.45- s window around task start 
(−0.25 s before to 2.2 s a&er movement onset) across all trials of a 
session (!g. S5, A and B). %e LFP channels were !ltered in the 3-  to 
6- Hz band. All units were compared with the same selected M1 and 
cerebellum LFP channels from early to late trials. %e histograms 
were generated for each unit- LFP channel pair both within and 
across regions. For every pair, we then calculated the Rayleigh’s z 
statistic for circular nonuniformity. %ese z statistics were then used 
to calculate the percentage of signi!cantly nonuniform distributions 

Cxy =
∣Rxy ∣

√

∣Rxx ∣
√

∣Ryy ∣

D
ow

nloaded from
 https://w

w
w

.science.org at C
edars-Sinai M

edical Library on February 28, 2025



Abbasi et al., Sci. Adv. 10, eadm8246 (2024)     12 April 2024

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 16

across unit- LFP pairs with a signi!cance threshold of P  =  0.05 
(!g.  S5, C to F). A signi!cantly nonuniform distribution signi!es 
phase preference for spikes of a unit to an LFP signal.
Canonical correlation analysis
We identi!ed shared cross- area subspaces between M1 and cerebel-
lum using CCA. %is method identi!es the maximally correlated 
axes between two groups of variables. Unit spiking data in M1 and 
cerebellum from −2 to +2 s around task start for each trial were 
binned at 50 ms and concatenated across early and late trials sepa-
rately. Our sessions contained at least two M1 or cerebellar units. 
CCA models were then !t using the MATLAB function canoncorr. 
%is function involves transforming the data to have zero mean and 
unit SD before computing CVs. %e number of CVs determined by 
the function is equal to the minimum number neurons in M1 or cer-
ebellum in a session.

To determine which CVs were signi!cant, the canonical correla-
tion of each CV was compared with a bootstrap distribution made of 
the canonical correlation of top CV from CCA models !t to trial- 
shu(ed data (104 shu(es). Speci!cally, before !tting CCA, trials 
from cerebellum were concatenated in the order in which they oc-
curred, while trials from M1 were randomly permuted before concat-
enation. %is method maintains local neural activity structure but 
breaks trial- by- trial relationship between neural modulation between 
these two regions. %is provides a "oor for the degree of correlation 
expected from the fact that many units in both regions have !ring rate 
"uctuations around task start. A CV was considered signi!cant if its 
canonical correlation was greater than the 95th percentile of the boot-
strap distribution. All sessions had one to two signi!cant CVs. For 
evaluating cross- area signals, only the top CV was used. We per-
formed the CCA analysis with spiking activity from an equal number 
of successful trials from early and late learning.
Regression analysis
We use GLM, using the MATLAB function "tglm, to predict M1 
BMI potent space activity from cerebellum TRi’ s. %e function cre-
ated generalized linear regression models with linear model speci-
!cations (containing an intercept and linear term for each predictor) 
and !tted using a normal distribution for the response variable. For 
predicting M1 TRd activity from cerebellum TRi’s, BMI potent 
space activity was calculated as the di#erence between summed M1 
TRd

+ activity and summed M1 TRd
− activity (+/− being positive or 

negative unit weight associated TRd’s), which was used as the re-
sponse variable (44). Predictors were binned !ring rates of cerebel-
lum TRi units, where each neuron appeared more than once with 
variable time lags ranging from–50 to +50 ms relative to the BMI- 
potent activity. Such horizontally stacked neural data correspond-
ing to each trial in a session were used as predictive variable. In 
every session, for each model, a cross- validated R2 value was com-
puted by splitting each session data into ninefold for training and 
onefold for test which was repeated 10 times. R2 values were com-
puted between the true response variable and the model output. 
%e R2 values reported are the average across all 10 combinations of 
testing/training data. For predicting M1 TRi and M1 TU activity 
from cerebellum TRi’s, a “surrogate BMI- potent space” was created 
from M1 neural activity by randomly selecting matched numbers 
of task- indirect/unrelated units (M1 TRi/M1 TU) to stand in for 
the true direct units (M1 TRd’s). %e di#erence of summed activity 
in positive and negative pools obtained was used as the response 
variable. %is process was repeated for 50 choices of such units per 
dataset, and average R2 values were reported.

Video tracking and analysis
We performed automated tracking of the tip of the feeding tube, the 
forepaws, and the head of the rats using DeepLabCut (81). We per-
formed cross- correlation between the trajectories of the feeding tube 
and either forepaw/head using corrcoef function of MATLAB. %is 
function takes the trajectory vectors of the feeding tube and either 
forepaw or head as two inputs and returns the correlation coe$cient 
R and P value for every trial (!g. S2).
Feeding tube trajectory analysis
We analyzed the feeding tube trajectory to look at its angular position 
and velocity from early to late trials. We looked at the angular position 
by plotting the x and y positions of the feeding tube in the camera !eld 
of view over time, for early and late trials. We calculated the instanta-
neous angular velocity for every trial by looking at the displacement 
of the feeding tube between the subsequent frames and dividing it 
with the elapsed time. For every early and late trial, we calculated 
speed of the feeding tube by looking at the total displacement of the 
feeding tube from P1 to P2 and dividing it with the time to task com-
pletion for that trial. We then took the average speed for early and late 
trials. For speed consistency analysis, we interpolated feeding tube 
trajectory from early and late trials separately to make it equal to the 
feeding tube trajectory of the longest trial in each condition. We then 
calculated feeding tube velocity on these interpolated trials. We cor-
related the velocity pro!les of individual early and late trials to the 
template velocity pro!le (constructed form the mean of velocity pro-
!les of late trials) to show the change in speed consistency.
Statistical analysis
All statistical analyses were implemented within MATLAB. %e lin-
ear mixed- e#ects model (implemented using MATLAB "tlme) was 
used to compare the di#erences in time to task completion, MDΔ 
(of di#erent classes of cells from early to late), trial to mean correla-
tion for speed consistency of the feeding tube, average speed of the 
feeding tube, M1/cerebellum LFP power, M1- cerebellum LFP co-
herence, canonical correlations (M1 TR–cerebellum TRi, M1 TRd–
cerebellum TRi, M1 TRi–cerebellum TRi, and M1 TU–cerebellum 
TRi), and on the R2 derived through spike GLM models, unless 
speci!ed otherwise. %is model accounts for the fact that units or 
sessions from the same animal are more correlated than those from 
di#erent animals and is more stringent than computing statistical 
signi!cance over all units and sessions (6, 7, 43, 71, 82). We !tted 
random intercepts for each rat and reported the P values for the 
regression coe$cients associated with sessions, channels, or units. 
We also performed Kruskal- Wallis H test with multiple compari-
sons in Fig. 3 (E and F) and in !g. S4. To test the di#erence between 
two distributions, we did Kolmogorov- Smirnov two- sample test in 
Fig. 4 (C to F), and !gs. S9A and S10A.

Supplementary Materials
This PDF !le includes:
Figs. S1 to S12
Table S1
Legends for movies S1 and S2

Other Supplementary Material for this manuscript includes the following:
Movies S1 and S2
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